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Abstract

Modern, high-density neuronal recordings reveal at ever higher precision how
information is represented by neural populations. Still, we lack the tools to un-
derstand these processes bottom-up, emerging from the biophysical properties of
neurons, synapses, and network structure. The concept of the dynamic gain func-
tion, a spectrally resolved approximation of a population’s coding capability, has
the potential to link cell-level properties to network-level performance. However,
the dynamic gain’s shape is co-determined by axonal and somatodendritic parame-
ters and the population’s operating regime. Previously, this complexity precluded
an understanding of any individual parameter’s impact. Here, we decomposed the
dynamic gain function into three components corresponding to separate signal
transformations. This allowed attribution of network-level encoding features to
specific cell-level parameters. Applying the method to data from real neurons
and biophysically plausible models, we found: 1. The encoding bandwidth of
real neurons, approximately 400Hz, is constrained by the voltage dependence
of axonal currents during early action potential initiation. 2. State-of-the-art
models only achieve encoding bandwidths around 100Hz and are limited mainly by
subthreshold processes instead. 3. Large dendrites and low-threshold potassium
currents modulate the bandwidth by shaping the subthreshold stimulus-to-voltage
transformation. Our decomposition provides physiological interpretations when
the dynamic gain curve changes, for instance during spectrinopathies and neurode-
generation. By pinpointing shortcomings of current models, it also guides inference
of neuron models best suited for large-scale network simulations.

Author summary

The dynamic gain function quantifies how neurons can engage in collective, network-
level activity, shape brain rhythms and information encoding. Its shape results from
a complex interaction between properties of different molecules (ion channels) and
cell compartments (morphology, resistance), and is so far only understood for the
simplest neuron models. Here we provide an interpretable analysis, decomposing
the dynamic gain based on the stimulus transformation steps in individual neurons.
We apply the decomposition to data from real neurons and complex models, and
attribute changes of the dynamic gain to specific sub- and suprathreshold processes.
Using this decomposition method, we reveal the relevance of subthreshold potassium
channels for ultrafast information encoding and expose the shortcomings of even
the state-of-the-art neuron models.
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Introduction

The brain’s computational abilities are realized by local networks of hundreds
to thousands of neurons, jointly encoding and processing information in their
population activity. Understanding how this collective activity emerges from the
individual cells’ properties is the key to link the neuroscience of cortical computation
to molecular and cell biology. It is, for instance, clear that the dynamics of action
potential (AP) initiation is shaping information encoding on the network level [1],
and the organelle supporting AP initiation, the axon initial segment (AIS) is a
hub of plasticity with an intriguing, highly specialized molecular composition and
nanostructure [2]. But a concept that connects AIS molecular structure to cellular
function to network performance is lacking. Similarly, neuron gross morphology
might impact encoding performance and possibly even cognitive abilities [3],
because large dendrites accelerate AP initiation and thereby enhance information
encoding capacity [4, 5]. Theoretical neuroscience developed an abstract concept,
the dynamic gain function, which does connect neuronal function to population
dynamics. If we can disentangle how ion channels, subcellular morphology and
synaptic time scales interact to shape this dynamic gain function, it becomes a
potent tool connecting molecular and cell biology to network neuroscience.

In the language of theory, the dynamic gain function is the linear response
function of a population of neurons receiving a common feed-forward input (Fig. 1A,
Methods) [6]. In practical terms, it captures the frequency preference of neurons,
their ability to tune-in to rhythmic activity in recurrent networks [7]. Dynamic
gain measurements characterize neurons in a working regime resembling in vivo

activity. This can reveal flexibility [8] or pathology in neuronal function that is
hidden to conventional measurements, including the impact of AIS restructuring
on population encoding [9]. Despite these clear advantages over conventional
electrophysiological characterizations, dynamic gain measurements have not been
widely adopted. We attribute this reluctance to two issues. First, dynamic gain
measurements follow a statistical concept and require the analysis of thousands of
spike times in relation to a stochastically fluctuating input. Second, there is no
trivial relation between dynamic gain features and cellular properties, which are
the focus of those electrophysiologists who could execute the measurements. Our
study provides the tools to address these issues, to achieve the desired connection
between cell- and network-level function.

Since the introduction of theory-driven, statistical characterization of cortical
neurons [10, 11], dynamic gain measurements have revealed unexpected neuronal
properties, such as a very wide encoding bandwidth [3, 5, 12–19] (but see [20]),
ultrafast population encoding [21], and surprisingly rapid and strong flexibility [8].
Ultrafast encoding is likely an important determinant of the brain’s exquisite
temporal performance [22] and has been previously suggested to underlie evo-
lutionary pressure [17]. The rapid re-tuning of the frequency preference of a
common interneuron class in the prefrontal cortex [8] could shape theta-gamma
cross-frequency coupling, a phenomenon thought to contribute to information
routing. However, so far we merely observed those properties of a population’s
dynamic gain. Only when we have a mechanistic understanding of how cellular
and molecular parameters interact with the ongoing activity to shape dynamic
gain, we can truly connect molecular and cellular research to network phenomena.

Three features have already been shown to influence dynamic gain. The first is
the cells’ passive morphology, including the position of the AP initiation site [23,24],
and the dendrite size [4, 18,25]. The second feature is the active dynamics of AP
initiation [26–31], mainly determined by the sodium channel voltage sensitivity.
A high voltage sensitivity allows for rapid AP initiation and thereby improves
AP timing precision, which further enhances the encoding ability in the high
frequency region. The third feature is the statistics of the neurons’ input [8,21,26],
which are influenced by the time scales of synaptic transmission as well as the
neuron’s working point, set by the brain state. It is this feature that underlies
rapid dynamic gain re-tuning in spike-rate adapting interneurons, but not in
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fast-spiking interneurons [8]. All three features interact to shape a populations’
dynamic gain and no single feature combination is required to achieve, for instance,
a wide encoding bandwidth. For example, human pyramidal neurons and mouse
fast-spiking interneurons, two cell types with vastly different dendrite sizes and ion
channel types, both achieve high-bandwidth encoding with cutoff frequencies above
500Hz [5, 8]. But although the relevance of those three features for dynamic gain
is established, there is no unifying theoretical approach to quantify their impact
and disentangle their interactions. This study seeks to provide such an approach
through standardized, unbiased comparison of models across working points and
an attribution of dynamic gain features to the different candidate mechanisms.

Here we introduce an analysis framework that guides not only the choice of
working points but also allows for a detailed attribution of dynamic gain features
in experimental and simulation data. Our dynamic gain decomposition follows the
physical signal transformation from input currents into spike times and largely
separates subthreshold processes from threshold dynamics. This enables us to
interpret dynamic gain features and relate them to the underlying biophysical
mechanisms, not only for simulated data, but also for recordings from cortical
pyramidal neurons. We study a biophysically plausible, multi-compartment model
with Hodgkin-Huxley type potassium and sodium channels, and find that the high-
bandwidth encoding is due to its type II excitability. A type I model counterpart
fails to reproduce ultrafast population encoding. The addition of a dendrite impacts
the dynamic gain primarily by shaping the impedance and only modulates the
bandwidth that is determined by the excitability type. Interestingly, we find that
the AP initiation dynamics limits the bandwidth in the experimental data, but
not the model.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2022.02.04.479104doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.04.479104
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

3

6

p
o
p
u
la

ti
o
n

ra
te

 ν
 (
H

z
)

common input
(feed-forward)

ENCODING

asynchronous input
(recurrent)

population firing pattern

50 ms

•••

DECODING

I(t)⊗IRF(τ)=ν(t) G(f)=
∼
∼
ν(f)
I(f)

Wang-Buszáki
model

leaky
integrate-and-fire

exponential
integrate-and-fire

2000

Eyal�s multi-com-
partment model

I(t)

A1 A2

C1 C2

B2

B1

ion channel properties

axon initial segment
 location

somato-dendritic
morphology

dynamic 
gain

?

?

?

stochastic input

sub-
threshold

current-to-voltage
filtering

supra-
threshold

axonal voltage

firing pattern AP time precision

-40

Va(V/s)
·

Vloc

Va(mV)V(mV)
-40

-200

200

V(V/s)
·

V

V·

f (Hz)

G(f) (norm.)

1 10 100 1000

0.1

1

1 10 100 1000

0.1

1

f (Hz)

G(f) (norm.)

V

V·

f (Hz)

G(f) (norm.)

1 10 100 1000

0.1

1

10

100

G
(f)

 (
H

z
/
n
A

)

1 10 100 1000
Frequency (Hz)

cell D18_4_16s2c2

100 µm

I(t) V(t)

500ms

10
0

p
A

5
0

m
V

V(t) 3ms

6
0

m
V

-3mV

Vloc

Vdetect

Figure 1: Physical signal processing steps guide dynamic gain decomposition.

A1 A population encoding scheme. Feed-forward input (green) diverges onto a re-
currently connected neuronal population. The dominating, asynchronous, recurrent
input causes weakly-correlated AP patterns. Nevertheless, the population rate can
faithfully reflect changes in the common input. A downstream neuron can detect this
signal, filtered through the population’s transfer function, the dynamic gain G(f). A2

Experimentally determined dynamic gain function of a layer 5 pyramidal cell, obtained
from 2,330 APs (data from [9]). Note the the wide bandwidth, and the maxima and
minima. Confidence interval (grey band) and noise floor (dashed) are obtained by
bootstrapping (see Models and Methods). B1 Evolution of neuron models’ phase plots,
from point neurons without initiation dynamics to Eyal’s multi-compartment model.
Locations of local minima during AP initiation are marked with dots and denoted as
Vloc. Normalized dynamic gain functions of the first three model variants are shown
next to the phase plots. B2 Schematic representation of neuronal signal transformation.
Distributed synaptic inputs drive current into the soma and axon; the axonal voltage
(Va) changes. For real neurons and biophysically plausible multi-compartment models,
various parameters shape these transformations, attribution of dynamic gain changes to
specific parameters is a challenge. C1 Globally, Eyal’s model displays irregular firing
patterns in response to stochastic stimuli. Locally, at AP onset, the initiation dynamics
varies, signified by the large spread in the delay between the last positive crossing of
Vloc and the AP detection voltage (0mV). C2 Decomposition of AP initiation process.
The transformation of somatic input into Va fluctuations at the AP initiation site can
be idealized as an effective impedance. Va(t) contains the information of firing pattern
(time intervals when Vloc can be reached) and the precise, sub-millisecond AP timing,
respectively determined by the subthreshold dynamics before Vloc and suprathreshold
dynamics afterwards. This decomposition can disentangle the functional effects of
neuronal properties on population encoding.
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Results

Decomposing dynamic gain provides subcellular resolu-

tion for the analysis of dynamic population coding.

