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Genomic neighbor typing enables heuristic inference of bacterial lin-

eages and phenotypes from nanopore sequencing data. However,

small reference databases may not be sufficiently representative

of the diversity of lineages and genotypes present in a collection

of isolates. In this study, we explore the use of genomic neigh-

bor typing for surveillance of community-associated Staphylococ-

cus aureus outbreaks in Papua New Guinea (PNG) and Far North

Queensland, Australia (FNQ). We developed Sketchy, an implemen-

tation of genomic neighbor typing that queries exhaustive whole

genome reference databases using MinHash. Evaluations were con-

ducted using nanopore read simulations and six species-wide ref-

erence sketches (4832 - 47616 genomes), as well as two S. aureus

outbreak data sets sequenced at low depth using a sequential mul-

tiplex library protocol on the MinION (n = 160, with matching Illu-

mina data). Heuristic inference of lineages and antimicrobial resis-

tance profiles allowed us to conduct multiplex genotyping in situ

at the Papua New Guinea Institute of Medical Research in Goroka,

on low-throughput Flongle adapters and using multiple successive

libraries on the same MinION flow cell (n = 24 - 48). Comparison

to phylogenetically informed genomic neighbor typing with RASE on

the dominant outbreak sequence type suggests slightly better per-

formance at predicting lineage-scale genotypes using large sketch

sizes, but inferior performance in resolving clade-specific genotypes

(methicillin resistance). Sketchy can be used for large-scale bacte-

rial outbreak surveillance and in challenging sequencing scenarios,

but improvements to clade-specific genotype inference are needed

for diagnostic applications. Sketchy is available open-source at:

https://github.com/esteinig/sketchy
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Epidemiological and clinical features of infectious diseases,1

such as strain provenance and antimicrobial susceptibility,2

are valuable targets for decision makers, but their timely3

inference from genomic data is challenging. Fast methods for4

genotyping are especially relevant for bacterial pathogens for5

which faithful genome assembly requires reasonable genome6

coverage. However, whole genomes often cannot be assembled7

easily from complex metagenomic samples, including blood8

and lower respiratory infections where the causative pathogen9

may be at low abundance.10

Nanopore sequencing is particularly suited for rapid charac-11

terisation of pathogen genomes, with potential to be conducted12

on-site rather than sent to a reference lab, as reads can be13

streamed from the device and analysed on mobile comput-14

ing platforms (1–4). Several methods for bacterial pathogens15

characterisation on nanopore platforms has been developed 16

over the past few years, including pipelines for batch assembly 17

and marker detection (5, 6), novel algorithms for streaming 18

assembly and genotyping (7–9), and sensitive approaches to 19

antimicrobial resistance prediction, as well as taxonomic iden- 20

tification (10–12). Studies that assessed clinical specimens 21

have focused on samples with low abundance of host nucleic 22

acids, high bacterial loads, and those in which nanopore se- 23

quencing was supported with short-read sequencing (6, 13–15). 24

Strain-level genotyping from lower respiratory infections and 25

cystic fibrosis patients was particularly efficient when preceded 26

by host nucleic acid depletion (13) or enriched by culture (14). 27

In pursuit of rapid genotype inference, Břinda et al. devel- 28

oped a heuristic principle termed "genomic neighbor typing" 29

(16). Antibiotic resistance phenotypes (minimum inhibitory 30

concentrations) and lineage membership could be inferred 31

using k-mer matching against a database of whole genome 32

sequences, including their phylogenetic relationships RASE). 33

Using genomic neighbor typing, heuristic inference of genome- 34

associated traits was possible within minutes of starting se- 35

quencing. Genomic neighbor typing could thus be used for 36

massively parallel genotyping, requiring only standard nucleic 37

acid extraction and multiplex library protocols to survey lin- 38

eage and genotype composition of an bacterial outbreak, where 39

complete genomes may be difficult to produce at scale. 40

A critical component of genomic neighbor typing is suf- 41

ficient representation of genome diversity in the reference 42

database. Břinda et al. constructed reference sets from local 43

and national collections to demonstrate the principle using 44

S. pneumoniae (n = 616) and Neisseria gonorrhoeae (n = 45

1102). However, for clinical applications and in particular for 46

outbreak scenarios, a small reference database of the globally 47

available sequence space for a pathogen may be insufficiently 48

representative of species-wide diversity and miss important 49

lineages or sublineage genotypes that may have entered lo- 50

cal epidemiological space. In one such outbreak scenario in 51

Papua New Guinea, community-associated MRSA infections in 52

Kundiawa (Simbu Province) and Goroka (Eastern Highlands 53

Province) had been tracked over multiple years, but lineage 54

provenance and genotype identity had been unknown (17). 55
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Fig. 1. Sketchy components: bacterial sequence reads are matched against a

reference database constructed from bacterial whole genomes (including from public

archives). Shared hashes (or the sum of shared hashes for streaming operations)

are then ranked and the genotype of the highest ranking genome match selected

for prediction. Alternatively, consensus calls for each genotype feature (binary or

multi-label, e.g. trimethoprim resistance or SCCmec subtype) can be made over the

highest ranking genomes in the reference sketch.

No sequencing data on S. aureus from Papua New Guinea56

exists, so that the application of genomic neighbor typing to57

survey the lineage and genotype composition of the outbreak58

would require a sufficiently representative lineage database to59

account for the absence of prior data from the region.60

In addition to the outbreak in the remote highland provinces61

of Papua New Guinea, we had become aware of escalating S.62

aureus infections in remote communities of Far North Queens-63

land, which borders Papua New Guinea through the Torres64

Strait Islands (18, 19). We collected a snap-shot of strains65

from Far North Queensland communities (Cape York Penin-66

sula, Cairns and Hinterland, Torres Strait Island) in 2019 (20).67

This presents a realistic scenario, where surveying cross-border68

bacterial outbreaks using a comprehensive genomic neighbor69

typing approach on nanopore devices could provide lineage and70

genotype data important for deciphering geographical prove-71

nance (lineage attribution) and antibiotic susceptibilities of72

dominant outbreak lineages, potentially informing treatment73

options. Furthermore, we were interested in demonstrating74

that genomic neighbor typing is working under realistic se-75

quencing conditions, including on site in Goroka (Eastern76

Highlands Province) where access to sequencing infrastructure77

is not available. In addition, we wanted to assess using genomic78

neighbor typing as a cost-effective approach, for example by79

using successive library sequencing protocols or Flongle.80

Large reference databases may be required to ensure a81

’hypothesis-agnostic’ genomic neighbor typing approach. How-82

ever, maintaining a relatively small resource profile while83

using large reference databases of bacterial whole genome se-84

quences requires an approximate database construction and 85

read matching approach that can accommodate tens to poten- 86

tially hundreds of thousands of genomes. MinHash, a variant 87

of locality-sensitive hashing originally used for detection of 88

near-duplicate websites or images (21), has been extensively 89

used in genomics since its implementation in Mash (22, 23). 90

Computing min-wise shared hashes between reference and 91

query sketches (23, 24) presents a simple method to imple- 92

ment genomic neighbor typing with comprehensive lineage and 93

genotype representation and without the need for phylogenetic 94

trees as required by RASE. In addition, an implementation 95

of genomic neighbor typing that uses genotypes, instead of 96

culture-based phenotypes (such as MIC values) would allow 97

for the construction of reference sketches entirely from public 98

genome collections. 99

In this study, we evaluate genomic neighbor typing with 100

species-wide bacterial pathogen sketches using MinHash. We 101

developed a simple genomic neighbor typing approach us- 102

ing ranked shared hashes and lineage-resolved (’hypothesis- 103

agnostic’) databases which span the known genomic diversity 104

of a bacterial species and are constructed from public sources 105

(Fig. 1). Our primary aim was to infer lineage and sublineage 106

genotypes from as few reads as possible, and to evaluate the 107

approach on independent outbreak data from remote northern 108

Australia and Papua New Guinea (n = 160, with matching 109

Illumina reference data). We reasoned that genomic neighbor 110

typing could be used for scaling outbreak surveillance through 111

heuristic genotype inference. 112

Results 113

Species cross-validation simulation 114

Whole genome sequences for six species with varying levels 115

of representation in the European Nucleotide Archive (ENA) 116

were collected for reference sketch construction (Table 1) (25). 117

After filtering of assemblies for contamination, completeness 118

and strain heterogeneity, we constructed default (k = 16, 119

s = 1000) and high resolution (k = 16, s = 10000) reference 120

sketches for evaluation (Table 1). Sketch databases contained 121

between 4,832 (Pseudomonas aeruginosa) and 47,616 genomes 122

(S. pneumoniae). Low resolution sketch files were considerably 123

smaller and consumed less memory than their high resolution 124

equivalents (Table 1). We used multi-locus sequence types 125

(MLST) as a proxy for genotype predictions, as MLST data 126

were readily available for all species (25) and representative 127

of the ability to match genomes in the correct genomic neigh- 128

borhood (lineage) of the reference database. We conducted a 129

cross-validation simulation, for which we sampled 10 genomes 130

(without replacement) from the reference collection of each 131

species across 20 replicates (n = 200) and used reference 132

sketches which did (DB+) or did not (DB-) contain the sam- 133

pled genomes (Fig. 2, Table 1). Since our primary aim was to 134

call genotypes from as few reads as possible, we evaluated per- 135

formance (mean proportion correctly classified) at a threshold 136

of 1000 reads (Methods). We assessed two other methods at 137

this threshold for comparison with Sketchy: a k-mer based 138

MLST allele typer for long reads (Krocus) and whole genome 139

assembly with Flye, with added polish by Medaka. 140

Performance was dependent on species, with three out of six 141

species (N. gonorrhoeae, N. meningiditis and S. pneumoniae) 142

showing inferior lineage predictions in the cross-validation 143

assessment, including extremely low performance by N. gon- 144
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Fig. 2. Cross-validation MLST classification success (proportion of correct sequence types, at 1000 reads) for (A) default resolution (s = 1000) sketches and (B) high-resolution

(s = 10000) sketches across species (violins, data points) showing one half as reference sketches containing the hold-out samples (green, left, DB+) and the other as

reference sketches that did not contain the hold-out samples (blue, right, DB-). Cross-validation sampling was conducted using 20 replicates of 10 random samples from the

complete reference genome collection and reference sketches (k = 16) were built with and without the sampled genomes (Table 1).

