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Genomic neighbor typing enables heuristic inference of bacterial lin-
eages and phenotypes from nanopore sequencing data. However,
small reference databases may not be sufficiently representative
of the diversity of lineages and genotypes present in a collection
of isolates. In this study, we explore the use of genomic neigh-
bor typing for surveillance of community-associated Staphylococ-
cus aureus outbreaks in Papua New Guinea (PNG) and Far North
Queensland, Australia (FNQ). We developed Sketchy, an implemen-
tation of genomic neighbor typing that queries exhaustive whole
genome reference databases using MinHash. Evaluations were con-
ducted using nanopore read simulations and six species-wide ref-
erence sketches (4832 - 47616 genomes), as well as two S. aureus
outbreak data sets sequenced at low depth using a sequential mul-
tiplex library protocol on the MinlON (n = 160, with matching lllu-
mina data). Heuristic inference of lineages and antimicrobial resis-
tance profiles allowed us to conduct multiplex genotyping in situ
at the Papua New Guinea Institute of Medical Research in Goroka,
on low-throughput Flongle adapters and using multiple successive
libraries on the same MinlON flow cell (n = 24 - 48). Comparison
to phylogenetically informed genomic neighbor typing with RASE on
the dominant outbreak sequence type suggests slightly better per-
formance at predicting lineage-scale genotypes using large sketch
sizes, but inferior performance in resolving clade-specific genotypes
(methicillin resistance). Sketchy can be used for large-scale bacte-
rial outbreak surveillance and in challenging sequencing scenarios,
but improvements to clade-specific genotype inference are needed
for diagnostic applications. Sketchy is available open-source at:
https://github.com/esteinig/sketchy

Oxford Nanopore Technologies | Genomic neighbor typing | MinHash |
Outbreaks | Multiplex | Papua New Guinea | Far North Queensland |

Bacteria | Staphylococcus aureus | Flongle

E pidemiological and clinical features of infectious diseases,
such as strain provenance and antimicrobial susceptibility,
are valuable targets for decision makers, but their timely
inference from genomic data is challenging. Fast methods for
genotyping are especially relevant for bacterial pathogens for
which faithful genome assembly requires reasonable genome
coverage. However, whole genomes often cannot be assembled
easily from complex metagenomic samples, including blood
and lower respiratory infections where the causative pathogen
may be at low abundance.

Nanopore sequencing is particularly suited for rapid charac-
terisation of pathogen genomes, with potential to be conducted
on-site rather than sent to a reference lab, as reads can be
streamed from the device and analysed on mobile comput-
ing platforms (1-4). Several methods for bacterial pathogens

https://github.com/esteinig/sketchy

characterisation on nanopore platforms has been developed
over the past few years, including pipelines for batch assembly
and marker detection (5, 6), novel algorithms for streaming
assembly and genotyping (7-9), and sensitive approaches to
antimicrobial resistance prediction, as well as taxonomic iden-
tification (10-12). Studies that assessed clinical specimens
have focused on samples with low abundance of host nucleic
acids, high bacterial loads, and those in which nanopore se-
quencing was supported with short-read sequencing (6, 13-15).
Strain-level genotyping from lower respiratory infections and
cystic fibrosis patients was particularly efficient when preceded
by host nucleic acid depletion (13) or enriched by culture (14).
In pursuit of rapid genotype inference, Bfinda et al. devel-
oped a heuristic principle termed "genomic neighbor typing"
(16). Antibiotic resistance phenotypes (minimum inhibitory
concentrations) and lineage membership could be inferred
using k-mer matching against a database of whole genome
sequences, including their phylogenetic relationships RASE).
Using genomic neighbor typing, heuristic inference of genome-
associated traits was possible within minutes of starting se-
quencing. Genomic neighbor typing could thus be used for
massively parallel genotyping, requiring only standard nucleic
acid extraction and multiplex library protocols to survey lin-
eage and genotype composition of an bacterial outbreak, where
complete genomes may be difficult to produce at scale.

A critical component of genomic neighbor typing is suf-
ficient representation of genome diversity in the reference
database. Bfinda et al. constructed reference sets from local
and national collections to demonstrate the principle using
S. pneumoniae (n = 616) and Neisseria gonorrhoeae (n =
1102). However, for clinical applications and in particular for
outbreak scenarios, a small reference database of the globally
available sequence space for a pathogen may be insufficiently
representative of species-wide diversity and miss important
lineages or sublineage genotypes that may have entered lo-
cal epidemiological space. In one such outbreak scenario in
Papua New Guinea, community-associated MRSA infections in
Kundiawa (Simbu Province) and Goroka (Eastern Highlands
Province) had been tracked over multiple years, but lineage
provenance and genotype identity had been unknown (17).
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Fig. 1. Sketchy components: bacterial sequence reads are matched against a
reference database constructed from bacterial whole genomes (including from public
archives). Shared hashes (or the sum of shared hashes for streaming operations)
are then ranked and the genotype of the highest ranking genome match selected
for prediction. Alternatively, consensus calls for each genotype feature (binary or
multi-label, e.g. trimethoprim resistance or SCCmec subtype) can be made over the
highest ranking genomes in the reference sketch.

No sequencing data on S. aureus from Papua New Guinea
exists, so that the application of genomic neighbor typing to
survey the lineage and genotype composition of the outbreak
would require a sufficiently representative lineage database to
account for the absence of prior data from the region.

In addition to the outbreak in the remote highland provinces
of Papua New Guinea, we had become aware of escalating S.
aureus infections in remote communities of Far North Queens-
land, which borders Papua New Guinea through the Torres
Strait Islands (18, 19). We collected a snap-shot of strains
from Far North Queensland communities (Cape York Penin-
sula, Cairns and Hinterland, Torres Strait Island) in 2019 (20).
This presents a realistic scenario, where surveying cross-border
bacterial outbreaks using a comprehensive genomic neighbor
typing approach on nanopore devices could provide lineage and
genotype data important for deciphering geographical prove-
nance (lineage attribution) and antibiotic susceptibilities of
dominant outbreak lineages, potentially informing treatment
options. Furthermore, we were interested in demonstrating
that genomic neighbor typing is working under realistic se-
quencing conditions, including on site in Goroka (Eastern
Highlands Province) where access to sequencing infrastructure
is not available. In addition, we wanted to assess using genomic
neighbor typing as a cost-effective approach, for example by
using successive library sequencing protocols or Flongle.

Large reference databases may be required to ensure a
"hypothesis-agnostic’ genomic neighbor typing approach. How-
ever, maintaining a relatively small resource profile while
using large reference databases of bacterial whole genome se-

2 | https:/github.com/esteinig/sketchy

quences requires an approximate database construction and
read matching approach that can accommodate tens to poten-
tially hundreds of thousands of genomes. MinHash, a variant
of locality-sensitive hashing originally used for detection of
near-duplicate websites or images (21), has been extensively
used in genomics since its implementation in Mash (22, 23).
Computing min-wise shared hashes between reference and
query sketches (23, 24) presents a simple method to imple-
ment genomic neighbor typing with comprehensive lineage and
genotype representation and without the need for phylogenetic
trees as required by RASE. In addition, an implementation
of genomic neighbor typing that uses genotypes, instead of
culture-based phenotypes (such as MIC values) would allow
for the construction of reference sketches entirely from public
genome collections.

In this study, we evaluate genomic neighbor typing with
species-wide bacterial pathogen sketches using MinHash. We
developed a simple genomic neighbor typing approach us-
ing ranked shared hashes and lineage-resolved ("hypothesis-
agnostic’) databases which span the known genomic diversity
of a bacterial species and are constructed from public sources
(Fig. 1). Our primary aim was to infer lineage and sublineage
genotypes from as few reads as possible, and to evaluate the
approach on independent outbreak data from remote northern
Australia and Papua New Guinea (n = 160, with matching
Ilumina reference data). We reasoned that genomic neighbor
typing could be used for scaling outbreak surveillance through
heuristic genotype inference.

