

¹ **Main Manuscript for:**

² Physiological causes and biogeographic consequences of thermal optima
³ in the hypoxia tolerance of marine ectotherms

⁴ Martin-Georg A. Endress^a, Thomas H. Boag^b, Benjamin P. Burford^c, Justin L. Penn^d, Erik A.
⁵ Sperling^e, Curtis A. Deutsch^d

⁶ ^a School of Oceanography, University of Washington, Seattle, Washington 98195, USA

⁷ ^b Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut 06520,
⁸ USA

⁹ ^c Institute of Marine Sciences, University of California Santa Cruz, California 95064, USA

¹⁰ ^d Department of Geosciences and High Meadows Environmental Institute, Princeton University,
¹¹ New Jersey 08544, USA

¹² ^e Department of Geological Sciences, Stanford University, Stanford, California 94305, USA

¹³ **Corresponding Author:** Martin-Georg A. Endress

¹⁴ **Email:** endressmg@gmail.com

¹⁵ **Author Contributions:**

¹⁶ C.A.D. conceived the study and designed the model. M.A.E. performed the analysis. T.H.B.,
¹⁷ E.A.S. and B.P.B. contributed physiological data. M.A.E. and C.A.D. wrote the manuscript with
¹⁸ input from all authors.

¹⁹ **Competing Interest Statement:**

²⁰ The authors declare no competing interests.

²¹ **Keywords:**

22 hypoxia tolerance, thermal optima, biophysical modeling, ocean warming, ectotherm, fish

23 **This PDF includes:**

24 **Main Text**

25 **Figures 1 to 5**

26 Abstract

27 The minimum O_2 needed to fuel the demand of aquatic animals is commonly observed to increase
28 with temperature, driven by accelerating metabolism. However, recent measurements of critical
29 O_2 thresholds (' P_{crit} ') reveal more complex patterns, including those with a minimum at an inter-
30 mediate thermal 'optimum'. To discern the prevalence, physiological drivers, and biogeographic
31 manifestations of such curves, we analyze new experimental and biogeographic data using a general
32 dynamic model of aquatic water breathers. The model simulates the transfer of oxygen from ambi-
33 ent water, through a boundary layer and into animal tissues driven by temperature-dependent rates
34 of metabolism, diffusive gas exchange, and ventilatory and circulatory systems with O_2 -protein
35 binding. We find that a thermal optimum in P_{crit} can arise even when all physiological rates
36 increase steadily with temperature. This occurs when O_2 supply at low temperatures is limited by a
37 process that is more temperature sensitive than metabolism, but becomes limited by a less sensitive
38 process at warmer temperatures. Analysis of species respiratory traits suggests this scenario is not
39 uncommon in marine biota, with ventilation and circulation limiting supply under cold conditions
40 and diffusion limiting supply at high temperatures. Using biogeographic data, we show that species
41 with these physiological traits inhabit lowest O_2 waters near the optimal temperature for hypoxia
42 tolerance, and are restricted to higher O_2 at temperatures above and below this optimum. Our
43 results imply that O_2 tolerance can decline under both cold and warm conditions, and thus may
44 influence both poleward and equatorward species range limits.

45 **Significance Statement**

46 Physiology shapes the ecology, biogeography, and climate responses of marine species. In aquatic
47 ectotherms, accelerating metabolism and lowered oxygen availability generally result in increasing
48 oxygen limitation with warming. Here we present evidence for thermal optima in hypoxia tolerance
49 of diverse species that is explained by a dynamical model of organismal physiology. Our results
50 indicate that this potentially widespread bidirectional pattern explains species biogeographic limits
51 in cold and warm waters. It can be understood using a generalized Metabolic Index of O₂ supply
52 to demand, which captures the variable observed trends between temperature and species hypoxia
53 sensitivity. Oxygen limitation of aerobic metabolism in cold water has far-reaching implications
54 for marine biogeography and species migrations under climate change.

55 Introduction

56 Climate change is raising temperatures throughout the upper ocean, while decreasing its oxygen
57 content. These trends are among the most robustly observed and well understood aspects of global
58 ocean change (1). They also pose a major challenge for marine ectotherms, whose metabolic
59 rates rise exponentially with temperature (2,3), requiring a concomitant increase in O₂ supply to
60 maintain aerobic energy balance that is at odds with the ocean's declining global O₂ inventory (4,
61 5). The temperature-dependent hypoxia tolerance of marine species already limits their geographic
62 distributions, most commonly at the equatorial (warm) and/or deep (low O₂) range edge of species
63 distributions (6, 7, 8, 9), yielding a simple physiological mechanism for species responses to climate
64 change (10, 11).

