

Genomic neighbor typing for bacterial outbreak surveillance

Eike Steinig^{1,2}, Miranda Pitt¹, Izzard Aglua^{3,4}, Annika Suttie⁵, Andrew Greenhill^{4,6}, Christopher Heather⁷, Cadhla Firth², Simon Smith⁸, William Pomat⁴, Paul Horwood^{4,9}, Emma McBryde², and Lachlan Coin¹

¹The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Australia; ²Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia; ³Sir Joseph Nombri Memorial-Kundiawa General Hospital, Kundiawa, Simbu Province, Papua New Guinea; ⁴Papua New Guinea Institute of Medical Research, Goroka, Eastern Highland Province, Papua New Guinea; ⁵School of Health and Life Sciences, Federation University, Churchill, Australia; ⁶Department of Microbiology, Federation University, Churchill, Australia; ⁷Townsville University Hospital, Queensland Health, Townsville, Australia; ⁸Cairns Hospital and Hinterland Health Service, Queensland Health, Cairns, Australia; ⁹College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Australia

This preprint was compiled on February 5, 2022

1 **Genomic neighbor typing enables heuristic inference of bacterial lineages and phenotypes from nanopore sequencing data.** However, **2** small reference databases may not be sufficiently representative **3** of the diversity of lineages and genotypes present in a collection **4** of isolates. In this study, we explore the use of genomic neighbor **5** typing for surveillance of community-associated *Staphylococcus aureus* **6** outbreaks in Papua New Guinea (PNG) and Far North **7** Queensland, Australia (FNQ). We developed Sketchy, an implementation **8** of genomic neighbor typing that queries exhaustive whole **9** genome reference databases using MinHash. Evaluations were **10** conducted using nanopore read simulations and six species-wide **11** reference sketches (4832 - 47616 genomes), as well as two *S. aureus* **12** outbreak data sets sequenced at low depth using a sequential **13** multiplex library protocol on the MinION (n = 160, with matching Illumina **14** data). Heuristic inference of lineages and antimicrobial resistance **15** profiles allowed us to conduct multiplex genotyping *in situ* **16** at the Papua New Guinea Institute of Medical Research in Goroka, **17** on low-throughput Flongle adapters and using multiple successive **18** libraries on the same MinION flow cell (n = 24 - 48). Comparison **19** to phylogenetically informed genomic neighbor typing with RASE on **20** the dominant outbreak sequence type suggests slightly better **21** performance at predicting lineage-scale genotypes using large sketch **22** sizes, but inferior performance in resolving clade-specific genotypes **23** (methicillin resistance). Sketchy can be used for large-scale bacterial **24** outbreak surveillance and in challenging sequencing scenarios, **25** but improvements to clade-specific genotype inference are needed **26** for diagnostic applications. Sketchy is available open-source at: **27** <https://github.com/esteinig/sketchy>

Oxford Nanopore Technologies | Genomic neighbor typing | MinHash | Outbreaks | Multiplex | Papua New Guinea | Far North Queensland | Bacteria | *Staphylococcus aureus* | Flongle

1 Epidemiological and clinical features of infectious diseases, **2** such as strain provenance and antimicrobial susceptibility, **3** are valuable targets for decision makers, but their timely **4** inference from genomic data is challenging. Fast methods for **5** genotyping are especially relevant for bacterial pathogens for **6** which faithful genome assembly requires reasonable genome **7** coverage. However, whole genomes often cannot be assembled **8** easily from complex metagenomic samples, including blood **9** and lower respiratory infections where the causative pathogen **10** may be at low abundance.

11 Nanopore sequencing is particularly suited for rapid characterisation of pathogen genomes, with potential to be conducted **12** on-site rather than sent to a reference lab, as reads can be **13** streamed from the device and analysed on mobile computing **14** platforms (1–4). Several methods for bacterial pathogens **15**

characterisation on nanopore platforms has been developed **16** over the past few years, including pipelines for batch assembly **17** and marker detection (5, 6), novel algorithms for streaming **18** assembly and genotyping (7–9), and sensitive approaches to **19** antimicrobial resistance prediction, as well as taxonomic identification **20** (10–12). Studies that assessed clinical specimens **21** have focused on samples with low abundance of host nucleic **22** acids, high bacterial loads, and those in which nanopore sequencing **23** was supported with short-read sequencing (6, 13–15). **24** Strain-level genotyping from lower respiratory infections and **25** cystic fibrosis patients was particularly efficient when preceded **26** by host nucleic acid depletion (13) or enriched by culture (14).

27 In pursuit of rapid genotype inference, Břinda *et al.* developed **28** a heuristic principle termed "genomic neighbor typing" **29** (16). Antibiotic resistance phenotypes (minimum inhibitory **30** concentrations) and lineage membership could be inferred **31** using *k*-mer matching against a database of whole genome **32** sequences, including their phylogenetic relationships RASE. **33** Using genomic neighbor typing, heuristic inference of genome- **34** associated traits was possible within minutes of starting **35** sequencing. Genomic neighbor typing could thus be used for **36** massively parallel genotyping, requiring only standard nucleic **37** acid extraction and multiplex library protocols to survey lineage **38** and genotype composition of an bacterial outbreak, where **39** complete genomes may be difficult to produce at scale.

40 A critical component of genomic neighbor typing is sufficient **41** representation of genome diversity in the reference **42** database. Břinda *et al.* constructed reference sets from local **43** and national collections to demonstrate the principle using **44** *S. pneumoniae* (n = 616) and *Neisseria gonorrhoeae* (n = **45** 1102). However, for clinical applications and in particular for **46** outbreak scenarios, a small reference database of the globally **47** available sequence space for a pathogen may be insufficiently **48** representative of species-wide diversity and miss important **49** lineages or sublineage genotypes that may have entered local **50** epidemiological space. In one such outbreak scenario in **51** Papua New Guinea, community-associated MRSA infections in **52** Kundiawa (Simbu Province) and Goroka (Eastern Highlands **53** Province) had been tracked over multiple years, but lineage **54** provenance and genotype identity had been unknown (17).

55 ES, LC, CH, EM, PH planned and conceived of the study. ES conducted sequencing, wrote the code and conducted analyses; MP conducted the Flongle sequencing experiment; IA, AS, AG, SS, WP, PH collected and maintained the outbreak strains for sequencing and conducted experiments in Goroka; LC, EM, WP, SS supervised sites and contributed funding; ES wrote the initial draft; all authors contributed to the final manuscript.

There are no conflicts of interest by the authors; * authors contributed equally to the study.

Correspondence: eike.steinig@unimelb.edu.au

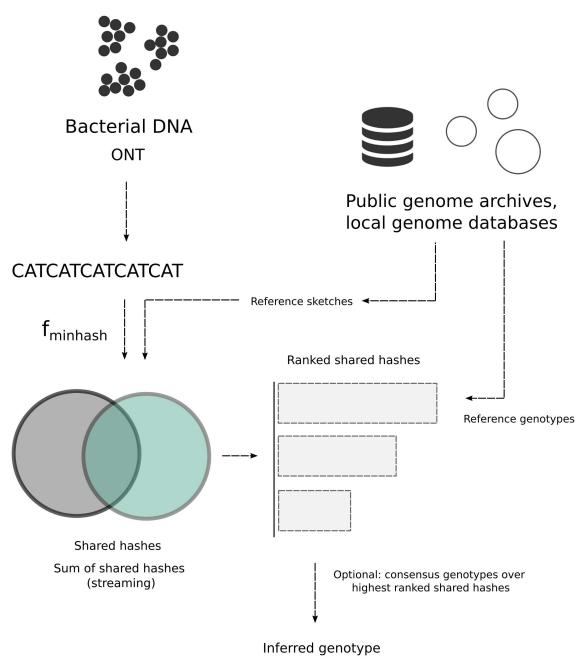


Fig. 1. Sketchy components: bacterial sequence reads are matched against a reference database constructed from bacterial whole genomes (including from public archives). Shared hashes (or the sum of shared hashes for streaming operations) are then ranked and the genotype of the highest ranking genome match selected for prediction. Alternatively, consensus calls for each genotype feature (binary or multi-label, e.g. trimethoprim resistance or *SCCmec* subtype) can be made over the highest ranking genomes in the reference sketch.

No sequencing data on *S. aureus* from Papua New Guinea exists, so that the application of genomic neighbor typing to survey the lineage and genotype composition of the outbreak would require a sufficiently representative lineage database to account for the absence of prior data from the region.

In addition to the outbreak in the remote highland provinces of Papua New Guinea, we had become aware of escalating *S. aureus* infections in remote communities of Far North Queensland, which borders Papua New Guinea through the Torres Strait Islands (18, 19). We collected a snap-shot of strains from Far North Queensland communities (Cape York Peninsula, Cairns and Hinterland, Torres Strait Island) in 2019 (20). This presents a realistic scenario, where surveying cross-border bacterial outbreaks using a comprehensive genomic neighbor typing approach on nanopore devices could provide lineage and genotype data important for deciphering geographical provenance (lineage attribution) and antibiotic susceptibilities of dominant outbreak lineages, potentially informing treatment options. Furthermore, we were interested in demonstrating that genomic neighbor typing is working under realistic sequencing conditions, including on site in Goroka (Eastern Highlands Province) where access to sequencing infrastructure is not available. In addition, we wanted to assess using genomic neighbor typing as a cost-effective approach, for example by using successive library sequencing protocols or Flongle.

Large reference databases may be required to ensure a 'hypothesis-agnostic' genomic neighbor typing approach. However, maintaining a relatively small resource profile while using large reference databases of bacterial whole genome se-

quences requires an approximate database construction and read matching approach that can accommodate tens to potentially hundreds of thousands of genomes. MinHash, a variant of locality-sensitive hashing originally used for detection of near-duplicate websites or images (21), has been extensively used in genomics since its implementation in *Mash* (22, 23). Computing min-wise shared hashes between reference and query sketches (23, 24) presents a simple method to implement genomic neighbor typing with comprehensive lineage and genotype representation and without the need for phylogenetic trees as required by *RASE*. In addition, an implementation of genomic neighbor typing that uses genotypes, instead of culture-based phenotypes (such as MIC values) would allow for the construction of reference sketches entirely from public genome collections.

In this study, we evaluate genomic neighbor typing with species-wide bacterial pathogen sketches using MinHash. We developed a simple genomic neighbor typing approach using ranked shared hashes and lineage-resolved ('hypothesis-agnostic') databases which span the known genomic diversity of a bacterial species and are constructed from public sources (Fig. 1). Our primary aim was to infer lineage and sublineage genotypes from as few reads as possible, and to evaluate the approach on independent outbreak data from remote northern Australia and Papua New Guinea ($n = 160$, with matching Illumina reference data). We reasoned that genomic neighbor typing could be used for scaling outbreak surveillance through heuristic genotype inference.

Results

Species cross-validation simulation

Whole genome sequences for six species with varying levels of representation in the European Nucleotide Archive (ENA) were collected for reference sketch construction (Table 1) (25). After filtering of assemblies for contamination, completeness and strain heterogeneity, we constructed default ($k = 16$, $s = 1000$) and high resolution ($k = 16$, $s = 10000$) reference sketches for evaluation (Table 1). Sketch databases contained between 4,832 (*Pseudomonas aeruginosa*) and 47,616 genomes (*S. pneumoniae*). Low resolution sketch files were considerably smaller and consumed less memory than their high resolution equivalents (Table 1). We used multi-locus sequence types (MLST) as a proxy for genotype predictions, as MLST data were readily available for all species (25) and representative of the ability to match genomes in the correct genomic neighborhood (lineage) of the reference database. We conducted a cross-validation simulation, for which we sampled 10 genomes (without replacement) from the reference collection of each species across 20 replicates ($n = 200$) and used reference sketches which did (DB+) or did not (DB-) contain the sampled genomes (Fig. 2, Table 1). Since our primary aim was to call genotypes from as few reads as possible, we evaluated performance (mean proportion correctly classified) at a threshold of 1000 reads (Methods). We assessed two other methods at this threshold for comparison with *Sketchy*: a k -mer based MLST allele typer for long reads (*Krocus*) and whole genome assembly with *Flye*, with added polish by *Medaka*.

