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Abstract

Variation in the blood metabolome is intimately related to human health. Prior work has shown 

that host genetics and gut microbiome composition, combined, explain sizable, but orthogonal, 

components of the overall variance in blood metabolomic profiles. However, few details are 

known about the interplay between genetics and the microbiome in explaining variation on a 

metabolite-by-metabolite level. Here, we performed analyses of variance for each of the 945 

blood metabolites that were robustly detected across a cohort of 2,049 individuals, while 

controlling for a number of relevant covariates, like sex, age, and genetic ancestry. Over 60% of

the detected blood metabolites were significantly associated with either host genetics or the gut 

microbiome, with more than half of these associations driven solely by the microbiome and 

around 30% under hybrid genetic-microbiome control. The variances explained by genetics and 

the microbiome for each metabolite were indeed largely additive, although subtle, but 

significant, non-additivity was detected. We found that interaction effects, where a metabolite-

microbe association was specific to a particular genetic background, were quite common, albeit 

with modest effect sizes. The outputs of our integrated genetic-microbiome regression models 

provide novel biological insights into the processes governing the composition of the blood 

metabolome. For example, we found that unconjugated secondary bile acids were solely 

associated with the microbiome, while their conjugated forms were under strong host genetic 

control. Overall, our results reveal which components of the blood metabolome are under strong

genetic control, which are more dependent on gut microbiome composition, and which are 

dependent upon both. This knowledge will help to guide targeted interventions designed to alter 

the composition of the blood metabolome.

Introduction

The human blood metabolome is shaped by a combination of intrinsic and extrinsic forces and 
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constitutes the primary resource pool for human metabolism. While the composition of the 

plasma metabolite pool is strongly driven by diet, lifestyle, and the ecology of the gut microbiota,

the fate of individual metabolites in the blood is often tightly regulated by host genetics 1. 

Genetic variants are known to alter the human blood metabolome in several disease-relevant 

contexts. For example, certain deleterious alleles impact cholesterol levels and contribute to 

hypercholesterolemia, while another allele drives phenylalanine accumulation and leads to 

phenylketonuria 2–4. The majority of genetic variants associated with blood metabolite levels 

affect either enzymes or solute carriers, thus directly influencing an individual’s ability to 

produce, consume, secrete, or absorb small molecules 5,6. Many of the currently identified 

genetic variants are pleiotropic 7, which indicates a vast interconnectedness of the metabolome 

to different systems of the body.

Recent studies have identified the human gut microbiome as a major determinant of blood 

metabolite variability 1,8. In this prior work, host genetics and gut microbiome composition were 

found to associate with plasma metabolite levels in a largely orthogonal manner, which is 

supported by the observation that, for the most part, host genetics and the gut microbiota do not

tend to associate strongly with one another 9, even though a number of clear examples of 

genome-microbiome associations have been shown 10,11. 

Despite these broad, multivariate regression results showing a global correspondence between 

genomics, the microbiome, and the metabolome, little is known about how this maps onto 

individual blood metabolites. While one might expect that the variation in metabolites produced 

by bacteria in the human gut is mostly governed by the microbiota and that metabolites specific 

to human metabolic processes are associated more with host genetics, there are examples, as 

in the case of microbe-host co-metabolites like conjugated secondary bile acids 12, where the 

story becomes more complicated.

Intestinal signaling, such as the activation of FXR and TGR5 receptors in the human gut, can 

regulate glucose, insulin, cholesterol, and bile acid homeostasis 13–16. Furthermore, many 

microbiome-derived metabolites are modified by hepatic enzymes and converted into a variety 

of conjugated compounds, such as hippurate or polyamines. These multi-layer filters on 

microbe-host co-metabolism make it challenging to map blood metabolites to potential microbial

precursors 17–20. For example, blood cholesterol levels are affected by host genetic variants, but 
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they can also be regulated through intestinal signaling, involving the production of secondary 

bile acids by gut commensals, or through gut microbial cholesterol dehydrogenases that funnel 

host cholesterol into fecal coprostanol 21–23. Thus, even though host genetics and the 

microbiome appear to have largely orthogonal effects on the blood metabolome as a whole, 

they nonetheless act on an overlapping set of metabolites, potentially explaining independent 

components of the variance of these compounds. 

Additionally, even in the absence of strong heritability of human gut commensals, there are key 

examples where genetics and the microbiome may interact in particular disease conditions, 

such as cystic fibrosis 24. This raises the question of whether there are instances where 

microbiome-metabolome associations are modulated by the genetic background of the host in a

similar manner as other gene-environment interactions 25, where a genetic variant may augment

or attenuate an individual’s risk of developing a particular disease when exposed to a specific 

environmental risk factor.        

Here, we studied variability in plasma metabolite abundances in a cohort of 2,049 healthy 

individuals from the Pacific West of the US. We find extensive interplay between the genetic and

gut microbial determinants of individual metabolite levels in the blood, which provides deep 

insights into the microbe-host co-metabolisms that govern the composition of the human blood 

metabolome.