65 The environmental O₂ minimum at which an organism can sustain its resting metabolism is typically
66 reported as a critical pressure (P_{crit}) and remains the most common measure of hypoxia tolerance,
67 despite potential complexities of experimental determination (12, 13). In most studied species,
68 P_{crit} increases with temperature, implying that their O₂ demand accelerates faster with warming
69 than their supply (6).

70 Some species show a decrease in P_{crit} as temperatures rise, implying that supply accelerates
71 faster than demand, although this has rarely been observed (14, 15). In recent experiments, still
72 other species exhibit both a decline in P_{crit} as temperatures rise from the coldest water, followed
73 by an increase from further warming, resulting a minimum P_{crit} , and thus a maximum hypoxia
74 tolerance, at an intermediate optimum temperature (16, 17). While the individual processes of
75 supply and demand all tend to increase steadily with temperature (18, 19), these bowl-shaped P_{crit}
76 curves require that the ratio of these rates exhibits a more complex relationship to temperature.

77 Thermal optima for hypoxia tolerance have been posited (20, 21), but scarce empirical support has
78 hampered the development of a quantitative model. This prevents a mechanistic evaluation of the
79 role of hypoxia tolerance at the cold edge of range limits, and the associated implications of climate
80 change, especially for populations not living near a species' warm range limit, or exposed to ocean
81 cooling.

82 To examine the prevalence of thermal optima in hypoxia tolerance, diagnose the physiological
83 conditions under which it can arise, and evaluate its relevance to species biogeography, we combined
84 new laboratory experiments, a dynamic model of O₂ supply in marine ectotherms, and species
85 biogeographic distribution data. Among all studied species, we find complex P_{crit} behavior across
86 a broad temperature range. A general model of aquatic water breathers demonstrates the conditions
87 under which thermal optima can emerge from the multi-step nature of the O₂ supply chain, and
88 analysis of prior laboratory data suggests that marine species commonly meet those conditions.
89 The behavior of the dynamic model can be reproduced with a generalized Metabolic Index of O₂
90 supply to demand (6) that captures a wide range of observed P_{crit} curves. Finally, we present
91 evidence that P_{crit} curves with a thermal optimum are also reflected in the biogeography of marine
92 species and thus may explain the cold/poleward limit in such species geographic ranges.

93 **Results**

94 **Laboratory Observations**

95 To evaluate the prevalence of non-exponential P_{crit} curves, we measured P_{crit} across a wide
96 temperature spectrum for four previously unmeasured invertebrate species. These species span four
97 different phyla, have multiple modes of oxygen supply, and regularly encounter temporal and/or
98 spatial variability in environmental pO₂ (Fig. 1). Following published respirometry protocols
99 (Materials and Methods), we conducted P_{crit} measurements from the freshwater oligochaete worm
100 *Tubifex tubifex*, the outer shelf/upper slope sea urchin *Lytechinus pictus* from California, and the
101 Atlantic intertidal anemone *Nematostella vectensis*. We also used P_{crit} measurements of the squid
102 *Doryteuthis opalescens* which is exposed to strong gradients of temperature and O₂ in the California
103 Current System (22).
104 Measurements of all species reveal a minimum in P_{crit} at intermediate experimental temperatures,
105 with substantial variation in the location of the thermal optimum and depth of the P_{crit} minimum.
106 Some species P_{crit} curves reveal a broad bowl (*L. pictus*), others a deep bowl (*T. tubifex*), and

107 still others a relatively constant P_{crit} at cold temperatures, followed by a sharp rise at warmer
108 temperatures (*N. vectensis*, *D. opalescens*). These new respirometry data combined with published
109 data (17,16), indicate that thermal optima in hypoxia tolerance are found in multiple phyla and
110 across multiple modes of oxygen supply (e.g., gills and a blood vascular system in squid versus
111 cutaneous respiration in anemones) and may therefore represent a widespread pattern.