Our decomposition of dynamic gain is motivated by the simplifications that
underlie the lineage of frequently used neuron models (Fig. 1B1). The simplest of
these models, the leaky integrate-and-fire (LIF) neuron, abstracts all subthreshold
dynamics as a low-pass filter governed by the membrane time constant, and all
suprathreshold dynamics as instantaneous. Its dynamic gain function G(f) can be
interpreted as a concatenation of a current-to-voltage transformation, captured by
the impedance Z(f), and a voltage-to-firing rate transformation, the spike gain
Gsp(f). Rewriting the definition of the dynamic gain, we have:
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= Z(f) ·Gsp(f), (1)

where Gsp(f) represents the firing frequency preference hidden in the firing pattern.
The exponential integrate-and-fire (EIF) model adds a suprathreshold AP

initiation dynamics. Once the membrane voltage passes the local minimum of
the phase plot at Vloc, the voltage derivative dV/ dt increases approximately
exponentially with voltage (Fig. 1B1). Between passing Vloc and reaching an
AP detection threshold Vdetect, the dynamics is determined by a mixture of the
intrinsic AP initiation current and the extrinsic stochastic stimulus, leading to
variable initiation delays (see example in Fig. 1C1). Adding the intrinsic dynamics
drastically changes the high-frequency limit of G(f) from a constant value for LIF
to a power law decay for EIF (Fig. 1B1) [26,27]. The simple structure of the EIF
model allowed Fourcaud-Trocmé and colleagues to relate the voltage dependence
of the initiation current to the bandwidth of G(f). Here we propose to study this
relation with a simple, phenomenological approach that is readily generalized to
models of arbitrary complexity. When we lower Vdetect towards Vloc, the influence
of the suprathreshold dynamics is minimized and we converge to the behavior of a
LIF-like model with a hard threshold and a flat gain curve. Therefore, the gain
decay of the EIF model is closely associated with the suprathreshold dynamics
after Vloc. In the general case, we obtain this gain decay as the ratio of two

dynamic gain curves, G0(f)
G(f)

, where the ’zero-delay’ dynamic gain G0(f) is obtained

with ’zero-delay’ APs detected already at Vloc, while G(f) is obtained with the
conventional, much more depolarized AP detection threshold. In other words, we
relate the encoding capability of a LIF-like model version to that of the full model
and capture the result in the spectrally-resolved gain decay.

The introduction of other ion channel types marks the next level of model
complexity, represented by conductance-based models, such as the Wang-Buszáki
model [32]. These additional dynamical variables enable AP repolarization and
richer neuronal dynamics, introducing different dynamical bifurcations at the AP
threshold. This allows for a variety of firing patterns and consequently for different
spike gain shapes. In spatially extended multi-compartment models (e.g. Eyal’s
model [4]), currents and voltage gradients between compartments increase the
complexity even further. The presence of various ion channels together with the
extended morphology results in a more complex current-to-voltage transformation
that we describe with an effective impedance Zeff(f), which also includes the
stimulus filtering along the path from the somatic stimulus source to the axonal
AP initiation site.

In summary, our decomposition approach establishes three G(f) components:
1) effective impedance Zeff(f), 2) zero-delay spike gain G0

sp(f) and 3) dynamic

gain decay G0(f)
G(f)

. The first two capture subthreshold influences on G(f), the third

captures the impact of AP initiation dynamics (Fig. 1C2). Dynamic gain is the
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product of these transformations:

G(f) = Zeff(f) ·G
0
sp(f) ·

G(f)

G0(f)
. (2)

For such a decomposition, we only require the waveforms of stimulus and membrane
voltage (Models and Methods). It can therefore be performed on neuron models of
arbitrary complexity and even on recordings from real neurons (Fig. 1B2). In the
next sections, we will analyze the functional effects of biophysical and morphological
parameters using experimental data and different variants of Eyal’s model, which
feature a relatively wide encoding bandwidth [4]. But first, Eyal’s model will be
characterized and studied at different working points.

Population encoding performance depends on neuron ex-

citability and working point.

We first examined the dynamical properties of the multi-compartment model
characterized by Eyal and colleagues [4], specifically the neuron model consisting
of only a soma and an axon but no dendrite. For comparison, we devised a model
variant that shares its morphology and is equipped with the same ion channel
types at the same densities and with the same voltage sensitivities. However, in
the new model variant, sodium channels activate and inactivate with a 10mV shift
towards more hyperpolarized potentials (Fig. 2A). In response to various constant
currents injected into the soma, the firing rate ν of the original model displays a
large discontinuity of about 32Hz upon reaching the rheobase, indicating that it is
a type II model. Its model variant, however, has a continuous F-I curve, indicating
it is a type I model (Fig. 2B, rheobase currents aligned at 0 pA).

We next examined the models’ response to stochastic input with a correlation
time τ = 5ms. Given that the firing rate has a strong impact on the population
encoding bandwidth [27], the firing rate is often fixed when different models or
stimulus conditions are compared (e.g [33]). Here, probing the two-dimensional
firing rate surface spanned by stimulus mean µI and standard deviation σI , we
identified the iso-firing rate line at 5Hz (Fig. 2C). Along this line, the neuron’s
firing regime changes from nearly mean-driven to strongly fluctuation-driven.
The curvature of the iso-5Hz curve in the σI -µI plane differs between the two
excitability types. It is slightly concave for type I, and slightly convex for type II
excitability (Fig. 2D and 2G). The firing irregularity, quantified by the coefficient of
variation of inter-spike intervals CVISI , differs more noticeably between the model
variants. While the type I model’s firing irregularity increases monotonously with
σI (Fig. 2H), the type II model displays a minimum CVISI for intermediate σI

values. Towards more mean-driven conditions, CVISI increases strongly (Fig. 2E),
because the intrinsic firing rate of 32Hz is much higher than the 5Hz target rate.
In the presence of small input fluctuations around a near-rheobase average input,
this low target rate is realized by bursts of near-regular rapid firing separated by
long intervals. This is qualitatively very different from the irregular firing produced
at working points further away from the mean-driven regime. For both model
variants, we chose three working points, i.e. µI -σI combinations, covering the
range from mean-driven to strongly fluctuation driven (colored dots in Fig. 2D
and G). The inter-spike interval (ISI) distributions at those working points (insets
in Fig. 2E and H) further illustrate the very regular firing pattern of the type II
model close to the mean-driven condition. As the input fluctuations increase, the
ISI distributions become more similar.

When we calculated the dynamic gain functions for the two models at the
respective working points, the results were again comparable for the strongly
fluctuation-driven cases, but strikingly different for other working points. When
the original type II model is mean-driven (σI = 5.13 pA), the dynamic gain
function appears to have a low bandwidth, dropping to 70% magnitude already at
10Hz (orange in Fig. 2F). At intermediate and high frequencies, the shape of the
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dynamic gain function is dominated by a strong resonance around 40Hz, which
mirrors the peak in the ISI distribution around 25ms. Increasing σI to 21.13 pA
significantly broadens the resonance peak and increases the cutoff frequency of the
dynamic gain function, which now resembles the gain curve shown in [4] (blue line).
The corresponding ISI distribution is also substantially flattened, indicating the
transition from mean-driven to fluctuation-driven. Interestingly, a further increase
to σI = 80.26 pA, does not enhance the population encoding ability further (green
line). Instead, at this strongly fluctuation-driven working point, the dynamic
gain function is dominated by a low-pass filter in the low frequency region with
an apparent cutoff frequency of around 12Hz. Towards higher frequencies, a
shoulder appears and results in a local maximum around 60Hz. The dynamic gain
in the high frequency region exceeds the other two gain curves. In parallel, the
ISI distribution narrows again and moves closer to zero. The most probable ISI
now is approximately 70Hz, corresponding to the shoulder in the dynamic gain
function. These results demonstrate that the encoding ability critically depends on
the working point; the high encoding bandwidth reported for this type II model,
is realized only in a fluctuation-driven regime with intermediate σI .

The dynamic gain curves of the type I model behave strikingly different. None
of the three working points lead to high-bandwidth encoding (Fig. 2I). When
mean-driven (σI = 4.54 pA), the dynamic gain function has a cutoff frequency
below 30Hz, and decays with a slope of -1 in the log-log scale (orange dashed line),
similar to the exponential integrate-and-fire model with standard AP initiation
dynamics [27]. Increasing σI to 22.90 pA to reach the fluctuation driven regime, the
dynamic gain is enhanced in the high frequency region, while the cutoff frequency
becomes smaller (blue dashed line). Further increasing σI to 109.31 pA leads to
a plateau in the low frequency region with a even lower cutoff frequency (green
dash line). The dynamic gain function is larger in the high frequency with a
shoulder around 100Hz, similar to the type II model’s gain curve at the very
fluctuation-driven working point (compare two green curves in F and I). Again,
the ISI distribution features a peak around the time interval that corresponds to
the shoulder’s frequency range. These results demonstrate that the type I model
cannot reproduce high frequency encoding throughout the biophysically plausible
range of working points. In summary, we found that the encoding bandwidth
can be increased tenfold, not by manipulating morphology or ion channel voltage
sensitivity, but simply by increasing the potassium current around threshold to
achieve a type II excitability. We next use the dynamic gain decomposition to
investigate how this occurs.
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Figure 2: Eyal’s model can realize high-bandwidth encoding only with a

type II, but not a type I excitability. A To switch the excitability of Eyal’s
model from type II to type I, the voltage dependence of sodium channel activation and
inactivation is shifted 10mV towards more hyperpolarized potentials. Va denotes the
voltage at the AP initiation site. B F-I curves with the rheobase thresholds aligned
to 0 pA. C 2-D firing rate surface of Eyal’s type II model as a function of mean and
std of stochastic stimulus (τ = 5ms). The 5Hz iso-firing rate line is labelled black.
D σI -µI and E CVISI -µI relation of the type II model at 5Hz firing rate. Colored
dots indicate three example working points, ranging from nearly mean-driven (orange)
to fluctuation-driven (blue), and to very fluctuation-driven (green). Corresponding
ISI distributions are shown in the inset panel. F Dynamic gain functions of the three
example working points. High-bandwidth encoding is realized only when the neuron
model is fluctuation-driven (blue). G through I as D through F, but for the type I
model. I The type I model does not realize high-bandwidth encoding. Note, that an
increased σI enhances the dynamic gain in the high frequency region, however, the
cutoff frequency always remains below 16Hz.
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AP initiation dynamics is not the main bandwidth limi-

tation in Eyal’s model.