Results

Species cross-validation simulation

Whole genome sequences for six species with varying levels
of representation in the European Nucleotide Archive (ENA)
were collected for reference sketch construction (Table 1) (25).
After filtering of assemblies for contamination, completeness
and strain heterogeneity, we constructed default (k = 16,
s = 1000) and high resolution (k = 16, s = 10000) reference
sketches for evaluation (Table 1). Sketch databases contained
between 4,832 (Pseudomonas aeruginosa) and 47,616 genomes
(S. pneumoniae). Low resolution sketch files were considerably
smaller and consumed less memory than their high resolution
equivalents (Table 1). We used multi-locus sequence types
(MLST) as a proxy for genotype predictions, as MLST data
were readily available for all species (25) and representative
of the ability to match genomes in the correct genomic neigh-
borhood (lineage) of the reference database. We conducted a
cross-validation simulation, for which we sampled 10 genomes
(without replacement) from the reference collection of each
species across 20 replicates (n = 200) and used reference
sketches which did (DB+) or did not (DB-) contain the sam-
pled genomes (Fig. 2, Table 1). Since our primary aim was to
call genotypes from as few reads as possible, we evaluated per-
formance (mean proportion correctly classified) at a threshold
of 1000 reads (Methods). We assessed two other methods at
this threshold for comparison with Sketchy: a k-mer based
MLST allele typer for long reads (Krocus) and whole genome
assembly with Flye, with added polish by Medaka.
Performance was dependent on species, with three out of six
species (N. gonorrhoeae, N. meningiditis and S. pneumoniae)
showing inferior lineage predictions in the cross-validation
assessment, including extremely low performance by N. gon-
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Fig. 2. Cross-validation MLST classification success (proportion of correct sequence types, at 1000 reads) for (A) default resolution (s = 1000) sketches and (B) high-resolution
(s = 10000) sketches across species (violins, data points) showing one half as reference sketches containing the hold-out samples (green, left, DB+) and the other as
reference sketches that did not contain the hold-out samples (blue, right, DB-). Cross-validation sampling was conducted using 20 replicates of 10 random samples from the
complete reference genome collection and reference sketches (k = 16) were built with and without the sampled genomes (Table 1).

Table 1. Cross-validation of species sketches using simulated nanopore reads (1000 reads, k = 16, 20 replicates, n = 10)

Species n s Size(MB) LZMA (MB) Time (s) MEM (GB) DB+ (%) DB- (%)
Streptococcus pneumoniae 47616 1000 552 46 5.06 (+ 0.16) 5.97 (£ 0.001) 63.5(+15.3) 63.5(+ 15.3)
Staphylococcus aureus 42461 1000 492 38 3.72 (£ 0.07) 5.32 (£ 0.001) 79.5(£9.44) 80.5(+ 11.5)
Neisseria meningitidis 16198 1000 188 16 1.48 (+ 0.01) 2.03 (+0.001) 625(+12.9) 585 (* 13.4)
Klebsiella pneumoniae 10072 1000 117 10 1.10 (& 0.01) 1.26 (+ 0.001) 82.0 (+12.8) 74.5(+ 15.4)
Neisseria gonorrhoeae 8413 1000 98 7 0.81 (£ 0.01) 1.05 (£ 0.001) 29.0 (+13.8) 29.5(+ 15.4)
Pseudomonas aeruginosa 4832 1000 56 5 0.67 (£ 0.01) 0.61 (£ 0.001) 88.0(+10.6) 83.5(+9.33)
Streptococcus pneumoniae 47616 10000 5720 791  44.33(+3.86) 58.82(+0.001) 835(+10.5) 78.5(+ 13.4)
Staphylococcus aureus 42461 10000 5101 671  34.85(f£1.77) 53.34(+£0.001) 84.5(+13.6) 83.0(+ 13.4)
Neisseria meningitidis 16198 10000 1945 221 1459 (£ 0.25) 20.35(+ 0.001) 75.5(+ 15.4) 70.0 (+ 14.1)
Klebsiella pneumoniae 10072 10000 1210 139 9.33(+0.34) 12.65(£0.001) 96.5(£6.71) 86.0(+ 12.3)
Neisseria gonorrhoeae 8413 10000 1011 112 7.98 (+0.66) 10.57 (£ 0.001) 67.5(+ 14.5) 64.5(+ 154)
Pseudomonas aeruginosa 4832 10000 554 75 4.31 (£ 0.02) 6.07 (£ 0.001) 100.0 (= 0.0) 93.0 (+ 6.57)

LZMA (compression), DB+ (random sample retained in reference sketch), DB- (random sample excluded from reference sketch)

orrhoeae (Table 1, Fig. 2). In contrast, K. pneumoniae, S.
aureus and P. aeruginosa recovered MLST reasonably well,
ranging from 79.5% - 100% (DB+) and 74.5% - 93.0% ac-
curacy (Table 1, Fig. 2). For these species, predictions im-
proved when sampled genomes were contained in the reference
sketch (green, DB+) but this trend was not as pronounced for
under-performing species (Fig. 1). In all species, predictions
improved, often considerably, using higher resolution sketches
(s = 10000), including accurate predictions using sketches
which did not contain the sampled genomes for P. aeruginosa
(93% =+ 6.57) and K. pneumoniae (86% =+ 12.3) (Table 1).

In species where sketches were able to sufficiently recover
lineage, performance stabilised around 200 - 500 reads sug-
gesting that fewer reads than the threshold may be sufficient
for genotyping (Fig. S1A). Reference sketch size, memory con-
sumption and prediction times scaled approximately linearly
with the number of genomes in the reference sketch and sketch
size (Table 1). Predictions at an additional threshold of 10000
reads using the low-resolution sketches (s = 1000) showed
minor improvements in performance across species (Fig. S1B),
indicating that most of the observed error was due to the
resolution of the sketching approach, and only some due to

Steinig et al.

the low read threshold chosen for typing. Finally we compared
Sketchy to allele based k-mer matching with Krocus and lin-
eage typing from assemblies generated with Flye, optionally
polished with Medaka. Krocus was unable to infer MLST from
1000 reads in all cases (Figl. S1C). Using assembled genomes,
allele typing led to incorrect multi-locus sequence types in all
cases, except in a single P. aeruginosa assembly with Flye
(Fig. S1C).

Genotype surveillance of community-associated outbreaks

We next evaluated Sketchy genotyping on two S. aureus out-
breaks from remote communities in Papua New Guinea and
Far North Queensland (n = 160), which had been sequenced
at low-coverage using a dual-library protocol with interspersed
nuclease washes (24 strains per MinION flow cell, on a total
of 8 flow cells) (4) (Fig. 3, Methods). While most isolates
belonged to the Australian ST93-MRSA-IV clone (26, 27) (n
= 120), multiple other sequence types were recovered (ST1,
ST5, ST15, ST25, ST30, ST45, ST81, ST121, ST243, ST762,
n = 35), including several novel sequence types (n = 5) of
which some derived from the ST93 outbreak lineage (n = 3).
In addition, a version of the S. aureus reference sketch was
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Fig. 3. Nanopore validation dataset with matching lllumina data sequenced from
community-associated S. aureus outbreaks in Papua New Guinea (PNG) and Far
North Queensland (FNQ). Sampling of osteomyelitis and skin-and soft tissue infections
(SSTI) was conducted in Goroka (Eastern Highland Province), Kundiawa (Simbu
Province) (n = 90), and Cairns hospital (Queensland) where isolates from routine
surveillance of communities on the Cape York Peninsula were collected (n = 70).
Inset schematic of the dual-panel barcoding protocol from cultured samples, where a
standard spin-column extraction is followed by sequencing two rapid barcode libraries
(12 isolates) on the MinlON (24 samples per flow cell, interspersed with a nuclease
wash) and Sketchy genotyping for rapid outbreak surveillance.

created using a collection of genomes for which we had pre-
viously computed antimicrobial resistance calls with Mykrobe
(n = 34,583), as well as SCCmec type and presence of the
Panton-Valentine leukocidin locus (PVL). As the outbreak
isolates were the first S. aureus genomes recovered from Papua
New Guinea, these data comprised an independent validation
dataset for performance evaluation of the S. aureus reference
sketch, in the absence of local or regional genome collections.

Sketchy predictions on 1000 reads of the outbreak data
from FNQ and PNG were compared with Illumina reference
genotypes and standard performance metrics were computed
across the dataset (Figure 3, Table 2). Generally, lineage-
wide distributed features (MLST, PVL, penicillin resistance,
some antibiotic susceptibilities) achieved high accuracy and

precision (Table 2). Importantly, most sequence types were
correctly identified (144/160) providing an accurate survey of
lineage diversity in FNQ and PNG. Analysis of sequence typing
errors revealed consistent false calls between ST81 reference
and ST1 prediction pairs (n = 3), ST243 and ST30/ST3452 (n
= 5), ST5 and ST225/ST228 (n = 2) and one ST762 genome
predicted as ST1 (n = 1) (Table S1). In all cases except one,
the reference sequence type was contained in the reference
sketch and predicted sequence types belonged to the same
clonal complex (CC) with a difference of one or two alleles
(Table S1). Finally, of the novel sequence types detected in
this dataset (n = 5), three single allele variants of ST93 were
predicted ST93, one single allele variant of ST88 was predicted
ST88 and one unknown ST variant with four alleles difference
was predicted ST1 (Table 2).

We also used the streaming algorithm (sum of shared
hashes) with the same configurations for comparison (Table
S2). Overall, there were slight regressions in all predictions,
which were expected due to computing shared hashes per read,
losing some of the information contained in the completed read
sets (1000 reads). When we used the high-resolution species
sketch (s = 10000) in non-streaming mode for these outbreak
data, improvements in lineage predictions were observed, in-
cluding resolution of the ST243/ST30 and ST5/ST255/ST228
misclassification, and some of the associated resistance and
PVL classifications (Table S3). No improvements were made
in SCCmec related features, with regressions in methicillin
resistance and SCCmec type classification accuracy across
the dataset, indicating that these were driven by systematic
error in classification of clade-specific features of the dominant
outbreak lineage ST93.

