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Abstract

Variation in the blood metabolome is intimately related to human health. Prior work has shown
that host genetics and gut microbiome composition, combined, explain sizable, but orthogonal,
components of the overall variance in blood metabolomic profiles. However, few details are
known about the interplay between genetics and the microbiome in explaining variation on a
metabolite-by-metabolite level. Here, we performed analyses of variance for each of the 945
blood metabolites that were robustly detected across a cohort of 2,049 individuals, while
controlling for a number of relevant covariates, like sex, age, and genetic ancestry. Over 60% of
the detected blood metabolites were significantly associated with either host genetics or the gut
microbiome, with more than half of these associations driven solely by the microbiome and
around 30% under hybrid genetic-microbiome control. The variances explained by genetics and
the microbiome for each metabolite were indeed largely additive, although subtle, but
significant, non-additivity was detected. We found that interaction effects, where a metabolite-
microbe association was specific to a particular genetic background, were quite common, albeit
with modest effect sizes. The outputs of our integrated genetic-microbiome regression models
provide novel biological insights into the processes governing the composition of the blood
metabolome. For example, we found that unconjugated secondary bile acids were solely
associated with the microbiome, while their conjugated forms were under strong host genetic
control. Overall, our results reveal which components of the blood metabolome are under strong
genetic control, which are more dependent on gut microbiome composition, and which are
dependent upon both. This knowledge will help to guide targeted interventions designed to alter
the composition of the blood metabolome.

Introduction

The human blood metabolome is shaped by a combination of intrinsic and extrinsic forces and
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constitutes the primary resource pool for human metabolism. While the composition of the
plasma metabolite pool is strongly driven by diet, lifestyle, and the ecology of the gut microbiota,

the fate of individual metabolites in the blood is often tightly regulated by host genetics *.

Genetic variants are known to alter the human blood metabolome in several disease-relevant
contexts. For example, certain deleterious alleles impact cholesterol levels and contribute to
hypercholesterolemia, while another allele drives phenylalanine accumulation and leads to
phenylketonuria 2. The majority of genetic variants associated with blood metabolite levels
affect either enzymes or solute carriers, thus directly influencing an individual's ability to
produce, consume, secrete, or absorb small molecules >°. Many of the currently identified
genetic variants are pleiotropic 7, which indicates a vast interconnectedness of the metabolome

to different systems of the body.

Recent studies have identified the human gut microbiome as a major determinant of blood
metabolite variability 2. In this prior work, host genetics and gut microbiome composition were
found to associate with plasma metabolite levels in a largely orthogonal manner, which is
supported by the observation that, for the most part, host genetics and the gut microbiota do not
tend to associate strongly with one another °, even though a number of clear examples of

genome-microbiome associations have been shown %,

Despite these broad, multivariate regression results showing a global correspondence between
genomics, the microbiome, and the metabolome, little is known about how this maps onto
individual blood metabolites. While one might expect that the variation in metabolites produced
by bacteria in the human gut is mostly governed by the microbiota and that metabolites specific
to human metabolic processes are associated more with host genetics, there are examples, as
in the case of microbe-host co-metabolites like conjugated secondary bile acids 2, where the

story becomes more complicated.

Intestinal signaling, such as the activation of FXR and TGR5 receptors in the human gut, can
regulate glucose, insulin, cholesterol, and bile acid homeostasis ***¢. Furthermore, many
microbiome-derived metabolites are modified by hepatic enzymes and converted into a variety
of conjugated compounds, such as hippurate or polyamines. These multi-layer filters on
microbe-host co-metabolism make it challenging to map blood metabolites to potential microbial

precursors 72°. For example, blood cholesterol levels are affected by host genetic variants, but
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69 they can also be regulated through intestinal signaling, involving the production of secondary
70 Dbile acids by gut commensals, or through gut microbial cholesterol dehydrogenases that funnel
71 host cholesterol into fecal coprostanol 272, Thus, even though host genetics and the

72 microbiome appear to have largely orthogonal effects on the blood metabolome as a whole,

73 they nonetheless act on an overlapping set of metabolites, potentially explaining independent
74 components of the variance of these compounds.

75

76 Additionally, even in the absence of strong heritability of human gut commensals, there are key
77 examples where genetics and the microbiome may interact in particular disease conditions,

78 such as cystic fibrosis #*. This raises the question of whether there are instances where

79 microbiome-metabolome associations are modulated by the genetic background of the host in a
80 similar manner as other gene-environment interactions #°, where a genetic variant may augment
81 or attenuate an individual’s risk of developing a particular disease when exposed to a specific
82 environmental risk factor.

83

84 Here, we studied variability in plasma metabolite abundances in a cohort of 2,049 healthy

85 individuals from the Pacific West of the US. We find extensive interplay between the genetic and
86 gut microbial determinants of individual metabolite levels in the blood, which provides deep

87 insights into the microbe-host co-metabolisms that govern the composition of the human blood
88 metabolome.

89

90 Results

91

92 Identifying plasma metabolites associated with genetic features only, gut microbiome

93 features only, or with both genetic and microbial features

94

95 To identify associations between host genetics and individual circulating blood metabolite levels,

96 we performed genome-wide association analyses on 7.68 million common variants (Minor Allele

97 Frequency = 1%) in 2,049 individuals for each of the 945 detected blood metabolites. A total of

98 299 metabolites of the 945 tested (31.6%) were associated with one or more of the 389

99 independent lead variants that passed the genome-wide significance threshold (p < 5.29 x 10™*;
100 see Methods and Fig. S1). Of these 389 variants, 123 were in intergenic regions and 266

101 variants mapped to 166 genes, including those associated with inborn errors of metabolism
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102 such as ACADS, MTHFR, DMGDH, and ETFDH. Potential loss-of-function consequences were
103 predicted for three variants: stop gained for rs183603441 in HYKK, stop lost for rs358231 in
104 GBAS3, and a splice donor variant for rs114286107 in AGXT2. Missense mutations were

105 predicted for 40 variants, affecting 74 metabolites. However, the majority of the metabolite-

106 associated variants found within genes were synonymous.