Figure 3: Dynamic gain decomposition based on the decomposition of the

AP initiation process. A Insets show the AP phase plots in response to constant
inputs just above rheobase. Arrows indicate the positions of the local minima Vloc, of
type II (-58.05mV) and type I (-74.23mV). The region at the beginning of AP initiation
is magnified with voltages shifted to align the Vloc values to 0mV. B Reducing the AP
detection voltage Vdetect towards Vloc, enhances the dynamic gain in the high frequency
region, exemplified here for the type II model. The zero-delay dynamic gain function
(light blue continuous line) behaves similar to that of a LIF-like model. Further reducing
the detection threshold reduces the dynamic gain in the low frequency region (light blue
dash line). Note that we only include threshold crossings that continue to a full AP.
C, D, E The dynamic gain functions from Fig. 2 F and I are decomposed into effective
impedance (C), zero-delay spike gain (D) and dynamic gain decay (E). Inset panels in
E are the AP initiation delay distributions at corresponding working points, color code
as in Fig. 2. Effective impedance captures the transformation from somatic current to
axonal voltage Va. Zero-delay spike gain is the ratio between zero-delay dynamic gain
and effective impedance. Dynamic gain decay is the ratio between original dynamic
gain and zero-delay dynamic gain (see Models and Methods). AP initiation delay is the
time interval between voltage crossing Vdetect (original AP time) and the last previous
positive crossing of Vloc.

Before we decompose the models’ dynamic gains curves as proposed above, we
first take a closer look at the AP initiation dynamics. We previously demonstrated
that high-bandwidth encoding is closely associated with the voltage sensitivity
of intrinsic AP initiation dynamics, especially in the voltage region close to the
local minimum of the phase plot [24]. Using the voltage Va, recorded at the
AP initiation site, we compared the phase plots of type I and type II models
with their local minima (Vloc) aligned at 0mV (Fig. 3A). Although the voltage
sensitivity of the sodium channel dynamics is identical for the two model variants,
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the voltage derivative of the type II model rises substantially more quickly out
of Vloc. The slower initiation of the type I model is caused by its 16mV more
hyperpolarized Vloc. The sodium channels’ voltage dependence was shifted by only
10mV, meaning that AP initiation proceeds at a voltage range with fewer activated
sodium channels and of course even less potassium channels. As a consequence,
the type I model’s AP initiation current displays a weaker voltage sensitivity.

When we gradually lowered the AP detection voltage Vdetect down to Vloc, we
obtained new, earlier AP times, but the number of APs stays constant because we
considered only those last positive crossings of Vdetect that lead to fully developed
APs. The resulting neuron model is similar to a LIF model with a hard threshold
at Vloc, and indeed the redefined AP times lead to a zero-delay dynamic gain
function that is almost flat in the high-frequency region as expected for a LIF
model (continuous light blue curve in Fig. 3B). As we detect the APs earlier, we
limit the voltage range, across which the initiation dynamics and extrinsic stimulus
can impact the precise AP time. Comparing the dynamic gain functions for two
detection thresholds, we reveal how the interplay between intrinsic and extrinsic
currents in that interval (V 1

detect, V
2
detect) shape the dynamic gain. We find that

lowering Vdetect all the way from -3mV down to -48mV has very limited impact
on the dynamic gain function. It only slightly enhances the encoding at large
frequencies (above 500Hz). However, a further decrease of Vdetect by 5mV to
10mV drastically improves high frequency encoding and has sizeable effects at
frequencies down to 50Hz, but not below. These results demonstrate that the AP
initiation dynamics of the type II model has a large impact on the decay of it’s
dynamic gain function, specifically in the limit of high frequencies. However, the
dynamic gain function’s decay between 40Hz to around 200Hz, the region where
it falls from its peak to its cut-off frequency, is mostly caused by subthreshold
factors. Consequently, the AP initiation dynamics is not the main determinant of
the encoding bandwidth.

The subthreshold dynamics, is still reflected in zero-delay dynamic gain. It
governs the transfer of current to membrane voltage and thereby determines during
which time intervals, APs can appear at all. Further decreasing the detection
threshold cuts into the subthreshold dynamics. The resulting changes of AP times
can be substantial and affect the firing pattern and thereby also the dynamic gain
in lower frequency regions (light blue dashed line in B). We can conclude that the
type II model’s near constant encoding capability between 5 and 50Hz, does not
originated from its fast AP initiation after Vloc. Instead, it is determined by the
subthreshold dynamics before Vloc.

Even the type I model’s slower AP initiation dynamics does not limit encoding
between 5 and 50Hz frequency for the fluctuation driven regimes (blue and green).
This is evident from the results of the gain decay analysis applied to the type I
model (supplementary Fig S2). It is reflected in Fig. 3E, indicating that only in
the nearly mean-driven regime (orange), the bandwidth of the gain decay limits
the overall dynamic gain bandwidth.

To quantify the voltage trajectories’ variability during AP initiation, we deter-
mined the time required for each AP, to progress from the last positive crossing
of Vloc to Vdetect = -3mV (see Models and Methods). This AP initiation delay is
a random variable. Its statistics is determined by the interplay between intrinsic
AP initiation dynamics and extrinsic stimulus fluctuations. The initiation delay’s
variance originates mainly from very variable dynamics very close to Vloc, where
the intrinsic currents are lowest and initiation proceeds slowest. For the type II
model, 90 % of the total initiation delay are spent on crossing the first 10mV after
Vloc, even though they represent only 18% of the voltage interval. These 10mV
also contribute 99 % of the delay’s standard deviation. Fig. 3B illustrates that
these first 10mV, from -58 to -48mV, also account for the bulk of the dynamic
gain decay associated with the AP initiation delay. We can use the dynamic gain
decay G(f)

G0(f)
(Fig. 3E), together with the distributions of AP initiation delay, to

quantify the impact of AP initiation dynamics on high frequency encoding at the
three working points in Fig. 2F and I. For the type II model, when the activity is
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mean-driven (orange), the AP initiation delay distribution is relatively flat with a
most probable delay as large as 4ms. Increasing σI reduces the mean of the distri-
bution towards 0ms (blue and green), indicating that the AP initiation delay is no
longer limited by the intrinsic AP initiation dynamics. Instead, larger depolarizing
inputs increase dV/ dt, and accelerate the escape from the slow AP initiation region
near Vloc. This faster initiation is paralleled by a rightward shift in the dynamic
gain decay. The bandwidth related to the initiation dynamics increases more than
three-fold. For the type I model, similar transitions of the dynamic gain decays
and AP initiation delay distributions can be observed when increasing σI . While
the two model types behave similarly when driven with very large σI , towards the
mean-driven working points the type I model’s AP initiation delay distribution is
substantially more flattened, and consequently the dynamic gain decay has a much
lower bandwidth. We attribute this to the different firing patterns close to the
mean-driven condition. The type I model produces near-regular firing without the
high-frequency bursts of its type II relative. Therefore, the average AP initiation
delay would approach 200ms when σI decreases to zero and the firing rate is kept
at 5Hz. For such initiation delays exceeding the input correlation time, the input
fluctuations can cause particularly large variability and consequentially deteriorate
encoding precision.

Low-frequency encoding is controlled by effective impedance

and firing pattern preferences.

The subthreshold part of the encoding process, which is described by the zero-
delay dynamic gain G0(f), can be further decomposed into effective impedance
Zeff(f) and zero-delay spike gain G0

sp(f) (Fig. 3C and D). The effective impedance
is calculated as the Fourier transform of output voltage divided by the Fourier
transform of input current (see Models and Methods). The zero-delay spike gain

is the ratio of zero-delay dynamic gain and effective impedance: G0
sp(f) =

G0(f)
Zeff(f)

.
For the type II model, the effective impedance at low frequencies varies substan-

tially with the working point, increasing more than ten-fold at 1Hz (Fig. 3C, upper
panel). In a completely passive model without voltage dependent conductance, the
impedance does not depend on the input statistics. The observed changes in effec-
tive impedance, therefore, result from varying degrees of ion channel activity. At
the mean-driven working point, the subthreshold voltage fluctuates just below Vloc,
where some potassium channels are already activated. Depolarization-activated
potassium current opposes further depolarization, lowering the impedance. This ef-
fect is strong for low frequencies, where the potassium channel activation can follow
the input changes, which explains the the large drop in the orange impedance curve.
At higher frequencies, the potassium channels do not actively oppose depolarization.
In the limit of frequencies much higher than their activation time constant, the
channels present merely a passive leak and their influence on impedance is much
smaller, such that the effective impedance decays with the slope of the passive
model. The impedance peak around the frequency of the intrinsic firing rate
probably results from subthreshold resonance.

Increasing σI and lowering µI shifts the average voltage to regions where fewer
potassium channels are activated. This increases the effective impedance at low
frequency (Fig. 3C, blue continuous line) and reduces the resonance around 40Hz.
Together, these changes contribute to the 100Hz wide bandwidth of Zeff at the
intermediate, fluctuation-driven working point. At the very fluctuation-driven
working point, the subthreshold fluctuations are even less shaped by potassium
current. The effective impedance in this condition becomes a low-pass filter, deter-
mined by the passive neuronal properties (Fig. 3C, green continuous line). The
type I model, in comparison, has less active ion conductances in the subthresh-
old range. Therefore, Zeff(f) is far less sensitive to input conditions. At both
fluctuation-driven working points, Zeff(f) behaves similar to a passive filter with a
10Hz cutoff (Fig. 3C, blue and green dashed lines).
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At first glance, the second subthreshold component, the zero-delay spike gain
varies similarly for both models as the working points are changed. It attains larger
values close to mean-driven conditions and drops with increasing σI (Fig. 3D).
This overall behavior is dictated by the condition of constant firing rates. As µI

decreases and σI increases, larger and larger voltage fluctuations generate the
same firing rate, leading to a decrease in zero-delay spike gain. Another general
feature of all zero-delay spike gain curves is their monotonic, power law increase in
the high frequency limit. It compensates the decay in the effective impedance to
reproduce the rather flat zero-delay dynamic gain (Fig. 3D).