Results

Identifying plasma metabolites associated with genetic features only, gut microbiome 

features only, or with both genetic and microbial features

To identify associations between host genetics and individual circulating blood metabolite levels,

we performed genome-wide association analyses on 7.68 million common variants (Minor Allele

Frequency ≥ 1%) in 2,049 individuals for each of the 945 detected blood metabolites. A total of 

299 metabolites of the 945 tested (31.6%) were associated with one or more of the 389 

independent lead variants that passed the genome-wide significance threshold (p < 5.29 x 10-11;

see Methods and Fig. S1). Of these 389 variants, 123 were in intergenic regions and 266 

variants mapped to 166 genes, including those associated with inborn errors of metabolism 
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such as ACADS, MTHFR, DMGDH, and ETFDH. Potential loss-of-function consequences were 

predicted for three variants: stop gained for rs183603441 in HYKK, stop lost for rs358231 in 

GBA3, and a splice donor variant for rs114286107 in AGXT2. Missense mutations were 

predicted for 40 variants, affecting 74 metabolites. However, the majority of the metabolite-

associated variants found within genes were synonymous.

Comparison with associations from previous metabolomics studies and the GWAS catalog 

revealed 6 novel genomic loci that influence metabolite levels. These novel metabolic 

quantitative trait loci (mQTL) were associated with 7 metabolites. In particular, lactosylceramide 

lactosyl-N-nervonoyl-sphingosine (d18:1/24:1) was associated with lead variants rs3752246 (P 

= 8.5 x 10-26) located in ABCA7 and rs12979724 (P = 8.5 x 10-12) located near CNN2. rs3752246

is a missense variant and has been previously identified as a risk variant for late-onset 

Alzheimer's disease 26–28. To test whether these two traits share the same causal SNP at this 

genomic locus, we performed colocalization analysis and found the posterior probability of 

causal SNP sharing to be 99.6% (see Materials and Methods). Prior studies have identified 

altered levels of ceramides in the blood and brain of individuals with Alzheimer's Disease, with 

the d18:1/24:1 ceramide showing a strong and robust association with Alzheimer’s Disease in a 

recent meta-analysis 29–31. Our results suggest a possible shared genetic architecture underlying

lactosyl-N-nervonoyl-sphingosine (d18:1/24:1) levels and late-onset Alzheimer's disease.

Associations with more than one metabolite were identified for 82 of the 389 significant lead 

variants (21.1%), revealing the extent of pleiotropy. The effect sizes of pleiotropic variants are 

generally higher than non-pleiotropic variants (P = 3.67 x 10-3; two-sided Mann-Whitney U-test), 

while the distributions of minor allele frequency were similar between the two types of variants. 

Overall, the 82 pleiotropic lead variants were associated with 186 metabolites (62.2% of all 

significant genetically-associated metabolites). Four variants (rs4149056, rs1047891, 

rs148982377, and rs11568824), of which rs4149056 and rs1047891 are missense variants, 

were each associated with more than 10 metabolites. rs4149056 in SLCO1B1 (solute 

transporter in liver) was associated with 19 metabolites, including primary and secondary bile 

acids, conjugates of polyunsaturated fatty acids, and free fatty acids. rs1047891 in CPS1 

(mitochondrial enzyme involved in the urea cycle) was found to be associated with 11 

metabolites, many of which were conjugated to glycine and glutamine moieties. rs148982377 in 

ZNF789 and rs11568824 in ZSCAN25 (transcription factors) were associated with the same set 

of 11 steroid hormone metabolites, primarily conjugates of DHEA and androsterone. 
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Analysis at the gene level reveals a further degree of pleiotropy as well as polygenicity. Using 

MAGMA 32, we identified associations between genes and metabolites, accounting for linkage 

disequilibrium. 242 metabolites were associated with at least one gene, with 351 significant 

genes identified in total (P < 9.48 x 10-9). Of these, 128 genes (36.47%) were associated with 

more than one metabolite. Individual pleiotropic genes tend to be associated with metabolites 

with similar biochemical properties, providing insights into unidentified metabolites. For 

example, the gene cluster of UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, 

UGT1A8, UGT1A9, and UGT1A10 was associated with 13 metabolites, including bilirubin, 

biliverdin, and eight unidentified compounds. These genes encode UDP-

glucuronosyltransferase (UGT) enzymes, which metabolize bilirubin 33,34. It was later determined

by Metabolon that the eight unidentified compounds were degradation products of bilirubin. We 

also observe instances of polygenic associations among many metabolites. For example, five of

the 53 metabolites associated with the fatty acid desaturase (FADS) gene cluster were also 

associated with the hepatic lipase gene LIPC. We also observed shared genetic architecture for 

other combinations of blood metabolites and complex traits. For example, we found 

associations between the missense variant rs1260326 in GCKR with mannose (P = 1.2 x 10-44) 

and 1-carboxyethyl-valine (P = 2.9 x 10-11). rs1260326 has been identified as a risk variant in a 

genome-wide association meta-analysis of type 2 diabetes and Crohn's disease 35. 

Colocalization analysis of these four traits identified sharing of a causal SNP at this locus (with 

posterior probability > 0.9). 

In order to identify associations between the gut microbiome and circulating blood metabolite 

levels, we performed regressions using centered-log-ratio (CLR) transformed bacterial genus-

level abundances as independent variables, while correcting for sex, age, sex-age interactions, 

BMI, and genetic kinship (i.e., the first 5 principal components of the genetic distance matrix). A 

majority of the tested metabolites had significant associations with at least one bacterial genus 

in the gut microbiome (522/945 = 55.2%, with FDR-corrected p<0.05). Here, the average 

fraction of explained variance (R²) was slightly lower when compared to genetic associations 

(mean R² of 0.04 and 0.09 for microbiome and host genetic features, respectively). 