We next ran a library of strains from the osteomyelitis
outbreak in situ at the Papua New Guinea Institute of Medical
Research in Goroka (Eastern Highlands). We multiplexed 12
strains onto a MinlON flow cell, but ultimately obtained few
reads per barcode (276 - 1896, Table 3) due to malfunctioning
laboratory equipment resulting in failed barcode attachment
(15072/23774 reads unclassified, Fig. 4A). Nevertheless, we
were able to use the remaining reads per barcode to type with
Sketchy, which correctly predicted lineage (ST93) with the
exception of two isolates (ST22 and ST121 from 276 and 533
reads respectively) and some lineage-distributed genotypes

Table 2. S. aureus outbreak isolates on MinlON (4 flow cells, 2 x 12-plex, 1000 reads, k = 16, s = 1000, n = 160)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
MLST false - - - - 90.00 88.22 90.00 -
SCCmectype false - - - - 80.63 90.63 80.63 -
PVL true 130 16 2 12 91.25 98.48 91.54 88.88
Clindamycin true 1 146 7 6 90.50 12.50 14.28 94.70
Rifampicin true 0 160 0 0 100.0 na na 100.0
Ciprofloxacin true 0 156 3 1 97.50 na na 98.11
Vancomycin true 0 160 0 0 100.0 na na 100.0
Tetracycline true 0 157 2 1 99.13 na na 98.74
Mupirocin true 0 158 0 2 98.75 na na 100.0
Gentamicin true 0 159 1 0 99.38 na na 99.37
Trimethoprim true 0 152 3 5 95.00 na na 98.06
Penicillin true 151 3 4 2 96.25 97.42 98.69 42.85
Methicillin true 107 25 1 27 82.50 99.07 79.85 96.15
Erythromycin true 1 145 8 6 91.25 11.11 14.29 94.77
Fusidic Acid true 2 156 2 0 98.75 0.50 100.0 98.73
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Fig. 4. Outbreak surveillance experiments of community-associated Staphylococcus
aureus cases from Papua New Guinea (A) in situ at the Papua New Guinea Institute
for Medical Research (B) minimal multiplexing experiment on Flongle and (C) 48
strains on four successive panels on a single MinlON flow cell. Left panel shows a
representation of the experiment, middle panel shows the barcode distribution of each
sequenced barcoded run (seagreen is unclassified). A large numbers of unclassified
barcodes in (A) was likely due to a malfunctioning instrument (heatblock) during library
preparation in Goroka, although we could not assuredly rule out other causes.

(PVL, some antibiotic resistance categories) suggesting deficits
in SCCmec related predictions for ST93-MRSA-IV (Table 4).
Incorrect predictions were however mitigated when the high-
resolution (s = 10000) S. aureus reference sketch was used,
which correctly predicted all sequence types from as few as
276 reads, but failed to predict several important secondary
resistances (clindamycin, tetracycline, erythromycin) in one
isolate (PNG-69) and failed to predict methicillin resistant
genotypes in two others (Table S4).

In the next experiment we used a panel of 12 outbreak
isolates to multiplex on a Flongle adapter flow cell (Fig. 4B). A
large proportion of reads (11944 /23611) was unclassified, which
was likely due to including reads with average qualities over
Q5 to account for the low throughput of the Flongle flow cell
(Table 3). Similar prediction patterns as in the experiment in
Goroka were observed, with few reads available for prediction
across barcodes (713-1162, Table 3). Despite the low read
counts, classification using the default resolution reference
sketch (k = 16, s = 1000, 1000 reads) successfully typed most
isolates as the outbreak sequence type ST93-MRSA-IV, albeit
with the previously observed limitations in SCCmec-related
features (Table 5), including improvements across Flongle
predictions with the higher resolution S. aureus reference
sketch (Table S5). Finally, we tested a faster, successive library
sequencing protocol for MinION flow cells, using 48 strains
in 4 barcoded libraries, which were sequenced for 2 hours
followed by a nuclease wash in between libraries (Methods).
We had aimed to sequence another 4 libraries on the same flow
cell (n = 96) as the 96 barcode sequencing kits had not been
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Table 3. Barcode read counts

Barcode Goroka  Flongle
RLB 01 276 1014
RLB 02 908 1404
RLB 03 288 1010
RLB 04 688 1021
RLB 05 1896 1162
RLB 06 1378 1080
RLB 07 405 723
RLB 08 533 867
RLB 09 483 824
RLB 10 827 713
RLB 11 513 1046
RLB 12 507 803
Unclassified 15072 11944

released yet. However, during reloading too many bubbles
were introduced to the flow cell channel and the experiment
terminated at 48 strains with a remaining 900-1000 active pores
after a final diagnostic check (data not shown). Nevertheless,
predictions of the 48 strain protocol using the default S. aureus
sketch show that this approach is viable, with 2/48 lineage
misclassifications (PNG-4, PNG-68) which were novel allele
variants of ST81 and ST93 (and misclassified as ST93) (Table
S1, Table 6, Table S6).

Sublineage genotyping comparison with RASE

Finally, we compared Sketchy at sublineage resolution to
RASE predictions for the outbreak sequence type (ST93). We
built reference databases based on lineage genomes (n = 360,
k = 16) including a rooted maximum-likelihood phylogeny
from previous single nucleotide polymorphism calls (26) (Fig.
5A). Because of the small size of this reference databases, we
constructed additional sketches with higher resolution (up
to s = 1000000) to compare for sublineage genotyping with
Sketchy (Methods). RASE predictions were largely congruent
with reference genotypes, with most categories exceeding 90%
accuracy and precision, and only sporadic false positive and
false negative predictions for clindamycin, mupirocin, methi-
cillin and erythromycin (Table 7). There appeared to be a
systematic error in tetracycline predictions, where 28/118 iso-
lates were predicted resistant (R), but were in fact susceptible
(S). Only a single isolate assembly in the reference database was
typed as resistant (R). We ruled out contaminated genomes in
the reference sketch as a source for these aberrant predictions,
due to using conservative filters including contamination and
strain heterogeneity (Methods). In addition, we ruled out
errors introduced by ancestral state reconstruction, which was
disabled for this analysis in RASE. Ultimately, most false tetra-
cycline resistance predictions were flagged with low confidence
from the preference score used in RASE, but did not resolve
when using all reads for inference (Table S5).

Sketchy performed slightly worse than RASE using a low
resolution sketch (s = 1000) (Table 8) with sporadic false
positives and false negatives in clindamycin, ciprofloxacin,
tetracycline, mupirocin and erythromycin predictions. How-
ever, these were largely eliminated using the high-resolution
sketch (s = 1000000) raising accuracy and precision for most
antibiotic resistance predictions to > 96% (Table 9). RASE
timestamps indicate that predictions of ST93 genotypes around
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A MSSA B

MRSA

Shared hashes distance

@

Fig. 5. Phylogenetic tree for sublineage genotyping comparison with RASE and visualization of population structure with NetView (A) Maximum-likelihood phylogeny of the
ST93 reference genomes (n = 360) used in RASE showing the ancestral MSSA clade (green) and the divergent MRSA clade (blue). B Mutual k-nearest-neighbor graphs
(NetView) for visualization of MSSA/MRSA population structure using the shared hashes distance computed with Sketchy (k = 16, s = 1000) failing to distinguish between
the two genotype clades and SNP distances underlying the ML phylogeny, successfully resolving the MSSA/MRSA clades. Differences between the two core methods (shared
hashes and SNPs) represent the limitations of Sketchy to predict methicillin resistance genotypes at sublineage resolution; homogeneous network topologies for shared

hashes distances are obtained for s = 1000 — 1000000 (data not shown).

the selected read threshold (1000 reads) were able to be con-
ducted in approximately 1 - 11 minutes per barcode (data not
shown). According to our expectations, systematic errors were
found in the methicillin predictions of Sketchy, with an excess
of isolates that were typed susceptible (MSSA) rather than
resistant (MRSA). Sketchy was therefore not capable of suffi-
ciently resolving clade-specific traits for sublineage genotyping.
We illustrated the difference in resolution of the underlying
core method (MinHash vs. SNPs) and its ability to resolve
clade-specific traits in the ST93 reference sketch using popula-
tion graphs, where nodes are genomes and edges their mutual
k-nearest-neighbors at an optimized k value (genomic neigh-
borhoods) (Fig. S1D). We constructed the graph for pairwise
s - shared hashes distance (s = 1000) using Sketchy as well
as from pairwise SNP distances based on previously gener-
ated variants for the ST93 lineage (26) (from which the ML
topology in the RASE approach was built) (Fig 5B). Shared
hash distances were insufficient to resolve MSSA and MRSA
communities compared to networks constructed from pair-
wise SNP distances. This fundamental difference in resolution
of the two approaches underlines the limitations of Sketchy,
although the ultra high-resolution sketch (s = 1000000) miti-
gated some of the non clade-specific errors (e.g. clindamycin
and erythromycin resistance) observed using lower-resolution
sketches (Table 9).
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Discussion

In this study, we explored the use of heuristic genomic neigh-
bor typing (16) for lineage and genotype inference in bac-
terial outbreak scenarios. We reasoned that a "hypothesis-
agnostic’ reference database would be preferred over a smaller
"hypothesis-driven’ reference database, because the latter can-
not capture the known diversity of a species, and may not be
useful in situations where prior sequence data on lineage and
genotype diversity does not exist. We further reasoned that
it would be possible to conduct multiplex sequencing and use
genomic neighbor typing to rapidly scan an isolate collection
from limited sequence data. For these applications we de-
veloped Sketchy, a genomic neighbor typing implementation
using shared min-wise hashes against species-wide database
sketches with associated lineage and genotype data, which we
derived from public sources (25).