107

108 Comparison with associations from previous metabolomics studies and the GWAS catalog

109 revealed 6 novel genomic loci that influence metabolite levels. These novel metabolic

110 quantitative trait loci (MQTL) were associated with 7 metabolites. In particular, lactosylceramide
111 lactosyl-N-nervonoyl-sphingosine (d18:1/24:1) was associated with lead variants rs3752246 (P
112 =8.5x107?) located in ABCA7 and rs12979724 (P = 8.5 x 10*?) located near CNN2. rs3752246
113 is a missense variant and has been previously identified as a risk variant for late-onset

114  Alzheimer's disease >, To test whether these two traits share the same causal SNP at this
115 genomic locus, we performed colocalization analysis and found the posterior probability of

116 causal SNP sharing to be 99.6% (see Materials and Methods). Prior studies have identified

117 altered levels of ceramides in the blood and brain of individuals with Alzheimer's Disease, with
118 the d18:1/24:1 ceramide showing a strong and robust association with Alzheimer’s Disease in a
119 recent meta-analysis *-**. Our results suggest a possible shared genetic architecture underlying
120 lactosyl-N-nervonoyl-sphingosine (d18:1/24:1) levels and late-onset Alzheimer's disease.

121

122  Associations with more than one metabolite were identified for 82 of the 389 significant lead
123 variants (21.1%), revealing the extent of pleiotropy. The effect sizes of pleiotropic variants are
124 generally higher than non-pleiotropic variants (P = 3.67 x 10%; two-sided Mann-Whitney U-test),
125 while the distributions of minor allele frequency were similar between the two types of variants.
126 Overall, the 82 pleiotropic lead variants were associated with 186 metabolites (62.2% of all

127  significant genetically-associated metabolites). Four variants (rs4149056, rs1047891,

128 rs148982377, and rs11568824), of which rs4149056 and rs1047891 are missense variants,
129 were each associated with more than 10 metabolites. rs4149056 in SLCO1B1 (solute

130 transporter in liver) was associated with 19 metabolites, including primary and secondary bile
131 acids, conjugates of polyunsaturated fatty acids, and free fatty acids. rs1047891 in CPS1

132 (mitochondrial enzyme involved in the urea cycle) was found to be associated with 11

133 metabolites, many of which were conjugated to glycine and glutamine moieties. rs148982377 in
134 ZNF789 and rs11568824 in ZSCAN25 (transcription factors) were associated with the same set

135 of 11 steroid hormone metabolites, primarily conjugates of DHEA and androsterone.
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136

137 Analysis at the gene level reveals a further degree of pleiotropy as well as polygenicity. Using
138 MAGMA *, we identified associations between genes and metabolites, accounting for linkage
139 disequilibrium. 242 metabolites were associated with at least one gene, with 351 significant
140 genes identified in total (P < 9.48 x 10°). Of these, 128 genes (36.47%) were associated with
141 more than one metabolite. Individual pleiotropic genes tend to be associated with metabolites
142  with similar biochemical properties, providing insights into unidentified metabolites. For

143 example, the gene cluster of UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A?,

144 UGTI1A8, UGT1A9, and UGT1A10 was associated with 13 metabolites, including bilirubin,

145 biliverdin, and eight unidentified compounds. These genes encode UDP-

146 glucuronosyltransferase (UGT) enzymes, which metabolize bilirubin 33, It was later determined
147 by Metabolon that the eight unidentified compounds were degradation products of bilirubin. We
148 also observe instances of polygenic associations among many metabolites. For example, five of
149 the 53 metabolites associated with the fatty acid desaturase (FADS) gene cluster were also
150 associated with the hepatic lipase gene LIPC. We also observed shared genetic architecture for
151 other combinations of blood metabolites and complex traits. For example, we found

152 associations between the missense variant rs1260326 in GCKR with mannose (P = 1.2 x 10*)
153 and 1-carboxyethyl-valine (P = 2.9 x 10'*"). rs1260326 has been identified as a risk variant in a
154 genome-wide association meta-analysis of type 2 diabetes and Crohn's disease *.

155 Colocalization analysis of these four traits identified sharing of a causal SNP at this locus (with
156 posterior probability > 0.9).

157

158 In order to identify associations between the gut microbiome and circulating blood metabolite
159 levels, we performed regressions using centered-log-ratio (CLR) transformed bacterial genus-
160 level abundances as independent variables, while correcting for sex, age, sex-age interactions,
161 BMI, and genetic kinship (i.e., the first 5 principal components of the genetic distance matrix). A
162 majority of the tested metabolites had significant associations with at least one bacterial genus
163 in the gut microbiome (522/945 = 55.2%, with FDR-corrected p<0.05). Here, the average

164 fraction of explained variance (R?2) was slightly lower when compared to genetic associations
165 (mean R2 of 0.04 and 0.09 for microbiome and host genetic features, respectively).