Table 1. Cross-validation of species sketches using simulated nanopore reads (1000 reads, k = 16, 20 replicates, n = 10)

Species n s Size (MB) LZMA (MB) Time (s) MEM (GB) DB+ (%) DB- (%)

Streptococcus pneumoniae 47616 1000 552 46 5.06 (± 0.16) 5.97 (± 0.001) 63.5 (± 15.3) 63.5 (± 15.3)

Staphylococcus aureus 42461 1000 492 38 3.72 (± 0.07) 5.32 (± 0.001) 79.5 (± 9.44) 80.5 (± 11.5)

Neisseria meningitidis 16198 1000 188 16 1.48 (± 0.01) 2.03 (± 0.001) 62.5 (± 12.9) 58.5 (± 13.4)

Klebsiella pneumoniae 10072 1000 117 10 1.10 (± 0.01) 1.26 (± 0.001) 82.0 (± 12.8) 74.5 (± 15.4)

Neisseria gonorrhoeae 8413 1000 98 7 0.81 (± 0.01) 1.05 (± 0.001) 29.0 (± 13.8) 29.5 (± 15.4)

Pseudomonas aeruginosa 4832 1000 56 5 0.67 (± 0.01) 0.61 (± 0.001) 88.0 (± 10.6) 83.5 (± 9.33)

Streptococcus pneumoniae 47616 10000 5720 791 44.33 (± 3.86) 58.82 (± 0.001) 83.5 (± 10.5) 78.5 (± 13.4)

Staphylococcus aureus 42461 10000 5101 671 34.85 (± 1.77) 53.34 (± 0.001) 84.5 (± 13.6) 83.0 (± 13.4)

Neisseria meningitidis 16198 10000 1945 221 14.59 (± 0.25) 20.35 (± 0.001) 75.5 (± 15.4) 70.0 (± 14.1)

Klebsiella pneumoniae 10072 10000 1210 139 9.33 (± 0.34) 12.65 (± 0.001) 96.5 (± 6.71) 86.0 (± 12.3)

Neisseria gonorrhoeae 8413 10000 1011 112 7.98 (± 0.66) 10.57 (± 0.001) 67.5 (± 14.5) 64.5 (± 15.4)

Pseudomonas aeruginosa 4832 10000 554 75 4.31 (± 0.02) 6.07 (± 0.001) 100.0 (± 0.0) 93.0 (± 6.57)

LZMA (compression), DB+ (random sample retained in reference sketch), DB- (random sample excluded from reference sketch)

orrhoeae (Table 1, Fig. 2). In contrast, K. pneumoniae, S.145

aureus and P. aeruginosa recovered MLST reasonably well,146

ranging from 79.5% - 100% (DB+) and 74.5% - 93.0% ac-147

curacy (Table 1, Fig. 2). For these species, predictions im-148

proved when sampled genomes were contained in the reference149

sketch (green, DB+) but this trend was not as pronounced for150

under-performing species (Fig. 1). In all species, predictions151

improved, often considerably, using higher resolution sketches152

(s = 10000), including accurate predictions using sketches153

which did not contain the sampled genomes for P. aeruginosa154

(93% ± 6.57) and K. pneumoniae (86% ± 12.3) (Table 1).155

In species where sketches were able to sufficiently recover156

lineage, performance stabilised around 200 - 500 reads sug-157

gesting that fewer reads than the threshold may be sufficient158

for genotyping (Fig. S1A). Reference sketch size, memory con-159

sumption and prediction times scaled approximately linearly160

with the number of genomes in the reference sketch and sketch161

size (Table 1). Predictions at an additional threshold of 10000162

reads using the low-resolution sketches (s = 1000) showed163

minor improvements in performance across species (Fig. S1B),164

indicating that most of the observed error was due to the165

resolution of the sketching approach, and only some due to166

the low read threshold chosen for typing. Finally we compared 167

Sketchy to allele based k-mer matching with Krocus and lin- 168

eage typing from assemblies generated with Flye, optionally 169

polished with Medaka. Krocus was unable to infer MLST from 170

1000 reads in all cases (Fig1. S1C). Using assembled genomes, 171

allele typing led to incorrect multi-locus sequence types in all 172

cases, except in a single P. aeruginosa assembly with Flye 173

(Fig. S1C). 174

Genotype surveillance of community-associated outbreaks 175

We next evaluated Sketchy genotyping on two S. aureus out- 176

breaks from remote communities in Papua New Guinea and 177

Far North Queensland (n = 160), which had been sequenced 178

at low-coverage using a dual-library protocol with interspersed 179

nuclease washes (24 strains per MinION flow cell, on a total 180

of 8 flow cells) (4) (Fig. 3, Methods). While most isolates 181

belonged to the Australian ST93-MRSA-IV clone (26, 27) (n 182

= 120), multiple other sequence types were recovered (ST1, 183

ST5, ST15, ST25, ST30, ST45, ST81, ST121, ST243, ST762, 184

n = 35), including several novel sequence types (n = 5) of 185

which some derived from the ST93 outbreak lineage (n = 3). 186

In addition, a version of the S. aureus reference sketch was 187
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Fig. 3. Nanopore validation dataset with matching Illumina data sequenced from

community-associated S. aureus outbreaks in Papua New Guinea (PNG) and Far

North Queensland (FNQ). Sampling of osteomyelitis and skin-and soft tissue infections

(SSTI) was conducted in Goroka (Eastern Highland Province), Kundiawa (Simbu

Province) (n = 90), and Cairns hospital (Queensland) where isolates from routine

surveillance of communities on the Cape York Peninsula were collected (n = 70).

Inset schematic of the dual-panel barcoding protocol from cultured samples, where a

standard spin-column extraction is followed by sequencing two rapid barcode libraries

(12 isolates) on the MinION (24 samples per flow cell, interspersed with a nuclease

wash) and Sketchy genotyping for rapid outbreak surveillance.

created using a collection of genomes for which we had pre-188

viously computed antimicrobial resistance calls with Mykrobe189

(n = 34,583), as well as SCCmec type and presence of the190

Panton-Valentine leukocidin locus (PVL). As the outbreak191

isolates were the first S. aureus genomes recovered from Papua192

New Guinea, these data comprised an independent validation193

dataset for performance evaluation of the S. aureus reference194

sketch, in the absence of local or regional genome collections.195

Sketchy predictions on 1000 reads of the outbreak data196

from FNQ and PNG were compared with Illumina reference197

genotypes and standard performance metrics were computed198

across the dataset (Figure 3, Table 2). Generally, lineage-199

wide distributed features (MLST, PVL, penicillin resistance,200

some antibiotic susceptibilities) achieved high accuracy and201

precision (Table 2). Importantly, most sequence types were 202

correctly identified (144/160) providing an accurate survey of 203

lineage diversity in FNQ and PNG. Analysis of sequence typing 204

errors revealed consistent false calls between ST81 reference 205

and ST1 prediction pairs (n = 3), ST243 and ST30/ST3452 (n 206

= 5), ST5 and ST225/ST228 (n = 2) and one ST762 genome 207

predicted as ST1 (n = 1) (Table S1). In all cases except one, 208

the reference sequence type was contained in the reference 209

sketch and predicted sequence types belonged to the same 210

clonal complex (CC) with a difference of one or two alleles 211

(Table S1). Finally, of the novel sequence types detected in 212

this dataset (n = 5), three single allele variants of ST93 were 213

predicted ST93, one single allele variant of ST88 was predicted 214

ST88 and one unknown ST variant with four alleles difference 215

was predicted ST1 (Table 2). 216

We also used the streaming algorithm (sum of shared 217

hashes) with the same configurations for comparison (Table 218

S2). Overall, there were slight regressions in all predictions, 219

which were expected due to computing shared hashes per read, 220

losing some of the information contained in the completed read 221

sets (1000 reads). When we used the high-resolution species 222

sketch (s = 10000) in non-streaming mode for these outbreak 223

data, improvements in lineage predictions were observed, in- 224

cluding resolution of the ST243/ST30 and ST5/ST255/ST228 225

misclassification, and some of the associated resistance and 226

PVL classifications (Table S3). No improvements were made 227

in SCCmec related features, with regressions in methicillin 228

resistance and SCCmec type classification accuracy across 229

the dataset, indicating that these were driven by systematic 230

error in classification of clade-specific features of the dominant 231

outbreak lineage ST93. 232

We next ran a library of strains from the osteomyelitis 233

outbreak in situ at the Papua New Guinea Institute of Medical 234

Research in Goroka (Eastern Highlands). We multiplexed 12 235

strains onto a MinION flow cell, but ultimately obtained few 236

reads per barcode (276 - 1896, Table 3) due to malfunctioning 237

laboratory equipment resulting in failed barcode attachment 238

(15072/23774 reads unclassified, Fig. 4A). Nevertheless, we 239

were able to use the remaining reads per barcode to type with 240

Sketchy, which correctly predicted lineage (ST93) with the 241

exception of two isolates (ST22 and ST121 from 276 and 533 242

reads respectively) and some lineage-distributed genotypes 243

Table 2. S. aureus outbreak isolates on MinION (4 flow cells, 2 x 12-plex, 1000 reads, k = 16, s = 1000, n = 160)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