The blood metabolites with the largest fraction of variance explained by microbial features were 

dominated by compounds involved in bacterial metabolism of aromatic and phenolic 

compounds, such as cinnamoylglycine, hydrocinnamate, hippurate, and phenylacetylglutamine 
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(all R²>0.2, Fig. 1D). Catabolism of phenylalanine and phenylacetate to cinnamate and 

benzoate is exclusive to the microbiome and is conspicuously absent in germ-free mice 36,37. 

Hippurate is formed in the liver by conjugating benzoate to a glycine and blood levels of 

hippurate have been positively associated with gut microbiome alpha-diversity 8,38 and with 

overall metabolic health 39. 

Additionally, we found several products of bacterial protein fermentation, such as p-cresol 

derivatives and the tryptophan breakdown product indolepropionate, associated with the gut 

microbiome (Fig. 1D). Furthermore, we found that all secondary bile acids identified in plasma 

were significantly associated with the gut microbiome (FDR-corrected p<0.05), which is 

expected because primarily bile acids are deconjugated into secondary bile acids by bile salt 

hydrolases expressed by gut commensal bacteria 40. 

Genetic and microbial factors additively contribute to explained variance in blood 

metabolite abundances

We identified a total of 594 out of 945 plasma metabolites (62.7%) that were associated with 

either genetic factors, microbial factors, or both (Fig. 1A-B). Most of these metabolites (522) 

were significantly associated with the microbiome. 29.6% of these metabolites showed “hybrid” 

associations, meaning they were associated with genetic as well as microbial factors (Fig. 1A-

B). In particular, we found that about ¾ of all metabolites with a significant genetic association 

also showed a microbial association (i.e., 176 of 248 metabolites associated with genetic 

variants). Conversely, only ⅓ of all metabolites with a microbiome association also showed a 

hybrid association with host genetics. Consistent with the average explained variances of 

metabolites reported above for genetics and the microbiome, hybrid metabolites with particularly

large explained variances (i.e., >20%) showed a tendency to have higher genetic R² values than

microbial R² values (see Fig. 1B and Fig. 2A).

In order to test whether genetic and microbial factors contained redundant information, we 

compared a joint genetics-microbiome model to individual genetic and microbial models. If the 

overlap in variance explained between genetic and microbial feature sets was large, the joint 

model R² value would be substantially smaller than the sum of the individual model R² values 

(see Fig. 2A). Although we found that the difference in R² between the joint model and the sum 

of the individual model R² values was statistically significant across a very large number of 
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models, the magnitude of this difference was extremely small (median difference in R²<0.0014), 

indicating that genetics and the microbiome explain nearly exclusive components of the 

variance for a given metabolite. This result is consistent with prior work showing that the 

variances in the blood metabolome explained by the microbiome and host genetics were largely

orthogonal 1,9. However, here we demonstrate that this is not only true globally, but at the 

individual metabolite level as well. 

Finally, we investigated whether the genetic background of the host could modulate 

microbiome-metabolite associations (see Fig. 3A). To this end, we tested all genetic variant / 

bacterial genus / metabolite triplets, filtering for only those genetic variants or genera that were 

previously associated with at least one metabolite (i.e., 16,905 triplets in total). We employed a 

strategy similar to gene-environment interaction studies, using the CLR transformed 

abundances of microbial genera as the environmental variable, while adjusting for covariates 

(see Methods) 41. 207 interaction effects were deemed significant under an FDR-corrected p-

value cutoff of 0.05, involving 49 distinct metabolites. Though gene-microbiome interactions 

were quite common, they only explained very small fractions of plasma metabolite variability 

(mean R²=0.005). The amount of explained variance by the interaction terms tended to correlate

negatively with variance explained by the genetic variant itself (Fig. 3B, Pearson’s rho=-0.43, 

p=6.8e-11). 

Gene-microbiome interactions were significantly enriched in metabolites involved in the urea 

cycle, histidine metabolism, and fatty acid metabolism (Fig. 3C, one-sided hypergeometric test, 

FDR-corrected p<0.05) and also showed enrichment in the IG2F gene (insulin-like growth factor

2) and two overlapping loci on chromosome 2 (Fig. 3E, one-sided hypergeometric test FDR-

corrected p<0.05). No enrichments in bacterial phyla, genera, or families were observed (Fig. 

3D). The highest fraction of explained variance for these interaction terms was observed for a 

handful of distinct triplets, including the metabolites homoarginine, 2-aminooctanoate, and 1-

stearoyl-2-arachidonoyl-GPC. Low levels of homoarginine are associated with a higher risk of 

cardiovascular disease 42,43 and we observed a negative gene-microbe interaction between the 

missense variant rs1047891 in the CPS1 gene (urea cycle) and several genera in the 

Ruminococcaceae family, where the genus abundance tended to show a negative correlation 

with the plasma homoarginine abundance only in heterozygous individuals carrying the C→A 

minor allele (Fig. 4).            
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Genetics strongly associated with the fate of conjugated, but not unconjugated, 

secondary bile acids

Having mapped plasma metabolite variability to genetic and microbial factors, we now asked 

whether the observed partitioning of variances explained may change along pathways that 

involve host-microbe co-metabolisms. To this end, we investigated the metabolism of secondary

bile acids. Secondary bile acids are formed in the large intestine via microbial deconjugation of 

primary bile acids, reabsorbed into the bloodstream via the portal vein, and further metabolized 

in the liver 44. Thus, secondary bile acid levels in the bloodstream are influenced by both the 

microbiome and the host. We investigated whether individual bile acid species variances were 

predominantly explained by genetic factors, microbial factors, or both.