166

167 The blood metabolites with the largest fraction of variance explained by microbial features were
168 dominated by compounds involved in bacterial metabolism of aromatic and phenolic

169 compounds, such as cinnamoylglycine, hydrocinnamate, hippurate, and phenylacetylglutamine
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170 (all Rz>0.2, Fig. 1D). Catabolism of phenylalanine and phenylacetate to cinnamate and

171 benzoate is exclusive to the microbiome and is conspicuously absent in germ-free mice **%’.
172 Hippurate is formed in the liver by conjugating benzoate to a glycine and blood levels of

173 hippurate have been positively associated with gut microbiome alpha-diversity % and with

174  overall metabolic health *.

175

176 Additionally, we found several products of bacterial protein fermentation, such as p-cresol

177 derivatives and the tryptophan breakdown product indolepropionate, associated with the gut
178 microbiome (Fig. 1D). Furthermore, we found that all secondary bile acids identified in plasma
179 were significantly associated with the gut microbiome (FDR-corrected p<0.05), which is

180 expected because primarily bile acids are deconjugated into secondary bile acids by bile salt
181 hydrolases expressed by gut commensal bacteria .

182

183 Genetic and microbial factors additively contribute to explained variance in blood

184 metabolite abundances

185

186 We identified a total of 594 out of 945 plasma metabolites (62.7%) that were associated with
187 either genetic factors, microbial factors, or both (Fig. 1A-B). Most of these metabolites (522)
188 were significantly associated with the microbiome. 29.6% of these metabolites showed “hybrid”
189 associations, meaning they were associated with genetic as well as microbial factors (Fig. 1A-
190 B). In particular, we found that about % of all metabolites with a significant genetic association
191 also showed a microbial association (i.e., 176 of 248 metabolites associated with genetic

192 variants). Conversely, only ¥ of all metabolites with a microbiome association also showed a
193 hybrid association with host genetics. Consistent with the average explained variances of

194 metabolites reported above for genetics and the microbiome, hybrid metabolites with particularly
195 large explained variances (i.e., >20%) showed a tendency to have higher genetic R? values than
196 microbial R2 values (see Fig. 1B and Fig. 2A).

197

198 In order to test whether genetic and microbial factors contained redundant information, we

199 compared a joint genetics-microbiome model to individual genetic and microbial models. If the
200 overlap in variance explained between genetic and microbial feature sets was large, the joint
201 model R2 value would be substantially smaller than the sum of the individual model R2 values
202 (see Fig. 2A). Although we found that the difference in R2 between the joint model and the sum

203 of the individual model R2 values was statistically significant across a very large number of
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204 models, the magnitude of this difference was extremely small (median difference in R2<0.0014),
205 indicating that genetics and the microbiome explain nearly exclusive components of the

206 variance for a given metabolite. This result is consistent with prior work showing that the

207 variances in the blood metabolome explained by the microbiome and host genetics were largely
208 orthogonal *°. However, here we demonstrate that this is not only true globally, but at the

209 individual metabolite level as well.

210

211 Finally, we investigated whether the genetic background of the host could modulate

212 microbiome-metabolite associations (see Fig. 3A). To this end, we tested all genetic variant /
213 bacterial genus / metabolite triplets, filtering for only those genetic variants or genera that were
214  previously associated with at least one metabolite (i.e., 16,905 triplets in total). We employed a
215 strategy similar to gene-environment interaction studies, using the CLR transformed

216 abundances of microbial genera as the environmental variable, while adjusting for covariates
217 (see Methods) *. 207 interaction effects were deemed significant under an FDR-corrected p-
218 value cutoff of 0.05, involving 49 distinct metabolites. Though gene-microbiome interactions
219 were quite common, they only explained very small fractions of plasma metabolite variability
220 (mean R2?=0.005). The amount of explained variance by the interaction terms tended to correlate
221 negatively with variance explained by the genetic variant itself (Fig. 3B, Pearson’s rho=-0.43,
222 p=6.8e-11).

223

224  Gene-microbiome interactions were significantly enriched in metabolites involved in the urea
225 cycle, histidine metabolism, and fatty acid metabolism (Fig. 3C, one-sided hypergeometric test,
226 FDR-corrected p<0.05) and also showed enrichment in the IG2F gene (insulin-like growth factor
227 2) and two overlapping loci on chromosome 2 (Fig. 3E, one-sided hypergeometric test FDR-
228 corrected p<0.05). No enrichments in bacterial phyla, genera, or families were observed (Fig.
229 3D). The highest fraction of explained variance for these interaction terms was observed for a
230 handful of distinct triplets, including the metabolites homoarginine, 2-aminooctanoate, and 1-
231 stearoyl-2-arachidonoyl-GPC. Low levels of homoarginine are associated with a higher risk of
232 cardiovascular disease “>** and we observed a negative gene-microbe interaction between the
233 missense variant rs1047891 in the CPS1 gene (urea cycle) and several genera in the

234 Ruminococcaceae family, where the genus abundance tended to show a negative correlation
235 with the plasma homoarginine abundance only in heterozygous individuals carrying the C - A
236 minor allele (Fig. 4).

237
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238

239 Genetics strongly associated with the fate of conjugated, but not unconjugated,

240 secondary bile acids

241

242 Having mapped plasma metabolite variability to genetic and microbial factors, we now asked
243 whether the observed partitioning of variances explained may change along pathways that
244  involve host-microbe co-metabolisms. To this end, we investigated the metabolism of secondary
245 Dbile acids. Secondary bile acids are formed in the large intestine via microbial deconjugation of
246 primary bile acids, reabsorbed into the bloodstream via the portal vein, and further metabolized
247 inthe liver *. Thus, secondary bile acid levels in the bloodstream are influenced by both the
248 microbiome and the host. We investigated whether individual bile acid species variances were
249 predominantly explained by genetic factors, microbial factors, or both.