112 **Dynamic Model**

113 To explore the conditions that lead to a thermal optimum in hypoxia tolerance, we develop a
114 dynamic model of O₂ supply and demand in water-breathing animals. The model simulates the
115 transfer of O₂ from the environment to the metabolizing tissues of an organism across a range
116 of temperatures using a system of coupled non-linear ordinary differential equations (ODEs). To
117 make the model generally applicable to aquatic animals, we include all the potential pools and
118 fluxes of O₂, including external ventilation of water from the ambient fluid to the boundary layer
119 at the exchange surface, the molecular O₂ diffusion across that surface, and internal flux of O₂ to
120 metabolizing body tissues, which may be mediated by a circulatory system (Fig. 2A). In addition
121 to dissolved O₂, the model also tracks the concentration of the bound and unbound forms of an
122 oxygen-transport protein such as hemoglobin or hemocyanin (denoted HxO and Hx, respectively),
123 which bind and release molecular O₂ according to the associated chemical equilibrium. This is
124 captured by the pO₂ at half-saturation (denoted P_{50}) and the enthalpy (ΔH) of the binding reaction,
125 which governs the temperature dependence of that equilibrium (23, details SI).
126 Each of the three O₂ supply processes (ventilation, diffusion, and circulation) is described by a rate
127 S_i that is represented as the product of the pO₂ difference between the respective compartments,
128 $\Delta_i pO_2$, and a temperature-dependent rate coefficient $\hat{\alpha}_i(T)$ that characterizes the kinetics of that
129 process:

$$S_i(T) = \hat{\alpha}_i(T) \Delta_i pO_2 \quad (1)$$

130 The temperature-dependency of the three rate coefficients – flow rates of ventilated water and
131 circulated blood, and the diffusivity of O_2 – each vary exponentially with temperature (Arrhenius
132 function), as does the metabolic rate, but with distinct temperature sensitivities. The resulting 8
133 parameters (3 supply rate coefficients, the metabolic rate, and the temperature sensitivity of each)
134 along with the 3 chemical parameters (P_{50} , ΔH and total Hx concentration) represent a set of traits
135 that determine a model organism's hypoxia tolerance and its variation with temperature. The well-
136 documented trait variations in real animals (e.g., overall O_2 supply capacity [24] and adaptation to
137 hypoxia [25], gill surface area [26, 27], blood properties [28, 29]) are simulated by scaling these
138 parameters in the model. Our analysis aims to discern how such biological traits govern the shape
139 of the resulting P_{crit} curves with respect to temperature.

140 Model simulations resemble standard closed system respirometry experiments used to determine
141 P_{crit} values (Fig. 2B, 30), in which O_2 is depleted from the ambient water as it gets transferred
142 to metabolizing tissues. Both the O_2 concentrations and the fraction of O_2 -bound protein (HxO)
143 decline in all compartments. Once O_2 levels in the tissue compartment can no longer support
144 resting metabolism, consumption slows down with the onset of hypoxemia, allowing P_{crit} to be
145 diagnosed from the rate of environmental O_2 depletion using breakpoint analysis (Materials and
146 Methods, full model in SI).

147 Simulations across a range of temperatures yield the P_{crit} curve, which integrates the contribution
148 of all traits to a single metric of hypoxia tolerance. Across a wide range of model parameters
149 centered on the most common traits observed in marine organisms (7), the P_{crit} curves exhibit an
150 overall rise with temperature, driven by the increase in metabolic rate.

151 Both the chemical properties (Hx, ΔH and $p50$) as well as the rate coefficients of supply and demand
152 ($\hat{\alpha}_i$) have intuitive impacts on the P_{crit} curves. For example, a higher concentration of total Hx
153 acts to lower the P_{crit} curve across all temperatures (Fig. 2C), enhancing the tolerance to hypoxia.
154 An equivalent effect can be obtained by increasing the biophysical supply coefficients, simulating
155 changes such as a larger gill area or faster ventilation rate (Fig. 2D).

156 However, we also find less intuitive impacts on the shape of the curves, as the fractional change in

157 P_{crit} is not always the same across the full temperature range. For instance, a 25 % increase in the
158 ventilation rate does not lower the P_{crit} by the same fraction at all temperatures, but instead has a
159 larger impact under cold conditions than under warm conditions (Fig. 2D). In other words, the P_{crit}
160 curves resulting from a multi-step supply chain can depart from simple exponential relationships
161 with temperature, even when each single supply process accelerates exponentially with warming.
162 We conclude that the well-known non-linearities in blood-O₂ binding are not the essential cause
163 of this behavior, because the variation due to biophysical properties is similar to that induced by
164 variations in blood chemistry. Moreover, we observe complex P_{crit} curves in organisms without
165 O₂-binding proteins (e.g. *N. vectensis* in Fig. 1).