While unconjugated secondary bile acids were exclusively associated with the gut microbiome, 

5 out of 6 detected secondary bile acid conjugates fell into the hybrid class (Fig. 5A). In 

particular, plasma deoxycholate abundances showed no significant genetic contribution, 

whereas more than 40% of the variance in the conjugates deoxycholate glucuronide and 

deoxycholate sulfate was explained by host genetics (Fig. 5B). Other glucuronidated non-bile-

acid compounds, such as p-cresol glucuronide, did not show this pattern (see Fig. 1D). 

Modifications like glucuronidation or sulfation usually occur in the liver and are used to mark 

metabolites for excretion in feces or urine 45,46. These results suggest that the clearance of 

conjugated secondary bile acids from the body is under strong genetic control.

All but one hepatically modified secondary bile acid showed associations with both genetic and 

microbial features. The one exception was glycochenodeoxycholate glucuronide, which was 

only associated with genetics and not with the microbiome, even though the unconjugated form,

glycochenodeoxycholate, was only associated with the microbiome (Fig. 5A). The genomic 

variant rs4149056 was associated with 4 of the 6 modified secondary bile acids and has been 

shown previously to affect the abundance of bile acids in plasma 47 (see Fig. 5B). This variant is 

located in the solute carrier protein SLCO1B1, which is expressed in the liver 48 and transports 

secondary bile acids, with a preference for sulfated bile acids and bile salts 49. Several other 

variants in SLCO1B1 were associated with secondary bile acid derivatives. We also identified 

several variants in the SLCO1B3-SLC1B7 gene cluster that mostly affected 

glycochenodeoxycholate glucuronide plasma abundances, and we found several variants 
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located on chromosome 4, one in the TMPRSS11E serine protease and several variants without

an associated gene identity, that specifically affected deoxycholate glucuronide levels (Fig. 5B). 

Thus, whereas cross-sectional variation in unmodified secondary bile acid levels were not 

explained by host genetic variation, plasma abundances of several secondary bile acid 

conjugates were significantly associated with a diverse set of compound-specific genetic 

variants on chromosomes 4 and 12. Additionally, we observed that association patterns with 

bacterial genera changed when comparing unmodified deoxycholate to deoxycholate 

glucuronide (Fig. 5C). Deoxycholate showed mostly positive associations, for instance with 

Bacteroides, Phocea, and Lachnoclostridium, whereas deoxycholate glucuronide showed 

mostly negative associations with several genera in the Ruminicoccaceae family (Fig. 5C). 

Sphingosines and ceramides show a range of genetic, microbiome, and hybrid 

associations

We next asked whether hybrid associations would also be common in another disease-relevant 

class of blood metabolites: ceramides. High ceramide levels have been shown to be associated 

with insulin resistance, hypercholesterolemia, liver steatosis, and the formation of lipid rafts 50–54.

Furthermore, some classes of ceramides in the blood increase the risk for late-onset 

Alzheimer's disease, as they are neurotoxic and induce apoptosis 30,55,56. Ceramides are the 

simplest of the sphingolipids and are formed either by de novo synthesis from sphingosine or by

hydrolysis of sphingomyelin molecules 57. While ceramides are rarely found in bacteria, many 

bacteria in the Bacteroidetes phylum can synthesize sphingolipids, which were shown to be 

taken up and processed by human epithelial cells in vitro 58. Thus, we asked whether variation in

ceramide and sphingosine derivatives levels in blood was significantly explained by microbial 

genera, host genetic factors, or a combination of both.

We observed a large degree of heterogeneity in variance partitioning in ceramide and 

sphingosine molecules (Fig. 6). Variance in sphingosine itself was only weakly explained by the 

composition of the gut microbiome (R²=0.01), with alpha-diversity as the only significant 

microbiome-related association. However, other intermediates in ceramide synthesis, such as 

sphinganine derivatives, showed stronger microbiome and genome associations (i.e. up to 5% 

of variance explained; Fig. 6A). Ceramides showed a broad range of explained variances. 

Whereas most ceramides were associated with the gut microbiome, a small subset had 
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additional genetic components to their variances, such as lactosyl-N-nervonoyl-sphingosine and

ceramide (d16:1/24:1, d18:1/22:1), both of which had more than 5% of their variation explained 

by genetic factors. Both of these lipid species highlighted above are examples of very long-

chain fatty-acyl sphingolipids. While shorter fatty acids (≤C18) are prevalent in the human diet 

59, often serving as preferential substrates for ceramide synthesis by some gut microbes 60, 

longer chain fatty acids, such as nervonic acid (24:1), are often the product of elongation by 

host enzymes before being incorporated into sphingolipids, and are found primarily in brain 

tissue61.  In summary, we observed broad heterogeneity in the fraction of variance explained by 

the microbiome and host genetics, where a difference in the fatty acid chain length could shift a 

ceramide from being solely associated with microbial genera (i.e. shorter chains) to those 

mostly associated with host genetics (i.e. longer chains).