We first used a cross-validation procedure to assess per-
formance of Sketchy at the selected 1000 reads threshold in
recovering lineages (MLST) as a proxy for further sublineage
genotyping (Fig. 2, Table 1) using default resolution (s = 1000)
and higher resolution (s = 10000) reference sketches. Results
indicate two major trends: first, genomic neighbor typing of
lineages was sufficiently accurate in some species (S. aureus,
K. pneumoniae, P. aeruginosa) but failed to recover lineages
in others (N. gonorrhoeae, N. meningitidis, S. pneumoniae).
We were unable to control for sequence type diversity of the
reference sketches, and it may be possible that cross-validation
sampling of reference sketches with many singular sequence
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Table 4. S. aureus sequencing in situ (Goroka) on MinlON (1 flow cell, 12-plex, 1000 reads, k = 16, s = 1000, n = 12)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
MLST false - - - - 83.33 100.0 83.33 -
SCCmectype false - - - - 58.33 100.0 58.33 -
PVL true 10 0 0 2 83.33 100.0 83.33 na
Clindamycin true 0 9 2 1 75.00 na na 81.81
Rifampicin true 0 12 0 0 100.0 na na 100.0
Ciprofloxacin true 0 11 1 0 91.66 na na 91.66
Vancomycin true 0 12 0 0 100.0 na na 100.0
Tetracycline true 0 11 0 1 91.66 na na 100.0
Mupirocin true 0 12 0 0 100.0 na na 100.0
Gentamicin true 0 12 0 0 100.0 na na 100.0
Trimethoprim true 0 12 0 0 100.0 na na 100.0
Penicillin true 12 0 0 0 100.0 100.0 100.0 na
Methicillin true 9 0 0 3 75.00 100.0 75.00 na
Erythromycin true 0 9 2 1 75.00 na na 81.81
Fusidic Acid true 0 12 0 0 100.0 na na 100.0

Table 5. S. aureus outbreak isolates on Flongle (1 flow cell, 12-plex, 1000 reads, k = 16, s = 1000, n = 12)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
MLST false - - - - 83.33 100.0 83.33 -
SCCmectype false - - - - 75.00 100.0 75.00 -
PVL true 10 0 0 2 83.33 100.0 83.33 na
Clindamycin true 0 11 1 0 91.66 na na 91.66
Rifampicin true 0 12 0 0 100.0 na na 100.0
Ciprofloxacin true 0 12 0 0 100.0 na na 100.0
Vancomycin true 0 12 0 0 100.0 na na 100.0
Tetracycline true 0 12 0 0 100.0 na na 100.0
Mupirocin true 0 12 0 0 100.0 na na 100.0
Gentamicin true 0 12 0 0 100.0 na na 100.0
Trimethoprim true 0 12 0 0 100.0 na na 100.0
Penicillin true 12 0 0 0 100.0 100.0 100.0 na
Methicillin true 9 0 0 3 75.00 100.0 75.00 na
Erythromycin true 0 9 2 1 91.66 na na 91.66
Fusidic Acid true 0 12 0 0 100.0 na na 100.0

types or little sequence type diversity biased the results in
favour of sketches with fewer diversity. However, we note
that the species which did not perform well on this task are
those with high levels of homologous recombination. This was
discussed by Brinda et al. (16) who suggested that genomic
neighbor typing may be limited by homologous recombination
due to scattering of the phylogenetic signal and spread of chro-
mosomally encoded resistance genes. We note that Sketchy
under-performed for MLST typing of two species, N. gonor-
rhoeae and S. pneumoniae, both of which were used in the
original genomic neighbor typing approach. However, direct
comparisons are difficult, as the underlying reference data was
vastly smaller, and the focus was on sublineage antimicrobial
resistance phenotyping using MIC values from the reference
collection.

Second, we observed that performance notably increased
using a larger sketch size, suggesting that the default sketch
size may be insufficient to capture the full diversity of hashes
shared between analyte and the reference databases. This sug-
gests that the default sketch size (s = 1000) may not be a good
default if accuracy is preferred. However, because memory con-
sumption increased approximately linearly with the number of
included genomes and sketch size, higher resolution sketches

Steinig et al.

may not be suitable for smaller computing platforms, especially
with large reference databases (e.g. for S. aureus and S. pneu-
moniae). Nevertheless, memory consumption did not exceed 6
GB, making large, species-wide reference sketches at higher
resolution usable on laptops and other standard computing
hardware. In addition, we note that memory consumption of
Sketchy for the smallest reference sketch (P. aeruginosa, 4832
genomes, 56 MB) is significantly smaller than the ProPhyle
(28) indices created for S. pneumoniae (616 genomes, 321 MB)
and N. gonorrhoeae (1102 genomes, 242 MB), and for higher
resolution sketches approximately twice as much (554 MB)
(29). Overall, sketch sizes are extremely small, particularly
when compressed for transfer or storage (Table 1). Sketchy
is therefore capable of creating highly efficient species-wide
databases, which can capture the known diversity of a species,
while maintaining resource efficiency, albeit with some lim-
itations in performance for smaller sketches which may be
necessary for portable sequencing setups in remote locations.

We then assessed Sketchy’s performance on an outbreak
dataset of S. aureus community infections in Papua New
Guinea and Far North Queensland (4, 17, 18), for which we
had previously generated matching Illumina reference data
(n = 160). In this context, the outbreaks constituted an
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Table 6. Successive library experiment on MinlON (1 flow cell, 4 x 12-plex, 1000 reads, k = 16, s = 1000, n = 48)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
MLST false - - - - 95.83 91.84 95.83 -
SCCmec type false - - - 87.50 94.24 87.50 -
PVL true 46 0 1 1 95.83 97.87 97.87 na
Clindamycin true 1 47 0 0 100.0 100.0 100.0 100.0
Rifampicin true 0 48 0 0 100.0 na na 100.0
Ciprofloxacin true 0 46 1 1 95.83 na na 97.87
Vancomycin true 0 48 0 0 100.0 na na 100.0
Tetracycline true 0 47 0 1 97.91 na na 100.0
Mupirocin true 0 48 0 0 100.0 na na 100.0
Gentamicin true 0 48 0 0 100.0 na na 100.0
Trimethoprim true 0 48 0 0 100.0 na na 100.0
Penicillin true 48 0 0 0 100.0 100.0 100.0 na
Methicillin true 41 1 1 5 87.50 97.61 89.13 0.50
Erythromycin true 1 47 0 0 100.0 100.0 100.0 100.0
Fusidic Acid true 0 48 0 0 100.0 na na 100.0

independent validation dataset, as no S. aureus genomes from
these regions had ever been sequenced before (including the
very first S. aureus genomes from Papua New Guinea). While
the majority of isolates in this study belonged to the outbreak
sequence type (ST93, n = 120) several other sequence types
were identified in the dataset (n = 40). By including all
known strains at the time in the reference database, their
lineages were included during database construction by default
and successfully typed in most cases (Table 4). Remaining
misclassifications were mitigated in higher resolution sketches
(Table S3) with the exception of clade-specific SCCmec related
genotypes (see below). In addition, we sequenced one full panel
of outbreak isolates at the Papua New Guinea Institute of
Medical Research in Goroka, Eastern Highlands Province. No
sequencing infrastructure is accessible, so that a portable setup
with the MinION was the only option to survey the outbreak on
site. As an illustration of the challenges of sequencing in remote
places, a heatblock malfunctioned during library preparation,
which was likely the reason for sub-optimal barcode attachment
resulting in extremely low throughput for a MinION flow cell
(Table 3). Nevertheless, we were able to obtain 83% (default
resolution) and 100% accuracy (higher resolution, Table S4)
in typing lineages, providing a useful picture of the outbreak
sequence type, antibiotic resistance genotypes (with exception
of SCCmec related features) and presence of the PVL toxin.
Similar results were obtained on a multiplex run on cheap
Flongle adapters (Table 5, Table S5).