166 Instead, we focus our analysis on the mechanisms by which the linear combination of biophysical
167 transfer processes in a multi-step O₂ supply chain leads to the complex patterns observed in P_{crit}
168 curves.

169 The origins of non-exponential P_{crit} curves can be demonstrated quantitatively in a model with a
170 supply chain consisting only of ventilation and diffusive gas exchange (Fig. 3). In isolation, each step
171 yields a simple (exponential) P_{crit} curve with a slope depending on the temperature sensitivities of
172 supply and demand. The curve is increasing if metabolic demand accelerates faster with temperature
173 than supply (shown for diffusion, Fig. 3A), and decreasing if instead the temperature sensitivity of
174 supply exceeds that of metabolism (ventilation, Fig. 3B). Combining ventilation and diffusion in
175 series results in a P_{crit} curve that is the sum of the two curves corresponding to the single steps,
176 and thus exhibits a minimum at an intermediate temperature (Fig. 3C).

177 This additive nature of the P_{crit} curve resulting from a linear supply chain can also be derived
178 analytically from the system of model ODEs for more than two supply steps (details in SI).

179 Conceptually, this property can be thought of as analogous to an electrical circuit in which a fixed
180 voltage is applied to a series of resistors. Just like the total voltage can be obtained as the sum of
181 the individual voltage drops across each resistor, the total P_{crit} curve of a multi-step supply chain
182 can be obtained as the sum of the pO₂ drops that drive each individual supply process.

183 Therefore, a bowl-shaped P_{crit} curve can emerge if the supply chain includes processes that are

184 both more and less sensitive to temperature changes than metabolism. In Fig. 3C, the P_{crit} curve
185 rises under warm conditions because a large pO_2 gradient is required to drive sufficient diffusion
186 at high temperatures. This is due to the fact that diffusion accelerates slower than metabolism with
187 warming. On the other hand, the curve also remains flat or even reverses under cold conditions
188 because a large pO_2 gradient is required to drive sufficient ventilation at low temperatures, since
189 this process has a higher temperature sensitivity than metabolism.

190 Because the critical pO_2 differences required to drive the individual supply steps are not the same,
191 the total P_{crit} curve is not equally sensitive to changes in the biologically controlled rate coefficients
192 at all temperatures. In the example above, the change in P_{crit} at high temperatures due to a change in
193 ventilation rate might be small or even negligible while its response to a change in diffusivity might
194 be substantial, even for the same relative increase in the biologically controlled parameter. More
195 generally, a change in the coefficient of any supply process that accelerates faster with warming than
196 metabolism will have the largest impact on P_{crit} under cold conditions, as in the case of ventilation.
197 On the other hand, such an increase has the largest impact on P_{crit} under warm conditions for a
198 supply process that accelerates slower than metabolism, such as diffusion.

199 This relationship is particularly important for processes under immediate biological control like
200 ventilation and circulation and has implications for understanding their temperature sensitivity.
201 Incurring the energetic costs of accelerating heart rate or ventilation across the entire temperature
202 range may not be beneficial if P_{crit} is instead much more sensitive to changes in diffusion at high
203 temperatures. We illustrate this in a model variant with a ventilation rate that has a high temperature
204 sensitivity at low temperatures but reaches an upper limit under warm conditions, as for example
205 observed in (31, 32, 33). The resulting change in P_{crit} at high temperatures compared to a simple
206 exponential ventilation rate is minimal (Fig. S3). In this scenario, increasing the ventilation rate
207 throughout the warm side of the temperature range barely impacts hypoxia tolerance, because O_2
208 supply is largely determined by diffusion.

209 Evidence from Physiology

210 To determine whether the physiological conditions for a thermal optimum in hypoxia tolerance are
211 common among marine biota, we compiled experimental data on the temperature dependence of
212 ventilation and circulation rates of aquatic water breathers (Materials and Methods).

213 The compilation covers 58 data sets from 35 species, including 21 chordates, 9 arthropods, 3
214 annelids and 2 mollusks. Estimates of the sensitivity parameters (E_V, E_C) obtained by fitting
215 Arrhenius functions to the data show an increase in ventilatory and circulatory activity with
216 temperature in almost all species, with sensitivities ranging from -0.14 eV to 0.9 eV and a mean of
217 0.39 eV (± 0.22 eV SD). Since these estimates include frequencies and stroke volumes in addition
218 to volumetric flow rates, they represent a lower bound on the actual sensitivity of ventilation and
219 circulation as considered in the dynamic model. A higher sensitivity (0.49 eV ± 0.21 eV SD) is
220 obtained if only volumetric rates ($n = 12$) are considered (Fig. 4).