Performance was dependent on species, with three out of six species (*N. gonorrhoeae*, *N. meningitidis* and *S. pneumoniae*) showing inferior lineage predictions in the cross-validation assessment, including extremely low performance by *N. gon-*

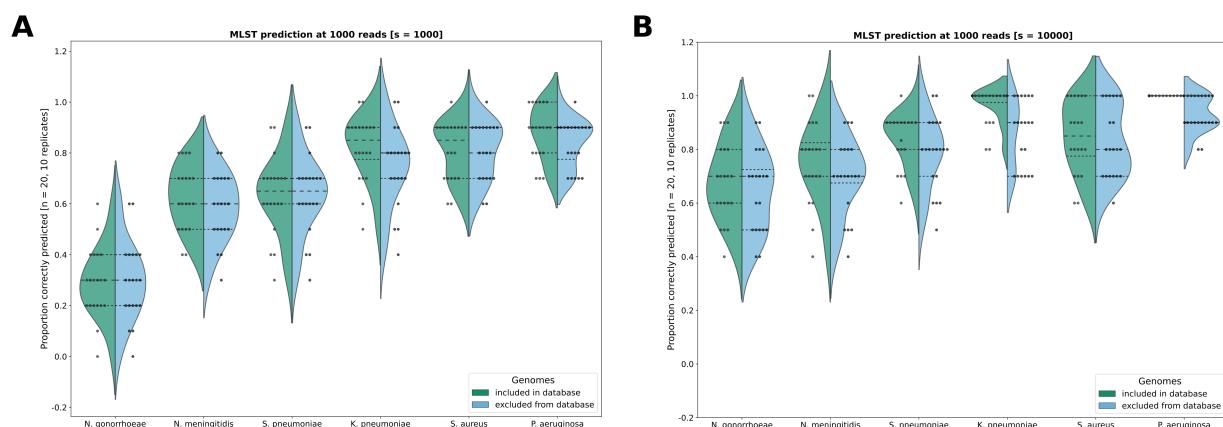


Fig. 2. Cross-validation MLST classification success (proportion of correct sequence types, at 1000 reads) for (A) default resolution ($s = 1000$) sketches and (B) high-resolution ($s = 10000$) sketches across species (violins, data points) showing one half as reference sketches containing the hold-out samples (green, left, DB+) and the other as reference sketches that did not contain the hold-out samples (blue, right, DB-). Cross-validation sampling was conducted using 20 replicates of 10 random samples from the complete reference genome collection and reference sketches ($k = 16$) were built with and without the sampled genomes (Table 1).

Table 1. Cross-validation of species sketches using simulated nanopore reads (1000 reads, $k = 16$, 20 replicates, $n = 10$)

Species	n	s	Size (MB)	LZMA (MB)	Time (s)	MEM (GB)	DB+ (%)	DB- (%)
<i>Streptococcus pneumoniae</i>	47616	1000	552	46	5.06 (± 0.16)	5.97 (± 0.001)	63.5 (± 15.3)	63.5 (± 15.3)
<i>Staphylococcus aureus</i>	42461	1000	492	38	3.72 (± 0.07)	5.32 (± 0.001)	79.5 (± 9.44)	80.5 (± 11.5)
<i>Neisseria meningitidis</i>	16198	1000	188	16	1.48 (± 0.01)	2.03 (± 0.001)	62.5 (± 12.9)	58.5 (± 13.4)
<i>Klebsiella pneumoniae</i>	10072	1000	117	10	1.10 (± 0.01)	1.26 (± 0.001)	82.0 (± 12.8)	74.5 (± 15.4)
<i>Neisseria gonorrhoeae</i>	8413	1000	98	7	0.81 (± 0.01)	1.05 (± 0.001)	29.0 (± 13.8)	29.5 (± 15.4)
<i>Pseudomonas aeruginosa</i>	4832	1000	56	5	0.67 (± 0.01)	0.61 (± 0.001)	88.0 (± 10.6)	83.5 (± 9.33)
<i>Streptococcus pneumoniae</i>	47616	10000	5720	791	44.33 (± 3.86)	58.82 (± 0.001)	83.5 (± 10.5)	78.5 (± 13.4)
<i>Staphylococcus aureus</i>	42461	10000	5101	671	34.85 (± 1.77)	53.34 (± 0.001)	84.5 (± 13.6)	83.0 (± 13.4)
<i>Neisseria meningitidis</i>	16198	10000	1945	221	14.59 (± 0.25)	20.35 (± 0.001)	75.5 (± 15.4)	70.0 (± 14.1)
<i>Klebsiella pneumoniae</i>	10072	10000	1210	139	9.33 (± 0.34)	12.65 (± 0.001)	96.5 (± 6.71)	86.0 (± 12.3)
<i>Neisseria gonorrhoeae</i>	8413	10000	1011	112	7.98 (± 0.66)	10.57 (± 0.001)	67.5 (± 14.5)	64.5 (± 15.4)
<i>Pseudomonas aeruginosa</i>	4832	10000	554	75	4.31 (± 0.02)	6.07 (± 0.001)	100.0 (± 0.0)	93.0 (± 6.57)

LZMA (compression), DB+ (random sample retained in reference sketch), DB- (random sample excluded from reference sketch)

145 *orrhoiae* (Table 1, Fig. 2). In contrast, *K. pneumoniae*, *S.*
146 *aureus* and *P. aeruginosa* recovered MLST reasonably well,
147 ranging from 79.5% - 100% (DB+) and 74.5% - 93.0% ac-
148 curacy (Table 1, Fig. 2). For these species, predictions im-
149 proved when sampled genomes were contained in the reference
150 sketch (green, DB+) but this trend was not as pronounced for
151 under-performing species (Fig. 1). In all species, predictions
152 improved, often considerably, using higher resolution sketches
153 ($s = 10000$), including accurate predictions using sketches
154 which did not contain the sampled genomes for *P. aeruginosa*
155 (93% \pm 6.57) and *K. pneumoniae* (86% \pm 12.3) (Table 1).

156 In species where sketches were able to sufficiently recover
157 lineage, performance stabilised around 200 - 500 reads sug-
158 gesting that fewer reads than the threshold may be sufficient
159 for genotyping (Fig. S1A). Reference sketch size, memory con-
160 sumption and prediction times scaled approximately linearly
161 with the number of genomes in the reference sketch and sketch
162 size (Table 1). Predictions at an additional threshold of 10000
163 reads using the low-resolution sketches ($s = 1000$) showed
164 minor improvements in performance across species (Fig. S1B),
165 indicating that most of the observed error was due to the
166 resolution of the sketching approach, and only some due to

167 the low read threshold chosen for typing. Finally we compared
168 **Sketchy** to allele based k -mer matching with **Krocus** and lin-
169 eage typing from assemblies generated with **Flye**, optionally
170 polished with **Medaka**. **Krocus** was unable to infer MLST from
171 1000 reads in all cases (Fig1. S1C). Using assembled genomes,
172 allele typing led to incorrect multi-locus sequence types in all
173 cases, except in a single *P. aeruginosa* assembly with **Flye**
174 (Fig. S1C).

Genotype surveillance of community-associated outbreaks

175 We next evaluated **Sketchy** genotyping on two *S. aureus* out-
176 breaks from remote communities in Papua New Guinea and
177 Far North Queensland ($n = 160$), which had been sequenced
178 at low-coverage using a dual-library protocol with interspersed
179 nuclease washes (24 strains per MinION flow cell, on a total
180 of 8 flow cells) (4) (Fig. 3, Methods). While most isolates
181 belonged to the Australian ST93-MRSA-IV clone (26, 27) (n
182 = 120), multiple other sequence types were recovered (ST1,
183 ST5, ST15, ST25, ST30, ST45, ST81, ST121, ST243, ST762,
184 $n = 35$), including several novel sequence types ($n = 5$) of
185 which some derived from the ST93 outbreak lineage ($n = 3$).
186 In addition, a version of the *S. aureus* reference sketch was
187

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

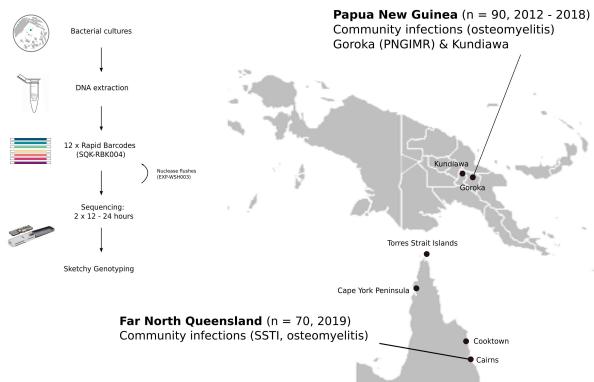


Fig. 3. Nanopore validation dataset with matching Illumina data sequenced from community-associated *S. aureus* outbreaks in Papua New Guinea (PNG) and Far North Queensland (FNQ). Sampling of osteomyelitis and skin-and soft tissue infections (SSTI) was conducted in Goroka (Eastern Highland Province), Kundiawa (Simbu Province) ($n = 90$), and Cairns hospital (Queensland) where isolates from routine surveillance of communities on the Cape York Peninsula were collected ($n = 70$). Inset schematic of the dual-panel barcoding protocol from cultured samples, where a standard spin-column extraction is followed by sequencing two rapid barcode libraries (12 isolates) on the MinION (24 samples per flow cell, interspersed with a nuclease wash) and Sketchy genotyping for rapid outbreak surveillance.

precision (Table 2). Importantly, most sequence types were correctly identified (144/160) providing an accurate survey of lineage diversity in FNQ and PNG. Analysis of sequence typing errors revealed consistent false calls between ST81 reference and ST1 prediction pairs ($n = 3$), ST243 and ST30/ST3452 ($n = 5$), ST5 and ST225/ST228 ($n = 2$) and one ST762 genome predicted as ST1 ($n = 1$) (Table S1). In all cases except one, the reference sequence type was contained in the reference sketch and predicted sequence types belonged to the same clonal complex (CC) with a difference of one or two alleles (Table S1). Finally, of the novel sequence types detected in this dataset ($n = 5$), three single allele variants of ST93 were predicted ST93, one single allele variant of ST88 was predicted ST88 and one unknown ST variant with four alleles difference was predicted ST1 (Table 2).

We also used the streaming algorithm (sum of shared hashes) with the same configurations for comparison (Table S2). Overall, there were slight regressions in all predictions, which were expected due to computing shared hashes per read, losing some of the information contained in the completed read sets (1000 reads). When we used the high-resolution species sketch ($s = 10000$) in non-streaming mode for these outbreak data, improvements in lineage predictions were observed, including resolution of the ST243/ST30 and ST5/ST225/ST228 misclassification, and some of the associated resistance and PVL classifications (Table S3). No improvements were made in SCCmec related features, with regressions in methicillin resistance and SCCmec type classification accuracy across the dataset, indicating that these were driven by systematic error in classification of clade-specific features of the dominant outbreak lineage ST93.

We next ran a library of strains from the osteomyelitis outbreak *in situ* at the Papua New Guinea Institute of Medical Research in Goroka (Eastern Highlands). We multiplexed 12 strains onto a MinION flow cell, but ultimately obtained few reads per barcode (276 - 1896, Table 3) due to malfunctioning laboratory equipment resulting in failed barcode attachment (15072/23774 reads unclassified, Fig. 4A). Nevertheless, we were able to use the remaining reads per barcode to type with Sketchy, which correctly predicted lineage (ST93) with the exception of two isolates (ST22 and ST121 from 276 and 533 reads respectively) and some lineage-distributed genotypes

188 created using a collection of genomes for which we had pre-
189 previously computed antimicrobial resistance calls with Mykrobe
190 ($n = 34,583$), as well as SCCmec type and presence of the
191 Panton-Valentine leukocidin locus (PVL). As the outbreak
192 isolates were the first *S. aureus* genomes recovered from Papua
193 New Guinea, these data comprised an independent validation
194 dataset for performance evaluation of the *S. aureus* reference
195 sketch, in the absence of local or regional genome collections.