We employed an efficient multiplex sequencing protocol on
the MinION for surveying the two outbreaks, sequencing 2
x 12 barcodes on the same flow cell, driving down the cost
of each isolate with full assembly, genotyping and phylody-
namic analysis to around $40-50 per isolate, as previously
described (4). In this analysis, we used a subset of the total
reads per barcode (1000) for genomic neighbor typing eval-
uation which corresponds to approximately 2-3x coverage of
the S. aureus genome, having shown previously that assembly
based genotyping is possible at approximately 5x coverage
per genome (4). In addition, we expanded on the dual-library
sequencing protocol and attempted to sequence 48 strains on
a MinION flow cell in 2 hour intervals, with sufficient data
obtained for genomic neighbor typing further reducing cost to
approximately $30 (Australian) per barcode (Table 6, Table
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S6). Given the efficiency of our approach, it should be possible
to use 96-barcode kits to sequence as many isolates on a sin-
gle MinION flow cell and obtain accurate genotypes. Taking
into consideration the limitations in species applications and
resource management for higher resolution sketches, genomic
neighbor typing with Sketchy is therefore suitable to survey
bacterial outbreaks rapidly, at low-cost, and with sufficiently
accurate results to infer important epidemiological charac-
teristics. In this case, the predominant outbreak sequence
type was the Australian ST93 lineage, which had emerged
in the Northern Territory and spread to the East Coast of
Australia (26). Even without confirmation from phylogenetic
analysis (27), the predominance of the ST93 sequence type
in Far North Queensland and Papua New Guinea outbreaks
strongly suggests transmission from Australia.

Finally, we observed systematic misclassifications of clade-
specific SCCmec related features (methicillin resistance,
SCCmec subtype) that could not be resolved with higher reso-
lution sketches (Tables 2-6, Tables 8-9). We hypothesized that
this could be due to the approximate MinHash approach, which
does not have the same resolution on sublineage geno- or phe-
notypes as the phylogenetically guided classification approach
using ProPhyle in RASE. We demonstrated this limitation on
a lineage-specific (ST93) reference sketch in comparison with
the same reference database implemented in RASE (Tables 7-9),
for which we used a phylogenetic tree of the lineage that dis-
tinguished between MSSA and MRSA clades (Fig. 5A). While
most misclassifications with Sketchy could be resolved with
increasing sketch size (Table 9) and indeed outperformed RASE,
classifications of SCCmec features continued to fail even at
very high sketch sizes (s = 1000000). While RASE performed
better on sublineage genotyping, we noted a systematic error
in tetracycline predictions, which was unexpected since only a
single isolate in the reference dataset was resistant; we were
unable to explain these errors but note that the preference
score employed by RASE marked uncertainty in the majority of
tetracycline predictions, even when run on all reads for each
isolate, ultimately not resolving the tetracycline prediction
errors (Table S5).

Overall, phylogenetically informed genomic neighbor typ-
ing has a definitive advantage over Sketchy for inference of
clade-specific traits, which his particularly relevant for clini-
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Table 7. RASE classification of ST93 outbreak isolates (n = 120, lineage database)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
Clindamycin true 0 113 4 3 94.16 na na 96.58
Rifampicin true 0 120 0 0 100.0 na na 100.0
Ciprofloxacin  true 0 120 0 0 100.0 na na 100.0
Vancomycin true 0 120 0 0 100.0 na na 100.0
Tetracycline true 1 90 29 0 75.83 3.33 100.0 75.63
Mupirocin true 0 115 5 0 95.83 na na 95.83
Gentamicin true 0 120 0 0 100.0 na na 100.0
Trimethoprim  true 0 120 0 0 100.0 na na 100.0
Penicillin true 120 0 0 0 100.0 100.0 100.0 na
Methicillin true 110 0 3 7 91.66 97.34 94.02 na
Erythromycin  true 0 113 4 3 94.16 na na 96.58
Fusidic Acid true 0 120 0 0 100.0 na na 100.0

cal diagnostics (e.g. antimicrobial susceptibility predictions).
However, we were unable to construct RASE databases for the
species-wide reference collections, as the required phylogenetic
trees are infeasible, or at least highly impractical, to infer
from tens of thousands of whole genome sequences. At the
species level, the ease with which reference sketches can be
constructed for Sketchy and their minimal resource require-
ments given the number of genomes included, puts Sketchy at
an advantage for outbreak surveillance applications. Because
we derive genotypes from other genotype classifications (based
on assemblies or reads) it should be noted that classification
with Sketchy can only achieve classification performance of
the underlying genotyping methods (e.g. Mykrobe). However,
genomic neighbor genotyping with Sketchy could also enable
automating the construction of reference databases, so that
public archives can be surveyed periodically and new genome
integrated continuously. At this stage, due to limitations in
sublineage genotype predictions for antibiotic susceptibility
predictions, we do not recommend using Sketchy for clinical
applications, but rather as a tool to rapidly survey bacterial
outbreaks or isolate collections at scale. Sketchy may also
be useful in scenarios where genotype inference of limited
sequence data is required.

In comparison to other genotype classification tools,
Sketchy is situated between species-level taxonomic classi-
fiers and phylogenetically informed genomic neighbor typing.
Predictions are useful for traits distributed at the lineage level,
for example penicillin resistance or PVL toxins in S. aureus,
with limitations in application to some species with high rates
of homologous recombination, such as Neisseria gonorrhoeae
or Neisseria meningitidis. Future work on genomic neighbor
typing may consider scaling up multiplexing (e.g. 96-barcode
panels), curation and minimisation of reference databases,
implementation of alternative query methods, or combining
different approaches to genomic neighbor typing to enable
continuous species- to sublineage-level predictions. Adaptive
sequencing may be useful to balance throughput per barcode
in order to make multiplex sequencing protocols more robust
and cost-effective (30). Ultimately, we demonstrated that ge-
nomic neighbor typing with species-wide reference sketches
is a viable approach for genotype surveillance of bacterial
community outbreaks, particularly under challenging circum-
stances and in remote locations, including northern Australia
and Papua New Guinea.

Steinig et al.

Materials and Methods

Outbreak sampling and reference sequencing

Isolates were collected from outbreaks in two remote populations in
northern Australia and Papua New Guinea as described by Steinig
et al. (4) and Aglua et al. (17). Isolates associated with paediatric
osteomyelitis cases (mean age of 8 years) were collected from 2012 to
2017 (n = 42) from Kundiawa, Simbu Province (27), and from 2012
to 2018 (n = 35) from patients in the neighboring Eastern Highlands
province town of Goroka. We supplemented the data with MSSA iso-
lates associated with severe hospital-associated infections and blood
cultures in Madang (Madang Province) (n = 8) and Goroka (n =
12). Isolates from communities in Far North Queensland, including
metropolitan Cairns, the Cape York Peninsula and the Torres Strait
Islands (n = 91) were a contemporary sample from 2019. Isolates
were recovered on LB agar from clinical specimens using routine
microbiological techniques at Queensland Health and the Papua
New Guinea Institute of Medical Research (PNGIMR). Isolates were
transported on swabs from monocultures to the Australian Institute
of Tropical Health and Medicine (AITHM Townsville) where they
were cultured in 10 ml LB broth at 37°C overnight and stored at
-80°C in 20% (v/v) glycosol and LB. Samples were regrown on LB
agar prior to sequencing, and a single colony was placed into in-
house lysis buffer and sequenced at the Doherty Applied Microbial
Genomics laboratory (DAMG), using 100 bp paired-end libraries
on Illumina HiSeq.

MinION outbreak library preparation and sequencing

2 ml of LB broth was spun down at 5,000 x g for 10 minutes and
after removing the supernatant, 50 ul of 0.5 mg / ml lysostaphin
were added to the tube and vortexed. Cell lysis was conducted at
37°C for 2 hours with gentle shaking followed by a proteinase K
digestion for 30 mins. at 56°C. DNA was extracted using a simple
column protocol from the DNeasy Blood & Tissue kit (QIAGEN)
following the manufacturer’s instructions. DNA was eluted in 70 ul
of nuclease-free water, quantified on Qubit, and DNA was stored at
4°C until library preparation. Library preparation was done using
approx. 420 ng of DNA and the rapid barcoding kit with 12 barcodes
(ONT, SQK-RBKO004) as per manufacturer’s instructions, with the
exception of conducting bead cleanup steps. DNA was quantitated
using Qubit 4.0 (Thermo Fisher Scientific), purity determined with
a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific).
Basecalling was done using the PyTorch Bonito v0.3.6 R9.4.1 DNA
model, run on a local NVIDIA GTX1080-Ti or a remote cluster of
NVIDIA P100 GPUs. Sequence runs were conducted with 2 x 12
barcoded (SQK-RBKO004) isolates per flow cell in two consecutive
18-24 hour runs. Libraries were nuclease flushed using the wash kit
between consecutive runs (Oxford Nanopore Technologies, EXP-
WSH-003). This is sufficiently effective to remove read carry-over,
as demonstrated previously with hybrid assemblies of sequentially
sequenced Enterobacteriaceae (31). Sequencing runs were managed
on two MinIlONs and monitored in MinKNOW > v20.3.1. Read sum-