221 These results can be compared to existing estimates of the temperature sensitivity of metabolism
222 (E_M) with a mean of 0.71 eV [± 0.46 eV SD] from a diverse set of 186 species (7). If the
223 traits of O₂ supply and demand were independent, the estimated frequency distributions in Fig. 4
224 would suggest that the conditions for thermal optima ($E_V, E_C > E_M$) are met in about 23 % of
225 species after accounting for the effect of decreasing solubility with temperature (SI). However,
226 supply sensitivities exceed that of demand in 7 of 17 species for which both estimates are available
227 (Dataset S1). Thus, about 40 % of species with adequate data meet this condition for having a
228 thermal optimum in hypoxia tolerance.

229 The thermal variation of ventilation and circulation rates also differs across the inhabited temper-
230 ature range for many species. We estimated the temperature sensitivity of volumetric flow rates
231 in both warm and cold temperature ranges, for all species with sufficient data ($n = 10$). On the
232 cold side the mean E_V and E_C are 0.69 eV, significantly exceeding the cold side with a mean of
233 0.07 eV ($p = 0.009$). The difference remains significant if stroke volumes and frequencies are also
234 considered ($n = 40$ from 25 species, Fig. S5, details in SI). Thus, the acceleration of ventilation
235 and circulation rates slows down in the warmer half of experimental temperatures on average. This

236 behavior is consistent with these biophysical processes conferring little additional hypoxia tolerance
237 at high temperatures for the associated energetic cost, with P_{crit} being most sensitive to diffusion as
238 illustrated in the model variant for ventilation (Fig. S3). Taken together, both the high temperature
239 sensitivity of biophysical rates (circulation and ventilation) in colder waters, and the reduction of
240 these sensitivities in warmer waters, suggest that the condition for thermal optima are commonly
241 found among the traits of marine species.

242 A Metabolic Index with Thermal Optima

243 We generalized the Metabolic Index introduced by Deutsch et al. (6) to account for the occurrence
244 of complex shaped P_{crit} curves. The index is defined as the ratio of O₂ supply to resting demand
245 of an aquatic water-breather in its environment, and it has been applied to understand how species
246 biogeography is shaped by climate (6, 16, 11, 10, 34). However, the original formulation assumed
247 that P_{crit} varies exponentially with temperature. Our generalized version is able to reproduce the
248 full range of behaviors exhibited by the dynamic model, requiring only five parameters, which can
249 be calibrated from experimental data through a single equation.

250 While it is possible to derive the ratio of supply to demand from the model ODEs analytically (SI),
251 the metabolic index can also be developed from the analogy of an electrical circuit in which a
252 fixed voltage is applied to a series of resistors.

253 When considering a single supply step i , the rate of O₂ supply according to Eqn. (1) is the product of
254 the pO₂ difference ΔpO_2 between the compartments, equivalent to a ‘voltage’ driving a current, and
255 the biologically determined rate coefficient $\hat{\alpha}_i$ of the process, equivalent to a temperature-dependent
256 ‘conductance’ with respect to the flow of O₂.

257 For the habitat to be viable, this supply rate must be equal to metabolic consumption, such that P_{crit}
258 can be interpreted as the minimum ‘voltage’ required to achieve an O₂ supply matching demand
259 given the fixed ‘conductance’ of the biological supply process.

260 In a supply chain with multiple steps in series, each step is associated with such a required voltage
261 drop - a pO₂ difference - determined by its single step conductance. Thus, the P_{crit} of the composite

262 chain can be obtained as the sum of the minimum pO_2 differences of the single supply steps, as
263 illustrated in Fig. 3C.