MLST false - - - - 90.00 88.22 90.00 -

SCCmec type false - - - - 80.63 90.63 80.63 -

PVL true 130 16 2 12 91.25 98.48 91.54 88.88

Clindamycin true 1 146 7 6 90.50 12.50 14.28 94.70

Rifampicin true 0 160 0 0 100.0 na na 100.0

Ciprofloxacin true 0 156 3 1 97.50 na na 98.11

Vancomycin true 0 160 0 0 100.0 na na 100.0

Tetracycline true 0 157 2 1 99.13 na na 98.74

Mupirocin true 0 158 0 2 98.75 na na 100.0

Gentamicin true 0 159 1 0 99.38 na na 99.37

Trimethoprim true 0 152 3 5 95.00 na na 98.06

Penicillin true 151 3 4 2 96.25 97.42 98.69 42.85

Methicillin true 107 25 1 27 82.50 99.07 79.85 96.15

Erythromycin true 1 145 8 6 91.25 11.11 14.29 94.77

Fusidic Acid true 2 156 2 0 98.75 0.50 100.0 98.73
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Fig. 4. Outbreak surveillance experiments of community-associated Staphylococcus

aureus cases from Papua New Guinea (A) in situ at the Papua New Guinea Institute

for Medical Research (B) minimal multiplexing experiment on Flongle and (C) 48

strains on four successive panels on a single MinION flow cell. Left panel shows a

representation of the experiment, middle panel shows the barcode distribution of each

sequenced barcoded run (seagreen is unclassified). A large numbers of unclassified

barcodes in (A) was likely due to a malfunctioning instrument (heatblock) during library

preparation in Goroka, although we could not assuredly rule out other causes.

(PVL, some antibiotic resistance categories) suggesting deficits244

in SCCmec related predictions for ST93-MRSA-IV (Table 4).245

Incorrect predictions were however mitigated when the high-246

resolution (s = 10000) S. aureus reference sketch was used,247

which correctly predicted all sequence types from as few as248

276 reads, but failed to predict several important secondary249

resistances (clindamycin, tetracycline, erythromycin) in one250

isolate (PNG-69) and failed to predict methicillin resistant251

genotypes in two others (Table S4).252

In the next experiment we used a panel of 12 outbreak253

isolates to multiplex on a Flongle adapter flow cell (Fig. 4B). A254

large proportion of reads (11944/23611) was unclassified, which255

was likely due to including reads with average qualities over256

Q5 to account for the low throughput of the Flongle flow cell257

(Table 3). Similar prediction patterns as in the experiment in258

Goroka were observed, with few reads available for prediction259

across barcodes (713-1162, Table 3). Despite the low read260

counts, classification using the default resolution reference261

sketch (k = 16, s = 1000, 1000 reads) successfully typed most262

isolates as the outbreak sequence type ST93-MRSA-IV, albeit263

with the previously observed limitations in SCCmec-related264

features (Table 5), including improvements across Flongle265

predictions with the higher resolution S. aureus reference266

sketch (Table S5). Finally, we tested a faster, successive library267

sequencing protocol for MinION flow cells, using 48 strains268

in 4 barcoded libraries, which were sequenced for 2 hours269

followed by a nuclease wash in between libraries (Methods).270

We had aimed to sequence another 4 libraries on the same flow271

cell (n = 96) as the 96 barcode sequencing kits had not been272

Table 3. Barcode read counts

Barcode Goroka Flongle

RLB 01 276 1014

RLB 02 908 1404

RLB 03 288 1010

RLB 04 688 1021

RLB 05 1896 1162

RLB 06 1378 1080

RLB 07 405 723

RLB 08 533 867

RLB 09 483 824

RLB 10 827 713

RLB 11 513 1046

RLB 12 507 803

Unclassified 15072 11944

released yet. However, during reloading too many bubbles 273

were introduced to the flow cell channel and the experiment 274

terminated at 48 strains with a remaining 900-1000 active pores 275

after a final diagnostic check (data not shown). Nevertheless, 276

predictions of the 48 strain protocol using the default S. aureus 277

sketch show that this approach is viable, with 2/48 lineage 278

misclassifications (PNG-4, PNG-68) which were novel allele 279

variants of ST81 and ST93 (and misclassified as ST93) (Table 280

S1, Table 6, Table S6). 281

Sublineage genotyping comparison with RASE 282

Finally, we compared Sketchy at sublineage resolution to 283

RASE predictions for the outbreak sequence type (ST93). We 284

built reference databases based on lineage genomes (n = 360, 285

k = 16) including a rooted maximum-likelihood phylogeny 286

from previous single nucleotide polymorphism calls (26) (Fig. 287

5A). Because of the small size of this reference databases, we 288

constructed additional sketches with higher resolution (up 289

to s = 1000000) to compare for sublineage genotyping with 290

Sketchy (Methods). RASE predictions were largely congruent 291

with reference genotypes, with most categories exceeding 90% 292

accuracy and precision, and only sporadic false positive and 293

false negative predictions for clindamycin, mupirocin, methi- 294

cillin and erythromycin (Table 7). There appeared to be a 295

systematic error in tetracycline predictions, where 28/118 iso- 296

lates were predicted resistant (R), but were in fact susceptible 297

(S). Only a single isolate assembly in the reference database was 298

typed as resistant (R). We ruled out contaminated genomes in 299

the reference sketch as a source for these aberrant predictions, 300

due to using conservative filters including contamination and 301

strain heterogeneity (Methods). In addition, we ruled out 302

errors introduced by ancestral state reconstruction, which was 303

disabled for this analysis in RASE. Ultimately, most false tetra- 304

cycline resistance predictions were flagged with low confidence 305

from the preference score used in RASE, but did not resolve 306

when using all reads for inference (Table S5). 307

Sketchy performed slightly worse than RASE using a low 308

resolution sketch (s = 1000) (Table 8) with sporadic false 309

positives and false negatives in clindamycin, ciprofloxacin, 310

tetracycline, mupirocin and erythromycin predictions. How- 311

ever, these were largely eliminated using the high-resolution 312

sketch (s = 1000000) raising accuracy and precision for most 313

antibiotic resistance predictions to > 96% (Table 9). RASE 314

timestamps indicate that predictions of ST93 genotypes around 315
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Fig. 5. Phylogenetic tree for sublineage genotyping comparison with RASE and visualization of population structure with NetView (A) Maximum-likelihood phylogeny of the

ST93 reference genomes (n = 360) used in RASE showing the ancestral MSSA clade (green) and the divergent MRSA clade (blue). B Mutual k-nearest-neighbor graphs

(NetView) for visualization of MSSA/MRSA population structure using the shared hashes distance computed with Sketchy (k = 16, s = 1000) failing to distinguish between

the two genotype clades and SNP distances underlying the ML phylogeny, successfully resolving the MSSA/MRSA clades. Differences between the two core methods (shared

hashes and SNPs) represent the limitations of Sketchy to predict methicillin resistance genotypes at sublineage resolution; homogeneous network topologies for shared

hashes distances are obtained for s = 1000 − 1000000 (data not shown).