250

251 While unconjugated secondary bile acids were exclusively associated with the gut microbiome,
252 5 out of 6 detected secondary bile acid conjugates fell into the hybrid class (Fig. 5A). In

253 particular, plasma deoxycholate abundances showed no significant genetic contribution,

254  whereas more than 40% of the variance in the conjugates deoxycholate glucuronide and

255 deoxycholate sulfate was explained by host genetics (Fig. 5B). Other glucuronidated non-bile-
256 acid compounds, such as p-cresol glucuronide, did not show this pattern (see Fig. 1D).

257 Modifications like glucuronidation or sulfation usually occur in the liver and are used to mark
258 metabolites for excretion in feces or urine *“°. These results suggest that the clearance of

259 conjugated secondary bile acids from the body is under strong genetic control.

260

261 All but one hepatically modified secondary bile acid showed associations with both genetic and
262 microbial features. The one exception was glycochenodeoxycholate glucuronide, which was
263 only associated with genetics and not with the microbiome, even though the unconjugated form,
264 glycochenodeoxycholate, was only associated with the microbiome (Fig. 5A). The genomic
265 variant rs4149056 was associated with 4 of the 6 modified secondary bile acids and has been
266  shown previously to affect the abundance of bile acids in plasma *’ (see Fig. 5B). This variant is
267 located in the solute carrier protein SLCO1B1, which is expressed in the liver *® and transports
268 secondary bile acids, with a preference for sulfated bile acids and bile salts *°. Several other
269 variants in SLCO1B1 were associated with secondary bile acid derivatives. We also identified
270 several variants in the SLCO1B3-SLC1B7 gene cluster that mostly affected

271 glycochenodeoxycholate glucuronide plasma abundances, and we found several variants
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272 located on chromosome 4, one in the TMPRSS11E serine protease and several variants without
273 an associated gene identity, that specifically affected deoxycholate glucuronide levels (Fig. 5B).
274

275 Thus, whereas cross-sectional variation in unmodified secondary bile acid levels were not

276 explained by host genetic variation, plasma abundances of several secondary bile acid

277 conjugates were significantly associated with a diverse set of compound-specific genetic

278 variants on chromosomes 4 and 12. Additionally, we observed that association patterns with
279 Dbacterial genera changed when comparing unmodified deoxycholate to deoxycholate

280 glucuronide (Fig. 5C). Deoxycholate showed mostly positive associations, for instance with

281 Bacteroides, Phocea, and Lachnoclostridium, whereas deoxycholate glucuronide showed

282 mostly negative associations with several genera in the Ruminicoccaceae family (Fig. 5C).

283

284 Sphingosines and ceramides show a range of genetic, microbiome, and hybrid

285 associations

286

287 We next asked whether hybrid associations would also be common in another disease-relevant
288 class of blood metabolites: ceramides. High ceramide levels have been shown to be associated
289 with insulin resistance, hypercholesterolemia, liver steatosis, and the formation of lipid rafts 5°-°4,
290 Furthermore, some classes of ceramides in the blood increase the risk for late-onset

291 Alzheimer's disease, as they are neurotoxic and induce apoptosis 3*°°%¢, Ceramides are the

292 simplest of the sphingolipids and are formed either by de novo synthesis from sphingosine or by
293 hydrolysis of sphingomyelin molecules °’. While ceramides are rarely found in bacteria, many
294  Dbacteria in the Bacteroidetes phylum can synthesize sphingolipids, which were shown to be
295 taken up and processed by human epithelial cells in vitro *°. Thus, we asked whether variation in
296 ceramide and sphingosine derivatives levels in blood was significantly explained by microbial
297 genera, host genetic factors, or a combination of both.

298

299 We observed a large degree of heterogeneity in variance partitioning in ceramide and

300 sphingosine molecules (Fig. 6). Variance in sphingosine itself was only weakly explained by the
301 composition of the gut microbiome (R2=0.01), with alpha-diversity as the only significant

302 microbiome-related association. However, other intermediates in ceramide synthesis, such as
303 sphinganine derivatives, showed stronger microbiome and genome associations (i.e. up to 5%
304 of variance explained; Fig. 6A). Ceramides showed a broad range of explained variances.

305 Whereas most ceramides were associated with the gut microbiome, a small subset had
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306 additional genetic components to their variances, such as lactosyl-N-nervonoyl-sphingosine and
307 ceramide (d16:1/24:1, d18:1/22:1), both of which had more than 5% of their variation explained
308 Dby genetic factors. Both of these lipid species highlighted above are examples of very long-

309 chain fatty-acyl sphingolipids. While shorter fatty acids (<C18) are prevalent in the human diet
310 *9 often serving as preferential substrates for ceramide synthesis by some gut microbes ©°,

311 longer chain fatty acids, such as nervonic acid (24:1), are often the product of elongation by
312 host enzymes before being incorporated into sphingolipids, and are found primarily in brain

313 tissue®. In summary, we observed broad heterogeneity in the fraction of variance explained by
314 the microbiome and host genetics, where a difference in the fatty acid chain length could shift a
315 ceramide from being solely associated with microbial genera (i.e. shorter chains) to those

316 mostly associated with host genetics (i.e. longer chains).