196 Sketchy predictions on 1000 reads of the outbreak data
197 from FNQ and PNG were compared with Illumina reference
198 genotypes and standard performance metrics were computed
199 across the dataset (Figure 3, Table 2). Generally, lineage-
200 wide distributed features (MLST, PVL, penicillin resistance,
201 some antibiotic susceptibilities) achieved high accuracy and

Table 2. *S. aureus* outbreak isolates on MinION (4 flow cells, 2 x 12-plex, 1000 reads, $k = 16$, $s = 1000$, $n = 160$)

Feature	Binary	TP	TN	FP	FN	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)
MLST	false	-	-	-	-	90.00	88.22	90.00	-
SCCmec type	false	-	-	-	-	80.63	90.63	80.63	-
PVL	true	130	16	2	12	91.25	98.48	91.54	88.88
Clindamycin	true	1	146	7	6	90.50	12.50	14.28	94.70
Rifampicin	true	0	160	0	0	100.0	na	na	100.0
Ciprofloxacin	true	0	156	3	1	97.50	na	na	98.11
Vancomycin	true	0	160	0	0	100.0	na	na	100.0
Tetracycline	true	0	157	2	1	99.13	na	na	98.74
Mupirocin	true	0	158	0	2	98.75	na	na	100.0
Gentamicin	true	0	159	1	0	99.38	na	na	99.37
Trimethoprim	true	0	152	3	5	95.00	na	na	98.06
Penicillin	true	151	3	4	2	96.25	97.42	98.69	42.85
Methicillin	true	107	25	1	27	82.50	99.07	79.85	96.15
Erythromycin	true	1	145	8	6	91.25	11.11	14.29	94.77
Fusidic Acid	true	2	156	2	0	98.75	0.50	100.0	98.73

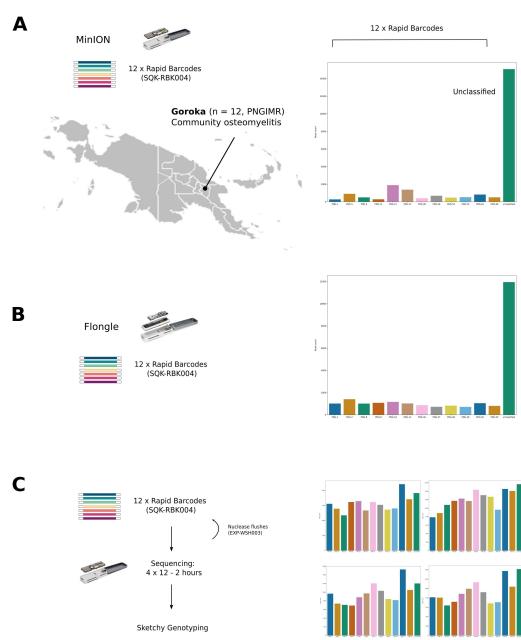


Fig. 4. Outbreak surveillance experiments of community-associated *Staphylococcus aureus* cases from Papua New Guinea **(A)** *in situ* at the Papua New Guinea Institute for Medical Research **(B)** minimal multiplexing experiment on Flongle and **(C)** 48 strains on four successive panels on a single MinION flow cell. Left panel shows a representation of the experiment, middle panel shows the barcode distribution of each sequenced barcoded run (seagreen is unclassified). A large numbers of unclassified barcodes in **(A)** was likely due to a malfunctioning instrument (heatblock) during library preparation in Goroka, although we could not assuredly rule out other causes.

(PVL, some antibiotic resistance categories) suggesting deficits in *SCCmec* related predictions for ST93-MRSA-IV (Table 4). Incorrect predictions were however mitigated when the high-resolution ($s = 10000$) *S. aureus* reference sketch was used, which correctly predicted all sequence types from as few as 276 reads, but failed to predict several important secondary resistances (clindamycin, tetracycline, erythromycin) in one isolate (PNG-69) and failed to predict methicillin resistant genotypes in two others (Table S4).

In the next experiment we used a panel of 12 outbreak isolates to multiplex on a Flongle adapter flow cell (Fig. 4B). A large proportion of reads (11944/23611) was unclassified, which was likely due to including reads with average qualities over Q5 to account for the low throughput of the Flongle flow cell (Table 3). Similar prediction patterns as in the experiment in Goroka were observed, with few reads available for prediction across barcodes (713-1162, Table 3). Despite the low read counts, classification using the default resolution reference sketch ($k = 16$, $s = 1000$, 1000 reads) successfully typed most isolates as the outbreak sequence type ST93-MRSA-IV, albeit with the previously observed limitations in *SCCmec*-related features (Table 5), including improvements across Flongle predictions with the higher resolution *S. aureus* reference sketch (Table S5). Finally, we tested a faster, successive library sequencing protocol for MinION flow cells, using 48 strains in 4 barcoded libraries, which were sequenced for 2 hours followed by a nuclease wash in between libraries (Methods). We had aimed to sequence another 4 libraries on the same flow cell ($n = 96$) as the 96 barcode sequencing kits had not been

Table 3. Barcode read counts

Barcode	Goroka	Flongle
RLB 01	276	1014
RLB 02	908	1404
RLB 03	288	1010
RLB 04	688	1021
RLB 05	1896	1162
RLB 06	1378	1080
RLB 07	405	723
RLB 08	533	867
RLB 09	483	824
RLB 10	827	713
RLB 11	513	1046
RLB 12	507	803
Unclassified	15072	11944

released yet. However, during reloading too many bubbles were introduced to the flow cell channel and the experiment terminated at 48 strains with a remaining 900-1000 active pores after a final diagnostic check (data not shown). Nevertheless, predictions of the 48 strain protocol using the default *S. aureus* sketch show that this approach is viable, with 2/48 lineage misclassifications (PNG-4, PNG-68) which were novel allele variants of ST81 and ST93 (and misclassified as ST93) (Table S1, Table 6, Table S6).

Sublineage genotyping comparison with RASE

Finally, we compared Sketchy at sublineage resolution to RASE predictions for the outbreak sequence type (ST93). We built reference databases based on lineage genomes ($n = 360$, $k = 16$) including a rooted maximum-likelihood phylogeny from previous single nucleotide polymorphism calls (26) (Fig. 5A). Because of the small size of this reference databases, we constructed additional sketches with higher resolution (up to $s = 1000000$) to compare for sublineage genotyping with Sketchy (Methods). RASE predictions were largely congruent with reference genotypes, with most categories exceeding 90% accuracy and precision, and only sporadic false positive and false negative predictions for clindamycin, mupirocin, methicillin and erythromycin (Table 7). There appeared to be a systematic error in tetracycline predictions, where 28/118 isolates were predicted resistant (R), but were in fact susceptible (S). Only a single isolate assembly in the reference database was typed as resistant (R). We ruled out contaminated genomes in the reference sketch as a source for these aberrant predictions, due to using conservative filters including contamination and strain heterogeneity (Methods). In addition, we ruled out errors introduced by ancestral state reconstruction, which was disabled for this analysis in RASE. Ultimately, most false tetracycline resistance predictions were flagged with low confidence from the preference score used in RASE, but did not resolve when using all reads for inference (Table S5).

Sketchy performed slightly worse than RASE using a low resolution sketch ($s = 1000$) (Table 8) with sporadic false positives and false negatives in clindamycin, ciprofloxacin, tetracycline, mupirocin and erythromycin predictions. However, these were largely eliminated using the high-resolution sketch ($s = 1000000$) raising accuracy and precision for most antibiotic resistance predictions to $> 96\%$ (Table 9). RASE timestamps indicate that predictions of ST93 genotypes around

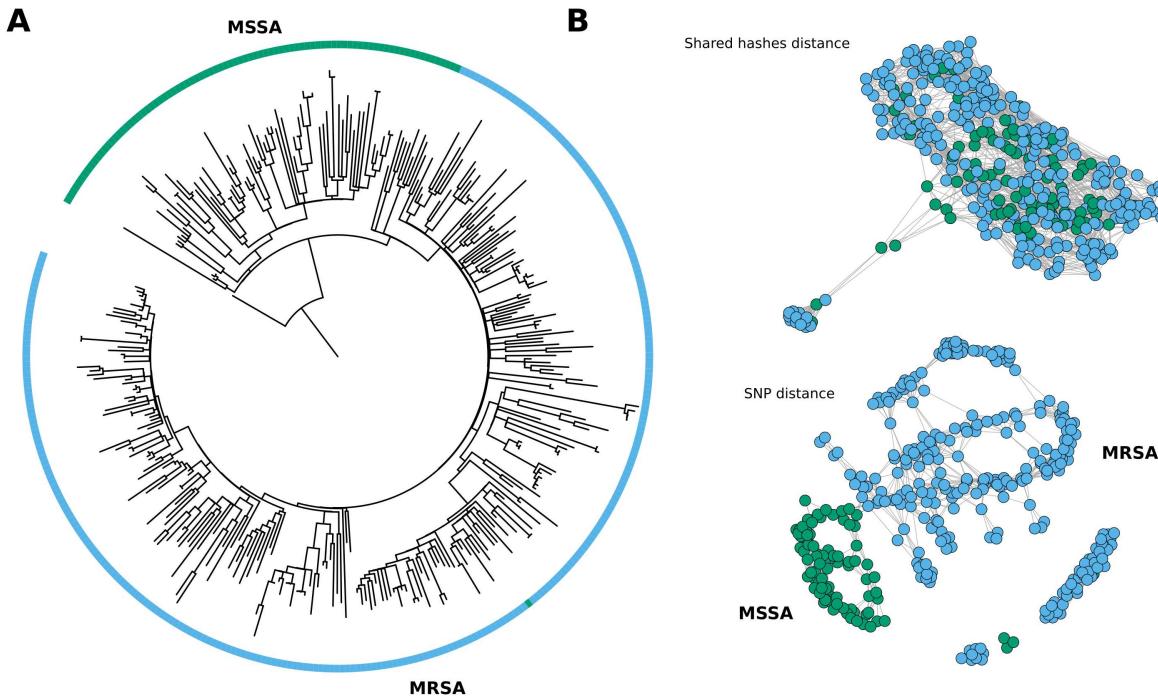


Fig. 5. Phylogenetic tree for sublineage genotyping comparison with RASE and visualization of population structure with NetView **(A)** Maximum-likelihood phylogeny of the ST93 reference genomes ($n = 360$) used in RASE showing the ancestral MSSA clade (green) and the divergent MRSA clade (blue). **B** Mutual k -nearest-neighbor graphs (NetView) for visualization of MSSA/MRSA population structure using the shared hashes distance computed with Sketchy ($k = 16, s = 1000$) failing to distinguish between the two genotype clades and SNP distances underlying the ML phylogeny, successfully resolving the MSSA/MRSA clades. Differences between the two core methods (shared hashes and SNPs) represent the limitations of Sketchy to predict methicillin resistance genotypes at sublineage resolution; homogeneous network topologies for shared hashes distances are obtained for $s = 1000 - 1000000$ (data not shown).