Discussion

In this study, we partition the cross-sectional variance explained in individual blood metabolite 

levels into their host genetic and gut microbiome components, across a population of 2,049 

generally healthy individuals. Prior studies have established that the plasma metabolome is 

intimately connected to host genetics as well as to the gut microbiome, and that overall genetic 

and microbial influences on the metabolome appear to be orthogonal. However, it has been 

unclear as to whether or not genetics and the microbiome act on mutually exclusive sets of 

metabolites or act simultaneously on individual metabolites. Most of the detected blood 

metabolites (522/948) showed significant associations with the gut microbiome, which is 

consistent with prior work. Hybrid genome-microbiome contributions were common and affected

about 30% of all metabolites associated with either host genetics or the microbiome. We 

observed that 3 in 4 metabolites with a significant association with host genetics had additional 

associations with the gut microbiome. Thus, the majority of blood metabolites associated with 

host genetics include significant hybrid associations with the gut microbiome. Unlike the set of 

metabolites associated with host genetics, only 1 in 3 metabolites associated with the 

microbiome showed an additional hybrid genetic component to their variance. Thus, while both 

genetic and microbiome variation are important to explaining variation in the blood metabolome,

the microbiome (and the myriad factors correlated with variation in the microbiome, like diet and 

lifestyle) appears to be the dominant driving force.

Additionally, we found some evidence for gene-microbiome interactions, where a particular 

metabolite-microbiome association was modulated by the genetic background of the host. In 
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general, those interactions only explained small fractions of metabolite variance (<2%). 

However, this may be a consequence of the generally low prevalence of the minor alleles for the

affected genetic variants. These interactions often appear to result from relatively strong 

associations within the minor allele group, but we have limited numbers of these minor allele 

carriers to assess these associations robustly. For instance, for homoarginine, we observed a 

strong negative correlation with Ruminicocacceae specific to the heterozygous minor allele 

background, where low levels or absence of Ruminicocacceae in a minority of the heterozygous

minor allele population was associated with homoarginine levels close to what was observed in 

the homozygous major allele carriers. Thus, genetically-determined deviations from a particular 

quantitative trait may be modulated or even induced by a particular microbial community 

composition in the gut. These kinds of genome-microbiome interaction effects could help guide 

the design of microbiome-targeted therapeutics that mitigate host genetic disease risk.

Prior studies of microbe-host co-metabolites derived from microbial precursors in blood, like 

hippurate or p-cresol sulfate (i.e., hepatically modified forms of microbially-derived metabolites), 

hinted that the cross-sectional variance in these molecules might only be associated with the 

microbiome and not with host genetics 17,38,62,63. Here we show that those observations do not 

extrapolate to all microbe-host co-metabolites. Indeed, we found that much of the cross-

sectional variation in many metabolites derived from gut microbial precursors was explained by 

host genetics. For example, while unconjugated secondary bile acids in the bloodstream are 

only associated with the gut microbiome, their glucuronidated or sulfated derivatives, formed in 

the liver, were strongly influenced by host genetic variation. Most of the variance in 

deoxycholate glucuronide across the current study cohort could be explained by a combination 

of genetic and microbial factors, while unconjugated deoxycholate was solely associated with 

the microbiome. Deoxycholate and deoxycholate glucuronide both showed associations with the

microbiome, but these associations were with different sets of bacterial genera. Glucuronidation 

facilitates excretion into urine and feces and prior work in rats has shown that glucuronidated 

bile acids are reabsorbed less efficiently than unmodified secondary bile acids in the intestine 64.

The gut metagenome encodes a variety of β-glucuronidases 64–66 which likely enable gut 

commensals to use these bile-acid-conjugated-glucuronides as a carbon source. Conversely, 

free secondary bile acids can be toxic to many bacterial taxa 67. Thus, bile acids can directly 

drive changes in the gut microbiome, either by acting as carbon sources that promote growth or 

as toxic compounds that inhibit growth.
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Another intriguing finding from our analyses was the variable association of certain plasma 

sphingolipids with either host genetics or the gut microbiome, depending on the fatty-acyl 

groups comprising each lipid species. Ceramides with a ≤C18 fatty-acyl group showed stronger 

correspondence to the gut microbiome, consistent with the high prevalence of these fatty acids 

in the diet 59 and their preferential incorporation into ceramides by certain gut taxa 60. On the 

other hand, ceramides with very long chain fatty-acyl groups (22:1,24:1), that are most 

abundant in brain tissue and often synthesized through elongation by host enzymes 61, showed 

a stronger correspondence with host genetics. Importantly, ceramides with different fatty-acyl 

chain lengths have been implicated in a number of human diseases, including Alzheimer’s 

disease, depression and mood disorders 68,69. Distinguishing which ceramides are under the 

control of diet and the gut microbiome versus genetic predisposition may aid in the design of 

new and improved precision therapeutics.

It should be noted that the current study only included individuals from the Pacific West of the 

U.S. who were predominantly of European descent. While our results are consistent with results

obtained from cohorts in Israel and Sweden 1,70, future studies in more diverse populations will 

be required to see whether or not the reported observations replicate more broadly. Finally, 

while we included many highly relevant covariates in our regression analyses (i.e. age, sex, 

BMI, and genetic ancestry), many of the observed microbe-metabolite associations are likely 

confounded with lifestyle and dietary habits, which were not comprehensively tracked in the 

current study population and can strongly influence the composition of the gut microbiome. 