the selected read threshold (1000 reads) were able to be con-316

ducted in approximately 1 - 11 minutes per barcode (data not317

shown). According to our expectations, systematic errors were318

found in the methicillin predictions of Sketchy, with an excess319

of isolates that were typed susceptible (MSSA) rather than320

resistant (MRSA). Sketchy was therefore not capable of suffi-321

ciently resolving clade-specific traits for sublineage genotyping.322

We illustrated the difference in resolution of the underlying323

core method (MinHash vs. SNPs) and its ability to resolve324

clade-specific traits in the ST93 reference sketch using popula-325

tion graphs, where nodes are genomes and edges their mutual326

k-nearest-neighbors at an optimized k value (genomic neigh-327

borhoods) (Fig. S1D). We constructed the graph for pairwise328

s - shared hashes distance (s = 1000) using Sketchy as well329

as from pairwise SNP distances based on previously gener-330

ated variants for the ST93 lineage (26) (from which the ML331

topology in the RASE approach was built) (Fig 5B). Shared332

hash distances were insufficient to resolve MSSA and MRSA333

communities compared to networks constructed from pair-334

wise SNP distances. This fundamental difference in resolution335

of the two approaches underlines the limitations of Sketchy,336

although the ultra high-resolution sketch (s = 1000000) miti-337

gated some of the non clade-specific errors (e.g. clindamycin338

and erythromycin resistance) observed using lower-resolution339

sketches (Table 9).340

Discussion 341

In this study, we explored the use of heuristic genomic neigh- 342

bor typing (16) for lineage and genotype inference in bac- 343

terial outbreak scenarios. We reasoned that a ’hypothesis- 344

agnostic’ reference database would be preferred over a smaller 345

’hypothesis-driven’ reference database, because the latter can- 346

not capture the known diversity of a species, and may not be 347

useful in situations where prior sequence data on lineage and 348

genotype diversity does not exist. We further reasoned that 349

it would be possible to conduct multiplex sequencing and use 350

genomic neighbor typing to rapidly scan an isolate collection 351

from limited sequence data. For these applications we de- 352

veloped Sketchy, a genomic neighbor typing implementation 353

using shared min-wise hashes against species-wide database 354

sketches with associated lineage and genotype data, which we 355

derived from public sources (25). 356

We first used a cross-validation procedure to assess per- 357

formance of Sketchy at the selected 1000 reads threshold in 358

recovering lineages (MLST) as a proxy for further sublineage 359

genotyping (Fig. 2, Table 1) using default resolution (s = 1000) 360

and higher resolution (s = 10000) reference sketches. Results 361

indicate two major trends: first, genomic neighbor typing of 362

lineages was sufficiently accurate in some species (S. aureus, 363

K. pneumoniae, P. aeruginosa) but failed to recover lineages 364

in others (N. gonorrhoeae, N. meningitidis, S. pneumoniae). 365

We were unable to control for sequence type diversity of the 366

reference sketches, and it may be possible that cross-validation 367

sampling of reference sketches with many singular sequence 368
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Table 4. S. aureus sequencing in situ (Goroka) on MinION (1 flow cell, 12-plex, 1000 reads, k = 16, s = 1000, n = 12)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

MLST false - - - - 83.33 100.0 83.33 -

SCCmec type false - - - - 58.33 100.0 58.33 -

PVL true 10 0 0 2 83.33 100.0 83.33 na

Clindamycin true 0 9 2 1 75.00 na na 81.81

Rifampicin true 0 12 0 0 100.0 na na 100.0

Ciprofloxacin true 0 11 1 0 91.66 na na 91.66

Vancomycin true 0 12 0 0 100.0 na na 100.0

Tetracycline true 0 11 0 1 91.66 na na 100.0

Mupirocin true 0 12 0 0 100.0 na na 100.0

Gentamicin true 0 12 0 0 100.0 na na 100.0

Trimethoprim true 0 12 0 0 100.0 na na 100.0

Penicillin true 12 0 0 0 100.0 100.0 100.0 na

Methicillin true 9 0 0 3 75.00 100.0 75.00 na

Erythromycin true 0 9 2 1 75.00 na na 81.81

Fusidic Acid true 0 12 0 0 100.0 na na 100.0

Table 5. S. aureus outbreak isolates on Flongle (1 flow cell, 12-plex, 1000 reads, k = 16, s = 1000, n = 12)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

MLST false - - - - 83.33 100.0 83.33 -

SCCmec type false - - - - 75.00 100.0 75.00 -

PVL true 10 0 0 2 83.33 100.0 83.33 na

Clindamycin true 0 11 1 0 91.66 na na 91.66

Rifampicin true 0 12 0 0 100.0 na na 100.0

Ciprofloxacin true 0 12 0 0 100.0 na na 100.0

Vancomycin true 0 12 0 0 100.0 na na 100.0

Tetracycline true 0 12 0 0 100.0 na na 100.0

Mupirocin true 0 12 0 0 100.0 na na 100.0

Gentamicin true 0 12 0 0 100.0 na na 100.0

Trimethoprim true 0 12 0 0 100.0 na na 100.0

Penicillin true 12 0 0 0 100.0 100.0 100.0 na

Methicillin true 9 0 0 3 75.00 100.0 75.00 na

Erythromycin true 0 9 2 1 91.66 na na 91.66

Fusidic Acid true 0 12 0 0 100.0 na na 100.0

types or little sequence type diversity biased the results in369

favour of sketches with fewer diversity. However, we note370

that the species which did not perform well on this task are371

those with high levels of homologous recombination. This was372

discussed by Břinda et al. (16) who suggested that genomic373

neighbor typing may be limited by homologous recombination374

due to scattering of the phylogenetic signal and spread of chro-375

mosomally encoded resistance genes. We note that Sketchy376

under-performed for MLST typing of two species, N. gonor-377

rhoeae and S. pneumoniae, both of which were used in the378

original genomic neighbor typing approach. However, direct379

comparisons are difficult, as the underlying reference data was380

vastly smaller, and the focus was on sublineage antimicrobial381

resistance phenotyping using MIC values from the reference382

collection.383

Second, we observed that performance notably increased384

using a larger sketch size, suggesting that the default sketch385

size may be insufficient to capture the full diversity of hashes386

shared between analyte and the reference databases. This sug-387

gests that the default sketch size (s = 1000) may not be a good388

default if accuracy is preferred. However, because memory con-389

sumption increased approximately linearly with the number of390

included genomes and sketch size, higher resolution sketches391

may not be suitable for smaller computing platforms, especially 392

with large reference databases (e.g. for S. aureus and S. pneu- 393

moniae). Nevertheless, memory consumption did not exceed 6 394

GB, making large, species-wide reference sketches at higher 395

resolution usable on laptops and other standard computing 396

hardware. In addition, we note that memory consumption of 397

Sketchy for the smallest reference sketch (P. aeruginosa, 4832 398

genomes, 56 MB) is significantly smaller than the ProPhyle 399

(28) indices created for S. pneumoniae (616 genomes, 321 MB) 400

and N. gonorrhoeae (1102 genomes, 242 MB), and for higher 401

resolution sketches approximately twice as much (554 MB) 402

(29). Overall, sketch sizes are extremely small, particularly 403

when compressed for transfer or storage (Table 1). Sketchy 404

is therefore capable of creating highly efficient species-wide 405

databases, which can capture the known diversity of a species, 406

while maintaining resource efficiency, albeit with some lim- 407

itations in performance for smaller sketches which may be 408

necessary for portable sequencing setups in remote locations. 409

We then assessed Sketchy’s performance on an outbreak 410

dataset of S. aureus community infections in Papua New 411

Guinea and Far North Queensland (4, 17, 18), for which we 412

had previously generated matching Illumina reference data 413

(n = 160). In this context, the outbreaks constituted an 414
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Table 6. Successive library experiment on MinION (1 flow cell, 4 x 12-plex, 1000 reads, k = 16, s = 1000, n = 48)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