Besides these general trends, the shape of the zero-delay spike gain changes
between working points, in particular in the low frequency region. For the type II
model, a high plateau forms towards the mean-driven condition (orange). Con-
versely, a sag forms at the extremely fluctuation-driven working point (green).
We will see below, that the zero-delay spike gain is the one component, that is
most sensitive to the firing pattern. It represents the neuron’s propensity to turn
voltage fluctuations into firing rate fluctuations based on the intrinsic dynamics.
It could therefore be considered surprising, that the zero-delay spike gains of
these two working points show opposite shapes. After all, both working points are
characterized by bursty firing patterns, evident from the high CVISI values and the
ISI distributions (Fig. 2E). The difference lies in the source of the bursts. At the
mean-driven working point, relatively small amplitude low frequency components
drive bursts, fired at the intrinsic frequency. At the very fluctuation-driven working
point, large fluctuations of the extrinsic stimulus cause bursts with a intra-burst
firing rate that is almost twice as high. The increased stimulus fluctuation size,
together with a lower number of APs within bursts causes the zero-delay spike gain
to drop at low input frequencies. This will be explored further, when we analyze
how repetitively fired, intra-burst APs contribute to the dynamic gain.

The decomposition of G(f) curves across a large range of firing regimes has
shown that under most conditions the initiation dynamics does not limit the overall
encoding bandwidth, not even in the type I model with slower suprathreshold
dynamics. The variable G(f) curves of the type II model and its ability for high-
bandwidth encoding are explained by a strong stimulus dependence of Zeff(f) and
G0

sp(f). Towards large fluctuations, both model types behave very similarly, because
the extrinsic stimulus fluctuations dominate the entire signal transformation process,
leading to similar Zeff(f), G

0
sp(f) and

G(f)

G0(f)
. Decomposing the subthreshold and

suprathreshold impact on dynamic gain, we can also aid the attribution of G(f)
changes to a particular parameter change, as we next study the influence of input
correlations and neuron morphology.

Fixing the suprathreshold impact reveals the influence

of input correlations on dynamic gain.

In the previous section, we studied the encoding abilities of Eyal’s type I and II
models at working points ranging from mean-driven to strongly fluctuation-driven
and found that only the type II model could support high-bandwidth encoding.
Here we continue to examine this type II model, specifically how its encoding
depends on stimulus correlation times (τ). When τ is increased, cortical neurons,
but also LIF models, show enhanced G(f) at high frequencies, as compared to low
frequencies [8,17,21,26]. We have called this type of input dependence the ’Brunel
effect’ and considered it an important feature of real neurons. For our study, we
use the dynamic gain function in Fig. 2F (blue curve, τ = 5ms) as a reference, and
compare it to results obtained with more slowly fluctuating input with τ = 50ms.

When we set out to define the exact working points for this juxtaposition,
we concluded that CVISI is of limited practicality, because its non-monotonic
CVISI -µI relation in the type II model (Fig. 2E) does not allow a unique definition
of working points. The dynamic gain decomposition motivates two other criteria
for working point selection. While a constant CVISI aims to obtain a comparable
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Figure 4: Brunel effect evaluated with two criteria fixing the sub- and

suprathreshold impact on dynamic gain. A AP initiation delay distributions
of three working points of Eyal’s type II model. Two share the same mean delay,
denoted as the iso-delay working points (the thin blue curve with τ = 5ms and the
thick black curve with τ = 50ms). The thin and thick blue curves share the same σV

indicated in B, denoted as the iso-fluctuation working points. B σV -σI relations with
τ = 5 and 50ms. The scattered data points are the σV of working points in A. The
iso-fluctuation working points share the same σV at 6.02mV. C to F ISI distributions,
dynamic gain and zero-delay dynamic gain functions, effective impedances, zero-delay
spike gain functions of the three working points above. Brunel effect, and the constitut-
ing sub- and suprathreshold contribution are different when evaluated at the iso-delay
and iso-fluctuation working points.

output statistics, i.e. a comparable firing pattern, we propose to also study iso-
fluctuation and iso-delay working points. They aim at a comparable subthreshold
and suprathreshold dynamics, respectively. The iso-fluctuation working point is
found by choosing σI and µI to fix σV , the standard deviation of subthreshold
voltage fluctuations. This is closely related to criteria used in several experimental
studies, where σV and the target firing rate have been used to define the input
parameters [12, 16, 34]. The iso-delay criterion, controls the suprathreshold impact
by fixing the average AP initiation delay. Because the intrinsic AP initiation
dynamics changes not much between different working points, fixing the average
initiation delay for inputs with different τ values, effectively fixes the impact of
the extrinsic currents on AP initiation delay. Fig. 4A to C show the AP initiation
delay distributions, σV , and ISI distributions of the working point with τ = 5ms,
and its iso-fluctuation and iso-delay counterparts with τ = 50ms.

Comparing the dynamic gain functions at the iso-fluctuation working points
(Fig. 4D, thin and thick blue lines), we find that increasing τ merely introduces
a resonance around 50Hz, consistent with the ISI distribution peak around 20
millisecond (Fig. 4C). In the low frequency region, the two gain curves basically
coincide, suggesting that the iso-fluctuation criterion indeed equalizes the sub-
threshold dynamics across the two input conditions. Because the dynamic gain
curves in the high frequency region are also nearly identical, one could conclude
that the Brunel effect is absent under iso-fluctuation conditions. However, a com-
parison of the zero-delay dynamic gain functions (Fig. 4D, wide and thin light blue
curves), does show improved high frequency encoding, for τ = 50ms as compared
to τ = 5ms. This means that the dynamic gain decay for τ = 50ms is larger,
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which is consistent with the more variable AP initiation delay (Fig. 4A).
Next, we examined the Brunel effect at the iso-delay working points. With

the same average AP initiation delay, the overall shapes of the AP initiation
distributions are also similar (Fig. 4A thin blue line and grey line). Achieving
similar initiation delays with much longer input correlations requires a larger σI .
σV is even more than quadrupled from 6 to 26mV (Fig. 4B). But even the drastic
increase in voltage fluctuations only shifts the ISI distribution slightly to smaller
values (Fig. 4C thick lines). The large increase in σI for τ = 50ms results in a
strong reduction of the dynamic gain function in the low frequency region (Fig. 4D).
It now lies below the dynamic gain function for τ = 5ms. The high frequency
limits of the two G(f) curves are close to each other, and even the zero-delay gain
functions G0(f), now attain similar values in the high frequency limit. We conclude
that the type II model reproduces the Brunel effect at the iso-delay working points,
which fix the impact of suprathreshold dynamics on population encoding. In
this condition, the relative improvement of high frequency encoding observed in
the normalized dynamic gain functions is realized by reducing the unnormalized
dynamic gain in the low frequency region when τ is larger. At iso-fluctuation
working points, on the other hand, the low frequency encoding is nearly constant
and no Brunel effect manifests in the dynamic gain curves because the stronger
dynamic gain decay cancels increased zero-delay dynamic gains at τ = 50ms.

We can now use the dynamic gain decomposition to check whether iso-fluctuation
and iso-delay criteria indeed standardize sub- and suprathreshold contributions,
and to further understand the source of the Brunel effect (Fig. 4E and F). We find
that the effective impedances and zero-delay spike gains are very similar at the
iso-fluctuation working points, in accordance with its purpose of fixing subthresh-
old dynamics. Within the identical subthreshold voltage fluctuation range, the
active ion conductances recruited for stimulus filtering are close to each other. The
remaining difference probably stems from the slightly more depolarized average
voltage for τ = 50ms, leading to slightly higher potassium current activation. Two
zero-delay spike gain curves are almost paralleled with each other, indicating that
the voltage frequency components are transformed into firing frequency components
in similar ways for both correlation times. However, at the iso-delay working points,
the effective impedance and spike gain in the low frequency region show large but
opposite changes in response to increasing τ . While the effective impedance at 1Hz
is more than 3 times larger for τ = 50ms, the spike gain at 1Hz is more than 5
times larger for τ = 5ms. The difference in effective impedance is readily explained
by the difference in average potassium channel conductance. σV is about 6mV for
τ = 5ms, and increases to about 26mV for τ = 50ms. The substantially larger
fluctuations into the hyperpolarized range cause ion channel deactivation, a lower
membrane conductance and thereby a larger effective impedance. This is reflected
in the much lower cutoff frequency of 8.3Hz for τ = 50ms as compared to the 56Hz
for τ = 5ms. Low-pass effective impedance keeps more low frequency components
of stimulus in the voltage fluctuations. As a result, the zero-delay spike gain at the
iso-delay working point is drastically reduced in the low frequency region (Fig. 4F,
black curve). The decomposition of zero-delay dynamic gain functions implies
two different ways to realize high-bandwidth encoding for two correlation times of
input, by influencing the firing patterns emitted by the neuron. How that impacts
the dynamic gain will become clear, when we next study the differential encoding
capacity of fluctuation-driven APs and repetitively firing APs.

Decomposing dynamic gain functions into repetitive fir-

ing and individual AP components.

Our previous arguments suggest that the firing pattern, in itself, is an important
contributor to the shape of the dynamic gain function. It could even be thought
that the type II model is capable of high-bandwidth encoding in part due to its
ability to fire high frequency repetitive APs. We next attempt to analyze this more
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stringently, by decomposing the dynamic gain function into two parts, contributed
by two AP populations (Fig. 5A).

One population is fluctuation-driven APs, defined as those fired after at least
50ms of silence. These APs are likely to be the first one, or the only one, fired in a
voltage upstroke, while the rest of APs are likely part of a burst later in an upstroke,
denoted as repetitive firing APs. Fig. 5A is an illustration of the AP classification,
the relative fraction of the two components is stated in Figs. 5B and 5C between
correlation times. When τ = 50ms, the ISI distribution is significantly more
peaked around 25ms (see Fig. 4C), and more than half of the APs are classified as
repetitively firing APs. This fraction drops to 20% for τ = 5ms, because bursts
are terminated by the rapid Va fluctuations.

We now calculated dynamic gain functions based on APs from only fluctuation-
driven or only repetitive firing APs. When their phases are taken into account,
these two dynamic gains can be summed to yield the curves in Fig. 4D (black
and thin blue). The fluctuation-driven APs alone encode the input with a higher
bandwidth, as compared to all APs together (Fig. 5B vs iso-delay working points
in Fig. 4D). The corresponding cutoff frequencies are 133Hz vs 105Hz for τ =
5ms, 234Hz vs 166Hz for τ = 50ms. The shapes of these gain curves reflect the
broad 20 to 50Hz frequency encoding preference of the fluctuation-driven APs.
When the intrinsic preference is overridden by very strong external fluctuations,
this preference is suppressed (see supplementary Fig. S4 A and C).