316 the selected read threshold (1000 reads) were able to be conducted in approximately 1 - 11 minutes per barcode (data not 317 shown). According to our expectations, systematic errors were 318 found in the methicillin predictions of Sketchy, with an excess 319 of isolates that were typed susceptible (MSSA) rather than 320 resistant (MRSA). Sketchy was therefore not capable of sufficiently 321 resolving clade-specific traits for sublineage genotyping. 322 We illustrated the difference in resolution of the underlying 323 core method (MinHash vs. SNPs) and its ability to resolve 324 clade-specific traits in the ST93 reference sketch using population 325 graphs, where nodes are genomes and edges their mutual 326 k -nearest-neighbors at an optimized k value (genomic neighborhoods) 327 (Fig. S1D). We constructed the graph for pairwise 328 s - shared hashes distance ($s = 1000$) using Sketchy as well 329 as from pairwise SNP distances based on previously generated 330 variants for the ST93 lineage (26) (from which the ML 331 topology in the RASE approach was built) (Fig 5B). Shared 332 hash distances were insufficient to resolve MSSA and MRSA 333 communities compared to networks constructed from pairwise 334 SNP distances. This fundamental difference in resolution 335 of the two approaches underlines the limitations of Sketchy, 336 although the ultra high-resolution sketch ($s = 1000000$) mitigated 337 some of the non clade-specific errors (e.g. clindamycin 338 and erythromycin resistance) observed using lower-resolution 339 sketches (Table 9).

Discussion

In this study, we explored the use of heuristic genomic neighbor typing (16) for lineage and genotype inference in bacterial outbreak scenarios. We reasoned that a 'hypothesis-agnostic' reference database would be preferred over a smaller 'hypothesis-driven' reference database, because the latter cannot capture the known diversity of a species, and may not be useful in situations where prior sequence data on lineage and genotype diversity does not exist. We further reasoned that it would be possible to conduct multiplex sequencing and use genomic neighbor typing to rapidly scan an isolate collection from limited sequence data. For these applications we developed Sketchy, a genomic neighbor typing implementation using shared min-wise hashes against species-wide database sketches with associated lineage and genotype data, which we derived from public sources (25).

We first used a cross-validation procedure to assess performance of Sketchy at the selected 1000 reads threshold in recovering lineages (MLST) as a proxy for further sublineage genotyping (Fig. 2, Table 1) using default resolution ($s = 1000$) and higher resolution ($s = 10000$) reference sketches. Results indicate two major trends: first, genomic neighbor typing of lineages was sufficiently accurate in some species (*S. aureus*, *K. pneumoniae*, *P. aeruginosa*) but failed to recover lineages in others (*N. gonorrhoeae*, *N. meningitidis*, *S. pneumoniae*). We were unable to control for sequence type diversity of the reference sketches, and it may be possible that cross-validation sampling of reference sketches with many singular sequence

Table 4. *S. aureus* sequencing *in situ* (Goroka) on MinION (1 flow cell, 12-plex, 1000 reads, k = 16, s = 1000, n = 12)

Feature	Binary	TP	TN	FP	FN	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)
MLST	false	-	-	-	-	83.33	100.0	83.33	-
SCCmec type	false	-	-	-	-	58.33	100.0	58.33	-
PVL	true	10	0	0	2	83.33	100.0	83.33	na
Clindamycin	true	0	9	2	1	75.00	na	na	81.81
Rifampicin	true	0	12	0	0	100.0	na	na	100.0
Ciprofloxacin	true	0	11	1	0	91.66	na	na	91.66
Vancomycin	true	0	12	0	0	100.0	na	na	100.0
Tetracycline	true	0	11	0	1	91.66	na	na	100.0
Mupirocin	true	0	12	0	0	100.0	na	na	100.0
Gentamicin	true	0	12	0	0	100.0	na	na	100.0
Trimethoprim	true	0	12	0	0	100.0	na	na	100.0
Penicillin	true	12	0	0	0	100.0	100.0	100.0	na
Methicillin	true	9	0	0	3	75.00	100.0	75.00	na
Erythromycin	true	0	9	2	1	75.00	na	na	81.81
Fusidic Acid	true	0	12	0	0	100.0	na	na	100.0

Table 5. *S. aureus* outbreak isolates on Flongle (1 flow cell, 12-plex, 1000 reads, k = 16, s = 1000, n = 12)

Feature	Binary	TP	TN	FP	FN	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)
MLST	false	-	-	-	-	83.33	100.0	83.33	-
SCCmec type	false	-	-	-	-	75.00	100.0	75.00	-
PVL	true	10	0	0	2	83.33	100.0	83.33	na
Clindamycin	true	0	11	1	0	91.66	na	na	91.66
Rifampicin	true	0	12	0	0	100.0	na	na	100.0
Ciprofloxacin	true	0	12	0	0	100.0	na	na	100.0
Vancomycin	true	0	12	0	0	100.0	na	na	100.0
Tetracycline	true	0	12	0	0	100.0	na	na	100.0
Mupirocin	true	0	12	0	0	100.0	na	na	100.0
Gentamicin	true	0	12	0	0	100.0	na	na	100.0
Trimethoprim	true	0	12	0	0	100.0	na	na	100.0
Penicillin	true	12	0	0	0	100.0	100.0	100.0	na
Methicillin	true	9	0	0	3	75.00	100.0	75.00	na
Erythromycin	true	0	9	2	1	91.66	na	na	91.66
Fusidic Acid	true	0	12	0	0	100.0	na	na	100.0

types or little sequence type diversity biased the results in favour of sketches with fewer diversity. However, we note that the species which did not perform well on this task are those with high levels of homologous recombination. This was discussed by Břinda *et al.* (16) who suggested that genomic neighbor typing may be limited by homologous recombination due to scattering of the phylogenetic signal and spread of chromosomally encoded resistance genes. We note that **Sketchy** under-performed for MLST typing of two species, *N. gonorrhoeae* and *S. pneumoniae*, both of which were used in the original genomic neighbor typing approach. However, direct comparisons are difficult, as the underlying reference data was vastly smaller, and the focus was on sublineage antimicrobial resistance phenotyping using MIC values from the reference collection.

Second, we observed that performance notably increased using a larger sketch size, suggesting that the default sketch size may be insufficient to capture the full diversity of hashes shared between analyte and the reference databases. This suggests that the default sketch size ($s = 1000$) may not be a good default if accuracy is preferred. However, because memory consumption increased approximately linearly with the number of included genomes and sketch size, higher resolution sketches

may not be suitable for smaller computing platforms, especially with large reference databases (e.g. for *S. aureus* and *S. pneumoniae*). Nevertheless, memory consumption did not exceed 6 GB, making large, species-wide reference sketches at higher resolution usable on laptops and other standard computing hardware. In addition, we note that memory consumption of **Sketchy** for the smallest reference sketch (*P. aeruginosa*, 4832 genomes, 56 MB) is significantly smaller than the **ProPhyle** (28) indices created for *S. pneumoniae* (616 genomes, 321 MB) and *N. gonorrhoeae* (1102 genomes, 242 MB), and for higher resolution sketches approximately twice as much (554 MB) (29). Overall, sketch sizes are extremely small, particularly when compressed for transfer or storage (Table 1). **Sketchy** is therefore capable of creating highly efficient species-wide databases, which can capture the known diversity of a species, while maintaining resource efficiency, albeit with some limitations in performance for smaller sketches which may be necessary for portable sequencing setups in remote locations.

We then assessed **Sketchy**'s performance on an outbreak dataset of *S. aureus* community infections in Papua New Guinea and Far North Queensland (4, 17, 18), for which we had previously generated matching Illumina reference data ($n = 160$). In this context, the outbreaks constituted an

Table 6. Successive library experiment on MinION (1 flow cell, 4 x 12-plex, 1000 reads, k = 16, s = 1000, n = 48)

Feature	Binary	TP	TN	FP	FN	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)
MLST	false	-	-	-	-	95.83	91.84	95.83	-
SCCmec type	false	-	-	-	-	87.50	94.24	87.50	-
PVL	true	46	0	1	1	95.83	97.87	97.87	na
Clindamycin	true	1	47	0	0	100.0	100.0	100.0	100.0
Rifampicin	true	0	48	0	0	100.0	na	na	100.0
Ciprofloxacin	true	0	46	1	1	95.83	na	na	97.87
Vancomycin	true	0	48	0	0	100.0	na	na	100.0
Tetracycline	true	0	47	0	1	97.91	na	na	100.0
Mupirocin	true	0	48	0	0	100.0	na	na	100.0
Gentamicin	true	0	48	0	0	100.0	na	na	100.0
Trimethoprim	true	0	48	0	0	100.0	na	na	100.0
Penicillin	true	48	0	0	0	100.0	100.0	100.0	na
Methicillin	true	41	1	1	5	87.50	97.61	89.13	0.50
Erythromycin	true	1	47	0	0	100.0	100.0	100.0	100.0
Fusidic Acid	true	0	48	0	0	100.0	na	na	100.0

415 independent validation dataset, as no *S. aureus* genomes from
 416 these regions had ever been sequenced before (including the
 417 very first *S. aureus* genomes from Papua New Guinea). While
 418 the majority of isolates in this study belonged to the outbreak
 419 sequence type (ST93, n = 120) several other sequence types
 420 were identified in the dataset (n = 40). By including all
 421 known strains at the time in the reference database, their
 422 lineages were included during database construction by default
 423 and successfully typed in most cases (Table 4). Remaining
 424 misclassifications were mitigated in higher resolution sketches
 425 (Table S3) with the exception of clade-specific SCCmec related
 426 genotypes (see below). In addition, we sequenced one full panel
 427 of outbreak isolates at the Papua New Guinea Institute of
 428 Medical Research in Goroka, Eastern Highlands Province. No
 429 sequencing infrastructure is accessible, so that a portable setup
 430 with the MinION was the only option to survey the outbreak on
 431 site. As an illustration of the challenges of sequencing in remote
 432 places, a heatblock malfunctioned during library preparation,
 433 which was likely the reason for sub-optimal barcode attachment
 434 resulting in extremely low throughput for a MinION flow cell
 435 (Table 3). Nevertheless, we were able to obtain 83% (default
 436 resolution) and 100% accuracy (higher resolution, Table S4)
 437 in typing lineages, providing a useful picture of the outbreak
 438 sequence type, antibiotic resistance genotypes (with exception
 439 of SCCmec related features) and presence of the PVL toxin.
 440 Similar results were obtained on a multiplex run on cheap
 441 Flongle adapters (Table 5, Table S5).

442 We employed an efficient multiplex sequencing protocol on
 443 the MinION for surveying the two outbreaks, sequencing 2
 444 x 12 barcodes on the same flow cell, driving down the cost
 445 of each isolate with full assembly, genotyping and phylogenetic
 446 analysis to around \$40-50 per isolate, as previously
 447 described (4). In this analysis, we used a subset of the total
 448 reads per barcode (1000) for genomic neighbor typing eval-
 449 uation which corresponds to approximately 2-3x coverage of
 450 the *S. aureus* genome, having shown previously that assembly
 451 based genotyping is possible at approximately 5x coverage
 452 per genome (4). In addition, we expanded on the dual-library
 453 sequencing protocol and attempted to sequence 48 strains on
 454 a MinION flow cell in 2 hour intervals, with sufficient data
 455 obtained for genomic neighbor typing further reducing cost to
 456 approximately \$30 (Australian) per barcode (Table 6, Table

457 S6). Given the efficiency of our approach, it should be possible
 458 to use 96-barcode kits to sequence as many isolates on a single
 459 MinION flow cell and obtain accurate genotypes. Taking
 460 into consideration the limitations in species applications and
 461 resource management for higher resolution sketches, genomic
 462 neighbor typing with **Sketchy** is therefore suitable to survey
 463 bacterial outbreaks rapidly, at low-cost, and with sufficiently
 464 accurate results to infer important epidemiological character-
 465 istics. In this case, the predominant outbreak sequence
 466 type was the Australian ST93 lineage, which had emerged
 467 in the Northern Territory and spread to the East Coast of
 468 Australia (26). Even without confirmation from phylogenetic
 469 analysis (27), the predominance of the ST93 sequence type
 470 in Far North Queensland and Papua New Guinea outbreaks
 471 strongly suggests transmission from Australia.