Overall, our analyses show that the plasma metabolome is influenced by a mixture of genetic 

and microbial factors, where the abundance of individual microbially-derived metabolites 

absorbed in the gut is often affected additively by both host genetic variation and by variation in 

the ecology of the gut microbiome. Furthermore, many microbe-metabolite associations are 

dependent upon the host genetic background. These hybrid genome-microbiome regression 

models provide unique insights into the forces underlying variation in the human blood 

metabolome and can suggest possible therapeutic strategies. Finally, we suggest that disease 

relevant blood metabolites strongly associated with the microbiome may be modifiable through 

dietary, probiotic, prebiotic or lifestyle interventions, whereas metabolites under genetic control 

may require pharmacological interventions that target host metabolic pathways. Understanding 

which of these circulating small molecules fall predominantly under host versus microbiome 

control will help to guide interventions designed to prevent and/or treat a range of diseases.
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Materials and Methods

Institutional Review Board Approval for the Study

Procedures for this study were reviewed and approved by the Western Institutional Review 

Board with the Institutional Review Board (IRB) study number 20170658 for the Institute for 

Systems Biology and 1178906 for Arivale.

Cohort Description

All study participants were subscribers of the Arivale Scientific Wellness program and provided 

consent and research authorization allowing the use of their anonymized, de-identified data in 

research. The Arivale program is described in detail in Zubair et. al. 71. In brief, participants 

signed up for a comprehensive deep phenotyping program coupled with personalized data-

driven wellness coaching in order to improve overall health and wellness. Baseline blood draws 

were taken at the first in-house visit and paired with at-home fecal sampling. Metabolomics and 

microbiome measurements taken from the biofluids were described previously in Wilmanski et. 

al. 8 A subset of the participants opted for longitudinal sampling. 

Genome-wide association analysis

DNA from the 2,049 participants was extracted from whole blood samples by Covance 

(Redmond, WA) using a standardized protocol. Whole genome sequencing was performed by 

Wuxi, Inc. (Shanghai, China) in a CLIA-certified laboratory. Extracted libraries were sequenced 

using an HiSeq X sequencer (Illumina, San Diego, USA) with 150bp libraries and aiming for 

>30x coverage. Basecalling and conversion to raw FASTQ files was performed using the 

Illumina Basespace software. Raw reads were aligned to the hg19 human reference genome 

with BWA 0.7.12. The GATK HaplotypeCaller with GATK 3.3.0 was used to call individual 

variants. This included indel local realignment followed by base quality recalibration. This 

yielded a set of around 7.68M measured SNPs.

To account for genetic structure and potential cryptic relatedness in the cohort, we used a linear

mixed model to test for associations between genetic variants and metabolite levels. For each 

metabolite, we performed a genome-wide association study using FastGWA using the hg19 

genetic map 72. Metabolome genome-wide significance was called using the Bonferroni 

corrected p-value threshold of 5.29e-11 (5e-8 / #metabolites) where 5e-8 is the commonly used 
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threshold for genome-wide significance 73. Linkage disequilibrium scores were taken from the 

1000 Genomes project 74 and used as additional covariate in the genome-wide association 

study as well as in gene associations calculated with MAGMA 32.

Gut Microbiome Sequencing

Fecal samples were collected using a proprietary at-home swap kit (OMNIgene Gut, 

DNAGenotek, USA) to maintain DNA conservation and longevity. 250μL of homogenized stool 

from each sample were subsequently used for DNA extraction using a MoBio PowerMag Soil 

DNA isolation kit (QIAGEN, Germany) using the KingFisher Flex instrument. DNA 

concentrations in each sample were quantified with a QuBit (ThermoFisher, USA) and purity 

was assessed by measuring the A260/A280 absorbance ratio. Amplification and library 

preparation were performed by external providers using custom and optimized protocols by 

either amplifying the V4 region (SecondGenome, USA) or the V3-V4 region (DNAGenotek, 

USA) of the 16S gene. 

Sequencing was performed using a MiSeq (Illumina, USA) using either a paired-end 250bp 

protocol (SecondGenome) or a paired-end 300bp protocol (DNAGenotek). Basecalling was 

performed using the Illumina Basespace platform which removed the added phiX reads and 

provided the final FASTQ files used for downstream analysis. Quality of the sequencing reads 

was assessed by manual inspection of the error rate across sequencing cycles and appropriate 

length cutoffs of 250bp for the forward reads and 230bp for the reverse reads were chosen 

based on the profiles. Reads with more than 2 expected errors under the Illumina error model 

were removed from the analysis along with reads containing ambiguous base calls (“N” 

nucleotides). More than 97% of reads passed those filters yielding a mean of around 200,000 

reads per sample. 

Filtered and truncated reads were then used to infer amplicon sequence variants using DADA2 

75. Here error profiles were learned for each sequencing run separately. The resulting ASVs and

respective counts were merged and chimeras were removed using the “consensus” strategy 

implemented in DADA2 which removed around 16% of all reads. Taxonomy assignment of 

ASVs was performed by using the naive Bayes classifier in DADA2 with the SILVA database 

(version 128). Species assignments were performed by exact match of the inferred ASVs with 

the reference 16S gene in SILVA where possible. About 90% of reads could be classified down 

to the genus levels and 32% of reads could be classified down to the species level. The total set
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of samples was then filtered for those individuals that also had metabolomics data and/or whole 

genome shotgun sequencing available. Where several microbiome time points were available 

we used the one closest to the blood draw used for metabolomics. Low abundance taxa, with 

less than 10 reads on average or appearing in less than 50% of all samples, were removed from

the data set.