The repetitive firing APs alone lead to dynamic gain curves with very pro-
nounced resonance around the preferred firing rate and a pronounced dip around
half of that frequency (Fig. 5C). The dip is a direct consequence of the resonance,
because APs locked to an input component at the resonance frequency and fired
in a short burst will be locked worse than random to half of that frequency. The
dynamic gain functions derived from repetitive APs alone have a comparatively
narrow bandwidth, especially for τ = 5ms, where the cutoff frequency is below
8Hz. In conclusion, the two dynamic gain functions for τ = 5 and 50ms at the
iso-delay working points realize high-bandwidth encoding in different ways. One
reduces the fraction of repetitive firing APs, while the other forms longer bursts
of repetitive firing APs to weaken its low-pass filter effect. In either case, our
results clearly show that the high encoding bandwidth of Eyal’s model with type II
excitability is not a direct result of the burst firing. APs fired within bursts only
contribute the pronounced peaks at the preferred firing rate. We can also use this
AP classification strategy to further investigate the variation of spike gain shape
across working points. Low frequencies of only a few Hertz were particularly well
represented in the zero-delay dynamic gain curve, when the neuron was nearly
mean-driven (Fig. 3D, orange). As supplementary Fig. S4 shows, this is caused by
a relatively large fraction of repetitive firing APs. They occur in long bursts and
thereby limit the encoding of intermediate frequencies. This can be understood
when considering the example of a 100ms long burst, for which first and last APs
fall on diametrical phases of a 5Hz stimulus component and thereby limit encoding
of this frequency. In contrast, the fluctuation-driven APs, do not show such a
preference for very low frequencies, but they make up only a small fraction of
all APs at the nearly mean-driven working point. Next, we will use the dynamic
gain decomposition method to examine the impact of dendrite size on population
encoding.
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Figure 5: Intrinsic high-frequency firing undermines high-bandwidth encod-

ing. A A short sequence of APs from the simulations in Fig. 4 (τ = 50ms, iso-delay),
shown in a raster plot. The APs are classified into two groups according to the preceding
ISI (ISI ≥ 50ms black, longer dashes, ISI < 50ms grey shorter dashes). Separate dynamic
gain functions of the two iso-delay dynamic gain functions in Fig. 4 are calculated for
these two spike classes. B The dynamic gain curves derived from fluctuation-driven APs.
High frequency input components are encoded better than low frequency components.
C The dynamic gain curves derived from APs fired in close succession, e.g. repetitively
fired APs. Resonance effects cause the dips and peaks (see main text). D and E The
AP initiation delay distributions of the two spike classes are very similar, and hence
very similar to the joint distribution in Fig. 4A. See supplementary Fig. S3 for the
corresponding analysis at the iso-fluctuation working points.
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Dendrites enhance high-bandwidth encoding by suppress-

ing low frequency effective impedance.
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Figure 6: A larger dendrite shunts low-frequency inputs, but improves low-

frequency spike gain. A Phase plots of three model variants with different dendrite
sizes, Vloc aligned at (0mV, 0mV/ms). B AP initiation delay distributions at the
iso-delay working points (ν = 5Hz). Inset panel shows corresponding σV on σV -σI

relations. C ISI distributions at the iso-delay working points. D, E, F Dynamic gain
functions and zero-delay dynamic gain functions (D), effective impedances (E) and
zero-delay spike gain (F) of the three model variants calculated at iso-delay working
points (upper panels), together with their normalized gain curves (lower panels). See
supplementary Fig. S6 for the results with τ = 50ms.

To understand the impact of dendrites on population encoding, we took the
two model variants with a median and a large dendrite from [4] for comparison (see
Models and Methods), both display type II excitability (see supplementary Fig S5).
We first examined the impact of dendrite size on intrinsic AP initiation dynamics.
Increasing the dendrite size increases the lateral current from the initiation site
towards the soma, due to the larger somato-dendritic current sink. Vloc is shifted
to slightly more depolarized values from -58.05mV to -54.72mV and -53.61mV.
As a result, the AP onset is shifted towards voltages at which the sodium channels
have steeper voltage dependence. Consequently, at later stages, e.g. 10mV/ms,
the slope of the phase plot is actually larger for models with larger dendrites, as
has been previously reported in [4] (see Fig. 6A). However, when aligning Vloc

to (0mV, 0mV/ms), we found that a larger dendrite does not accelerate AP
initiation close to Vloc, instead, the local slope of the phase plot is reduced. A first
evaluation of the subthreshold effects of the dendrites can be gained from the σV -
σI relation (Fig. 6B, inset panel). The large current sink of the dendrite drastically
decreases the impedance of the neuron, reflected by the reduced slopes. Compared
to this drastic impedance effect, the dendrite’s impact on the suprathreshold
dynamics appears to be subtle. Therefore, to compare the population encoding
capabilities of the three models, we chose iso-delay working points to harmonize
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the suprathreshold contribution and focus on different subthreshold contribution
of the dendrite.

Taking the dynamic gain function of τ = 5ms in Fig. 4 for reference, we fixed
the average AP initiation delay for the three model variants, leading to very
similar distribution shapes (Fig. 6B). Under this criterion, σV is smaller for the
neuron model with a dendrite (scattered dots in inset panel), and the three ISI
distributions are similar to each other (Fig. 6C). Compared to the dynamic gain
function without the dendrite (blue), the other two gain curves (red and green)
have smaller dynamic gain below 200Hz. In the high frequency region, gain curves
decay with similar trends, and corresponding zero-delay dynamic gain functions
are also close to each other (Fig. 6D, upper panel). Normalizing the dynamic gain
functions, we observed an enhancement of high frequency encoding with a larger
dendrite (lower panel in D).

Decomposing the zero-delay dynamic gain functions into effective impedances
and zero-delay spike gains, we found that adding a dendrite reduces the effective
impedance mostly for low frequencies, but not in the high-frequency limit. (Fig. 6E,
upper panel). Low frequency components are suppressed more strongly, because
they charge a larger portion of the dendrite, while high frequencies experience much
stronger spatial filtering and charge only the proximal dendrite. When the effective
impedances are normalized (lower panel in E), the dendrites’ suppression of low
frequencies appears as a boost of high frequency representation in the voltage.
Interestingly, a further substantial increase in the dendrite size hardly affects the
shape of the effective impedance. The zero-delay spike gain curves are relatively
flat in the low frequency region, and they increase in similar trends in the high
frequency region (Fig. 6F, upper panel). The curves for the two dendrite-bearing
models are almost identical (red and green), while the zero-delay gain curve of
the original model has lower values (blue), because it produces very similar firing
patterns (Fig. 6C) with approximately three times larger subthreshold voltage
fluctuations (inset in Fig. 6B). The normalized curves in the lower panel show
that, the dynamic gain enhancement caused by the effective impedance is slightly
undermined at the stage of zero-delay spike gain (from blue to red, and green).
Taken together, the improved high frequency encoding in the presence of a dendrite
is primarily due to a suppression of low frequencies in the effective impedance,
with a minor effect of the accelerated AP initiation, leading to weaker dynamic
gain decay. Studying the effect of the dendrite under slower input correlations,
led to the same conclusion. In particular, the dendrite did not change the Brunel
effect (supplementary Fig S6).

Dynamic gain decomposition provides subcellular dissec-

tion of a pathophysiological insult on population coding.

The dynamic gain decomposition is designed to be applicable to any neuron,
independent of its complexity. It should be applicable even to recordings from real
neurons, provided that the recorded somatic voltage contains sufficient information.
For the subthreshold analysis this is very likely, but the utility of somatic recordings
for initiation related analysis is not clear a priori. We therefore set out to apply
the dynamic gain decomposition to experimental data and chose a specific data set
from a previous study for two reasons. First, the two groups in the data set had
been reported to have different input resistances, prompting us to expect different
effective impedances. Second, the treatment group, but not the control group,
contained neurons with very different dynamic gain curves, which we would like to
understand better by decomposition.

The data in question were recorded from layer 5 pyramidal neurons in coronal
slices of mouse somatosensory cortex and originally published in [9]. Only slices in
the treatment group underwent two brief hypoxic episodes that induced spreading
depolarization. Unlike simulations, experiments record voltage at the soma and not
the initiation site. We showed earlier, that the transfer impedance from soma to
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initiation site does pose an additional filter for higher input frequencies. However,
for distances up to 50 µm, this effect was very small [24], and hence we speculate
that using the somatic voltage will still allow decomposition.

We decomposed the dynamic gain functions of each pyramidal neuron into
effective impedance and spike gain. For two, very differently affected neurons from
the treatment group of [9], the results are shown in Fig. 7. Neuron 1 appears very
similar to control neurons, it displays encoding with a bandwidth of approximately
350Hz (Fig. 7A). Its dynamic gain’s confidence interval widens substantially, as
the gain curve drops below the noise floor. In comparison, the dynamic gain
of neuron 2 (Fig. 7B) is substantially larger in the low frequency region, decays
more steeply at intermediate frequencies, and displays a lower cutoff frequency of
around 200Hz. But surprisingly, above 400Hz, its dynamic gain reemerges above
the noise floor and increases with a smaller bootstrapping confidence interval as
compared to neuron 1. Also note that the absolute magnitude of the dynamic
gain, for instance at 200Hz, is higher in neuron 2, although its cutoff frequency is
lower. The underlying properties that cause these differences became clear, when
we decomposed the dynamic gain into the sub- and suprathreshold components.

As a first step, we estimated the phase plot from the recordings (see Models
and Methods) by averaging voltage derivatives at different voltages (inset panels
in A and B). This reveals a difference in threshold voltage, but most importantly,
a large difference in the amount of voltage sensitive depolarizing currents between
the two neurons. For neuron 1, the voltage derivative changed little for voltages
below -40mV, then suddenly increased to 30mV/ms within 8mV, reflecting large
AP initiation currents. Neuron 2, in contrast, had smaller depolarizing currents
and a higher threshold. The position of the local minimum Vloc was around -30mV
for neuron 2 and, although it could not be discerned precisely, it was likely just
below -40mV for neuron 1.