472 Finally, we observed systematic misclassifications of clade-
 473 specific SCCmec related features (methicillin resistance,
 474 SCCmec subtype) that could not be resolved with higher reso-
 475 lution sketches (Tables 2-6, Tables 8-9). We hypothesized that
 476 this could be due to the approximate MinHash approach, which
 477 does not have the same resolution on sublineage geno- or phe-
 478 notypes as the phylogenetically guided classification approach
 479 using **ProPhyle** in **RASE**. We demonstrated this limitation on
 480 a lineage-specific (ST93) reference sketch in comparison with
 481 the same reference database implemented in **RASE** (Tables 7-9),
 482 for which we used a phylogenetic tree of the lineage that dis-
 483 tinguished between MSSA and MRSA clades (Fig. 5A). While
 484 most misclassifications with **Sketchy** could be resolved with
 485 increasing sketch size (Table 9) and indeed outperformed **RASE**,
 486 classifications of SCCmec features continued to fail even at
 487 very high sketch sizes (s = 1000000). While **RASE** performed
 488 better on sublineage genotyping, we noted a systematic error
 489 in tetracycline predictions, which was unexpected since only a
 490 single isolate in the reference dataset was resistant; we were
 491 unable to explain these errors but note that the preference
 492 score employed by **RASE** marked uncertainty in the majority of
 493 tetracycline predictions, even when run on all reads for each
 494 isolate, ultimately not resolving the tetracycline prediction
 495 errors (Table S5).

496 Overall, phylogenetically informed genomic neighbor typ-
 497 ing has a definitive advantage over **Sketchy** for inference of
 498 clade-specific traits, which is particularly relevant for clin-

Table 7. RASE classification of ST93 outbreak isolates (n = 120, lineage database)

Feature	Binary	TP	TN	FP	FN	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)
Clindamycin	true	0	113	4	3	94.16	na	na	96.58
Rifampicin	true	0	120	0	0	100.0	na	na	100.0
Ciprofloxacin	true	0	120	0	0	100.0	na	na	100.0
Vancomycin	true	0	120	0	0	100.0	na	na	100.0
Tetracycline	true	1	90	29	0	75.83	3.33	100.0	75.63
Mupirocin	true	0	115	5	0	95.83	na	na	95.83
Gentamicin	true	0	120	0	0	100.0	na	na	100.0
Trimethoprim	true	0	120	0	0	100.0	na	na	100.0
Penicillin	true	120	0	0	0	100.0	100.0	100.0	na
Methicillin	true	110	0	3	7	91.66	97.34	94.02	na
Erythromycin	true	0	113	4	3	94.16	na	na	96.58
Fusidic Acid	true	0	120	0	0	100.0	na	na	100.0

499 cal diagnostics (e.g. antimicrobial susceptibility predictions).
500 However, we were unable to construct RASE databases for the
501 species-wide reference collections, as the required phylogenetic
502 trees are infeasible, or at least highly impractical, to infer
503 from tens of thousands of whole genome sequences. At the
504 species level, the ease with which reference sketches can be
505 constructed for *Sketchy* and their minimal resource require-
506 ments given the number of genomes included, puts *Sketchy* at
507 an advantage for outbreak surveillance applications. Because
508 we derive genotypes from other genotype classifications (based
509 on assemblies or reads) it should be noted that classification
510 with *Sketchy* can only achieve classification performance of
511 the underlying genotyping methods (e.g. *Mykrobe*). However,
512 genomic neighbor genotyping with *Sketchy* could also enable
513 automating the construction of reference databases, so that
514 public archives can be surveyed periodically and new genome
515 integrated continuously. At this stage, due to limitations in
516 sublineage genotype predictions for antibiotic susceptibility
517 predictions, we do not recommend using *Sketchy* for clinical
518 applications, but rather as a tool to rapidly survey bacterial
519 outbreaks or isolate collections at scale. *Sketchy* may also
520 be useful in scenarios where genotype inference of limited
521 sequence data is required.

522 In comparison to other genotype classification tools,
523 *Sketchy* is situated between species-level taxonomic classi-
524 fiers and phylogenetically informed genomic neighbor typing.
525 Predictions are useful for traits distributed at the lineage level,
526 for example penicillin resistance or PVL toxins in *S. aureus*,
527 with limitations in application to some species with high rates
528 of homologous recombination, such as *Neisseria gonorrhoeae*
529 or *Neisseria meningitidis*. Future work on genomic neighbor
530 typing may consider scaling up multiplexing (e.g. 96-barcode
531 panels), curation and minimisation of reference databases,
532 implementation of alternative query methods, or combining
533 different approaches to genomic neighbor typing to enable
534 continuous species- to sublineage-level predictions. Adaptive
535 sequencing may be useful to balance throughput per barcode
536 in order to make multiplex sequencing protocols more robust
537 and cost-effective (30). Ultimately, we demonstrated that ge-
538 nomic neighbor typing with species-wide reference sketches
539 is a viable approach for genotype surveillance of bacterial
540 community outbreaks, particularly under challenging circum-
541 stances and in remote locations, including northern Australia
542 and Papua New Guinea.

Materials and Methods

Outbreak sampling and reference sequencing

Isolates were collected from outbreaks in two remote populations in northern Australia and Papua New Guinea as described by Steinig et al. (4) and Aglau et al. (17). Isolates associated with paediatric osteomyelitis cases (mean age of 8 years) were collected from 2012 to 2017 (n = 42) from Kundiawa, Simbu Province (27), and from 2012 to 2018 (n = 35) from patients in the neighboring Eastern Highlands province town of Goroka. We supplemented the data with MSSA isolates associated with severe hospital-associated infections and blood cultures in Madang (Madang Province) (n = 8) and Goroka (n = 12). Isolates from communities in Far North Queensland, including metropolitan Cairns, the Cape York Peninsula and the Torres Strait Islands (n = 91) were a contemporary sample from 2019. Isolates were recovered on LB agar from clinical specimens using routine microbiological techniques at Queensland Health and the Papua New Guinea Institute of Medical Research (PNGIMR). Isolates were transported on swabs from monocultures to the Australian Institute of Tropical Health and Medicine (AITHM Townsville) where they were cultured in 10 ml LB broth at 37°C overnight and stored at -80°C in 20% (v/v) glycosol and LB. Samples were regrown on LB agar prior to sequencing, and a single colony was placed into in-house lysis buffer and sequenced at the Doherty Applied Microbial Genomics laboratory (DAMG), using 100 bp paired-end libraries on Illumina HiSeq.

MinION outbreak library preparation and sequencing

2 ml of LB broth was spun down at 5,000 x g for 10 minutes and after removing the supernatant, 50 μ l of 0.5 mg / ml lysostaphin were added to the tube and vortexed. Cell lysis was conducted at 37°C for 2 hours with gentle shaking followed by a *proteinase K* digestion for 30 mins. at 56°C. DNA was extracted using a simple column protocol from the DNeasy Blood & Tissue kit (QIAGEN) following the manufacturer's instructions. DNA was eluted in 70 μ l of nuclease-free water, quantified on Qubit, and DNA was stored at 4°C until library preparation. Library preparation was done using approx. 420 ng of DNA and the rapid barcoding kit with 12 barcodes (ONT, SQK-RBK004) as per manufacturer's instructions, with the exception of conducting bead cleanup steps. DNA was quantitated using Qubit 4.0 (Thermo Fisher Scientific), purity determined with a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific). Basecalling was done using the PyTorch Bonito v0.3.6 R9.4.1 DNA model, run on a local NVIDIA GTX1080-Ti or a remote cluster of NVIDIA P100 GPUs. Sequence runs were conducted with 2 x 12 barcoded (SQK-RBK004) isolates per flow cell in two consecutive 18-24 hour runs. Libraries were nuclease flushed using the wash kit between consecutive runs (Oxford Nanopore Technologies, EXP-WSH-003). This is sufficiently effective to remove read carry-over, as demonstrated previously with hybrid assemblies of sequentially sequenced *Enterobacteriaceae* (31). Sequencing runs were managed on two MinIONs and monitored in MinKNOW > v20.3.1. Read sum-

Table 8. Sketchy classification of ST93 outbreak isolates (n = 120, lineage sketch, s = 1000)

Feature	Binary	TP	TN	FP	FN	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)
Clindamycin	true	2	107	10	1	90.83	16.66	66.66	91.45
Rifampicin	true	0	120	0	0	100.0	na	na	100.0
Ciprofloxacin	true	0	118	1	1	98.33	na	na	99.15
Vancomycin	true	0	120	0	0	100.0	na	na	100.0
Tetracycline	true	0	119	0	1	99.16	na	na	100.0
Mupirocin	true	0	118	2	0	98.33	na	na	98.33
Gentamicin	true	0	120	0	0	100.0	na	na	100.0
Trimethoprim	true	0	120	0	0	100.0	na	na	100.0
Penicillin	true	120	0	0	0	100.0	100.0	100.0	na
Methicillin	true	78	1	2	39	65.83	97.50	66.66	33.33
Erythromycin	true	2	107	10	1	90.83	16.66	66.66	91.45
Fusidic Acid	true	0	118	0	0	100.0	na	na	100.0

Table 9. Sketchy classification of ST93 outbreak isolates (n = 120, lineage sketch, s = 1000000)

Feature	Binary	TP	TN	FP	FN	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)
Clindamycin	true	0	116	1	3	96.66	na	na	99.14
Rifampicin	true	0	120	0	0	100.0	na	na	100.0
Ciprofloxacin	true	0	119	0	1	99.16	na	na	100.0
Vancomycin	true	0	120	0	0	100.0	na	na	100.0
Tetracycline	true	0	119	0	1	99.16	na	na	100.0
Mupirocin	true	0	120	0	0	100.0	na	na	100.0
Gentamicin	true	0	120	0	0	100.0	na	na	100.0
Trimethoprim	true	0	120	0	0	100.0	na	na	100.0
Penicillin	true	120	0	0	0	100.0	100.0	100.0	na
Methicillin	true	87	1	2	30	73.33	97.75	74.35	33.33
Erythromycin	true	0	116	1	3	96.67	na	na	99.14
Fusidic Acid	true	0	118	0	0	100.0	na	na	100.0

594 many reports for nanopore reads were generated with `nanoq` v0.8.2
 595 (32).

596 **MinION and Flongle multiplexing experiments**

597 To demonstrate that genotyping is possible on site in Papua New
 598 Guinea, we sequenced 12 *S. aureus* outbreak strains at the Papua
 599 New Guinea Institute of Medical Research (PNGIMR) in Goroka.
 600 We replicated the QIAGEN extraction and rapid library sequencing
 601 protocol described above, unknowingly using a malfunctioning heat-
 602 block in the library preparation step (SQK-RBK004), which resulted
 603 in suboptimal barcode attachments. We also prepared a multiplex
 604 run for a Flongle experiment at the Peter Doherty Institute for
 605 Infection and Immunity. *Staphylococcus aureus* glycerol stocks were
 606 inoculated in Tryptic soy broth (TSB) and grown overnight at 37°C,
 607 180 rpm. DNA was extracted from 8 ml of overnight culture via
 608 pelleting cells at 12,000 rpm for 2 minutes. Cells were resuspended
 609 in PrepMan™ Ultra Sample Preparation Reagent (ThermoFisher
 610 Scientific) and Lysing Matrix Y beads (MP Biomedicals). Isolates
 611 were incubated at 95°C for 15 minutes and cells further lysed via
 612 a TissueLyser LT (Qiagen) at 6.5 m/s for 60 seconds similar to
 613 previously described (33). Extracts were centrifuged at 13,000 rpm
 614 for 10 minutes. Supernatant was removed and mixed with 3M
 615 sodium acetate (pH 5.5), ice-cold 100% ethanol (0.3:0.03:0.67 ratio)
 616 and DNA was precipitated for 3 hours at -20°C. DNA was pelleted
 617 at 13,000 rpm for 15 mins (4°C), washed with 70% ethanol and
 618 resuspended in ultrapure water. High-molecular-weight (HMW)
 619 DNA was isolated via the MagAttract HMW DNA Kit (Qiagen)
 620 as per manufacturer's instructions. Briefly, this included a protein
 621 digest with proteinase K for 30 minutes at 56°C (900 rpm) and
 622 an RNase A (0.4mg) treatment for 10 minutes at room tempera-
 623 ture. HMW DNA was further purified using Agencourt Ampure
 624 XP (Beckman Coulter Australia) beads (1:1 ratio). Libraries were
 625 prepared using the ONT Rapid Barcoding (SQK-RBK004) kit with
 626 an input of 200ng of HMW DNA for each isolate. The library
 627 was sequenced on an ONT Flongle FLO-FLG001 flow cell for 24

628 hours. All runs in this sections were called with Guppy v4.6 R9.4.1
 629 DNA high accuracy models (HAC). Finally, we repeated library
 630 construction as described for the outbreak sequencing above to test
 631 a faster sequencing protocol, in which four libraries were sequenced
 632 on the same MinION flow-cell with intermediate nuclease flushes
 633 and a runtime of 2 hours per library.