Preprint | February5,2022 | v0.11.2 | 9

543

544

545

546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

569

570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593


https://doi.org/10.1101/2022.02.05.479210
http://creativecommons.org/licenses/by-nc-nd/4.0/

594
595

596

597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.05.479210; this version posted February 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 8. Sketchy classification of ST93 outbreak isolates (n = 120, lineage sketch, s = 1000)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
Clindamycin true 2 107 10 1 90.83 16.66 66.66 91.45
Rifampicin true 0 120 0 0 100.0 na na 100.0
Ciprofloxacin  true 0 118 1 1 98.33 na na 99.15
Vancomycin true 0 120 0 0 100.0 na na 100.0
Tetracycline true 0 119 0 1 99.16 na na 100.0
Mupirocin true 0 118 2 0 98.33 na na 98.33
Gentamicin true 0 120 0 0 100.0 na na 100.0
Trimethoprim  true 0 120 0 0 100.0 na na 100.0
Penicillin true 120 0 0 0 100.0 100.0 100.0 na
Methicillin true 78 1 2 39 65.83 97.50 66.66 33.33
Erythromycin  true 2 107 10 1 90.83 16.66 66.66 91.45
Fusidic Acid true 0o 118 0 0 100.0 na na 100.0
Table 9. Sketchy classification of ST93 outbreak isolates (n = 120, lineage sketch, s = 1000000)
Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
Clindamycin true 0 116 1 3 96.66 na na 99.14
Rifampicin true 0 120 0 0 100.0 na na 100.0
Ciprofloxacin  true 0 119 0 1 99.16 na na 100.0
Vancomycin true 0 120 0 0 100.0 na na 100.0
Tetracycline true 0o 119 0 1 99.16 na na 100.0
Mupirocin true 0 120 0 0 100.0 na na 100.0
Gentamicin true 0 120 0 0 100.0 na na 100.0
Trimethoprim  true 0 120 0 0 100.0 na na 100.0
Penicillin true 120 0 0 0 100.0 100.0 100.0 na
Methicillin true 87 1 2 30 73.33 97.75 74.35 33.33
Erythromycin  true 0 116 1 3 96.67 na na 99.14
Fusidic Acid true 0 118 0 0 100.0 na na 100.0

mary reports for nanopore reads were generated with nanoq v0.8.2
(32).

MinION and Flongle multiplexing experiments

To demonstrate that genotyping is possible on site in Papua New
Guinea, we sequenced 12 S. aureus outbreak strains at the Papua
New Guinea Institute of Medical Research (PNGIMR) in Goroka.
We replicated the QIAGEN extraction and rapid library sequencing
protocol described above, unknowingly using a malfunctioning heat-
block in the library preparation step (SQK-RBK004), which resulted
in suboptimal barcode attachments. We also prepared a multiplex
run for a Flongle experiment at the Peter Doherty Institute for
Infection and Immunity. Staphylococcus aureus glycerol stocks were
inoculated in Tryptic soy broth (TSB) and grown overnight at 37°C,
180 rpm. DNA was extracted from 8 ml of overnight culture via
pelleting cells at 12,000 rpm for 2 minutes. Cells were resuspended
in PrepMan™ Ultra Sample Preparation Reagent (ThermoFisher
Scientific) and Lysing Matrix Y beads (MP Biomedicals). Isolates
were incubated at 95°C for 15 minutes and cells further lysed via
a TissueLyser LT (Qiagen) at 6.5 m/s for 60 seconds similar to
previously described (33). Extracts were centrifuged at 13,000 rpm
for 10 minutes. Supernatant was removed and mixed with 3M
sodium acetate (pH 5.5), ice-cold 100% ethanol (0.3:0.03:0.67 ratio)
and DNA was precipitated for 3 hours at -20°C. DNA was pelleted
at 13,000 rpm for 15 mins (4°C), washed with 70% ethanol and
resuspendeded in ultrapure water. High-molecular-weight (HMW)
DNA was isolated via the MagAttract HMW DNA Kit (Qiagen)
as per manufacturer’s instructions. Briefly, this included a protein
digest with proteinase K for 30 minutes at 56°C (900 rpm) and
an RNAse A (0.4mg) treatment for 10 minutes at room tempera-
ture. HMW DNA was further purified using Agencourt Ampure
XP (Beckman Coulter Australia) beads (1:1 ratio). Libraries were
prepared using the ONT Rapid Barcoding (SQK-RBK004) kit with
an input of 200ng of HMW DNA for each isolate. The library
was sequenced on an ONT Flongle FLO-FLGO001 flow cell for 24
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hours. All runs in this sections were called with Guppy v4.6 R9.4.1
DNA high accuracy models (HAC). Finally, we repeated library
construction as described for the outbreak sequencing above to test
a faster sequencing protocol, in which four libraries were sequenced
on the same MinION flow-cell with intermediate nuclease flushes
and a runtime of 2 hours per library.

Reference databases construction and genotyping

For reference sketch construction, we used a collection of assemblies
containing bacterial genomes from the entire European Nucleotide
Archive (ENA) in 2018 (n = 660,333) (25). Metadata from pre-
computed assembly genotypes was used to subset assemblies with
complete lineage designation for inclusion (MLST). CheckM metrics
were used to filter assemblies by completeness (< 99%), contamina-
tion (> 0.1%) and evidence for strain heterogeneity (> 0.1%) retain-
ing a total of 543,695 assemblies across 71 species with at least 100
genomes. For reference sketch construction in the simulations, we
included five common species of interest with at least 1000 genomes:
Streptococcus pneumoniae (n = 47,616), Staphylococcus aureus (n =
42,461), Neisseria meningitidis (n = 16,198), Klebsiella pneumoniae
(n = 10,072) and Neisseria gonorrhoeae (n = 8,413). We had previ-
ously downloaded a collection of S. aureus sequence runs from the
NCBI Short Read Archive and ENA (n = 38,985) providing match-
ing raw sequence read data for a subset of the assemblies in the ENA
collection. Antimicrobial resistance phenotypes for 12 antibiotics
(ciprofloxacin, clindamycin, erythromycin, fusidic acid, gentamicin,
methicillin, mupirocin, penicillin, rifampicin, tetracycline, trimetho-
prim and vancomycin) were inferred from these reads with Mykrobe
v0.6.1 and the default S. aureus typing panel (34). In addition, we
used SCCion v0.2.1 (https://github.com/esteinig/sccion) to type
SCCmec subtypes using Mash matches against the SCCmecFinder
database (35).
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Sketchy implementation and streaming algorithm

Sketchy implements k-mer extraction and hashing based on the
needletail (https://github.com/onecodex/needletail) and finch
(https://github.com/onecodex/finch-rs) libraries, which allowed us
to replicate Mash sketching and shared hashes computation in Rust.
Mash (23) pioneered an unbiased approximation of the Jaccard index
between two k-mer sets A and B:

|AN B|
J(A,B) = ——— 1
(B =305 i)
Mash (and Finch) merge-sort two bottom sketches S(A) and
S(B) to estimate the Jaccard index, where the merge is terminated
after s unique hashes, and the estimate of the Jaccard index is
computed for z shared hashes found after processing s’ hashes:

i=3 l

Sketchy implements two simple reference sketch matching func-
tions based on the parameters of the reference sketch (k-mer size,
sketch size and hash seed) that compute the min-wise shared hashes
(z) with each genome in the reference sketch. In the first instance,
we use Finch to compute the number of shared hashes (x) for all
reads until the specified read limit () (--1imit parameter). In ad-
dition, we provide a streaming implementation (the sum of shared
hashes) in which the shared hashes (z) are computed for each read
(4) and added to the sum of shared hashes (h) until the read limit
() is reached:

%

h; = ij 3]

i=1

Implementation of genomic neighbor typing is achieved by rank-
ing the shared hashes (or the sum of shared hashes after each read)
and selecting the associated genotype of the highest ranking genome
in the reference database as inferred genotype. When predicting
genomic neighbors from closely related genomes of the same lineage
(e.g. in an outbreak scenario) a consensus call for each genotype
features across the highest ranking genomes can be made using the
--consensus flag and --top parameter in the Sketchy command
line client.

Sketchy command line client

Sketchy v0.6.0 is written in Rust and implements a command line
client with several functions. First, a multi-genome reference sketch
can be constructed from sequence files at a given sketch (s) and
k-mer size (k):

sketchy sketch -i *.fasta -s 1000 -k 16 -o ref.msh
Information about the sketch (k-mer size, sketch-size, hash seed,

number of genomes, identity and order of genomes) can be produced
from the sketch file:

sketchy info ref.msh

Associated genotype or phenotype files can then be constructed
and checked against the reference sketch to ensure both contain the
same genomes in the same order:

sketchy check -r ref.msh -g genotypes.tsv

For any given (multiple) sketch file the shared hashes with each
genome in the reference sketch can then be computed, if parameters
between the reference and query sketches are consistent:

sketchy sketch -i query.fasta -s 1000 -k 16 -o query.msh
sketchy shared -r ref.msh -q query.msh

Finally, genomic neighbor typing predictions based on the refer-
ence sketch and a sequence file can be computed for a given number
of reads (--1imit), which will output a given number of the highest
ranking matches (--top) in the reference sketch and their associated
genotypes or phenotypes for inference. Streaming and consensus
modes can be activated with their respective flags (--stream and
--consensus):

sketchy predict -i reads.fq -r ref.msh -g genotypes.tsv

Steinig et al.