MLST false - - - - 95.83 91.84 95.83 -

SCCmec type false - - - - 87.50 94.24 87.50 -

PVL true 46 0 1 1 95.83 97.87 97.87 na

Clindamycin true 1 47 0 0 100.0 100.0 100.0 100.0

Rifampicin true 0 48 0 0 100.0 na na 100.0

Ciprofloxacin true 0 46 1 1 95.83 na na 97.87

Vancomycin true 0 48 0 0 100.0 na na 100.0

Tetracycline true 0 47 0 1 97.91 na na 100.0

Mupirocin true 0 48 0 0 100.0 na na 100.0

Gentamicin true 0 48 0 0 100.0 na na 100.0

Trimethoprim true 0 48 0 0 100.0 na na 100.0

Penicillin true 48 0 0 0 100.0 100.0 100.0 na

Methicillin true 41 1 1 5 87.50 97.61 89.13 0.50

Erythromycin true 1 47 0 0 100.0 100.0 100.0 100.0

Fusidic Acid true 0 48 0 0 100.0 na na 100.0

independent validation dataset, as no S. aureus genomes from415

these regions had ever been sequenced before (including the416

very first S. aureus genomes from Papua New Guinea). While417

the majority of isolates in this study belonged to the outbreak418

sequence type (ST93, n = 120) several other sequence types419

were identified in the dataset (n = 40). By including all420

known strains at the time in the reference database, their421

lineages were included during database construction by default422

and successfully typed in most cases (Table 4). Remaining423

misclassifications were mitigated in higher resolution sketches424

(Table S3) with the exception of clade-specific SCCmec related425

genotypes (see below). In addition, we sequenced one full panel426

of outbreak isolates at the Papua New Guinea Institute of427

Medical Research in Goroka, Eastern Highlands Province. No428

sequencing infrastructure is accessible, so that a portable setup429

with the MinION was the only option to survey the outbreak on430

site. As an illustration of the challenges of sequencing in remote431

places, a heatblock malfunctioned during library preparation,432

which was likely the reason for sub-optimal barcode attachment433

resulting in extremely low throughput for a MinION flow cell434

(Table 3). Nevertheless, we were able to obtain 83% (default435

resolution) and 100% accuracy (higher resolution, Table S4)436

in typing lineages, providing a useful picture of the outbreak437

sequence type, antibiotic resistance genotypes (with exception438

of SCCmec related features) and presence of the PVL toxin.439

Similar results were obtained on a multiplex run on cheap440

Flongle adapters (Table 5, Table S5).441

We employed an efficient multiplex sequencing protocol on442

the MinION for surveying the two outbreaks, sequencing 2443

x 12 barcodes on the same flow cell, driving down the cost444

of each isolate with full assembly, genotyping and phylody-445

namic analysis to around $40-50 per isolate, as previously446

described (4). In this analysis, we used a subset of the total447

reads per barcode (1000) for genomic neighbor typing eval-448

uation which corresponds to approximately 2-3x coverage of449

the S. aureus genome, having shown previously that assembly450

based genotyping is possible at approximately 5x coverage451

per genome (4). In addition, we expanded on the dual-library452

sequencing protocol and attempted to sequence 48 strains on453

a MinION flow cell in 2 hour intervals, with sufficient data454

obtained for genomic neighbor typing further reducing cost to455

approximately $30 (Australian) per barcode (Table 6, Table456

S6). Given the efficiency of our approach, it should be possible 457

to use 96-barcode kits to sequence as many isolates on a sin- 458

gle MinION flow cell and obtain accurate genotypes. Taking 459

into consideration the limitations in species applications and 460

resource management for higher resolution sketches, genomic 461

neighbor typing with Sketchy is therefore suitable to survey 462

bacterial outbreaks rapidly, at low-cost, and with sufficiently 463

accurate results to infer important epidemiological charac- 464

teristics. In this case, the predominant outbreak sequence 465

type was the Australian ST93 lineage, which had emerged 466

in the Northern Territory and spread to the East Coast of 467

Australia (26). Even without confirmation from phylogenetic 468

analysis (27), the predominance of the ST93 sequence type 469

in Far North Queensland and Papua New Guinea outbreaks 470

strongly suggests transmission from Australia. 471

Finally, we observed systematic misclassifications of clade- 472

specific SCCmec related features (methicillin resistance, 473

SCCmec subtype) that could not be resolved with higher reso- 474

lution sketches (Tables 2-6, Tables 8-9). We hypothesized that 475

this could be due to the approximate MinHash approach, which 476

does not have the same resolution on sublineage geno- or phe- 477

notypes as the phylogenetically guided classification approach 478

using ProPhyle in RASE. We demonstrated this limitation on 479

a lineage-specific (ST93) reference sketch in comparison with 480

the same reference database implemented in RASE (Tables 7-9), 481

for which we used a phylogenetic tree of the lineage that dis- 482

tinguished between MSSA and MRSA clades (Fig. 5A). While 483

most misclassifications with Sketchy could be resolved with 484

increasing sketch size (Table 9) and indeed outperformed RASE, 485

classifications of SCCmec features continued to fail even at 486

very high sketch sizes (s = 1000000). While RASE performed 487

better on sublineage genotyping, we noted a systematic error 488

in tetracycline predictions, which was unexpected since only a 489

single isolate in the reference dataset was resistant; we were 490

unable to explain these errors but note that the preference 491

score employed by RASE marked uncertainty in the majority of 492

tetracycline predictions, even when run on all reads for each 493

isolate, ultimately not resolving the tetracycline prediction 494

errors (Table S5). 495

Overall, phylogenetically informed genomic neighbor typ- 496

ing has a definitive advantage over Sketchy for inference of 497

clade-specific traits, which his particularly relevant for clini- 498
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Table 7. RASE classification of ST93 outbreak isolates (n = 120, lineage database)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

Clindamycin true 0 113 4 3 94.16 na na 96.58

Rifampicin true 0 120 0 0 100.0 na na 100.0

Ciprofloxacin true 0 120 0 0 100.0 na na 100.0

Vancomycin true 0 120 0 0 100.0 na na 100.0

Tetracycline true 1 90 29 0 75.83 3.33 100.0 75.63

Mupirocin true 0 115 5 0 95.83 na na 95.83

Gentamicin true 0 120 0 0 100.0 na na 100.0

Trimethoprim true 0 120 0 0 100.0 na na 100.0

Penicillin true 120 0 0 0 100.0 100.0 100.0 na

Methicillin true 110 0 3 7 91.66 97.34 94.02 na

Erythromycin true 0 113 4 3 94.16 na na 96.58

Fusidic Acid true 0 120 0 0 100.0 na na 100.0

cal diagnostics (e.g. antimicrobial susceptibility predictions).499

However, we were unable to construct RASE databases for the500

species-wide reference collections, as the required phylogenetic501

trees are infeasible, or at least highly impractical, to infer502

from tens of thousands of whole genome sequences. At the503

species level, the ease with which reference sketches can be504

constructed for Sketchy and their minimal resource require-505

ments given the number of genomes included, puts Sketchy at506

an advantage for outbreak surveillance applications. Because507

we derive genotypes from other genotype classifications (based508

on assemblies or reads) it should be noted that classification509

with Sketchy can only achieve classification performance of510

the underlying genotyping methods (e.g. Mykrobe). However,511

genomic neighbor genotyping with Sketchy could also enable512

automating the construction of reference databases, so that513

public archives can be surveyed periodically and new genome514

integrated continuously. At this stage, due to limitations in515

sublineage genotype predictions for antibiotic susceptibility516

predictions, we do not recommend using Sketchy for clinical517

applications, but rather as a tool to rapidly survey bacterial518

outbreaks or isolate collections at scale. Sketchy may also519

be useful in scenarios where genotype inference of limited520

sequence data is required.521

In comparison to other genotype classification tools,522

Sketchy is situated between species-level taxonomic classi-523

fiers and phylogenetically informed genomic neighbor typing.524

Predictions are useful for traits distributed at the lineage level,525

for example penicillin resistance or PVL toxins in S. aureus,526

with limitations in application to some species with high rates527

of homologous recombination, such as Neisseria gonorrhoeae528

or Neisseria meningitidis. Future work on genomic neighbor529

typing may consider scaling up multiplexing (e.g. 96-barcode530

panels), curation and minimisation of reference databases,531

implementation of alternative query methods, or combining532

different approaches to genomic neighbor typing to enable533

continuous species- to sublineage-level predictions. Adaptive534

sequencing may be useful to balance throughput per barcode535

in order to make multiplex sequencing protocols more robust536

and cost-effective (30). Ultimately, we demonstrated that ge-537

nomic neighbor typing with species-wide reference sketches538

is a viable approach for genotype surveillance of bacterial539

community outbreaks, particularly under challenging circum-540

stances and in remote locations, including northern Australia541

and Papua New Guinea.542

Materials and Methods 543

544

Outbreak sampling and reference sequencing 545

Isolates were collected from outbreaks in two remote populations in 546

northern Australia and Papua New Guinea as described by Steinig 547

et al. (4) and Aglua et al. (17). Isolates associated with paediatric 548

osteomyelitis cases (mean age of 8 years) were collected from 2012 to 549

2017 (n = 42) from Kundiawa, Simbu Province (27), and from 2012 550

to 2018 (n = 35) from patients in the neighboring Eastern Highlands 551

province town of Goroka. We supplemented the data with MSSA iso- 552

lates associated with severe hospital-associated infections and blood 553

cultures in Madang (Madang Province) (n = 8) and Goroka (n = 554

12). Isolates from communities in Far North Queensland, including 555

metropolitan Cairns, the Cape York Peninsula and the Torres Strait 556

Islands (n = 91) were a contemporary sample from 2019. Isolates 557

were recovered on LB agar from clinical specimens using routine 558

microbiological techniques at Queensland Health and the Papua 559

New Guinea Institute of Medical Research (PNGIMR). Isolates were 560

transported on swabs from monocultures to the Australian Institute 561

of Tropical Health and Medicine (AITHM Townsville) where they 562

were cultured in 10 ml LB broth at 37°C overnight and stored at 563

-80°C in 20% (v/v) glycosol and LB. Samples were regrown on LB 564

agar prior to sequencing, and a single colony was placed into in- 565

house lysis buffer and sequenced at the Doherty Applied Microbial 566

Genomics laboratory (DAMG), using 100 bp paired-end libraries 567

on Illumina HiSeq. 568

MinION outbreak library preparation and sequencing 569

2 ml of LB broth was spun down at 5,000 x g for 10 minutes and 570

after removing the supernatant, 50 ul of 0.5 mg / ml lysostaphin 571

were added to the tube and vortexed. Cell lysis was conducted at 572

37°C for 2 hours with gentle shaking followed by a proteinase K 573

digestion for 30 mins. at 56°C. DNA was extracted using a simple 574

column protocol from the DNeasy Blood & Tissue kit (QIAGEN) 575

following the manufacturer’s instructions. DNA was eluted in 70 ul 576

of nuclease-free water, quantified on Qubit, and DNA was stored at 577

4°C until library preparation. Library preparation was done using 578

approx. 420 ng of DNA and the rapid barcoding kit with 12 barcodes 579

(ONT, SQK-RBK004) as per manufacturer’s instructions, with the 580

exception of conducting bead cleanup steps. DNA was quantitated 581

using Qubit 4.0 (Thermo Fisher Scientific), purity determined with 582

a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific). 583

Basecalling was done using the PyTorch Bonito v0.3.6 R9.4.1 DNA 584

model, run on a local NVIDIA GTX1080-Ti or a remote cluster of 585

NVIDIA P100 GPUs. Sequence runs were conducted with 2 x 12 586

barcoded (SQK-RBK004) isolates per flow cell in two consecutive 587

18-24 hour runs. Libraries were nuclease flushed using the wash kit 588

between consecutive runs (Oxford Nanopore Technologies, EXP- 589

WSH-003). This is sufficiently effective to remove read carry-over, 590

as demonstrated previously with hybrid assemblies of sequentially 591

sequenced Enterobacteriaceae (31). Sequencing runs were managed 592

on two MinIONs and monitored in MinKNOW > v20.3.1. Read sum- 593
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Table 8. Sketchy classification of ST93 outbreak isolates (n = 120, lineage sketch, s = 1000)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