317 Discussion

318 In this study, we partition the cross-sectional variance explained in individual blood metabolite
319 levels into their host genetic and gut microbiome components, across a population of 2,049

320 generally healthy individuals. Prior studies have established that the plasma metabolome is
321 intimately connected to host genetics as well as to the gut microbiome, and that overall genetic
322 and microbial influences on the metabolome appear to be orthogonal. However, it has been
323 unclear as to whether or not genetics and the microbiome act on mutually exclusive sets of

324 metabolites or act simultaneously on individual metabolites. Most of the detected blood

325 metabolites (522/948) showed significant associations with the gut microbiome, which is

326 consistent with prior work. Hybrid genome-microbiome contributions were common and affected
327 about 30% of all metabolites associated with either host genetics or the microbiome. We

328 observed that 3 in 4 metabolites with a significant association with host genetics had additional
329 associations with the gut microbiome. Thus, the majority of blood metabolites associated with
330 host genetics include significant hybrid associations with the gut microbiome. Unlike the set of
331 metabolites associated with host genetics, only 1 in 3 metabolites associated with the

332 microbiome showed an additional hybrid genetic component to their variance. Thus, while both
333 genetic and microbiome variation are important to explaining variation in the blood metabolome,
334 the microbiome (and the myriad factors correlated with variation in the microbiome, like diet and
335 lifestyle) appears to be the dominant driving force.

336

337 Additionally, we found some evidence for gene-microbiome interactions, where a particular

338 metabolite-microbiome association was modulated by the genetic background of the host. In
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339 general, those interactions only explained small fractions of metabolite variance (<2%).

340 However, this may be a consequence of the generally low prevalence of the minor alleles for the
341 affected genetic variants. These interactions often appear to result from relatively strong

342 associations within the minor allele group, but we have limited numbers of these minor allele
343 carriers to assess these associations robustly. For instance, for homoarginine, we observed a
344  strong negative correlation with Ruminicocacceae specific to the heterozygous minor allele

345 background, where low levels or absence of Ruminicocacceae in a minority of the heterozygous
346 minor allele population was associated with homoarginine levels close to what was observed in
347 the homozygous major allele carriers. Thus, genetically-determined deviations from a particular
348 quantitative trait may be modulated or even induced by a particular microbial community

349 composition in the gut. These kinds of genome-microbiome interaction effects could help guide
350 the design of microbiome-targeted therapeutics that mitigate host genetic disease risk.

351

352 Prior studies of microbe-host co-metabolites derived from microbial precursors in blood, like
353 hippurate or p-cresol sulfate (i.e., hepatically modified forms of microbially-derived metabolites),
354 hinted that the cross-sectional variance in these molecules might only be associated with the
355 microbiome and not with host genetics 2823 Here we show that those observations do not
356 extrapolate to all microbe-host co-metabolites. Indeed, we found that much of the cross-

357 sectional variation in many metabolites derived from gut microbial precursors was explained by
358 host genetics. For example, while unconjugated secondary bile acids in the bloodstream are
359 only associated with the gut microbiome, their glucuronidated or sulfated derivatives, formed in
360 the liver, were strongly influenced by host genetic variation. Most of the variance in

361 deoxycholate glucuronide across the current study cohort could be explained by a combination
362 of genetic and microbial factors, while unconjugated deoxycholate was solely associated with
363 the microbiome. Deoxycholate and deoxycholate glucuronide both showed associations with the
364 microbiome, but these associations were with different sets of bacterial genera. Glucuronidation
365 facilitates excretion into urine and feces and prior work in rats has shown that glucuronidated
366 bile acids are reabsorbed less efficiently than unmodified secondary bile acids in the intestine .
367 The gut metagenome encodes a variety of B-glucuronidases ¢ which likely enable gut

368 commensals to use these bile-acid-conjugated-glucuronides as a carbon source. Conversely,
369 free secondary bile acids can be toxic to many bacterial taxa ®’. Thus, bile acids can directly
370 drive changes in the gut microbiome, either by acting as carbon sources that promote growth or
371 as toxic compounds that inhibit growth.

372
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373 Another intriguing finding from our analyses was the variable association of certain plasma
374  sphingolipids with either host genetics or the gut microbiome, depending on the fatty-acyl

375 groups comprising each lipid species. Ceramides with a <C18 fatty-acyl group showed stronger
376 correspondence to the gut microbiome, consistent with the high prevalence of these fatty acids
377 inthe diet * and their preferential incorporation into ceramides by certain gut taxa *°. On the
378 other hand, ceramides with very long chain fatty-acyl groups (22:1,24:1), that are most

379 abundant in brain tissue and often synthesized through elongation by host enzymes ¢, showed
380 a stronger correspondence with host genetics. Importantly, ceramides with different fatty-acyl
381 chain lengths have been implicated in a number of human diseases, including Alzheimer’s

382 disease, depression and mood disorders %, Distinguishing which ceramides are under the
383 control of diet and the gut microbiome versus genetic predisposition may aid in the design of
384 new and improved precision therapeutics.

385

386 It should be noted that the current study only included individuals from the Pacific West of the
387 U.S. who were predominantly of European descent. While our results are consistent with results
388 obtained from cohorts in Israel and Sweden *°, future studies in more diverse populations will
389 be required to see whether or not the reported observations replicate more broadly. Finally,
390 while we included many highly relevant covariates in our regression analyses (i.e. age, sex,
391 BMI, and genetic ancestry), many of the observed microbe-metabolite associations are likely
392 confounded with lifestyle and dietary habits, which were not comprehensively tracked in the
393 current study population and can strongly influence the composition of the gut microbiome.
394

395 Overall, our analyses show that the plasma metabolome is influenced by a mixture of genetic
396 and microbial factors, where the abundance of individual microbially-derived metabolites

397 absorbed in the gut is often affected additively by both host genetic variation and by variation in
398 the ecology of the gut microbiome. Furthermore, many microbe-metabolite associations are
399 dependent upon the host genetic background. These hybrid genome-microbiome regression
400 models provide unique insights into the forces underlying variation in the human blood