634 **Reference databases construction and genotyping**

635 For reference sketch construction, we used a collection of assemblies
 636 containing bacterial genomes from the entire European Nucleotide
 637 Archive (ENA) in 2018 (n = 660,333) (25). Metadata from pre-
 638 computed assembly genotypes was used to subset assemblies with
 639 complete lineage designation for inclusion (MLST). CheckM metrics
 640 were used to filter assemblies by completeness (< 99%), contamina-
 641 tion (> 0.1%) and evidence for strain heterogeneity (> 0.1%) retain-
 642 ing a total of 543,695 assemblies across 71 species with at least 100
 643 genomes. For reference sketch construction in the simulations, we
 644 included five common species of interest with at least 1000 genomes:
 645 *Streptococcus pneumoniae* (n = 47,616), *Staphylococcus aureus* (n =
 646 42,461), *Neisseria meningitidis* (n = 16,198), *Klebsiella pneumoniae*
 647 (n = 10,072) and *Neisseria gonorrhoeae* (n = 8,413). We had previ-
 648 ously downloaded a collection of *S. aureus* sequence runs from the
 649 NCBI Short Read Archive and ENA (n = 38,985) providing match-
 650 ing raw sequence read data for a subset of the assemblies in the ENA
 651 collection. Antimicrobial resistance phenotypes for 12 antibiotics
 652 (ciprofloxacin, clindamycin, erythromycin, fusidic acid, gentamicin,
 653 methicillin, mupirocin, penicillin, rifampicin, tetracycline, trimetho-
 654 prim and vancomycin) were inferred from these reads with *Mykrobe*
 655 v0.6.1 and the default *S. aureus* typing panel (34). In addition, we
 656 used *SCCion* v0.2.1 (<https://github.com/esteinig/sccion>) to type
 657 *SCCmec* subtypes using *Mash* matches against the *SCCmecFinder*
 658 database (35).

659 **Sketchy implementation and streaming algorithm**

660 Sketchy implements k-mer extraction and hashing based on the
661 `needletail` (<https://github.com/onecodex/needletail>) and `finch`
662 (<https://github.com/onecodex/finch-rs>) libraries, which allowed us
663 to replicate `Mash` sketching and shared hashes computation in Rust.
664 `Mash` (23) pioneered an unbiased approximation of the Jaccard index
665 between two k-mer sets A and B :

666
$$J(A, B) = \frac{|A \cap B|}{|A \cup B|} \quad [1]$$

667 `Mash` (and `Finch`) merge-sort two bottom sketches $S(A)$ and
668 $S(B)$ to estimate the Jaccard index, where the merge is terminated
669 after s unique hashes, and the estimate of the Jaccard index is
670 computed for x shared hashes found after processing s' hashes:

671
$$j = \frac{x}{s'} \quad [2]$$

672 Sketchy implements two simple reference sketch matching functions
673 based on the parameters of the reference sketch (k-mer size,
674 sketch size and hash seed) that compute the min-wise shared hashes
675 (x) with each genome in the reference sketch. In the first instance,
676 we use `Finch` to compute the number of shared hashes (x) for all
677 reads until the specified read limit (i) (`--limit` parameter). In addition,
678 we provide a streaming implementation (the sum of shared
679 hashes) in which the shared hashes (x) are computed for each read
680 (j) and added to the sum of shared hashes (h) until the read limit
681 (i) is reached:

682
$$h_j = \sum_{i=1}^i x_j \quad [3]$$

683 Implementation of genomic neighbor typing is achieved by ranking
684 the shared hashes (or the sum of shared hashes after each read)
685 and selecting the associated genotype of the highest ranking genome
686 in the reference database as inferred genotype. When predicting
687 genomic neighbors from closely related genomes of the same lineage
688 (e.g. in an outbreak scenario) a consensus call for each genotype
689 features across the highest ranking genomes can be made using the
690 `--consensus` flag and `--top` parameter in the `Sketchy` command
691 line client.

692 **Sketchy command line client**

693 `Sketchy` v0.6.0 is written in Rust and implements a command line
694 client with several functions. First, a multi-genome reference sketch
695 can be constructed from sequence files at a given sketch (s) and
696 k-mer size (k):

697 `sketchy sketch -i *.fasta -s 1000 -k 16 -o ref.msh`

698 Information about the sketch (k-mer size, sketch-size, hash seed,
699 number of genomes, identity and order of genomes) can be produced
700 from the sketch file:

701 `sketchy info ref.msh`

702 Associated genotype or phenotype files can then be constructed
703 and checked against the reference sketch to ensure both contain the
704 same genomes in the same order:

705 `sketchy check -r ref.msh -g genotypes.tsv`

706 For any given (multiple) sketch file the shared hashes with each
707 genome in the reference sketch can then be computed, if parameters
708 between the reference and query sketches are consistent:

709 `sketchy sketch -i query.fasta -s 1000 -k 16 -o query.msh`

710 `sketchy shared -r ref.msh -q query.msh`

711 Finally, genomic neighbor typing predictions based on the
712 reference sketch and a sequence file can be computed for a given number
713 of reads (`--limit`), which will output a given number of the highest
714 ranking matches (`--top`) in the reference sketch and their associated
715 genotypes or phenotypes for inference. Streaming and consensus
716 modes can be activated with their respective flags (`--stream` and
717 `--consensus`):

718 `sketchy predict -i reads.fasta -r ref.msh -g genotypes.tsv`

719 **Lineage calling simulations and comparisons**

720 Databases varied in the representation of the total diversity within
721 each species, due to variations in the number of genomes available
722 and diversity of sequence types contained in each database. We
723 conducted a cross-validation analysis by randomly sampling 10
724 genomes from each database across multiple replicate samples ($n =$
725 20). For each replicate, we constructed the reference sketch without
726 the sampled genomes to evaluate the impact of predicting sequence
727 types not contained in the database. We used `badread v0.2.0` to
728 simulate decent quality, low-coverage (5x) nanopore reads (similar
729 to using R9.4 flow cells and RAD004 libraries) with parameters:

730 `badread simulate --reference genome.fasta --quantity 5x`
731 \hookrightarrow `--identity 93,99,4` `--junk_reads 0.1` `--random_reads 0`
732 \hookrightarrow `--chimeras 0.1` `--glitches 0,0,0`

733 We then selected a series of read cut-offs for predictions (10,
734 50, 100, 200, 300, 500 and 1000 reads). Ultimately, we selected to
735 report results at the 1000 read threshold for several reasons: first,
736 the threshold marks around 1-3x coverage of the *S. aureus* genome
737 (depending on read length), after which it becomes feasible to do
738 assembly based genotyping with high recall from nanopore data
739 alone, as demonstrated previously for these outbreak data (20);
740 second, our primary aim was to infer genotypes from as few reads as
741 possible and initial simulations indicated stabilisation of predictions
742 below 1000 reads (Fig. S1); third, reporting by time (as in `RASE`) is
743 highly volatile due to differences in throughput between libraries
744 (e.g. multiplex vs. single isolates), sequencing devices (e.g. MinION
745 vs. PromethION) as well as pore availability and occupancy per
746 flow cell. Our target for these simulations was lineage calling, as the
747 prediction of intra-lineage genotypes (including antibiotic resistance)
748 depends on first matching into the correct genomic neighborhood of
749 the species (i.e. finding the correct sequence type). MLST (lineage)
750 predictions were made from the match with the highest shared
751 hashes in the replicate database (`--top 1`). Replicate samples were
752 run against the hold-out sketches (DB-) and against the full sketch
753 (DB+) computing the average sequence types correctly predicted
754 over all samples (including standard deviation, Table 1).

755 For comparison at the 1000 read threshold we used `Krocus`
756 v1.0.1 ($k = 16$), which attempts to find k-mers matching to species-
757 specific MLST alleles and is conceptually similar to `Sketchy` in
758 that it implements a 'hypothesis-agnostic' approach to genotyping
759 lineages (based on available MLST alleles from PubMLST) (36).
760 We also compared results with assemblies of the simulated genomes
761 using `Flye` v2.9 (37) followed by MLST typing with `mlst` v2.19.0
762 (<https://github.com/tseemann/mlst>). At this stage, we did not
763 compare `Sketchy` to `RASE`, because `RASE` requires phylogenetic guide
764 trees for `ProPhyle` (28), which are not feasible or practical to infer for
765 species-wide whole genome collections, such as the ones constructed
766 here. Direct inference of MLST from assemblies and k-mer allele
767 typing were therefore conceptually more suitable for comparison
768 with `Sketchy`. Mean maximum memory consumption and time for
769 prediction were measured on a single representative isolate picked
770 at random for 10 iterations (including standard deviation, Table 1).

771 **Genotyping of community-associated outbreaks**

772 For validation of predictions in an outbreak surveillance scenario we
773 used a set of 160 nanopore-sequenced isolates from FNQ ($n = 70$)
774 and PNG ($n = 90$) sequenced using the dual-library protocol and
775 for which we had matching Illumina data. Using Illumina genotypes
776 as reference, for each binary genotype feature (e.g. R or S, PNL+ or
777 PVL-) we computed accuracy, precision, sensitivity, and specificity
778 using `sklearn` functions, with weighed scores for multi-label features
779 (SCCmec-type, MLST). While the dataset constituted a real test
780 dataset with previously unknown strains from a country for which
781 genome sequences did not exist for *S. aureus*, it should be noted
782 that there was substantial bias in composition towards the ST93-
783 MRSA-IV outbreak lineage ($n = 120/160$). Sketchy was run using
784 consensus genotypes over the 5 highest ranking prediction of the
785 default reference sketch for *S. aureus* ($k = 16$, $s = 1000$, 1000 reads
786 classification limit) which marginally improved within outbreak
787 genotyping of ST93 isolates. Output predictions were evaluated
788 against the Illumina reference genotypes for each feature (Tables 2 -
789 5). For comparison of streaming analysis (sum of shared hashes)
790 we used the outbreak dataset and the highest ranking prediction

(1000 reads classification limit) (Table S3). For demonstration of applying **Sketchy** in challenging sequencing scenarios related to this outbreak, we conducted three experiments: a multiplex flow cell of 12 outbreak isolates sequenced in Goroka (during which a heatblock failed resulting in suboptimal barcode attachment), a library on an early Flongle adapter flow cell with highly reduced throughput, and sequencing 4 panels of 12 barcoded isolates in succession (2 hours each, with nuclease washes between runs, see above). We applied the same consensus genotype prediction and metrics for these three experiments as in the dual barcoding library (Fig. 4, Tables 3-5).