264 The temperature-dependent ‘conductance’ (or rate coefficient) $\hat{\alpha}_i$ of a single supply step can be
265 expressed as $\alpha_i R(E_{S_i})$, where α_i denotes the value of the coefficient at reference temperature,
266 which is scaled by an exponential (Arrhenius) function R with temperature sensitivity E_{S_i} [eV].
267 More generally, in a chain with n supply steps in series, the total conductance of the chain is the
268 reciprocal of the sum of single step resistances. When divided by metabolic demand $\alpha_M R(T, E_M)$,
269 the resulting expression for the generalized supply-to-demand ratio Φ is

$$\Phi = pO_2 B^\epsilon \left[\sum_{i=1}^n \frac{\alpha_M}{\alpha_i} R(E_i) \right]^{-1}, \quad (2)$$

270 where the α_i represent the supply rate coefficients at reference temperature and $E_i = E_M - E_{S_i}$ [eV]
271 denote the differences between the sensitivities of metabolic demand and the supply processes. The
272 dependence of supply and demand on body mass B is reflected in the allometric exponent ϵ as in
273 the original index (6).

274 The condition for the existence of a bowl-shaped P_{crit} curve, i.e. supply steps having temperature
275 sensitivities both less than and greater than that of metabolic demand, thus reads $E_{S_i} < E_M < E_{S_j}$
276 for any two supply steps i and j . Eqn. (2) can include any number of supply processes. However,
277 we find that P_{crit} curves generated by the full model ($n = 3$) can still be appropriately represented
278 by curves assuming only 2 steps. Adding more exponential curves does not change the qualitative
279 range of possible P_{crit} curves beyond those of concave-up bowl shapes (Fig. S4A and C). The
280 generalized Metabolic Index in Eqn. (2) can also reproduce P_{crit} curves that include the Hx/HxO
281 system (Fig. S4B, D and E), because the effects of the chemical blood component on the P_{crit}
282 curve are qualitatively the same as those of the biophysical parameters (Fig. 2C and D). In such
283 cases, however, the parameters can no longer be associated with single steps in the supply chain,
284 but instead capture the combined properties of the processes that limit the O_2 supply towards the

285 cold and warm ends of the temperature range, respectively.

286 **Connecting Physiology to Biogeography**

287 The metabolic index framework establishes a direct link between physiological traits and biogeographical distributions, as the range boundaries of a diverse set of species align more strongly
288 with a specific value of the index than with either temperature or pO_2 alone (7). The generalized
289 formulation has the potential to further improve this description of species habitats, especially at
290 the cold edges of a species distribution.

292 To examine whether the thermal optima in physiological hypoxia tolerance are reflected in a
293 species' biogeography, we investigate state-space habitats of biogeographic occurrence data from
294 the Ocean Biodiversity Information System (35, Materials and Methods). For the species presented
295 in Fig. 1, the environmental habitat conditions are poorly represented in large-scale datasets (Fig.
296 S6). However, for two additional species with physiological traits suggesting a thermal optimum, the
297 starry flounder *Platichthys stellatus* and the shrimp *Oplophorus spinosus*, adequate occurrence and
298 environmental data are available. In *Platichthys stellatus*, estimates from published experimental
299 results yield a temperature sensitivity $E_M = 0.68$ eV for metabolism and $E_{Vent} = 0.9$ eV (36) for
300 the ventilation rate, indicating a bowl-shaped O_2 limitation. For *Oplophorus spinosus*, critical O_2
301 pressures have been measured and display a minimum at intermediate temperatures (37), such that
302 Eqn. (2) can be fit directly.

303 In both species, the environmental conditions in occupied habitats reveal a clear minimum in
304 inhabited pO_2 at intermediate temperatures, consistent with the physiological predictions (Fig. 5).

305 In contrast, the minimum inhabited temperatures of each species are inconsistent with a model
306 based on a lower threshold value of temperature that is independent of O_2 . Instead, minimum
307 temperatures decrease to lower values as oxygen levels increase. Similar patterns are also observed
308 in other species for which laboratory experiments indicate thermal optima and for which sufficient
309 occurrence data are available (SI, Fig. S7, 16).

310 In all these cases, the generalized Metabolic Index reveals how the reversal in hypoxia tolerance

311 at low temperatures results from physiological traits, and how this bidirectionality is reflected in
312 biogeographic ranges. In particular, it suggests O₂ limitation is the mechanism that restricts habitat
313 towards the cold edges of species distributions.

314 Discussion

315 The dynamic model of temperature-dependent hypoxia reveals that a series of biophysical O₂
316 supply steps can give rise to thermal optima in hypoxia tolerance as observed in new respirometry
317 data. This occurs when the supply chain includes at least two processes such that one accelerates
318 with temperature more slowly than metabolic demand, and another accelerates more rapidly. In
319 this case, the process with a lower temperature sensitivity drives an increase in P_{crit} under warm
320 conditions, while the more sensitive process leads to a reversal with higher P_{crit} in cold waters. A
321 generalized Metabolic Index adequately captures these complex patterns in a single metric based
322 on mechanistic principles.