401 metabolome and can suggest possible therapeutic strategies. Finally, we suggest that disease
402 relevant blood metabolites strongly associated with the microbiome may be modifiable through
403 dietary, probiotic, prebiotic or lifestyle interventions, whereas metabolites under genetic control
404 may require pharmacological interventions that target host metabolic pathways. Understanding
405 which of these circulating small molecules fall predominantly under host versus microbiome

406 control will help to guide interventions designed to prevent and/or treat a range of diseases.
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410 Materials and Methods
411

412 Institutional Review Board Approval for the Study

413 Procedures for this study were reviewed and approved by the Western Institutional Review
414  Board with the Institutional Review Board (IRB) study number 20170658 for the Institute for
415 Systems Biology and 1178906 for Arivale.

416

417 Cohort Description

418 All study participants were subscribers of the Arivale Scientific Wellness program and provided
419 consent and research authorization allowing the use of their anonymized, de-identified data in
420 research. The Arivale program is described in detail in Zubair et. al. ™. In brief, participants

421 signed up for a comprehensive deep phenotyping program coupled with personalized data-
422 driven wellness coaching in order to improve overall health and wellness. Baseline blood draws
423 were taken at the first in-house visit and paired with at-home fecal sampling. Metabolomics and
424  microbiome measurements taken from the biofluids were described previously in Wilmanski et.
425 al. ® A subset of the participants opted for longitudinal sampling.

426

427 Genome-wide association analysis

428 DNA from the 2,049 participants was extracted from whole blood samples by Covance

429 (Redmond, WA) using a standardized protocol. Whole genome sequencing was performed by
430 Wuxi, Inc. (Shanghai, China) in a CLIA-certified laboratory. Extracted libraries were sequenced
431 using an HiSeq X sequencer (Illumina, San Diego, USA) with 150bp libraries and aiming for
432 >30x coverage. Basecalling and conversion to raw FASTQ files was performed using the

433 lllumina Basespace software. Raw reads were aligned to the hg19 human reference genome
434 with BWA 0.7.12. The GATK HaplotypeCaller with GATK 3.3.0 was used to call individual

435 variants. This included indel local realignment followed by base quality recalibration. This

436 vyielded a set of around 7.68M measured SNPs.

437

438 To account for genetic structure and potential cryptic relatedness in the cohort, we used a linear
439 mixed model to test for associations between genetic variants and metabolite levels. For each
440 metabolite, we performed a genome-wide association study using FastGWA using the hg19
441 genetic map . Metabolome genome-wide significance was called using the Bonferroni

442  corrected p-value threshold of 5.29e-11 (5e-8 / #metabolites) where 5e-8 is the commonly used
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443 threshold for genome-wide significance ™. Linkage disequilibrium scores were taken from the
444 1000 Genomes project * and used as additional covariate in the genome-wide association

445  study as well as in gene associations calculated with MAGMA *,

446

447 Gut Microbiome Sequencing

448 Fecal samples were collected using a proprietary at-home swap kit (OMNIgene Gut,

449 DNAGenotek, USA) to maintain DNA conservation and longevity. 250uL of homogenized stool
450 from each sample were subsequently used for DNA extraction using a MoBio PowerMag Soil
451 DNA isolation kit (QIAGEN, Germany) using the KingFisher Flex instrument. DNA

452  concentrations in each sample were quantified with a QuBit (ThermoFisher, USA) and purity
453 was assessed by measuring the A260/A280 absorbance ratio. Amplification and library

454 preparation were performed by external providers using custom and optimized protocols by
455  either amplifying the V4 region (SecondGenome, USA) or the V3-V4 region (DNAGenotek,
456 USA) of the 16S gene.

457

458 Sequencing was performed using a MiSeq (lllumina, USA) using either a paired-end 250bp
459 protocol (SecondGenome) or a paired-end 300bp protocol (DNAGenotek). Basecalling was
460 performed using the lllumina Basespace platform which removed the added phiX reads and
461 provided the final FASTQ files used for downstream analysis. Quality of the sequencing reads
462 was assessed by manual inspection of the error rate across sequencing cycles and appropriate
463 length cutoffs of 250bp for the forward reads and 230bp for the reverse reads were chosen
464 based on the profiles. Reads with more than 2 expected errors under the Illlumina error model
465 were removed from the analysis along with reads containing ambiguous base calls (“N”

466 nucleotides). More than 97% of reads passed those filters yielding a mean of around 200,000
467 reads per sample.

468

469 Filtered and truncated reads were then used to infer amplicon sequence variants using DADA2
470 . Here error profiles were learned for each sequencing run separately. The resulting ASVs and
471 respective counts were merged and chimeras were removed using the “consensus” strategy
472 implemented in DADA2 which removed around 16% of all reads. Taxonomy assignment of
473  ASVs was performed by using the naive Bayes classifier in DADA2 with the SILVA database
474  (version 128). Species assignments were performed by exact match of the inferred ASVs with
475 the reference 16S gene in SILVA where possible. About 90% of reads could be classified down

476 to the genus levels and 32% of reads could be classified down to the species level. The total set
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477 of samples was then filtered for those individuals that also had metabolomics data and/or whole
478 genome shotgun sequencing available. Where several microbiome time points were available
479 we used the one closest to the blood draw used for metabolomics. Low abundance taxa, with
480 less than 10 reads on average or appearing in less than 50% of all samples, were removed from
481 the data set.