Genomic neighbor typing of sublineage genotypes

For comparison of sublineage antimicrobial resistance typing with RASE, we collected a reference set of ST93-MSSA and -MRSA strains based on previous work with this lineage ($n = 360$) (26). Genotype data consisted of the antimicrobial resistance genotypes derived from the full reference sketch for *S. aureus* used in the outbreak surveillance section. For implementation in RASE, we constructed a phylogenetic tree based on core SNPs from our previous phylogenomic analysis of the lineage (26). IQTREE v2.1.2 was used to reconstruct a maximum-likelihood phylogeny using the General Time Reversible model with rate heterogeneity, Lewis ascertainment bias correction (GTR+G+ASC) and placing the root on an early diverging MSSA isolate, consistent with previous phylogenetic reconstructions (SAMEA1557252). Trees were visualized with Interactive Tree of Life (38). The RASE reference database was constructed without additional ancestral state reconstruction as all resistance genotypes were known.

ST93 has two distinct clades, an ancestral MSSA clade with isolates from the Northern Territory, and a divergent MRSA clade, which expanded on the Australian East Coast, and spread to FNQ and PNG. This allowed us to assess genotyping ability of clade-specific methicillin resistance, which we have shown was compromised in the outbreak surveillance assessment using the approximate genomic neighbor typing approach in **Sketchy**. We expected RASE to have superior performance due to using a lineage phylogeny as guide for its genomic neighbor typing implementation with ProPhyle 0.3.3.1 (28). To visualize the differences in resolution between our MinHash approach and tree-guided (SNP based) genomic neighbor typing (Fig. S4), we used NetView (39) to reconstruct genome population networks based on pairwise-distances from underlying SNPs and pairwise shared hash distance ($s - h$) computed with **Sketchy**. A value of $k = 20$ was selected for visualization of the network topologies in Fig. 5, as described previously (40) indicating stable configurations in both networks across selected community clustering algorithms (Fig. S1, C-D).

For comparison with **Sketchy**, we used a RASE (commit 27113cb) database constructed at $k = 16$, and the **Sketchy** outbreak reference sketch at $k = 16$ and $s = 1000$, as well as a high resolution sketch at $s = 1000000$. RASE requires sequence times per read, which were not available in the output of Bonito v0.3.6. We therefore used reads base called with the Guppy v4.6 R9.4.1 DNA HAC model for this comparison. RASE outputs predictions by minute timestamps (including the number of reads) from which we selected the prediction closest to the 1000 read threshold (Table 7) used throughout this manuscript; we also ran the full read set to check for persistence of tetracycline prediction errors (Table S7). RASE read thresholds for each isolate were used for the read limit parameter (`--limit`) in the **Sketchy** predictions (Tables 8,9).

ACKNOWLEDGMENTS. ES was funded by Queensland Genomics (41) and a joint PRISM2 & HOT North (NHMRC 1131932) pilot grant (42); ES, CH, EM were funded by a SERTA grant from Townsville University Hospital (2018_21); LC was supported by an NHMRC grant (NHMRC GNT1195743); PH, IA, AG, CF, RF, SS, ES, LC, SYCT, EM, WP were funded by a National Health and Medical Research Council Ideas grant (NHMRC 2012286).

References

1. Deamer D, Akeson M, Branton D (2016) Three decades of nanopore sequencing. *Nat. Biotechnol.* 34(5):518–524.
2. Samarakoon H, et al. (2020) Genopo: a nanopore sequencing analysis toolkit for portable android devices. *Communications Biology* 3(1):538.
3. Ferreira FA, Helmersen K, Visnovska T, Jørgensen SB, Aamot HV (2021) Rapid nanopore-based DNA sequencing protocol of antibiotic-resistant bacteria for use in surveillance and outbreak investigation. *Microb. Genom.* 7(4).
4. Steinig E, et al. (2021) Phylodynamic modelling of bacterial outbreaks using nanopore sequencing. *bioRxiv*.
5. Leggett RM, Heavens D, Caccamo M, Clark MD, Davey RP (2015) NanoOK: multi-reference alignment analysis of nanopore sequencing data, quality and error profiles. *Bioinformatics* 32(1):142–144.
6. Moss EL, Maghini DG, Bhat AS (2020) Complete, closed bacterial genomes from microbiomes using nanopore sequencing. *Nat. Biotechnol.* 38(6):701–707.
7. Cao MD, et al. (2017) Scaffolding and completing genome assemblies in real-time with nanopore sequencing. *Nat. Commun.* 8(1):14515.
8. Nguyen SH, Duarte TPS, Coin LJM, Cao MD (2017) Real-time demultiplexing Nanopore barcoded sequencing data with npBarcode. *Bioinformatics* 33(24):3988–3990.
9. Nguyen SH, Cao MD, Coin LJM (2021) Real-time resolution of short-read assembly graph using ONT long reads. *PLoS Comput. Biol.* 17(1):1–18.
10. Cao MD, et al. (2016) Streaming algorithms for identification pathogens and antibiotic resistance potential from real-time MiniION™ sequencing. *Gigascience* 5(1).
11. Dilthey AT, Jain C, Koren S, Phillippy AM (2019) Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps. *Nat. Commun.* 10(1):3066.
12. Hunt M, et al. (2019) Antibiotic resistance prediction for mycobacterium tuberculosis from genome sequence data with mykrobe [version 1; peer review: 2 approved, 1 approved with reservations]. *Wellcome Open Research* 4(191).
13. Charalampous T, et al. (2019) Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. *Nat. Biotechnol.* 37(7):783–792.
14. Whelan FJ, et al. (2020) Culture-enriched metagenomic sequencing enables in-depth profiling of the cystic fibrosis lung microbiota. *Nature Microbiology* 5(2):379–390.
15. Leggett RM, et al. (2020) Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens. *Nature Microbiology* 5(3):430–442.
16. Brända K, et al. (2020) Rapid inference of antibiotic resistance and susceptibility by genomic neighbour typing. *Nature Microbiology* 5(3):455–464.
17. Aglau I, et al. (2018) Methicillin-Resistant *Staphylococcus Aureus* in Melanesian Children with Haematogenous Osteomyelitis from the Central Highlands of Papua New Guinea. *Int. J. Pediatr.* 6(10):8361–8370.
18. Guthridge I, Smith S, Horne P, Hanson J (2019) Increasing prevalence of methicillin-resistant *Staphylococcus aureus* in remote Australian communities: implications for patients and clinicians. *Pathogen* 5(4):428–431.
19. Wozniak TM, et al. (2020) Geospatial epidemiology of *Staphylococcus aureus* in a tropical setting: an enabling digital surveillance platform. *Sci. Rep.* 10(1):13169.
20. Steinig E, et al. (2021) Phylodynamic modelling of bacterial outbreaks using nanopore sequencing. *bioRxiv*.
21. Broder AZ (1997) On the resemblance and containment of documents in *Proceedings. Compression and Complexity of SEQUENCES 1997* (Cat. No.97TB100171), pp. 21–29.
22. Andrei Z, Broder I (2000) Filtering Near-Duplicate documents, COM'00: Proceedings of the 11th annual symposium on combinatorial pattern matching.
23. Ondov BD, et al. (2016) Mash: fast genome and metagenome distance estimation using MinHash. *Genome Biol.* 17(1):132.
24. Ondov BD, et al. (2019) Mash screen: high-throughput sequence containment estimation for genome discovery. *Genome Biol.* 20(1):232.
25. Blackwell GA, et al. (2021) Exploring bacterial diversity via a curated and searchable snapshot of archived DNA sequences. *bioRxiv*.
26. van Hal SJ, et al. (2018) Global Scale Dissemination of ST93: A Divergent *Staphylococcus aureus* Epidemic Lineage That Has Recently Emerged From Remote Northern Australia. *Front. Microbiol.* 9:1453.
27. Steinig E, et al. (2021) Phylodynamic signatures in the emergence of community-associated MRSA. *bioRxiv*.
28. Brända K, Salikhov K, Pignotti S, Kucherov G (2017) ProPhyle: a phylogeny-based metagenomic classifier using the Burrows-Wheeler Transform.
29. Brända K, et al. (2020) Rapid inference of antibiotic resistance and susceptibility by genomic neighbour typing. *Nature Microbiology* 5(3):455–464.
30. Loose M, Malla S, Stout M (2016) Real-time selective sequencing using nanopore technology. *Nat. Methods* 13(9):751–754.
31. Lipworth S, et al. (2020) Optimized use of oxford nanopore flowcells for hybrid assemblies. *Microb. Genom.* 6(11).
32. Steinig E, Coin L (2022) Nanoq: ultra-fast quality control for nanopore reads. *J. Open Source Softw.* 7(69):2991.
33. Bainomugisa A, et al. (2018) Multi-clonal evolution of multi-drug-resistant/extensively drug-resistant *Mycobacterium tuberculosis* in a high-prevalence setting of Papua New Guinea for over three decades. *Microbial genomics* 4(2):e000147.
34. Bradley P, et al. (2016) Rapid antibiotic-resistance predictions from genome sequence data for *Staphylococcus aureus* and *Mycobacterium tuberculosis*. *Nat. Commun.* 7:11465.
35. Kaya H, et al. (2018) SCCmecFinder, a Web-Based Tool for Typing of *Staphylococcal Cassette Chromosome mec* in *Staphylococcus aureus* Using Whole-Genome Sequence Data. *mSphere* 3(1):e00612–17.
36. Jolley KA, Bray JE, Maiden MCJ (2018) Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications [version 1; peer review: 2 approved]. *Wellcome Open Research* 3(124).
37. Kolmogorov M, Yuan J, Lin Y, Pevzner PA (2019) Assembly of long, error-prone reads using repeat graphs. *Nat. Biotechnol.* 37(5):540–546.
38. Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. *Nucleic Acids Res.* 47(W1):W256–W259.
39. Steinig EJ, Neuditschko M, Khatkar MS, Raadsma HW, Zenger KR (2016) netview p: a network visualization tool to unravel complex population structure using genome-wide SNPs. *Mol. Ecol. Resour.* 16(1):216–227.

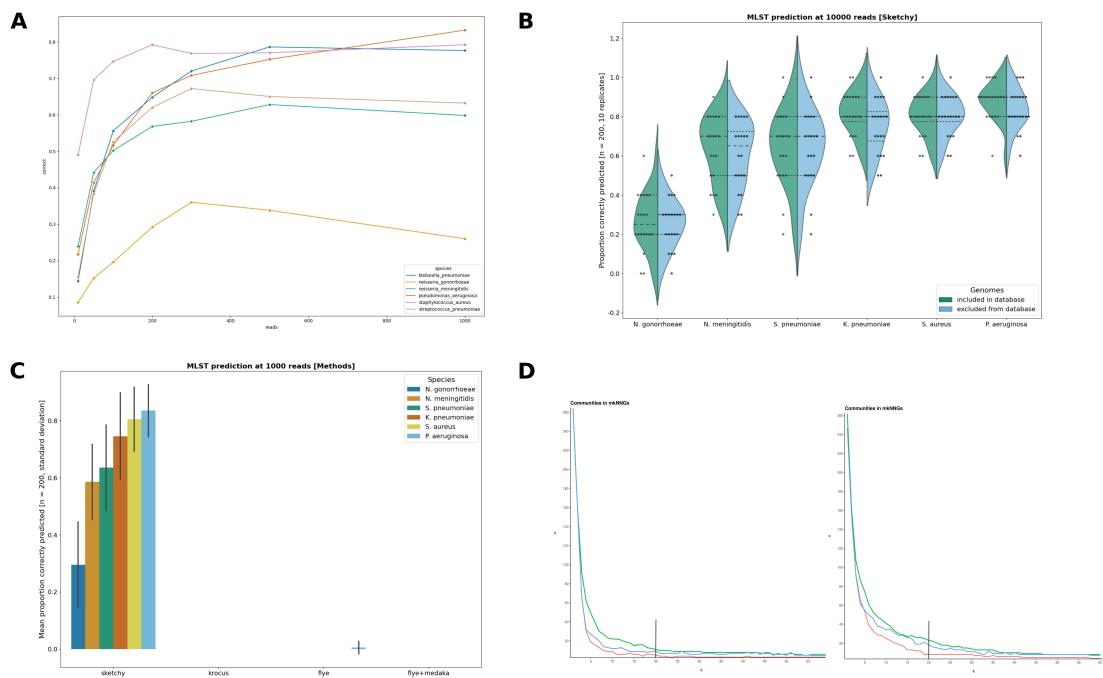


Fig. S1. Supplementary figures for Sketchy: **(A)** MLST cross-validation prediction mean accuracy over a range of read thresholds (10 - 1000 reads, Methods) across the six species outlined in Table 1, **(B)** MLST cross-validation prediction accuracy at 10000 reads across the six species, showing simulated nanopore runs when hold-out isolates were included (green) or excluded (blue) from the reference sketch, **(C)** MLST cross-validation prediction mean accuracy at 1000 reads (with standard deviation error bars) for Sketchy when compared to Krocos and typing from Flye and Flye+Medaka assemblies, **(D)** Mutual k-nearest-neighbor community assemblage plots using three different community detection algorithms over a range of $k = 1 - 60$ (left: shared hashes distance, right: SNP distance) indicating stable network topologies (Fig. 5) at the selected value (vertical lines).