Clindamycin true 2 107 10 1 90.83 16.66 66.66 91.45

Rifampicin true 0 120 0 0 100.0 na na 100.0

Ciprofloxacin true 0 118 1 1 98.33 na na 99.15

Vancomycin true 0 120 0 0 100.0 na na 100.0

Tetracycline true 0 119 0 1 99.16 na na 100.0

Mupirocin true 0 118 2 0 98.33 na na 98.33

Gentamicin true 0 120 0 0 100.0 na na 100.0

Trimethoprim true 0 120 0 0 100.0 na na 100.0

Penicillin true 120 0 0 0 100.0 100.0 100.0 na

Methicillin true 78 1 2 39 65.83 97.50 66.66 33.33

Erythromycin true 2 107 10 1 90.83 16.66 66.66 91.45

Fusidic Acid true 0 118 0 0 100.0 na na 100.0

Table 9. Sketchy classification of ST93 outbreak isolates (n = 120, lineage sketch, s = 1000000)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

Clindamycin true 0 116 1 3 96.66 na na 99.14

Rifampicin true 0 120 0 0 100.0 na na 100.0

Ciprofloxacin true 0 119 0 1 99.16 na na 100.0

Vancomycin true 0 120 0 0 100.0 na na 100.0

Tetracycline true 0 119 0 1 99.16 na na 100.0

Mupirocin true 0 120 0 0 100.0 na na 100.0

Gentamicin true 0 120 0 0 100.0 na na 100.0

Trimethoprim true 0 120 0 0 100.0 na na 100.0

Penicillin true 120 0 0 0 100.0 100.0 100.0 na

Methicillin true 87 1 2 30 73.33 97.75 74.35 33.33

Erythromycin true 0 116 1 3 96.67 na na 99.14

Fusidic Acid true 0 118 0 0 100.0 na na 100.0

mary reports for nanopore reads were generated with nanoq v0.8.2594

(32).595

MinION and Flongle multiplexing experiments596

To demonstrate that genotyping is possible on site in Papua New597

Guinea, we sequenced 12 S. aureus outbreak strains at the Papua598

New Guinea Institute of Medical Research (PNGIMR) in Goroka.599

We replicated the QIAGEN extraction and rapid library sequencing600

protocol described above, unknowingly using a malfunctioning heat-601

block in the library preparation step (SQK-RBK004), which resulted602

in suboptimal barcode attachments. We also prepared a multiplex603

run for a Flongle experiment at the Peter Doherty Institute for604

Infection and Immunity. Staphylococcus aureus glycerol stocks were605

inoculated in Tryptic soy broth (TSB) and grown overnight at 37°C,606

180 rpm. DNA was extracted from 8 ml of overnight culture via607

pelleting cells at 12,000 rpm for 2 minutes. Cells were resuspended608

in PrepMan™ Ultra Sample Preparation Reagent (ThermoFisher609

Scientific) and Lysing Matrix Y beads (MP Biomedicals). Isolates610

were incubated at 95°C for 15 minutes and cells further lysed via611

a TissueLyser LT (Qiagen) at 6.5 m/s for 60 seconds similar to612

previously described (33). Extracts were centrifuged at 13,000 rpm613

for 10 minutes. Supernatant was removed and mixed with 3M614

sodium acetate (pH 5.5), ice-cold 100% ethanol (0.3:0.03:0.67 ratio)615

and DNA was precipitated for 3 hours at -20°C. DNA was pelleted616

at 13,000 rpm for 15 mins (4°C), washed with 70% ethanol and617

resuspendeded in ultrapure water. High-molecular-weight (HMW)618

DNA was isolated via the MagAttract HMW DNA Kit (Qiagen)619

as per manufacturer’s instructions. Briefly, this included a protein620

digest with proteinase K for 30 minutes at 56°C (900 rpm) and621

an RNAse A (0.4mg) treatment for 10 minutes at room tempera-622

ture. HMW DNA was further purified using Agencourt Ampure623

XP (Beckman Coulter Australia) beads (1:1 ratio). Libraries were624

prepared using the ONT Rapid Barcoding (SQK-RBK004) kit with625

an input of 200ng of HMW DNA for each isolate. The library626

was sequenced on an ONT Flongle FLO-FLG001 flow cell for 24627

hours. All runs in this sections were called with Guppy v4.6 R9.4.1 628

DNA high accuracy models (HAC). Finally, we repeated library 629

construction as described for the outbreak sequencing above to test 630

a faster sequencing protocol, in which four libraries were sequenced 631

on the same MinION flow-cell with intermediate nuclease flushes 632

and a runtime of 2 hours per library. 633

Reference databases construction and genotyping 634

For reference sketch construction, we used a collection of assemblies 635

containing bacterial genomes from the entire European Nucleotide 636

Archive (ENA) in 2018 (n = 660,333) (25). Metadata from pre- 637

computed assembly genotypes was used to subset assemblies with 638

complete lineage designation for inclusion (MLST). CheckM metrics 639

were used to filter assemblies by completeness (< 99%), contamina- 640

tion (> 0.1%) and evidence for strain heterogeneity (> 0.1%) retain- 641

ing a total of 543,695 assemblies across 71 species with at least 100 642

genomes. For reference sketch construction in the simulations, we 643

included five common species of interest with at least 1000 genomes: 644

Streptococcus pneumoniae (n = 47,616), Staphylococcus aureus (n = 645

42,461), Neisseria meningitidis (n = 16,198), Klebsiella pneumoniae 646

(n = 10,072) and Neisseria gonorrhoeae (n = 8,413). We had previ- 647

ously downloaded a collection of S. aureus sequence runs from the 648

NCBI Short Read Archive and ENA (n = 38,985) providing match- 649

ing raw sequence read data for a subset of the assemblies in the ENA 650

collection. Antimicrobial resistance phenotypes for 12 antibiotics 651

(ciprofloxacin, clindamycin, erythromycin, fusidic acid, gentamicin, 652

methicillin, mupirocin, penicillin, rifampicin, tetracycline, trimetho- 653

prim and vancomycin) were inferred from these reads with Mykrobe 654

v0.6.1 and the default S. aureus typing panel (34). In addition, we 655

used SCCion v0.2.1 (https://github.com/esteinig/sccion) to type 656

SCCmec subtypes using Mash matches against the SCCmecFinder 657

database (35). 658
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Sketchy implementation and streaming algorithm659