482

483 Metabolite-microbiome associations and confounder adjustment

484 Genus-level read counts were scaled using the centered log-ratio (CLR) transform and

485 standardized across the 1,163 samples. Metabolite abundances were log-transformed and

486 standardized which yielded good similarity to a normal distribution as judged by a QQ-plot.

487

488 Transformed and scaled metabolite and bacterial genera abundances were then regressed

489 against the set of confounders and the residuals were saved as new dependent variables. For
490 the confounder adjustment we chose the most common intrinsic factors that would affect blood
491 metabolite and fecal microbe abundances. Firstly, we corrected for sex, age, and BMI by

492 including coefficients for biological sex, age, age?, sex:age, and sex:age? interactions, and BMI.
493 Additionally, we included covariates for common batch effects like the season of the year the
494 samples were obtained, the metabolomics batch (each sample in a batch was processed

495 together), and the vendor for the microbiome sample (DNA Genotek or Second Genome).

496 Finally, we also included a continuous measure of genetic ancestry given by the first 5 principal
497 components from an analysis of 100,000 linkage disequilibrium corrected frequent SNPs (minor
498 allele frequency > 5%) calculated with the PC-AIR and PC-Relate methods "®’. The residuals
499 were used for all further analyses as well as visualizations and analyses of variances.

500 After this we performed individual linear regressions between all metabolite-genus pairs to find
501 significant associations between individual metabolites and bacterial genera. P-values were
502 obtained using F-tests and corrected for false discovery rate using the method of Benjamini and
503 Hochberg . We then retained the significant associations with a FDR cutoff q<0.05. We also
504 performed the same analysis with alpha-diversity as the independent variable or with alpha-
505 diversity as a covariate to the CLR-transformed bacterial genus abundance to verify that

506 individual genus-level associations were not due to an association with alpha-diversity alone,
507 which we did not observe to be the case.

508

509 Analysis of explained variances (R?)

510 Explained variances (R2) for each metabolite were obtained by ordinary least squares models
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511 only containing features that were significantly associated with each metabolite individually.

512 Ergo, we only include genus abundances for those genera with a FDR-corrected g<0.05 in the
513 previous metabolite-microbe associations and only those single nucleotide variants that were
514 identified as significant in the previous genome-wide association study for the particular

515 metabolite. This was done to avoid inflation of the explained variances, as adding random

516 variables to a regression model tends to increase the explained variance. We performed

517 multilinear regressions with only microbiome features, only genetic features, and both genetic
518 and microbiome features to quantify the variance of the transformed and confounder-adjusted
519 metabolite abundances that was explained by each feature type individually and jointly.

520 Consequently, it should be noted that the explained variances in this manuscript refer to the
521 metabolite abundance variance after removing components of the variance explained by the
522 covariates listed above. As such, these R? caclulations pose an upper bound of the explained
523 variance of the raw metabolite abundance but are also independent of common confounders,
524 such as age, sex, and BMI and thus should be more generalizable to other populations

525 structures.

526

527 Overlap between microbiome and genetic features was quantified as the difference between the
528 sum of R2 of the individual feature type models and the joint model R2 (Rg[microbiome] +

529 R?genetics] - R¥joint]). In the case of complete independence of microbiome factors and

530 genetics, this difference would be zero and would become positive if there is partial or complete
531 overlap in the variances explained by the microbiome and host genetics.

532

533 Genome-microbiome interactions

534 For gene microbiome interactions we performed ordinary least squares regression of the form
535 m=By+B,b,u+B,s,+yb;s,+éc+e,

536 where m; denotes the scaled abundance of metabolite i, b; the scaled abundance of the bacterial
537 genus |, sk the ordinal versions of the allele on variant k (O - major allele, 1 - heterozygous minor
538 allele, 2 - homozygous major allele), c the vector of confounder covariates, and € a random

539 normally distributed variable with an expectation of zero. Significance of the interaction was then
540 evaluated by an F-test comparing the full model to a model with a fixed y=0. P-values from all
541 tested metabolite / variant / genus triplets were adjusted for false discovery rate using the

542 method of Benjamini and Hochberg and judged as significant with a FDR cutoff q<0.05. Even
543 though individual metabolite and bacterial genus abundances had been adjusted for

544  confounders previously, we still included them in this regression because the product bj*sx had
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545 not been adjusted for the same confounders. Also, to make our analysis computationally

546 feasible, we performed the regressions only for those metabolites, bacterial genera, and genetic
547 variants that had shown at least one significant interaction in the prior analyses.

548

549 Finally, post-hoc tests for microbe-metabolite interactions within sub-cohorts carrying a specific
550 allele were performed by Pearson tests on the product-moment correlation within each sub-
551 cohort and for those triplets that had shown significant interaction effects.

552

553 Data and Code Availability

554  Qualified researchers can access the full Arivale deidentified dataset supporting the findings in
555 this study for research purposes through signing a Data Use Agreement (DUA). Inquiries to
556 access the data can be made at data-access@isbscience.org and will be responded to within 7
557 business days. Jupyer notebooks and Python code for reproducing the regression models and
558 figures has been deposited at

559 hittps://github.com/Gibbons-Lab/2021_gene_environment_interactions.
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753 Figure 1. Study design and cross-sectional variances in metabolites explained by host
754 genetics, gut bacterial genera, or both. (A) The study comprised a metabolome-genome-wide
755 association analysis and a metabolome-microbiome-wide association analysis (regressions on
756 centered log-ratio transformed bacterial genus-level abundances) performed in the Arivale

757 cohort. Explained variance for a specific blood metabolite can be partitioned into host genetic
758 and microbiome associated components. (B) Fraction of variance (R2) explained by host genetic