In the second step, we reduced the AP initiation delay by lowering the AP
detection threshold Vdetect analogous to the analysis of Eyal’s model in Fig. 3B.
The recalculated dynamic gain functions for the various Vdetect values are given
in the lower panels of Fig. 7A and B. For neuron 1, the gain curves changed
abruptly, once Vdetect reached -40mV and already at -45mV a saturation was
reached. Apparently, only this narrow supra-threshold voltage range contributed
to the uncertainty in AP timing. This corresponds to the steep change in the
phase plot (inset). The initiation-related decay of the dynamic gain affected only
frequency components above 300-350Hz. When the AP was detected around Vloc,
the dynamic gain curve resembled that of a LIF neuron model without voltage
dependent initiation and with a hard threshold [26]. This result replicates the
simulations shown in Fig. 3B, albeit with an almost four times higher bandwidth
of the dynamic gain decay, as compared to Eyal’s type II model.

In neuron 2, the recalculated dynamic gain curves behaved differently. The
transition to LIF-like behavior was much more gradual (Fig. 7B, colored traces).
The uncertainty in AP timing accumulated during the transition through a much
larger voltage range from above -25mV down to -40mV, mirroring the more
gradual change in phase plot slope (inset). Another important difference is the
affected frequency range. In neuron 2, suprathreshold delay variability already
reduced the encoding for frequencies above 90-100Hz, similar to what we observed
for Eyal’s model.

Our insights into the different suprathreshold dynamics are complemented
by an analysis of the subthreshold contribution to dynamic gain. We calculated
the effective impedance as the ratio of Fourier transform of voltage and Fourier
transform of current (see Models and Methods). The two neurons’ effective
impedances and zero-delay spike gains are juxtaposed in Fig. 7C and D. This
reveals the considerably larger effective impedance of neuron 2 as the origin of this
neuron’s large absolute dynamic gain value. The fact that this effective impedance
rises for frequencies above 30Hz is puzzling and we can only speculate about
a contribution of sodium channels, possibly due to the increased threshold in
neuron 2. For neuron 1, the effective impedance approximates the shape one would
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expect from a passive soma with dendrites. It is dominated by a cutoff of 12.8 Hz,
i.e. a membrane time constant of 12.5 ms. Beyond the cutoff, the slope is less
negative than -1, most likely due to the presence of dendrites. The zero-delay spike
gains of the two neurons are rather similar at low frequencies, but above 20Hz,
they deviate increasingly. Because these curves are obtained by dividing zero-delay
dynamic gain curves by the effective impedance, this deviation originates in the
unusual impedance increase in neuron 2.

In summary, the differences between the two neurons’ dynamic gain curves
can be attributed to subthreshold and suprathreshold contributions as follows:
the difference in absolute values is caused by the higher effective impedance of
neuron 2. The different locations of the dynamic gain drop, and consequently the
different bandwidths are explained by the substantially slower AP initiation in
neuron 2. It causes an earlier drop in dynamic gain due to larger initiation delay
variability. The remaining difference is the striking rise in the high frequency region
of the second neuron’s dynamic gain. We suspect that at the high frequencies
the extrinsic, stimulation-induced currents dominate the second neuron’s weaker
intrinsic currents. Consequently, the exact time of threshold crossing is influenced
by high frequency input fluctuations, similar to the situation in a LIF neuron
model. This is the reason for the rising dynamic gain and the relatively narrow
confidence interval. In the context of the original study [9], it is interesting to note,
that cells with such a weak intrinsic AP initiation appeared only after hypoxia and
spreading depolarization, which also compromised the molecular integrity of the
axon initial segment.

Applying dynamic gain decomposition to all the cells in the original data set,
we could further investigate the previously described effect of hypoxia-induced
spreading depolarization on the dynamic gain. The grand averages for dynamic
gain

〈

G(f)
〉

, effective impedance
〈

Zeff(f)
〉

and spike gain
〈

Gsp(f)
〉

were calculated
over the frequency range, where data where available from all cells. For

〈

G(f)
〉

and
〈

Gsp(f)
〉

that only includes the range up to 300Hz, at which point at least one cell’s
G(f) touched the noise floor. The grand averages, together with their standard
errors are shown in Fig. 7E. They show clearly that the average effective impedance
is increased in the treated cells, and that this difference dominates the unnormalized
dynamic gain curves. While the dynamic gain of the treated cells appears to drop
earlier, between 100 and 200Hz as compared to the control cells >300Hz, this
difference does not manifest in a statistically significant difference. The dynamic
gain values at 200Hz are spread out over similar ranges for both groups (Fig. 7F).
In contrast, the impedance-corrected spike gain values are significantly different
(Student’s t-test, p=0.048). These examples show that all aspects of dynamic gain
decomposition can be applied to experimental data and serve to suggest biophysical
parameters as the basis of individual dynamic gain features.
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Figure 7: Ischemic insult slows AP initiation. A Dynamic gain function G(f)
(upper panel) of one pyramidal neuron from the treatment group in [9], and the
associated gain curves recalculated with lower AP detection thresholds ranging from
0mV to -50mV (lower panel). Inset panels are the phase plots estimated by averaging
voltage derivatives at each voltage value. Note the wide bandwidth of the original gain
function. Grey areas are the 95th percentile bootstrapping confidence intervals. Thin
line represents the 95th percentile noise floor (see Models and Methods). B as A, but
for another neuron from the treatment group with drastically different gain. Firing
rates are 4.10Hz and 4.68Hz in A and B respectively. C and D Effective impedances
and zero-delay spike gains of the dynamic gain functions in A and B. G0

sp is the ratio
between zero delay dynamic gain (Vdetect = -50mV in C and D) and effective impedance.
E Grand average of G(f), Zeff , and Gsp(f) for control neurons (CT, n=9) and neurons
undergoing brief hypoxia and spreading depolarization (SD, n=15). Lines and shades
represent means and their standard error. G(f) and Gsp(f) are displayed for the
frequency region in which all individual traces are significant, i.e. above the respective
noise floor. F G(f) at 200Hz does not differ between groups. Due to the large Zeff

differences between the groups, the spike gains at 200Hz are significantly different (t-test,
*p=0.048).
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Discussion

In this work, we developed a straightforward method to decompose the contribution
of subthreshold and suprathreshold dynamics on population encoding. It allows for
a unified and comprehensive approach of dynamic gain analysis because it can be
applied to simulated data from models of any complexity and even measurements
from real neurons. When we applied the dynamic gain decomposition to a complex
multi-compartment model equipped with a biophysically plausible AP initiation
mechanism, we found that the model’s high encoding bandwidth is mainly enabled
by a high potassium conductance around threshold. This also causes a type II
excitability, but the tendency to high frequency bursting is not in itself beneficial
for a high bandwidth. The decomposition also guides the definition and choice
of working points at which model variants or cell types can be compared without
bias. Iso-(voltage-)fluctuation and iso-(initiation-)delay working points control
for sub- or suprathreshold contributions, respectively. We found the iso-delay
criterion particularly useful for understanding how changes in input correlation
and dendrite size affect encoding bandwidth. We also applied the decomposition
to recordings from two layer 5 pyramidal neurons, which were differently affected
by hypoxia. Their different dynamic gain shapes and bandwidths resulted from
striking differences in effective impedance and intrinsic initiation currents. This
demonstrates that dynamic gain decomposition can connect cellular physiology to
network function.

Fixing working points isolates parameter effects. The dynamic gain
function is not a fixed curve but depends on the working point of the neuron
model. It can change substantially when the operating regime is changed from
mean-driven to fluctuation-driven (Fig. 2F). Thus it is essential to properly align
the working points of model variants, such that the differences detected in the
dynamic gain functions originate mainly from the targeted parameter change,
rather than unrelated working point factors. One criterion we adopted here is
fixing the firing rate at 5Hz. A second criterion can be chosen to fully determine
the working point on the two dimensional manifold of firing rate, defined by µI and
σI (Fig. 2C). Previous studies have focused on fixing the subthreshold dynamics,
either by fixing the voltage fluctuations σV [12, 16, 21], or by fixing the related
firing pattern (CVISI) [17, 24, 35]. The latter criterion is suitable if the major
differences manifest mostly in the suprathreshold regime.

Here, we introduced a complementary criterion to fix the impact of suprathresh-
old dynamics. We quantified the variability in AP initiation with the initiation
delay. By fixing the mean of this random variable, we managed to control the
impact of the suprathreshold AP dynamics across models, which corresponds to
the dynamic gain decay in the high frequency region. We found this criterion
particularly useful for studying the Brunel effect and the dendritic effect on Eyal’s
model, since both mainly affect the subthreshold dynamics. What is more, this
criterion could even be generalized to LIF-like models, in which Vdetect is equal to
Vloc. We propose that our approach of fixing the average AP initiation delay in
models with active initiation is equivalent to fixing the average voltage derivative
at threshold in LIF-like models. Therefore, the decomposition-inspired working
points can be used for all types of models, including those with a threshold and
reset.

Dynamic gain function decomposition The decomposition of dynamic
gain functions disentangles the complex influence of neuron properties and working
points on the shapes of gain curves, which benefits all dynamic gain analyses. To
this end, we introduced three components that combine to the dynamic gain: 1.
the effective impedance, 2. the zero-delay spike gain, and 3. the dynamic gain
decay due to the stochastic AP initiation delay. The effective impedance captures
the passive model properties as well as the subthreshold activation of ion channels.
This sensitivity to ion channel activation reveals a substantial contribution to
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the Brunel effect, the different transformation of low frequency input currents
into voltage fluctuations for different correlation times. The zero-delay spike gain
describes the transformation from voltage fluctuations to AP times detected at
Vloc, at a point where the intrinsic AP initiation currents still play a minor role in
the voltage dynamics. The zero-delay spike gain therefore captures the influence of
the overall firing pattern but excludes the variable AP initiation durations. When
the working point is changed in a way that reduces the effective impedance at low
frequencies, often the zero-delay spike gain shows a compensatory increase. These
opposing effects remain undetected without decomposition. Effective impedance
and zero-delay spike gain together capture the impact of subthreshold dynamics on
population encoding, and reproduce a LIF-like dynamic gain function. The third
component, the dynamic gain decay in the high frequency region, reflects how
intrinsic currents influence the AP initiation dynamics, such that the resulting AP
timing is less determined by the stochastic input. Within a given neuron model, it
explains why the zero-delay gain curves at distinct working points are collapsed to
similar decay trends in the high frequency limit. Between different model variants,
this understanding also inspires the idea of fixing the mean AP initiation delay to
control the impact of suprathreshold dynamics on population encoding.