Sketchy implements k-mer extraction and hashing based on the660

needletail (https://github.com/onecodex/needletail) and finch661

(https://github.com/onecodex/finch-rs) libraries, which allowed us662

to replicate Mash sketching and shared hashes computation in Rust.663

Mash (23) pioneered an unbiased approximation of the Jaccard index664

between two k-mer sets A and B:665

J(A, B) =
|A ∩ B|

|A ∪ B|
[1]666

Mash (and Finch) merge-sort two bottom sketches S(A) and667

S(B) to estimate the Jaccard index, where the merge is terminated668

after s unique hashes, and the estimate of the Jaccard index is669

computed for x shared hashes found after processing s′ hashes:670

j =
x

s′
[2]671

Sketchy implements two simple reference sketch matching func-672

tions based on the parameters of the reference sketch (k-mer size,673

sketch size and hash seed) that compute the min-wise shared hashes674

(x) with each genome in the reference sketch. In the first instance,675

we use Finch to compute the number of shared hashes (x) for all676

reads until the specified read limit (i) (--limit parameter). In ad-677

dition, we provide a streaming implementation (the sum of shared678

hashes) in which the shared hashes (x) are computed for each read679

(j) and added to the sum of shared hashes (h) until the read limit680

(i) is reached:681

hj =

i∑

i=1

xj [3]682

Implementation of genomic neighbor typing is achieved by rank-683

ing the shared hashes (or the sum of shared hashes after each read)684

and selecting the associated genotype of the highest ranking genome685

in the reference database as inferred genotype. When predicting686

genomic neighbors from closely related genomes of the same lineage687

(e.g. in an outbreak scenario) a consensus call for each genotype688

features across the highest ranking genomes can be made using the689

--consensus flag and --top parameter in the Sketchy command690

line client.691

Sketchy command line client692

Sketchy v0.6.0 is written in Rust and implements a command line693

client with several functions. First, a multi-genome reference sketch694

can be constructed from sequence files at a given sketch (s) and695

k-mer size (k):696

sketchy sketch -i *.fasta -s 1000 -k 16 -o ref.msh

Information about the sketch (k-mer size, sketch-size, hash seed,697

number of genomes, identity and order of genomes) can be produced698

from the sketch file:699

sketchy info ref.msh

Associated genotype or phenotype files can then be constructed700

and checked against the reference sketch to ensure both contain the701

same genomes in the same order:702

sketchy check -r ref.msh -g genotypes.tsv

For any given (multiple) sketch file the shared hashes with each703

genome in the reference sketch can then be computed, if parameters704

between the reference and query sketches are consistent:705

sketchy sketch -i query.fasta -s 1000 -k 16 -o query.msh

sketchy shared -r ref.msh -q query.msh

Finally, genomic neighbor typing predictions based on the refer-706

ence sketch and a sequence file can be computed for a given number707

of reads (--limit), which will output a given number of the highest708

ranking matches (--top) in the reference sketch and their associated709

genotypes or phenotypes for inference. Streaming and consensus710

modes can be activated with their respective flags (--stream and711

--consensus):712

sketchy predict -i reads.fq -r ref.msh -g genotypes.tsv

Lineage calling simulations and comparisons 713

Databases varied in the representation of the total diversity within 714

each species, due to variations in the number of genomes available 715

and diversity of sequence types contained in each database. We 716

conducted a cross-validation analysis by randomly sampling 10 717

genomes from each database across multiple replicate samples (n = 718

20). For each replicate, we constructed the reference sketch without 719

the sampled genomes to evaluate the impact of predicting sequence 720

types not contained in the database. We used badread v0.2.0 to 721

simulate decent quality, low-coverage (5x) nanopore reads (similar 722

to using R9.4 flow cells and RAD004 libraries) with parameters: 723

badread simulate --reference genome.fasta --quantity 5x

--identity 93,99,4 --junk_reads 0.1 --random_reads 0

--chimeras 0.1 --glitches 0,0,0

↪→

↪→

We then selected a series of read cut-offs for predictions (10, 724

50, 100, 200, 300, 500 and 1000 reads). Ultimately, we selected to 725

report results at the 1000 read threshold for several reasons: first, 726

the threshold marks around 1-3x coverage of the S. aureus genome 727

(depending on read length), after which it becomes feasible to do 728

assembly based genotyping with high recall from nanopore data 729

alone, as demonstrated previously for these outbreak data (20); 730

second, our primary aim was to infer genotypes from as few reads as 731

possible and initial simulations indicated stabilisation of predictions 732

below 1000 reads (Fig. S1); third, reporting by time (as in RASE) is 733

highly volatile due to differences in throughput between libraries 734

(e.g. multiplex vs. single isolates), sequencing devices (e.g. MinION 735

vs. PromethION) as well as pore availability and occupancy per 736

flow cell. Our target for these simulations was lineage calling, as the 737

prediction of intra-lineage genotypes (including antibiotic resistance) 738

depends on first matching into the correct genomic neighborhood of 739

the species (i.e. finding the correct sequence type). MLST (lineage) 740

predictions were made from the match with the highest shared 741

hashes in the replicate database (--top 1). Replicate samples were 742

run against the hold-out sketches (DB-) and against the full sketch 743

(DB+) computing the average sequence types correctly predicted 744

over all samples (including standard deviation, Table 1). 745

For comparison at the 1000 read threshold we used Krocus 746

v1.0.1 (k = 16), which attempts to find k-mers matching to species- 747

specific MLST alleles and is conceptually similar to Sketchy in 748

that it implements a ’hypothesis-agnostic’ approach to genotyping 749

lineages (based on available MLST alleles from PubMLST) (36). 750

We also compared results with assemblies of the simulated genomes 751

using Flye v2.9 (37) followed by MLST typing with mlst v2.19.0 752

(https://github.com/tseemann/mlst). At this stage, we did not 753

compare Sketchy to RASE, because RASE requires phylogenetic guide 754

trees for ProPhyle (28), which are not feasible or practical to infer for 755

species-wide whole genome collections, such as the ones constructed 756

here. Direct inference of MLST from assemblies and k-mer allele 757

typing were therefore conceptually more suitable for comparison 758

with Sketchy. Mean maximum memory consumption and time for 759

prediction were measured on a single representative isolate picked 760

at random for 10 iterations (including standard deviation, Table 1). 761

Genotyping of community-associated outbreaks 762

For validation of predictions in an outbreak surveillance scenario we 763

used a set of 160 nanopore-sequenced isolates from FNQ (n = 70) 764

and PNG (n = 90) sequenced using the dual-library protocol and 765

for which we had matching Illumina data. Using Illumina genotypes 766

as reference, for each binary genotype feature (e.g. R or S, PNL+ or 767

PVL-) we computed accuracy, precision, sensitivity, and specificity 768

using sklearn functions, with weighed scores for multi-label features 769

(SCCmec-type, MLST). While the dataset constituted a real test 770

dataset with previously unknown strains from a country for which 771

genome sequences did not exist for S. aureus, it should be noted 772

that there was substantial bias in composition towards the ST93- 773

MRSA-IV outbreak lineage (n = 120/160). Sketchy was run using 774

consensus genotypes over the 5 highest ranking prediction of the 775

default reference sketch for S. aureus (k = 16, s = 1000, 1000 reads 776

classification limit) which marginally improved within outbreak 777

genotyping of ST93 isolates. Output predictions were evaluated 778

against the Illumina reference genotypes for each feature (Tables 2 - 779

5). For comparison of streaming analysis (sum of shared hashes) 780

we used the outbreak dataset and the highest ranking prediction 781
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(1000 reads classification limit) (Table S3). For demonstration of782

applying Sketchy in challenging sequencing scenarios related to this783

outbreak, we conducted three experiments: a multiplex flow cell of784

12 outbreak isolates sequenced in Goroka (during which a heatblock785

failed resulting in suboptimal barcode attachment), a library on an786

early Flongle adapter flow cell with highly reduced throughput, and787

sequencing 4 panels of 12 barcoded isolates in succession (2 hours788

each, with nuclease washes between runs, see above). We applied789

the same consensus genotype prediction and metrics for these three790

experiments as in the dual barcoding library (Fig. 4, Tables 3-5).791

Genomic neighbor typing of sublineage genotypes792

For comparison of sublineage antimicrobial resistance typing with793

RASE, we collected a reference set of ST93-MSSA and -MRSA strains794

based on previous work with this lineage (n = 360) (26). Genotype795

data consisted of the antimicrobial resistance genotypes derived796

from the full reference sketch for S. aureus used in the outbreak797

surveillance section. For implementation in RASE, we constructed798

a phylogenetic tree based on core SNPs from our previous phy-799

logenomic analysis of the lineage (26). IQTREE v2.1.2 was used800

to reconstruct a maximum-likelihood phylogeny using the General801

Time Reversible model with rate heterogeneity, Lewis ascertainment802

bias correction (GTR+G+ASC) and placing the root on an early803

diverging MSSA isolate, consistent with previous phylogenetic recon-804

structions (SAMEA1557252). Trees were visualized with Interactive805

Tree of Life (38). The RASE reference database was constructed806

without additional ancestral state reconstruction as all resistance807

genotypes were known.808

ST93 has two distinct clades, an ancestral MSSA clade with809

isolates from the Northern Territory, and a divergent MRSA clade,810

which expanded on the Australian East Coast, and spread to FNQ811

and PNG. This allowed us to assess genotyping ability of clade-812

specific methicillin resistance, which we have shown was compro-813

mised in the outbreak surveillance assessment using the approximate814

genomic neighbor typing approach in Sketchy. We expected RASE815

to have superior performance due to using a lineage phylogeny as816

guide for its genomic neighbor typing implementation with ProPhyle817

0.3.3.1 (28). To visualize the differences in resolution between our818

MinHash approach and tree-guided (SNP based) genomic neigh-819

bor typing (Fig. S4), we used NetView (39) to reconstruct genome820

population networks based on pairwise-distances from underlying821

SNPs and pairwise shared hash distance (s - h) computed with822

Sketchy. A value of k = 20 was selected for visualization of the823

network topologies in Fig. 5, as described previously (40) indicating824

stable configurations in both networks across selected community825

clustering algorithms (Fig. S1, C-D).826

For comparison with Sketchy, we used a RASE (commit 27113cb)827

database constructed at k = 16, and the Sketchy outbreak reference828

sketch at k = 16 and s = 1000, as well as a high resolution sketch829

at s = 1000000. RASE requires sequence times per read, which830

were not available in the output of Bonito v0.3.6. We therefore831

used reads base called with the Guppy v4.6 R9.4.1 DNA HAC832

model for this comparison. RASE outputs predictions by minute833

timestamps (including the number of reads) from which we selected834

the prediction closest to the 1000 read threshold (Table 7) used835

throughout this manuscript; we also ran the full read set to check for836

persistence of tetracycline prediction errors (Table S7). RASE read837

thresholds for each isolate were used for the read limit parameter838

(--limit) in the Sketchy predictions (Tables 8,9).839
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Fig. S1. Supplementary figures for Sketchy: (A) MLST cross-validation prediction mean accuracy over a range of read thresholds (10 - 1000 reads, Methods) across the sic

species outlined in Table 1, (B) MLST cross-validation prediction accuracy at 10000 reads across the six species, showing simulated nanopore runs when hold-out isolates

were included (green) or excluded (blue) from the reference sketch, (C) MLST cross-validation prediction mean accuracy at 1000 reads (with standard deviation error bars) for