Lineage calling simulations and comparisons

Databases varied in the representation of the total diversity within
each species, due to variations in the number of genomes available
and diversity of sequence types contained in each database. We
conducted a cross-validation analysis by randomly sampling 10
genomes from each database across multiple replicate samples (n =
20). For each replicate, we constructed the reference sketch without
the sampled genomes to evaluate the impact of predicting sequence
types not contained in the database. We used badread v0.2.0 to
simulate decent quality, low-coverage (5x) nanopore reads (similar
to using R9.4 flow cells and RADO004 libraries) with parameters:

badread simulate --reference genome.fasta --quantity 5x
— --identity 93,99,4 --junk_reads 0.1 --random_reads O
< —-chimeras 0.1 --glitches 0,0,0

We then selected a series of read cut-offs for predictions (10,
50, 100, 200, 300, 500 and 1000 reads). Ultimately, we selected to
report results at the 1000 read threshold for several reasons: first,
the threshold marks around 1-3x coverage of the S. aureus genome
(depending on read length), after which it becomes feasible to do
assembly based genotyping with high recall from nanopore data
alone, as demonstrated previously for these outbreak data (20);
second, our primary aim was to infer genotypes from as few reads as
possible and initial simulations indicated stabilisation of predictions
below 1000 reads (Fig. S1); third, reporting by time (as in RASE) is
highly volatile due to differences in throughput between libraries
(e.g. multiplex vs. single isolates), sequencing devices (e.g. MinION
vs. PromethION) as well as pore availability and occupancy per
flow cell. Our target for these simulations was lineage calling, as the
prediction of intra-lineage genotypes (including antibiotic resistance)
depends on first matching into the correct genomic neighborhood of
the species (i.e. finding the correct sequence type). MLST (lineage)
predictions were made from the match with the highest shared
hashes in the replicate database (-—top 1). Replicate samples were
run against the hold-out sketches (DB-) and against the full sketch
(DB+) computing the average sequence types correctly predicted
over all samples (including standard deviation, Table 1).

For comparison at the 1000 read threshold we used Krocus
v1.0.1 (k = 16), which attempts to find k-mers matching to species-
specific MLST alleles and is conceptually similar to Sketchy in
that it implements a ’hypothesis-agnostic’ approach to genotyping
lineages (based on available MLST alleles from PubMLST) (36).
We also compared results with assemblies of the simulated genomes
using Flye v2.9 (37) followed by MLST typing with mlst v2.19.0
(https://github.com/tseemann/mlst). At this stage, we did not
compare Sketchy to RASE, because RASE requires phylogenetic guide
trees for ProPhyle (28), which are not feasible or practical to infer for
species-wide whole genome collections, such as the ones constructed
here. Direct inference of MLST from assemblies and k-mer allele
typing were therefore conceptually more suitable for comparison
with Sketchy. Mean maximum memory consumption and time for
prediction were measured on a single representative isolate picked
at random for 10 iterations (including standard deviation, Table 1).

Genotyping of community-associated outbreaks

For validation of predictions in an outbreak surveillance scenario we
used a set of 160 nanopore-sequenced isolates from FNQ (n = 70)
and PNG (n = 90) sequenced using the dual-library protocol and
for which we had matching Illumina data. Using Illumina genotypes
as reference, for each binary genotype feature (e.g. R or S, PNL+ or
PVL-) we computed accuracy, precision, sensitivity, and specificity
using sklearn functions, with weighed scores for multi-label features
(SCCmec-type, MLST). While the dataset constituted a real test
dataset with previously unknown strains from a country for which
genome sequences did not exist for S. aureus, it should be noted
that there was substantial bias in composition towards the ST93-
MRSA-IV outbreak lineage (n = 120/160). Sketchy was run using
consensus genotypes over the 5 highest ranking prediction of the
default reference sketch for S. aureus (k = 16, s = 1000, 1000 reads
classification limit) which marginally improved within outbreak
genotyping of ST93 isolates. Output predictions were evaluated
against the Illumina reference genotypes for each feature (Tables 2 -
5). For comparison of streaming analysis (sum of shared hashes)
we used the outbreak dataset and the highest ranking prediction
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(1000 reads classification limit) (Table S3). For demonstration of
applying Sketchy in challenging sequencing scenarios related to this
outbreak, we conducted three experiments: a multiplex flow cell of
12 outbreak isolates sequenced in Goroka (during which a heatblock
failed resulting in suboptimal barcode attachment), a library on an
early Flongle adapter flow cell with highly reduced throughput, and
sequencing 4 panels of 12 barcoded isolates in succession (2 hours
each, with nuclease washes between runs, see above). We applied
the same consensus genotype prediction and metrics for these three
experiments as in the dual barcoding library (Fig. 4, Tables 3-5).

Genomic neighbor typing of sublineage genotypes

For comparison of sublineage antimicrobial resistance typing with
RASE, we collected a reference set of ST93-MSSA and -MRSA strains
based on previous work with this lineage (n = 360) (26). Genotype
data consisted of the antimicrobial resistance genotypes derived
from the full reference sketch for S. aureus used in the outbreak
surveillance section. For implementation in RASE, we constructed
a phylogenetic tree based on core SNPs from our previous phy-
logenomic analysis of the lineage (26). IQTREE v2.1.2 was used
to reconstruct a maximum-likelihood phylogeny using the General
Time Reversible model with rate heterogeneity, Lewis ascertainment
bias correction (GTR4+G+ASC) and placing the root on an early
diverging MSSA isolate, consistent with previous phylogenetic recon-
structions (SAMEA1557252). Trees were visualized with Interactive
Tree of Life (38). The RASE reference database was constructed
without additional ancestral state reconstruction as all resistance
genotypes were known.

ST93 has two distinct clades, an ancestral MSSA clade with
isolates from the Northern Territory, and a divergent MRSA clade,
which expanded on the Australian East Coast, and spread to FNQ
and PNG. This allowed us to assess genotyping ability of clade-
specific methicillin resistance, which we have shown was compro-
mised in the outbreak surveillance assessment using the approximate
genomic neighbor typing approach in Sketchy. We expected RASE
to have superior performance due to using a lineage phylogeny as
guide for its genomic neighbor typing implementation with ProPhyle
0.3.3.1 (28). To visualize the differences in resolution between our
MinHash approach and tree-guided (SNP based) genomic neigh-
bor typing (Fig. S4), we used NetView (39) to reconstruct genome
population networks based on pairwise-distances from underlying
SNPs and pairwise shared hash distance (s - h) computed with
Sketchy. A value of k = 20 was selected for visualization of the
network topologies in Fig. 5, as described previously (40) indicating
stable configurations in both networks across selected community
clustering algorithms (Fig. S1, C-D).

For comparison with Sketchy, we used a RASE (commit 27113cb)
database constructed at & = 16, and the Sketchy outbreak reference
sketch at k£ = 16 and s = 1000, as well as a high resolution sketch
at s = 1000000. RASE requires sequence times per read, which
were not available in the output of Bonito v0.3.6. We therefore
used reads base called with the Guppy v4.6 R9.4.1 DNA HAC
model for this comparison. RASE outputs predictions by minute
timestamps (including the number of reads) from which we selected
the prediction closest to the 1000 read threshold (Table 7) used
throughout this manuscript; we also ran the full read set to check for
persistence of tetracycline prediction errors (Table S7). RASE read
thresholds for each isolate were used for the read limit parameter
(--1limit) in the Sketchy predictions (Tables 8,9).
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Fig. S1. Supplementary figures for Sketchy: (A) MLST cross-validation prediction mean accuracy over a range of read thresholds (10 - 1000 reads, Methods) across the sic
species outlined in Table 1, (B) MLST cross-validation prediction accuracy at 10000 reads across the six species, showing simulated nanopore runs when hold-out isolates
were included (green) or excluded (blue) from the reference sketch, (C) MLST cross-validation prediction mean accuracy at 1000 reads (with standard deviation error bars) for
Sketchy when compared to Krocus and typing from Flye and Flye+Medaka assemblies, (D) Mutual k-nearest-neighbor community assemblage plots using three different
community detection algorithms over a range of k = 1 - 60 (left: shared hashes distance, right: SNP distance) indicating stable network topologies (Fig. 5) at the selected value
(vertical lines).
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Data availability

Sequence data (Illumina, ONT) has been deposited under Bio-
Project: PRINA657380. Sketchy is open-source and available at:
https://github.com/esteinig/sketchy. Reference genotypes and se-
quence data summaries can be found at the project repository:
https://github.com/esteinig/ca-mrsa
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Table S1. MLST error analysis from outbreak data predictions