Our methodology of aligning the working points and decomposing the dynamic
gain functions provides a general tool for evaluating various hypotheses on pop-
ulation encoding. The decomposition approach allows identification of sub- and
suprathreshold effects, even if the models to be compared are so different that it is
not feasible to align the working points.

Uncovering the role of AP initiation dynamics for high-frequency
dynamic gain Lowering the AP detection voltage to the voltage range where
intrinsic currents and external input jointly govern the voltage dynamics, results
in changes to the dynamic gain in the high-frequency region until it resembles
that of a LIF-like neuron. Obviously, this AP detection at low voltages does
not represent a physiological mechanism; an AP is special precisely because
its strong depolarization gates other ion channels. However, the virtual AP
times resulting from the low detection threshold still reveal a physiologically
meaningful property. Because dynamic gain measures the susceptibility of AP times
to extrinsic perturbation, the difference between dynamic gain curves obtained
with high and low detection thresholds uncovers how this susceptibility is built
up or eroded during the AP initiation interval. This simple, phenomenological
approach reveals how the AP initiation dynamics within different voltage regions
contributes to the physiologically meaningful dynamic gain. Such information is
otherwise inaccessible, except for the most simple intrinsic dynamics, when it can
be analytically calculated [27,29]. In models and experimental data we observed
the same, expected relation between the initiation-related dynamic gain modulation
and the voltage dependence of initiation currents. The steeper dV/ dt rises, the
larger is the bandwidth and the smaller is the range of detection thresholds for which
the dynamic gain shape changes (see Fig. 3A and 3E; Fig. 7A and 7B). Our analysis
of Eyal’s model revealed that the working point strongly influences this initiation-
related dynamic gain modulation. However, the model’s encoding bandwidth
is never chiefly limited by the initiation dynamics, because the subthreshold
signal transformations, the effective impedance Zeff and zero-delay spike gain
G0

sp, impose a cut-off at lower frequencies. This is in contrast to the findings in
cortical pyramidal cells, where the initiation dynamics seems to pose the ultimate
limitation for the encoding bandwidth (Fig. 7A).

This analysis approach holds great promise for future studies for two reasons.
First, it provides a common basis to disentangles the role of initiation dynamics in
all models and experimental data. Second, it is sensitive to the input statistics.
It changes when the neuron is studied at a different working point and thereby
the relation between extrinsic and intrinsic currents shifts. In that respect, the
dynamic gain decay analysis is much more informative than the conventional
metrics of initiation dynamics, the AP phase plot.
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Encoding abilities of type II neurons The model introduced by Eyal
et al. [4] has a relatively wide bandwidth (≈ 100Hz) even without dendrites,
provided it operates at a fluctuation-driven working point with intermediate input
fluctuations (blue trace in Fig. 2F). A closely related model with type I excitability
displayed a substantially lower bandwidth (approximately 10-15Hz) throughout
the large parameter space we explored. Our dynamic gain analysis identified
the mechanisms supporting this high-bandwidth encoding, the main contribution
is a larger fraction of open potassium channels at subthreshold voltages, which
reduces the membrane time constant and thereby increases the bandwidth of
the effective impedance, as compared to the type I model. This suppression of
low-frequency voltage components creates an apparent high-frequency boost. An
additional improvement of the high-frequency encoding stems from a higher voltage
sensitivity of the AP initiation currents. Although the voltage sensitivity of the
sodium and potassium channels does not differ between the type I and type II
model, the relative shift in their half-activation voltages means that at threshold,
d

dV
dV
dt

is larger in the type II. Accordingly, the dynamic gain decay’s bandwidth
is increased and does not limit the overall dynamic gain bandwidth at any of
the working points. The typical firing pattern of type II models, high frequency
repetitive firing, is of minor importance for the high bandwidth. A stratification
of APs according to the firing pattern (isolated or intra-burst), reveals the limited
encoding capacity of APs fired during repetitive firing episodes (Fig. 5C). The
type II excitability, the low membrane time constant and the bandwidth limitation
by impedance but not initiation dynamics, all mark Eyal’s model as distinct from
layer 5 pyramidal cells. It remains to be seen, whether cortical neurons with type II
excitability, e.g. fast-spiking interneurons as studied in [8], display a dynamic gain
decomposition more similar to Eyal’s model.

Experimental studies from several labs have reported that cortical pyramidal
neurons are capable of ultrafast, high-bandwidth encoding [5, 12, 15–17, 19, 21].
Interestingly, those neurons are generally considered to display type I excitability.
The few experimental studies of type II neurons, namely purkinje cells [18] and fast-
spiking interneurons [8] have shown that their encoding bandwidth is comparable
or even higher that that of pyramidal neurons. [8] also reported the dynamic
gain functions of firing rate-adapting interneurons and found a surprisingly strong
dependence on the input correlations. The dynamic gain decomposition presented
here might be instrumental in understanding this flexibility of dynamic gain.

Implications for neuronal network modelling The simulation of multi-
compartment models is computationally costly and almost prohibitive for large
network simulations. However, the shape and bandwidth of the dynamic gain play
important roles for studies of information processing in large, recurrent neuronal
networks. Our dynamic gain decomposition suggests routes to create simpler
models with dynamic gain curves that depend on input statistics just as the full
multi-compartment models do. If fixed thresholds and resets are used, the realistic
limited bandwidth could be obtained by adding a random AP initiation delay
distribution. The subthreshold influence on the dynamic gain curve could be created
by a few voltage-gated or AP time dependent conductances that create adaptation
and resonances. The input transformation from current to somatic and on to
axonal voltage can be achieved by an AIS-soma-dendrite three-compartment model
similar to the two-compartment model utilized by Ostojic and colleagues [18]. Such
few-compartment models can also explicitly represent the electrotonic separation
between soma and AIS, which shapes the signal arriving at the AP initiation
zone [23, 24]. Alternatively, the electrotonic structure of the somato-dendritic
compartments can be represented by analytical transformations, similar to the
work of Aspart and colleagues [25]. A combination of those approaches could
mimic the dynamic gain curves of real neurons, their dependence on working
points and even input correlations, all at much lower computational cost than a
conductance-based, multi-compartmental neuron model.

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2022. ; https://doi.org/10.1101/2022.02.04.479104doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.04.479104
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cellular physiology of dynamic population coding Because dynamic
gain decomposition works along the biophysical signal transformation cascade, its
results can be interpreted in physiological terms and corroborated with conventional
electrophysiological methods, such as, potassium channel pharmacology [36]. This
is particularly helpful in the emerging fields of axon initial segment plasticity
and spectrinophaties, where structural changes at the site of AP initiation are
observed as consequences of altered input [37–40] or mutated structural molecules
[17, 41, 42], and the consequences for excitability and encoding capacity need to
be quantified in order to understand the functional impact on the population
level. We propose that future studies of axon initial segment plasticity can use
dynamic gain measurements at carefully maintained working points to quantify
potential circuit-level consequences. Dynamic gain decomposition can then be
used to inform mechanistic models of how the observed molecular and structural
rearrangements affect functional differences or, alternatively, maintain encoding
precision while changing excitability. Foundations for such connection between
physiology and encoding precision have already been laid by studies that tie
structural changes at the axon initial segment [9, 17] or dendrite size [3, 5, 18] to
changes in the dynamic gain. It will be possible to apply the decomposition method
to these recently obtained data, to attribute the observed changes to sub- and
suprathreshold signal transformations, and to thereby critically test the concepts
formulated in those studies. Decomposing dynamic gains from differently treated
pyramidal neurons, we demonstrated which insights can be gained even from
experimental data. Firstly, the decomposition revealed the strong impact of the
effective impedance, and secondly, it confirmed the relation between the initiation
current’s voltage dependence and the bandwidth of the dynamic gain. Unlike Eyal’s
model, the real neuron’s encoding bandwidth is limited by the initiation dynamics.
This opens up new questions for future research, because the biophysical origin
of the effective impedance’s peculiar shape is unclear, as is the wide bandwidth
of the initiation-related dynamic gain decay. The analysis of the experimental
data also highlights the problem of choosing equivalent working points for different
neurons. Ultimately, to understand population encoding in the brain, we need a
better understanding of the physiological working points, experienced by neurons
in vivo. Future experimental and theoretical studies will identify the biophysical
basis for the surprisingly flexible dynamic gain changes at those working points [8],
and illuminate how population encoding strategies can differ between brain states.

Models and Methods

Neuron morphology and biophysical properties We used the multi-
compartment model studied in [4]. The neuron model is composed of one dendrite,
soma and axon (Fig S1), and studied at 25 µs time resolution. All three compart-
ments are cylinders. Diameter and length are 20 and 30 µm for soma, 1 and 50
µm for the axon initial segment (AIS), and 1 and 1000 µm for the myelinated
axon. To examine the impact of the dendrite on population response, we studied
three model variants as used in [4]. The first model is without the dendrite, the
second model has a dendrite with 3 µm diameter and 2324 µm length. The third
model has a dendrite with 5 µm diameter and 3000 µm length of (these models
are identified in [4] by axonal loads ρaxon of 12, 95 and 190).

The axial resistance Ra is 100 Ωcm, the reversal potential for the leak current
VL is -70mV, the specific membrane capacitance cm is 0.75 µF/cm2 and the
specific leak conductance gL is 3.3× 10−5S/cm2, except for the myelinated axon,
where the last two parameters are reduced to 0.02 µF/cm2 and 6.6× 10−7S/cm2.
The dendrite, soma, and AIS, contain voltage dependent sodium and potassium
channels. The sodium current is described by INa = ḡNam

3h(V −ENa) with ENa

set to 50mV. The slope factor qa of the stationary gating variable m∞ is 9mV.
ḡNa is 20 pS/µm2 in the dendrite, 800 pS/µm2 in the soma, and 8000 pS/µm2 in
the AIS. The potassium current is described by IK = ḡKn(V − EK) with EK set
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to -85mV. ḡK is 10 pS/µm2 in the dendrite, 320 pS/µm2 in the soma, and 1500
pS/µm2 in the AIS. The dynamics of gating variables are adapted from [43] with the
model temperature set to 37◦C. All simulations were performed with NEURON 7.6
and 8.0 [44] compiled with Python 3.7 and 3.9. The code for simulations is available
on github repository https://github.com/chenfeizhang/Code_Eyal_gwdg.