759 or microbiome features across the 594 metabolites with significant associations with either the
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760 genome or the microbiome (FDR-corrected p<0.05). Specific sub-groups are annotated in the
761 plot, including metabolites only associated with host genetics, metabolites only associated with
762 gut genera, or metabolites significantly associated with both (hybrid). (C) Percentage of the 594
763 significant metabolites associated only with host genetics, only with the microbiome, or with both
764  (hybrid). (D) The 10 metabolites with the highest explained variance by either genetics only

765 (blue) or by the microbiome only (green).
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773 Figure 2. Metabolites associated with both genetics and the microbiome. (A) The 20

774 metabolites with the highest total R2 that were significantly associated with both host genetics
775 and the microbiome. Blue and green colored bars denote individual R2 values in genetics-only
776 and microbiome-only regression models, respectively. Gray bars denote R2 values from

777 regression using joined genetics and microbiome data. 0.9% of the variance in butyrylcarnitine
778 plasma abundance was explained by microbial features (i.e. too little to be visible in the barplot).
779 (B) R2values obtained by either adding individual contributions of genetics and the microbiome
780 (additive) or by performing a joint regression (joint). The difference between the two groups

781 indicates a small, but nonetheless significant, overlap in variance explained by genetics and the
782 microbiome. However, the variances explained by host genetics and the microbiome were

783 largely additive. Stars denote significance (*** - p<0.001).
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786 Figure 3. Gene-microbiome interactions. (A) Gene-microbiome interactions occur when the
787 correlation between a gut bacterial genus and a blood metabolite is itself conditional on a

788 specific allele. (B) R2 values for genetic associations and for the corresponding gene-microbe
789 interactions. Each dot denotes a single model containing both terms. Interaction terms and

790 genetics-only terms are negatively correlated (rho=-0.43, p=6.8e-11). (C) Pathway enrichment
791 analysis for metabolites with significant gene-microbe interactions. (D) Bacterial family-level

792 enrichment analysis for significant gene-microbe interactions. (E) Host gene enrichment

793 analysis for significant gene-microbe interactions. In (C-E) red circles denote prevalence in all
794  tested features (i.e., background prevalence) and blue triangles denote prevalence in only those
795 features with significant interaction terms. Stars denote significantly enriched features under a

796 one-sided hypergeometric test with Benjamini-Hochberg correction for multiple testing (* -

797  <0.05, ** - q<0.01, *** - 4<0.001).
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Figure 4. Gene-microbiome interactions in explaining variation in homoarginine levels.
(A) Homoarginine levels across the alleles of rs10447891 locus located in the CPS1 gene. (B)
Homoarginine levels plotted against centered log-ratio transformed genus-level abundances of
Ruminicoccaceae UCG-002 across all host genotypes. (C) Homoarginine levels against
centered log-ratio transformed genus-level abundances of Ruminicoccaceae UCG-002 stratified
by genotype. In (A-C) homoarginine abundances are log-transformed abundances adjusted for
common confounders, as described in Materials and Methods. In (B-C) “p” denotes the Pearson
Product-Moment correlation coefficient of the regression and “p” the p-value under a Pearson
correlation test. The solid line indicates the linear regression line and the shaded area is the
95% confidence interval of the regression. Associations were corrected for sex, age, age?,
sex:age, and sex:age? interactions, BMI, microbiome vendor, metabolomics batch, and the first

5 principal components of genetic ancestry.
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811
812 Figure 5. Host genetic and gut microbial associations with secondary bile acids. (A)

813 Explained variances for unconjugated secondary bile acids and hepatic secondary bile acid

814 conjugates. Purple and orange lines denote modifications of the same secondary bile acid. (B)
815 Genetic variants associated with secondary bile acid conjugates. Dark blue cells denote

816 associations that passed a genome-wide significance threshold in the GWAS. (C) Assaociations
817 between bacterial genera and secondary bile acids (both conjugated and unconjugated). Only
818 significant associations are shown (FDR-corrected and confounder-adjusted g<0.05). Fill colors
819 denote the correlation coefficients (see legend). Associations were corrected for sex, age, age?,
820 sex:age, and sex:age? interactions, BMI, microbiome vendor, metabolomics batch, and the first
821 5 principal components of genetic ancestry. * indicates compounds for which a standard is not
822 available, but Metabolon is confident in its identity; ** indicates a compound for which a

823 standard is not available, but Metabolon is confident in its identity.
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825 Figure 6. Host genetic and gut microbial associations with sphingosine and ceramides.

826 (A) Explained variances for sphingosine, sphingosine intermediates, and ceramides. (B) Genetic
827 variants associated with sphingosines and ceramides. Dark blue cells denote associations that
828 passed a genome-wide significance threshold in the GWAS. (C) Associations between bacterial
829 genera and sphingosines/ceramides. Only significant associations are shown (FDR-corrected
830 and confounder-adjusted g<0.05). Fill colors denote the correlation coefficients (see legend).
831 Associations were corrected for sex, age, age?, sex:age, and sex:age? interactions, BMI,

832 microbiome vendor, metabolomics batch, and the first 5 principal components of genetic

833 ancestry. * indicates compounds for which a standard is not available, but Metabolon is

834 confident in its identity; ** indicates a compound for which a standard is not available, but

835 Metabolon is confident in its identity.

836
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838 Figure S1. Genome-wide association p-values for variants associated with at least one
839 metabolite. Red dashed line denotes genome-wide significance (p < 5.29e-11).
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843 Supplementary Data

844
845 Table S1. R2 values for genetics and microbiome for the 594 metabolites with a significant

846 association.
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