Metabolite-microbiome associations and confounder adjustment

Genus-level read counts were scaled using the centered log-ratio (CLR) transform and 

standardized across the 1,163 samples. Metabolite abundances were log-transformed and 

standardized which yielded good similarity to a normal distribution as judged by a QQ-plot. 

Transformed and scaled metabolite and bacterial genera abundances were then regressed 

against the set of confounders and the residuals were saved as new dependent variables. For 

the confounder adjustment we chose the most common intrinsic factors that would affect blood 

metabolite and fecal microbe abundances. Firstly, we corrected for sex, age, and BMI by 

including coefficients for biological sex, age, age², sex:age, and sex:age² interactions, and BMI. 

Additionally, we included covariates for common batch effects like the season of the year the 

samples were obtained, the metabolomics batch (each sample in a batch was processed 

together), and the vendor for the microbiome sample (DNA Genotek or Second Genome). 

Finally, we also included a continuous measure of genetic ancestry given by the first 5 principal 

components from an analysis of 100,000 linkage disequilibrium corrected frequent SNPs (minor 

allele frequency > 5%) calculated with the PC-AiR and PC-Relate methods 76,77.  The residuals 

were used for all further analyses as well as visualizations and analyses of variances. 

After this we performed individual linear regressions between all metabolite-genus pairs to find 

significant associations between individual metabolites and bacterial genera. P-values were 

obtained using F-tests and corrected for false discovery rate using the method of Benjamini and 

Hochberg 78. We then retained the significant associations with a FDR cutoff q<0.05. We also 

performed the same analysis with alpha-diversity as the independent variable or with alpha-

diversity as a covariate to the CLR-transformed bacterial genus abundance to verify that 

individual genus-level associations were not due to an association with alpha-diversity alone, 

which we did not observe to be the case.

Analysis of explained variances (R²)

Explained variances (R²) for each metabolite were obtained by ordinary least squares models 
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only containing features that were significantly associated with each metabolite individually. 

Ergo, we only include genus abundances for those genera with a FDR-corrected q<0.05 in the 

previous metabolite-microbe associations and only those single nucleotide variants that were 

identified as significant in the previous genome-wide association study for the particular 

metabolite. This was done to avoid inflation of the explained variances, as adding random 

variables to a regression model tends to increase the explained variance. We performed 

multilinear regressions with only microbiome features, only genetic features, and both genetic 

and microbiome features to quantify the variance of the transformed and confounder-adjusted 

metabolite abundances that was explained by each feature type individually and jointly. 

Consequently, it should be noted that the explained variances in this manuscript refer to the 

metabolite abundance variance after removing components of the variance explained by the 

covariates listed above. As such, these R2 caclulations pose an upper bound of the explained 

variance of the raw metabolite abundance but are also independent of common confounders, 

such as age, sex, and BMI and thus should be more generalizable to other populations 

structures. 

Overlap between microbiome and genetic features was quantified as the difference between the

sum of R² of the individual feature type models and the joint model R² (R²[microbiome] + 

R²[genetics] - R²[joint]). In the case of complete independence of microbiome factors and 

genetics, this difference would be zero and would become positive if there is partial or complete 

overlap in the variances explained by the microbiome and host genetics. 

Genome-microbiome interactions

For gene microbiome interactions we performed ordinary least squares regression of the form 

mi=β
0
+β

1
b j❑+β2

sk+γ b j sk+δ c+ϵ i,

where mi denotes the scaled abundance of metabolite i, bj the scaled abundance of the bacterial

genus j, sk the ordinal versions of the allele on variant k (0 - major allele, 1 - heterozygous minor

allele, 2 - homozygous major allele), c the vector of confounder covariates, and εi a random 

normally distributed variable with an expectation of zero. Significance of the interaction was then

evaluated by an F-test comparing the full model to a model with a fixed ɣ=0. P-values from all 

tested metabolite / variant / genus triplets were adjusted for false discovery rate using the 

method of Benjamini and Hochberg and judged as significant with a FDR cutoff q<0.05. Even 

though individual metabolite and bacterial genus abundances had been adjusted for 

confounders previously, we still included them in this regression because the product bj*sk had 
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not been adjusted for the same confounders. Also, to make our analysis computationally 

feasible, we performed the regressions only for those metabolites, bacterial genera, and genetic

variants that had shown at least one significant interaction in the prior analyses. 

Finally, post-hoc tests for microbe-metabolite interactions within sub-cohorts carrying a specific 

allele were performed by Pearson tests on the product-moment correlation within each sub-

cohort and for those triplets that had shown significant interaction effects. 

Data and Code Availability

Qualified researchers can access the full Arivale deidentified dataset supporting the findings in 

this study for research purposes through signing a Data Use Agreement (DUA). Inquiries to 

access the data can be made at data-access@isbscience.org and will be responded to within 7 

business days. Jupyer notebooks and Python code for reproducing the regression models and 

figures has been deposited at 

https://github.com/Gibbons-Lab/2021_gene_environment_interactions. 
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Figure captions

Figure 1. Study design and  cross-sectional variances in metabolites explained by host 

genetics, gut bacterial genera, or both. (A) The study comprised a metabolome-genome-wide

association analysis and a metabolome-microbiome-wide association analysis (regressions on 

centered log-ratio transformed bacterial genus-level abundances) performed in the Arivale 

cohort. Explained variance for a specific blood metabolite can be partitioned into host genetic 

and microbiome associated components. (B) Fraction of variance (R²) explained by host genetic

or microbiome features across the 594 metabolites with significant associations with either the 
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genome or the microbiome (FDR-corrected p<0.05). Specific sub-groups are annotated in the 

plot, including metabolites only associated with host genetics, metabolites only associated with 

gut genera, or metabolites significantly associated with both (hybrid). (C) Percentage of the 594 

significant metabolites associated only with host genetics, only with the microbiome, or with both

(hybrid). (D) The 10 metabolites with the highest explained variance by either genetics only 

(blue) or by the microbiome only (green).  