Neuron model stimulation and dynamic gain function The neuron
model was driven by a current stimulus injected to the middle of the soma. To
create the AP phase plots and measure the AP initiation speed, the stimulus was
a constant current just above rheobase. We recorded the voltage in the AIS, 47
µm away from the soma, during the first AP. When comparing the AP initiation
speed of different model variants, the local minima of the phase plots were shifted
to 0mV in the x axis.

The encoding ability of the neuron population can be evaluated by injecting
each neuron with an independent realization of the background noise combined
with a small sinusoidal signal:

I(t) = I0 +A sin(2πft) + Inoise(t). (3)

Here I0 is the mean input, A is the amplitude of the sinusoidal signal, and Inoise

is a zero-mean stochastic stimulus generated by the Ornstein-Uhlenbeck (OU)
process:

τ dInoise(t) = −Inoise(t) dt+
√
2τσI dW (t) (4)

where τ is the correlation time, σI is the standard deviation (std), and W (t) is a
Wiener process with zero mean and unit variance. The population firing rate can
be expanded as:

ν(t) = ν0 +G(f) ·A sin(2πft+ φ(f)) +O(A2) (5)

where ν0 is the mean firing rate, G(f) is the tuning ratio between the output
population firing rate and the sinusoidal signal at frequency f , φ(f) is the phase
shift dependent on the frequency, and O(A2) is the higher order term of the output.
We name the linear response part of the population firing G(·) as the dynamic
gain function. The dynamic gain could be theoretically calculated in a straight
forward way as the ratio of the Fourier transform of the spike output, and the
Fourier transform of the current input.

G(f) =
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)
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(6)

The firing rate can be understood as a sum of delta functions, located at the AP
times ti:

ν(t) =

n
∑

i=1

δ(t− ti) (7)

Here, we used the Fourier transform method proposed by [14]:

G(f) =

∣

∣

∣
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F(CIν)

F(CII)

∣

∣

∣

∣

=
〈ν〉 · |F(STAI)|

2τσ2

I

1+(2πτf)2

(8)

F(CIν) is the Fourier transform of input-output cross-correlation. Its the product of
mean firing rate 〈ν〉 and complex conjugate of the spike-triggered average current’s
Fourier transform F(STAI). To calculate the STA input, AP times were defined as
the time points at which the detection voltage was crossed from below. The default
detection voltage was chosen as the voltage at which the AP waveform reaches
its maximal slope. F(CII) is the Fourier transform of the input auto-correlation
function. Because this method does not require a sinusoidal stimulus component,
the stimulus is the OU process defined above. Its power spectral density is known

to be
2τσ2

I

1+(2πτf)2
, and due to the Wiener-Khinchin theorem, it equals F(CII).
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For each dynamic gain function, we generated 400 trials of 1000 seconds, each
resulting in a 1s long STAI input based on approximately 5000 APs. These 400
trial STAIs are averaged, yielding the final STAI for calculating the dynamic gain
function. To de-noise the dynamic gain in the high frequency region, we applied
a collections of Gaussian filters with frequency-dependent width to F(STAI),
following [14]. The dynamic gain’s confidence interval was obtained as the central
95% of bootstrap dynamic gains from re-sampling the 400 STAIs 1000 times. It is
often more narrow than the line widths. To determine the significance threshold
of the gain curves, a noise floor was calculated as the 95th percentile of dynamic
gain functions obtained from random AP times, obtained by shifting the original
times by a random interval, larger than 1 second. We only show results above that
noise floor. For a simple characterization of the shape of dynamic gain functions,
we define a cutoff frequency as the point where the dynamic gain drops below 70%
of the dynamic gain value at 1Hz.

Dynamic gain decomposition The effective impedance describes, in a
spectrally-resolved manner, the transformation between the fluctuating current
injected into the soma and the fluctuating voltage measured at the AP initiation
site. To calculate it in simulations, we added a sinusoidal signal to the stochastic
stimulus. The amplitude of the sinusoidal signal is one fifth of the std of the stimulus.
For each sinusoidal frequency, we generated 20,000 seconds of axonal voltage traces.
To remove the obviously non-linear AP waveforms, voltages above -50mV are
set to -50mV. When σI is relatively small, i.e. when the neuron is operating
close to mean-driven, it can happen that the spike-induced voltage excursions of
after-hyperpolarization and after-depolarization exceed the input-driven voltage
fluctuations. In this case, voltage excursions towards the negative values, e.g.
voltages below -70mV are also replaced by a threshold value. We averaged 20,000
pieces of 1 s of axonal voltage traces, to obtain the sinusoidally modulated average
voltage. The effective impedance at the sine frequency is the ratio of sinusoidal
voltage modulation amplitude to the sinusoidal current modulation amplitude. We
denote the effective impedance as Zeff(f). To analyze experimental data, voltage
excursions above a data-specific threshold are clipped. Zeff is determined as the
ratio between the Fourier transform of clipped voltage traces and the Fourier
transform of current traces. The spike gain at frequency f is the ratio of the
dynamic gain function G(f) to the effective impedance Zeff(f). It describes the
encoding of axonal voltage fluctuations into spiking in a spectrally-resolved manner,
denoted as Gsp(f):

Gsp(f) = G(f)/Zeff(f) (9)

Typically, we detect APs at a voltage, where the rate of voltage rise is maximal.
For Eyal’s model without the dendrite, this corresponds to -3mV. For the data, it
is typically between -5mV and + 5mV and here we chose 0mV for the analysis of
all experimental data. When we lower this Vdetect, we obtain modified, earlier AP
times. Importantly, we consider only the last positive crossings of Vdetect before
the full AP depolarization, therefore, the number of APs does not change. When
we calculate G(f) with AP times obtained with a detection voltage around AP
initiation threshold, we obtain the zero-delay dynamic gain G0(f). For Eyal’s
model, we obtained the phase plot of an AP fired just above rheobase input and
used the voltage of the local minimum Vloc as an approximation of the AP initiation
threshold. For experimental data, the corresponding Vloc can only be estimated.
The ratio G(f)/G0(f) is the dynamic gain decay caused by the variable initiation
dynamics.

Experimental data analysis We obtained the experimental data from [9]
and used the dynamic gain decomposition to interpret encoding differences between
individual neurons, and between the treatment group and the control group. The
dynamic gain functions were calculated with the Fourier transformation method,
using the spike triggered average current. The confidence interval was obtained
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as described above except that re-sampling occured over all AP times and not
trial STAIs. Noise floor calculation as decribed above. Decomposing the dynamic
gain function into effective impedance, zero-delay spike gain and gain decay, we
provided an interpretation on encoding variability of two neurons. On the group
level, G(f), Zeff , and Gsp(f) were calculated for all 15 neurons of the treatment
group and all 9 neurons of the control group. The grand average within groups was
obtained for the frequency range in which all individual traces were significant, i.e.
above the noise floor. For the statistical analysis of G(200Hz), and Gsp(200Hz),
we tested for normality using Jarque-Bera tests and then tested for equal mean
using t-tests. The phase plots for experimental data were obtained from the
voltage traces by binning voltage data and then averaging the corresponding
voltage derivative of each voltage point across all entries of each bin. The resulting
average voltage derivative is plotted against the centre of the voltage bin. The
code for the analysis of experimental data is available on github repository https:

//github.com/Anneef/AnTools.
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[19] Linaro D, Biró I, Giugliano M. Dynamical response properties of neocor-
tical neurons to conductance-driven time-varying inputs. Eur J Neurosci.
2018;47(1):17–32. doi:10.1111/ejn.13761.

[20] Borda Bossana S, Verbist C, Giugliano M. Homogeneous and Narrow Band-
width of Spike Initiation in Rat L1 Cortical Interneurons. Frontiers in Cellular
Neuroscience. 2020;14:118. doi:10.3389/fncel.2020.00118.

[21] Tchumatchenko T, Malyshev A, Wolf F, Volgushev M. Ultrafast popula-
tion encoding by cortical neurons. J Neurosci. 2011;31(34):12171–12179.
doi:10.1523/JNEUROSCI.2182-11.2011.

[22] Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system.
Nature. 1996;381(6582):520–522. doi:10.1038/381520a0.

[23] Brette R. Sharpness of spike initiation in neurons explained
by compartmentalization. PLoS Comput Biol. 2013;9(12):e1003338.
doi:10.1371/journal.pcbi.1003338.

[24] Zhang C, Hofmann D, Neef A, Wolf F. Ultrafast population coding and
axo-somatic compartmentalization. PLoS Comput Biol. 2022;18(1):1–25.
doi:10.1371/journal.pcbi.1009775.

[25] Aspart F, Ladenbauer J, Obermayer K. Extending integrate-and-fire model
neurons to account for the effects of weak electric fields and input fil-
tering mediated by the dendrite. PLoS Comput Biol. 2016;12(11):1–29.
doi:10.1371/journal.pcbi.1005206.

[26] Brunel N, Chance FS, Fourcaud N, Abbott LF. Effects of synaptic noise
and filtering on the frequency response of spiking neurons. Phys Rev Lett.
2001;86(10):2186–2189. doi:10.1103/PhysRevLett.86.2186.
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Supplementary materials

AP Initiation

Dendrite

Stimulus Injection

AISSoma Myelinated Axon

A                                                           B

Figure S 1: Neuron morphology and sodium activation function of Eyal’s

multi-compartment model. A The neuron model is composed of a dendrite, a soma

and an axon. The neuron model is equipped with sodium and potassium channels

everywhere, except in the passive, myelinated portion of the axon. Morphological and

biophysical parameters are given in the Models and Methods in the main text. B

Sodium activation function.
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Figure S 2: Dynamic gain functions and corresponding zero-delay dynamic

gain functions of Eyal’s type I model at three working points ranging from

nearly mean-driven to very fluctuation-driven. The three working points are

those provided in the main text. Slow AP initiation dynamics limits the encoding

bandwidth only when the working point is mean-driven.
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Figure S 3: Dynamic gain functions and spike initiation delay distributions

of fluctuation-driven APs and repetitive firing APs at the iso-fluctuation

working point when τ = 50ms.
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Figure S 4: Dynamic gain functions of fluctuation-driven APs and repetitive

firing APs of type II and type I models, at the three working points ranging

from mean-driven to very fluctuation-driven. τ = 5ms.
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Figure S 5: F-I curves of Eyal’s type II models with different dendrite sizes.
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Figure S 6: Dynamic gain functions of Eyal’s type II models with different

dendrite sizes at iso-delay working points. For τ = 5 and 50ms, a larger dendrite

can enhance high frequency encoding, while the Brunel effects are almost identical for

the three model variants.
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