Isolate Reference ST Reference Alleles  Predicted ST Predicted Alleles  Difference Alleles Same CC
PNG-4 ST81 1-1-1-9-1-1-1 STH 1-1-1-1-1-1-1 1 yes
FNQ-9 ST5 1-4-1-4-12-1-10 ST225 1-4-1-4-12-25-10 1 yes
FNQ-14  ST5 1-4-1-4-12-1-10 ST228 1-4-1-4-12-24-29 2 yes
FNQ-28  ST30 2-2-2-2-6-3-2 ST243 2-2-5-2-6-3-2 1 yes
PNG-30 ST 6-64-44-2-43-55-7 ST93  6-64-44-2-43-55-51 1 yes
PNG-36  ST81 1-1-1-9-1-1-1 ST1 1-1-1-1-1-1-1 1 yes
PNG-37  ST81 1-1-1-9-1-1-1 ST1 1-1-1-1-1-1-1 1 yes
PNG-38 ST- 1-4-1-?-1-51-133 ST1 1-1-1-1-1-1-1 4 no
PNG-68 ST 6-64-?-2-43-55-51 ST93  6-64-44-2-43-55-51 1 yes
PNG-73  ST243 2-2-5-2-6-3-2 ST30 2-2-2-2-6-3-2 1 yes
PNG-77  ST- 22-1-14-23-12-4-? ST88  22-1-14-23-12-4-31 1 yes
FNQ-79 ST ?-64-44-2-43-55-51 ST93  6-64-44-2-43-55-51 0 yes
PNG-85  ST243 2-2-5-2-6-3-2 ST3452 2-2-2-2-6-377-2 2 yes
PNG-86 ST243 2-2-5-2-6-3-2 ST30 2-2-2-2-6-3-2 1 yes
PNG-88  ST243 2-2-5-2-6-3-2 ST30 2-2-2-2-6-3-2 1 yes
PNG-92 ST762 1-1-104-1-1-1-1 ST1 1-1-1-1-1-1-1 1 yes

Table S2. S. aureus outbreak isolates [streaming] (4 flow cells, 2 x 12-plex, 1000 reads, k = 16, s = 1000, n = 160)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
MLST false - - - - 87.50 87.91 87.50 -
SCCmectype false - - - 75.00 84.31 75.00 -
PVL true 128 16 2 14 90.00 98.46 90.14 88.88
Clindamycin true 1 14 12 6 88.75 7.69 14.28 92.15
Rifampicin true 0 158 2 0 98.75 na na 98.75
Ciprofloxacin true 0 151 8 1 94.37 na na 94.96
Vancomycin true 0 160 0 0 100.0 na na 100.0
Tetracycline true 0 153 8 1 94.37 na na 94.96
Mupirocin true 0 157 1 2 98.12 na na 99.36
Gentamicin true 0 160 0 0 98.75 na na 98.75
Trimethoprim true 0 154 1 5 96.25 na na 99.35
Penicillin true 148 3 4 5 94.37 97.36 96.73 42.85
Methicillin true 105 19 7 29 775 93.75 78.35 73.07
Erythromycin true 1 141 12 6 88.75 7.69 14.28 92.15
Fusidic Acid true 2 152 6 0 96.25 25.00 100.0 96.20

Table S3. S. aureus outbreak isolates on MinlON (4 flow cells, 2 x 12-plex, 1000 reads, k = 16, s = 10000, n = 160)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
MLST false - - - - 93.75 90.53 93.75 -
SCCmectype false - - - - 76.87 86.40 76.87 -
PVL true 135 16 2 7 94.37 98.54 95.07 88.88
Clindamycin true 0 149 4 7 93.12 na na 97.38
Rifampicin true 0 160 0 0 100.0 na na 100.0
Ciprofloxacin true 0 158 1 1 98.75 na na 99.37
Vancomycin true 0 160 0 0 100.0 na na 100.0
Tetracycline true 0 157 2 1 99.13 na na 98.74
Mupirocin true 0 158 0 2 98.75 na na 100.0
Gentamicin true 0 160 0 0 100.0 na na 100.0
Trimethoprim true 0 153 2 5 95.62 na na 98.70
Penicillin true 150 7 0 3 98.12 100.0 98.03 100.0
Methicillin true 105 23 3 29 80.00 97.22 78.35 88.46
Erythromycin true 1 149 4 6 93.75 20.00 14.28 97.38
Fusidic Acid true 2 158 0 0 100.0 100.0 100.0 100.0
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Table S4. S. aureus outbreak isolates (Goroka) on MinlON (1 flow cell, 12-plex, 1000 reads, k = 16, s = 10000, n = 12)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
MLST false - - - - 100.0 100.0 100.0 -
SCCmec type false - - - - 83.33 100.0 83.33 -
PVL true 12 0 0 0 100.0 100.0 100.0 na
Clindamycin true 0 11 0 1 91.66 na na 100.0
Rifampicin true 0 12 0 0 100.0 na na 100.0
Ciprofloxacin true 0 12 0 0 100.0 na na 100.0
Vancomycin true 0 12 0 0 100.0 na na 100.0
Tetracycline true 0 11 0 1 91.66 na na 100.0
Mupirocin true 0 12 0 0 100.0 na na 100.0
Gentamicin true 0 12 0 0 100.0 na na 100.0
Trimethoprim true 0 12 0 0 100.0 na na 100.0
Penicillin true 12 0 0 0 100.0 100.0 100.0 na
Methicillin true 10 0 0 2 83.33 100.0 83.33 na
Erythromycin true 0 11 0 1 91.66 na na 100.0
Fusidic Acid true 0 12 0 0 100.0 na na 100.0
Table S5. S. aureus outbreak isolates on Flongle (1 flow cell, 12-plex, 1000 reads, k = 16, s = 10000, n = 12)
Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
MLST false - - - - 100.0 100.0 100.0 -
SCCmectype false - - - - 83.33 100.0 83.33 -
PVL true 12 0 0 0 100.0 100.0 100.0 na
Clindamycin true 0 11 1 0 91.66 na na 91.66
Rifampicin true 0 12 0 0 100.0 na na 100.0
Ciprofloxacin true 0 12 0 0 100.0 na na 100.0
Vancomycin true 0 12 0 0 100.0 na na 100.0
Tetracycline true 0 12 0 0 100.0 na na 100.0
Mupirocin true 0 12 0 0 100.0 na na 100.0
Gentamicin true 0 12 0 0 100.0 na na 100.0
Trimethoprim true 0 12 0 0 100.0 na na 100.0
Penicillin true 12 0 0 0 100.0 100.0 100.0 na
Methicillin true 10 0 0 2 83.33 100.0 83.33 na
Erythromycin true 0 11 1 0 91.66 na na 91.66
Fusidic Acid true 0 12 0 0 100.0 na na 100.0

Table S6. Successive library experiment on MinlON (1 flow cell, 4 x 12-plex, 1000 reads, k = 16, s = 10000, n = 48)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
MLST false - - - - 95.83 93.79 95.83 -
SCCmectype false - - - - 77.08 93.62 77.08 -
PVL true 46 0 1 1 95.83 97.87 97.87 na
Clindamycin true 0 47 0 1 97.91 na na 100.0
Rifampicin true 0 48 0 0 100.0 na na 100.0
Ciprofloxacin true 0 47 0 1 97.91 na na 100.0
Vancomycin true 0 48 0 0 100.0 na na 100.0
Tetracycline true 0 47 0 1 97.91 na na 100.0
Mupirocin true 0 48 0 0 100.0 na na 100.0
Gentamicin true 0 48 0 0 100.0 na na 100.0
Trimethoprim true 0 48 0 0 100.0 na na 100.0
Penicillin true 48 0 0 0 100.0 100.0 100.0 na
Methicillin true 36 1 1 10 77.08 97.29 78.26 0.50
Erythromycin true 0 47 0 1 97.91 na na 100.0
Fusidic Acid true 0 48 0 0 100.0 na na 100.0
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Table S7. RASE classification of ST93 outbreak isolates, all reads (n = 120, lineage database)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)
Clindamycin true 0 117 0 3 97.50 na na 100.0
Rifampicin true 0 120 0 0 100.0 na na 100.0
Ciprofloxacin  true 0 120 0 0 100.0 na na 100.0
Vancomycin true 0 120 0 0 100.0 na na 100.0
Tetracycline true 0 82 37 1 68.33 na na 68.91
Mupirocin true 0 120 0 0 95.76 na na 95.76
Gentamicin true 0 120 0 0 100.0 na na 100.0
Trimethoprim  true 0 120 0 0 100.0 na na 100.0
Penicillin true 120 0 0 0 100.0 100.0 100.0 na
Methicillin true 117 0 3 0 97.50 97.50 100.0 na
Erythromycin  true 0 117 0 3 97.50 na na 100.0
Fusidic Acid true 0 120 0 0 100.0 na na 100.0
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