Sketchy when compared to Krocus and typing from Flye and Flye+Medaka assemblies, (D) Mutual k-nearest-neighbor community assemblage plots using three different

community detection algorithms over a range of k = 1 - 60 (left: shared hashes distance, right: SNP distance) indicating stable network topologies (Fig. 5) at the selected value

(vertical lines).
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Data availability945
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Table S1. MLST error analysis from outbreak data predictions

Isolate Reference ST Reference Alleles Predicted ST Predicted Alleles Difference Alleles Same CC

PNG-4 ST81 1-1-1-9-1-1-1 ST1 1-1-1-1-1-1-1 1 yes

FNQ-9 ST5 1-4-1-4-12-1-10 ST225 1-4-1-4-12-25-10 1 yes

FNQ-14 ST5 1-4-1-4-12-1-10 ST228 1-4-1-4-12-24-29 2 yes

FNQ-28 ST30 2-2-2-2-6-3-2 ST243 2-2-5-2-6-3-2 1 yes

PNG-30 ST- 6-64-44-2-43-55-? ST93 6-64-44-2-43-55-51 1 yes

PNG-36 ST81 1-1-1-9-1-1-1 ST1 1-1-1-1-1-1-1 1 yes

PNG-37 ST81 1-1-1-9-1-1-1 ST1 1-1-1-1-1-1-1 1 yes

PNG-38 ST- 1-4-1-?-1-51-133 ST1 1-1-1-1-1-1-1 4 no

PNG-68 ST- 6-64-?-2-43-55-51 ST93 6-64-44-2-43-55-51 1 yes

PNG-73 ST243 2-2-5-2-6-3-2 ST30 2-2-2-2-6-3-2 1 yes

PNG-77 ST- 22-1-14-23-12-4-? ST88 22-1-14-23-12-4-31 1 yes

FNQ-79 ST- ?-64-44-2-43-55-51 ST93 6-64-44-2-43-55-51 0 yes

PNG-85 ST243 2-2-5-2-6-3-2 ST3452 2-2-2-2-6-377-2 2 yes

PNG-86 ST243 2-2-5-2-6-3-2 ST30 2-2-2-2-6-3-2 1 yes

PNG-88 ST243 2-2-5-2-6-3-2 ST30 2-2-2-2-6-3-2 1 yes

PNG-92 ST762 1-1-104-1-1-1-1 ST1 1-1-1-1-1-1-1 1 yes

Table S2. S. aureus outbreak isolates [streaming] (4 flow cells, 2 x 12-plex, 1000 reads, k = 16, s = 1000, n = 160)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

MLST false - - - - 87.50 87.91 87.50 -

SCCmec type false - - - - 75.00 84.31 75.00 -

PVL true 128 16 2 14 90.00 98.46 90.14 88.88

Clindamycin true 1 141 12 6 88.75 7.69 14.28 92.15

Rifampicin true 0 158 2 0 98.75 na na 98.75

Ciprofloxacin true 0 151 8 1 94.37 na na 94.96

Vancomycin true 0 160 0 0 100.0 na na 100.0

Tetracycline true 0 153 8 1 94.37 na na 94.96

Mupirocin true 0 157 1 2 98.12 na na 99.36

Gentamicin true 0 160 0 0 98.75 na na 98.75

Trimethoprim true 0 154 1 5 96.25 na na 99.35

Penicillin true 148 3 4 5 94.37 97.36 96.73 42.85

Methicillin true 105 19 7 29 77.5 93.75 78.35 73.07

Erythromycin true 1 141 12 6 88.75 7.69 14.28 92.15

Fusidic Acid true 2 152 6 0 96.25 25.00 100.0 96.20

Table S3. S. aureus outbreak isolates on MinION (4 flow cells, 2 x 12-plex, 1000 reads, k = 16, s = 10000, n = 160)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

MLST false - - - - 93.75 90.53 93.75 -

SCCmec type false - - - - 76.87 86.40 76.87 -

PVL true 135 16 2 7 94.37 98.54 95.07 88.88

Clindamycin true 0 149 4 7 93.12 na na 97.38

Rifampicin true 0 160 0 0 100.0 na na 100.0

Ciprofloxacin true 0 158 1 1 98.75 na na 99.37

Vancomycin true 0 160 0 0 100.0 na na 100.0

Tetracycline true 0 157 2 1 99.13 na na 98.74

Mupirocin true 0 158 0 2 98.75 na na 100.0

Gentamicin true 0 160 0 0 100.0 na na 100.0

Trimethoprim true 0 153 2 5 95.62 na na 98.70

Penicillin true 150 7 0 3 98.12 100.0 98.03 100.0

Methicillin true 105 23 3 29 80.00 97.22 78.35 88.46

Erythromycin true 1 149 4 6 93.75 20.00 14.28 97.38

Fusidic Acid true 2 158 0 0 100.0 100.0 100.0 100.0
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Table S4. S. aureus outbreak isolates (Goroka) on MinION (1 flow cell, 12-plex, 1000 reads, k = 16, s = 10000, n = 12)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

MLST false - - - - 100.0 100.0 100.0 -

SCCmec type false - - - - 83.33 100.0 83.33 -

PVL true 12 0 0 0 100.0 100.0 100.0 na

Clindamycin true 0 11 0 1 91.66 na na 100.0

Rifampicin true 0 12 0 0 100.0 na na 100.0

Ciprofloxacin true 0 12 0 0 100.0 na na 100.0

Vancomycin true 0 12 0 0 100.0 na na 100.0

Tetracycline true 0 11 0 1 91.66 na na 100.0

Mupirocin true 0 12 0 0 100.0 na na 100.0

Gentamicin true 0 12 0 0 100.0 na na 100.0

Trimethoprim true 0 12 0 0 100.0 na na 100.0

Penicillin true 12 0 0 0 100.0 100.0 100.0 na

Methicillin true 10 0 0 2 83.33 100.0 83.33 na

Erythromycin true 0 11 0 1 91.66 na na 100.0

Fusidic Acid true 0 12 0 0 100.0 na na 100.0

Table S5. S. aureus outbreak isolates on Flongle (1 flow cell, 12-plex, 1000 reads, k = 16, s = 10000, n = 12)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

MLST false - - - - 100.0 100.0 100.0 -

SCCmec type false - - - - 83.33 100.0 83.33 -

PVL true 12 0 0 0 100.0 100.0 100.0 na

Clindamycin true 0 11 1 0 91.66 na na 91.66

Rifampicin true 0 12 0 0 100.0 na na 100.0

Ciprofloxacin true 0 12 0 0 100.0 na na 100.0

Vancomycin true 0 12 0 0 100.0 na na 100.0

Tetracycline true 0 12 0 0 100.0 na na 100.0

Mupirocin true 0 12 0 0 100.0 na na 100.0

Gentamicin true 0 12 0 0 100.0 na na 100.0

Trimethoprim true 0 12 0 0 100.0 na na 100.0

Penicillin true 12 0 0 0 100.0 100.0 100.0 na

Methicillin true 10 0 0 2 83.33 100.0 83.33 na

Erythromycin true 0 11 1 0 91.66 na na 91.66

Fusidic Acid true 0 12 0 0 100.0 na na 100.0

Table S6. Successive library experiment on MinION (1 flow cell, 4 x 12-plex, 1000 reads, k = 16, s = 10000, n = 48)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

MLST false - - - - 95.83 93.79 95.83 -

SCCmec type false - - - - 77.08 93.62 77.08 -

PVL true 46 0 1 1 95.83 97.87 97.87 na

Clindamycin true 0 47 0 1 97.91 na na 100.0

Rifampicin true 0 48 0 0 100.0 na na 100.0

Ciprofloxacin true 0 47 0 1 97.91 na na 100.0

Vancomycin true 0 48 0 0 100.0 na na 100.0

Tetracycline true 0 47 0 1 97.91 na na 100.0

Mupirocin true 0 48 0 0 100.0 na na 100.0

Gentamicin true 0 48 0 0 100.0 na na 100.0

Trimethoprim true 0 48 0 0 100.0 na na 100.0

Penicillin true 48 0 0 0 100.0 100.0 100.0 na

Methicillin true 36 1 1 10 77.08 97.29 78.26 0.50

Erythromycin true 0 47 0 1 97.91 na na 100.0

Fusidic Acid true 0 48 0 0 100.0 na na 100.0
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Table S7. RASE classification of ST93 outbreak isolates, all reads (n = 120, lineage database)

Feature Binary TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%)

Clindamycin true 0 117 0 3 97.50 na na 100.0

Rifampicin true 0 120 0 0 100.0 na na 100.0

Ciprofloxacin true 0 120 0 0 100.0 na na 100.0

Vancomycin true 0 120 0 0 100.0 na na 100.0

Tetracycline true 0 82 37 1 68.33 na na 68.91

Mupirocin true 0 120 0 0 95.76 na na 95.76

Gentamicin true 0 120 0 0 100.0 na na 100.0

Trimethoprim true 0 120 0 0 100.0 na na 100.0

Penicillin true 120 0 0 0 100.0 100.0 100.0 na

Methicillin true 117 0 3 0 97.50 97.50 100.0 na

Erythromycin true 0 117 0 3 97.50 na na 100.0

Fusidic Acid true 0 120 0 0 100.0 na na 100.0
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