937 40. Steinig EJ, et al. (2019) Evolution and Global Transmission of a Multidrug-Resistant,
 938 Community-Associated Methicillin-Resistant *Staphylococcus aureus* Lineage from the Indian
 939 Subcontinent. *MBio* 10(6).

940 41. Vidgen ME, et al. (2021) Queensland genomics: an adaptive approach for integrating genomics
 941 into a public healthcare system. *npj Genomic Medicine* 6(1):71.

942 42. Williams K, Rung S, D'Antoine H, Currie BJ (2021) A cross-jurisdictional research collaboration
 943 aiming to improve health outcomes in the tropical north of australia. *The Lancet Regional
 944 Health – Western Pacific* 9.

945 Data availability

946 Sequence data (Illumina, ONT) has been deposited under Bio-
 947 Project: PRJNA657380. Sketchy is open-source and available at:
 948 <https://github.com/esteinig/sketchy>. Reference genotypes and se-
 949 quence data summaries can be found at the project repository:
 950 <https://github.com/esteinig/ca-mrsa>

951 Supplementary Materials

Table S1. MLST error analysis from outbreak data predictions

Isolate	Reference ST	Reference Alleles	Predicted ST	Predicted Alleles	Difference Alleles	Same CC
PNG-4	ST81	1-1-1-9-1-1-1	ST1	1-1-1-1-1-1-1	1	yes
FNQ-9	ST5	1-4-1-4-12-1-10	ST225	1-4-1-4-12-25-10	1	yes
FNQ-14	ST5	1-4-1-4-12-1-10	ST228	1-4-1-4-12-24-29	2	yes
FNO-28	ST30	2-2-2-2-6-3-2	ST243	2-2-5-2-6-3-2	1	yes
PNG-30	ST-	6-64-44-2-43-55-?	ST93	6-64-44-2-43-55-51	1	yes
PNG-36	ST81	1-1-1-9-1-1-1	ST1	1-1-1-1-1-1-1	1	yes
PNG-37	ST81	1-1-1-9-1-1-1	ST1	1-1-1-1-1-1-1	1	yes
PNG-38	ST-	1-4-1-?-1-51-133	ST1	1-1-1-1-1-1-1	4	no
PNG-68	ST-	6-64-?-2-43-55-51	ST93	6-64-44-2-43-55-51	1	yes
PNG-73	ST243	2-2-5-2-6-3-2	ST30	2-2-2-2-6-3-2	1	yes
PNG-77	ST-	22-1-14-23-12-4-?	ST88	22-1-14-23-12-4-31	1	yes
FNQ-79	ST-	?-64-44-2-43-55-51	ST93	6-64-44-2-43-55-51	0	yes
PNG-85	ST243	2-2-5-2-6-3-2	ST3452	2-2-2-2-6-377-2	2	yes
PNG-86	ST243	2-2-5-2-6-3-2	ST30	2-2-2-2-6-3-2	1	yes
PNG-88	ST243	2-2-5-2-6-3-2	ST30	2-2-2-2-6-3-2	1	yes
PNG-92	ST762	1-1-104-1-1-1-1	ST1	1-1-1-1-1-1-1	1	yes

Table S2. *S. aureus* outbreak isolates [streaming] (4 flow cells, 2 x 12-plex, 1000 reads, k = 16, s = 1000, n = 160)

Feature	Binary	TP	TN	FP	FN	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)
MLST	false	-	-	-	-	87.50	87.91	87.50	-
SCCmec type	false	-	-	-	-	75.00	84.31	75.00	-
PVL	true	128	16	2	14	90.00	98.46	90.14	88.88
Clindamycin	true	1	141	12	6	88.75	7.69	14.28	92.15
Rifampicin	true	0	158	2	0	98.75	na	na	98.75
Ciprofloxacin	true	0	151	8	1	94.37	na	na	94.96
Vancomycin	true	0	160	0	0	100.0	na	na	100.0
Tetracycline	true	0	153	8	1	94.37	na	na	94.96
Mupirocin	true	0	157	1	2	98.12	na	na	99.36
Gentamicin	true	0	160	0	0	98.75	na	na	98.75
Trimethoprim	true	0	154	1	5	96.25	na	na	99.35
Penicillin	true	148	3	4	5	94.37	97.36	96.73	42.85
Methicillin	true	105	19	7	29	77.5	93.75	78.35	73.07
Erythromycin	true	1	141	12	6	88.75	7.69	14.28	92.15
Fusidic Acid	true	2	152	6	0	96.25	25.00	100.0	96.20

Table S3. *S. aureus* outbreak isolates on MinION (4 flow cells, 2 x 12-plex, 1000 reads, k = 16, s = 10000, n = 160)

Feature	Binary	TP	TN	FP	FN	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)
MLST	false	-	-	-	-	93.75	90.53	93.75	-
SCCmec type	false	-	-	-	-	76.87	86.40	76.87	-
PVL	true	135	16	2	7	94.37	98.54	95.07	88.88
Clindamycin	true	0	149	4	7	93.12	na	na	97.38
Rifampicin	true	0	160	0	0	100.0	na	na	100.0
Ciprofloxacin	true	0	158	1	1	98.75	na	na	99.37
Vancomycin	true	0	160	0	0	100.0	na	na	100.0
Tetracycline	true	0	157	2	1	99.13	na	na	98.74
Mupirocin	true	0	158	0	2	98.75	na	na	100.0
Gentamicin	true	0	160	0	0	100.0	na	na	100.0
Trimethoprim	true	0	153	2	5	95.62	na	na	98.70
Penicillin	true	150	7	0	3	98.12	100.0	98.03	100.0
Methicillin	true	105	23	3	29	80.00	97.22	78.35	88.46
Erythromycin	true	1	149	4	6	93.75	20.00	14.28	97.38
Fusidic Acid	true	2	158	0	0	100.0	100.0	100.0	100.0

Table S4. *S. aureus* outbreak isolates (Goroka) on MinION (1 flow cell, 12-plex, 1000 reads, k = 16, s = 10000, n = 12)

Feature	Binary	TP	TN	FP	FN	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)
MLST	false	-	-	-	-	100.0	100.0	100.0	-
SCCmec type	false	-	-	-	-	83.33	100.0	83.33	-
PVL	true	12	0	0	0	100.0	100.0	100.0	na
Clindamycin	true	0	11	0	1	91.66	na	na	100.0
Rifampicin	true	0	12	0	0	100.0	na	na	100.0
Ciprofloxacin	true	0	12	0	0	100.0	na	na	100.0
Vancomycin	true	0	12	0	0	100.0	na	na	100.0
Tetracycline	true	0	11	0	1	91.66	na	na	100.0
Mupirocin	true	0	12	0	0	100.0	na	na	100.0
Gentamicin	true	0	12	0	0	100.0	na	na	100.0
Trimethoprim	true	0	12	0	0	100.0	na	na	100.0
Penicillin	true	12	0	0	0	100.0	100.0	100.0	na
Methicillin	true	10	0	0	2	83.33	100.0	83.33	na
Erythromycin	true	0	11	0	1	91.66	na	na	100.0
Fusidic Acid	true	0	12	0	0	100.0	na	na	100.0

Table S5. *S. aureus* outbreak isolates on Flongle (1 flow cell, 12-plex, 1000 reads, k = 16, s = 10000, n = 12)

Feature	Binary	TP	TN	FP	FN	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)
MLST	false	-	-	-	-	100.0	100.0	100.0	-
SCCmec type	false	-	-	-	-	83.33	100.0	83.33	-
PVL	true	12	0	0	0	100.0	100.0	100.0	na
Clindamycin	true	0	11	1	0	91.66	na	na	91.66
Rifampicin	true	0	12	0	0	100.0	na	na	100.0
Ciprofloxacin	true	0	12	0	0	100.0	na	na	100.0
Vancomycin	true	0	12	0	0	100.0	na	na	100.0
Tetracycline	true	0	12	0	0	100.0	na	na	100.0
Mupirocin	true	0	12	0	0	100.0	na	na	100.0
Gentamicin	true	0	12	0	0	100.0	na	na	100.0
Trimethoprim	true	0	12	0	0	100.0	na	na	100.0
Penicillin	true	12	0	0	0	100.0	100.0	100.0	na
Methicillin	true	10	0	0	2	83.33	100.0	83.33	na
Erythromycin	true	0	11	1	0	91.66	na	na	91.66
Fusidic Acid	true	0	12	0	0	100.0	na	na	100.0

Table S6. Successive library experiment on MinION (1 flow cell, 4 x 12-plex, 1000 reads, k = 16, s = 10000, n = 48)

Feature	Binary	TP	TN	FP	FN	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)
MLST	false	-	-	-	-	95.83	93.79	95.83	-
SCCmec type	false	-	-	-	-	77.08	93.62	77.08	-
PVL	true	46	0	1	1	95.83	97.87	97.87	na
Clindamycin	true	0	47	0	1	97.91	na	na	100.0
Rifampicin	true	0	48	0	0	100.0	na	na	100.0
Ciprofloxacin	true	0	47	0	1	97.91	na	na	100.0
Vancomycin	true	0	48	0	0	100.0	na	na	100.0
Tetracycline	true	0	47	0	1	97.91	na	na	100.0
Mupirocin	true	0	48	0	0	100.0	na	na	100.0
Gentamicin	true	0	48	0	0	100.0	na	na	100.0
Trimethoprim	true	0	48	0	0	100.0	na	na	100.0
Penicillin	true	48	0	0	0	100.0	100.0	100.0	na
Methicillin	true	36	1	1	10	77.08	97.29	78.26	0.50
Erythromycin	true	0	47	0	1	97.91	na	na	100.0
Fusidic Acid	true	0	48	0	0	100.0	na	na	100.0

Table S7. RASE classification of ST93 outbreak isolates, all reads (n = 120, lineage database)

Feature	Binary	TP	TN	FP	FN	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)
Clindamycin	true	0	117	0	3	97.50	na	na	100.0
Rifampicin	true	0	120	0	0	100.0	na	na	100.0
Ciprofloxacin	true	0	120	0	0	100.0	na	na	100.0
Vancomycin	true	0	120	0	0	100.0	na	na	100.0
Tetracycline	true	0	82	37	1	68.33	na	na	68.91
Mupirocin	true	0	120	0	0	95.76	na	na	95.76
Gentamicin	true	0	120	0	0	100.0	na	na	100.0
Trimethoprim	true	0	120	0	0	100.0	na	na	100.0
Penicillin	true	120	0	0	0	100.0	100.0	100.0	na
Methicillin	true	117	0	3	0	97.50	97.50	100.0	na
Erythromycin	true	0	117	0	3	97.50	na	na	100.0
Fusidic Acid	true	0	120	0	0	100.0	na	na	100.0