Figure 2. Metabolites associated with both genetics and the microbiome. (A) The 20 

metabolites with the highest total R² that were significantly associated with both host genetics 

and the microbiome. Blue and green colored bars denote individual R² values in genetics-only 

and microbiome-only regression models, respectively. Gray bars denote R² values from 

regression using joined genetics and microbiome data. 0.9% of the variance in butyrylcarnitine 

plasma abundance was explained by microbial features (i.e. too little to be visible in the barplot).

(B) R² values obtained by either adding individual contributions of genetics and the microbiome 

(additive) or by performing a joint regression (joint). The difference between the two groups 

indicates a small, but nonetheless significant, overlap in variance explained by genetics and the 

microbiome. However, the variances explained by host genetics and the microbiome were 

largely additive. Stars denote significance (*** - p<0.001). 
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Figure 3. Gene-microbiome interactions. (A) Gene-microbiome interactions occur when the 

correlation between a gut bacterial genus and a blood metabolite is itself conditional on a 

specific allele. (B) R² values for genetic associations and for the corresponding gene-microbe 

interactions. Each dot denotes a single model containing both terms. Interaction terms and 

genetics-only terms are negatively correlated (rho=-0.43, p=6.8e-11). (C) Pathway enrichment 

analysis for metabolites with significant gene-microbe interactions. (D) Bacterial family-level 

enrichment analysis for significant gene-microbe interactions. (E) Host gene enrichment 

analysis for significant gene-microbe interactions. In (C-E) red circles denote prevalence in all 

tested features (i.e., background prevalence) and blue triangles denote prevalence in only those

features with significant interaction terms. Stars denote significantly enriched features under a 

one-sided hypergeometric test with Benjamini-Hochberg correction for multiple testing (* - 

q<0.05, ** - q<0.01, *** - q<0.001). 
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Figure 4. Gene-microbiome interactions in explaining variation in homoarginine levels. 

(A) Homoarginine levels across the alleles of rs10447891 locus located in the CPS1 gene. (B) 

Homoarginine levels plotted against centered log-ratio transformed genus-level abundances of 

Ruminicoccaceae UCG-002 across all host genotypes. (C) Homoarginine levels against 

centered log-ratio transformed genus-level abundances of Ruminicoccaceae UCG-002 stratified

by genotype. In (A-C) homoarginine abundances are log-transformed abundances adjusted for 

common confounders, as described in Materials and Methods. In (B-C) “ρ” denotes the Pearson

Product-Moment correlation coefficient of the regression and “p” the p-value under a Pearson 

correlation test. The solid line indicates the linear regression line and the shaded area is the 

95% confidence interval of the regression.  Associations were corrected for  sex, age, age², 

sex:age, and sex:age² interactions, BMI, microbiome vendor, metabolomics batch, and the first 

5 principal components of genetic ancestry.  
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Figure 5. Host genetic and gut microbial associations with secondary bile acids. (A) 

Explained variances for unconjugated secondary bile acids and hepatic secondary bile acid 

conjugates. Purple and orange lines denote modifications of the same secondary bile acid. (B) 

Genetic variants associated with secondary bile acid conjugates. Dark blue cells denote 

associations that passed a genome-wide significance threshold in the GWAS. (C) Associations 

between bacterial genera and secondary bile acids (both conjugated and unconjugated). Only 

significant associations are shown (FDR-corrected and confounder-adjusted q<0.05). Fill colors 

denote the correlation coefficients (see legend). Associations were corrected for  sex, age, age²,

sex:age, and sex:age² interactions, BMI, microbiome vendor, metabolomics batch, and the first 

5 principal components of genetic ancestry.  * indicates compounds for which a standard is not 

available, but Metabolon is confident in its identity; ** indicates a compound for which a 

standard is not available, but Metabolon is confident in its identity.
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Figure 6. Host genetic and gut microbial associations with sphingosine and ceramides. 

(A) Explained variances for sphingosine, sphingosine intermediates, and ceramides. (B) Genetic

variants associated with sphingosines and ceramides. Dark blue cells denote associations that 

passed a genome-wide significance threshold in the GWAS. (C) Associations between bacterial 

genera and sphingosines/ceramides. Only significant associations are shown (FDR-corrected 

and confounder-adjusted q<0.05). Fill colors denote the correlation coefficients (see legend).  

Associations were corrected for  sex, age, age², sex:age, and sex:age² interactions, BMI, 

microbiome vendor, metabolomics batch, and the first 5 principal components of genetic 

ancestry.  * indicates compounds for which a standard is not available, but Metabolon is 

confident in its identity; ** indicates a compound for which a standard is not available, but 

Metabolon is confident in its identity.
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Figure S1. Genome-wide association p-values for variants associated with at least one 

metabolite. Red dashed line denotes genome-wide significance (p < 5.29e-11).

Supplementary Data

Table S1. R² values for genetics and microbiome for the 594 metabolites with a significant 

association.
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