323 Our analysis of available physiological evidence suggests that such bidirectional effects of temper-
324 ature on hypoxia tolerance may not be uncommon in aquatic animals across taxonomic groups.
325 Estimates of the temperature sensitivity of ventilation and circulation rates in aquatic ectotherms
326 fall above diffusive gas exchange and below metabolism on average, but imply the existence of
327 thermal optima in a significant fraction of species. However, these results rely on limited physio-
328 logical data. In particular, there are only a few teleost and crustacean species for which all required
329 physiological estimates are available. Thus, sampling the involved traits across a broader range of
330 the taxonomic, morphological and ecological diversity is a key step towards further advancing and
331 testing this framework and its implications.

332 In contrast to the sparsity of detailed physiological measurements, global occurrence data is avail-
333 able for a much larger number and diversity of marine species (e.g OBIS). The generalized index
334 offers further improvements in the analysis of these data compared to its original formulation,
335 especially along the cold edges of species habitats by including a meaningful representation of O₂

336 limitation at low temperatures. In case studies presented here, thermal optima in physiological hy-
337 poxia tolerance are also reflected in species' biogeographic state space. Leveraging this approach
338 in a future database-wide analysis of occurrence data will contribute to a fuller picture of how
339 temperature and oxygen shape the biogeography and ecology of marine species.

340 Oxygen limitation of aerobic metabolism at low temperature has broad implications for marine
341 ecosystems and their response to climate change. Marine species richness is generally observed
342 to decline towards the poles, and is often cited as being driven by gradients in ocean temperature,
343 with cooler waters taken to inhibit diversity (38). Our results indicate that long-term aerobic
344 energy constraints on viable habitat in cold water could be a physiological cause of this poleward
345 diversity loss. At the same time, warming at species' poleward range limits would relieve such
346 aerobic constraints, allowing species to disperse towards, and establish in, higher latitudes. This
347 mechanism could thus potentially explain widespread poleward migrations of marine species seen
348 in response to recent anthropogenic warming (39, 40). On longer timescales, O₂ limitation at
349 species' cold edge habitat limits provides a novel mechanism for driving habitat loss during periods
350 of global cooling, and may underlie previous extinctions during such phases (41, 42).

351 Materials and Methods

352 **Laboratory Measurements.** Critical O₂ levels were measured following standard closed system
353 respirometry protocols (17, 43) for individuals of *T. tubifex* ($n = 132$), *N. vectensis* ($n = 107$) and *L.*
354 *pictus* ($n = 40$). For the social squid *D. opalescens*, we measured critical O₂ levels for 14 groups
355 of 15 to 30 (median 20) animals following published closed system respirometry protocols for this
356 species (44). P_{crit} was determined by breakpoint analysis of the O₂ draw down curve (45). Full
357 protocols are provided in the SI.

358 **Dynamic Model.** The pools and fluxes of O₂ in a generic water-breather are described by a
359 nonlinear system of 8 ordinary differential equations. For each set of model parameters, simulations
360 are performed across the temperature range from 0 °C to 30 °C until P_{crit} can be determined by

361 breakpoint analysis from the rate of O₂ draw down. All simulations were carried out in the Python
362 language using the solve_ivp function in Scipy (46) for numerical integration. The full model
363 description is provided in the SI.

364 **Ventilation and Circulation Data.** We compiled data on ventilation rates ($n = 8$), ventilation
365 frequency ($n = 18$), ventilation stroke volumes ($n = 6$), circulation rates ($n = 4$), heart rates ($n = 20$)
366 and heart stroke volumes ($n = 2$) of aquatic water-breathers measured at two or more temperatures
367 at atmospheric O₂ levels. Estimates of the sensitivity parameters E_V, E_C were obtained through
368 least square fits of Arrhenius functions to the experimental data using the curve_fit function and
369 density estimates were obtained using the gaussian_kde function in Scipy. A detailed description
370 of the compiled data is provided in the SI and all estimates are available in Dataset S1.

371 **State-space Habitats.** State-space habitats were obtained by pairing species location data down-
372 loaded from the Ocean Biodiversity Information System (35) in September 2019 with monthly
373 temperature and O₂ conditions from the World Ocean Atlas (47, 48) according to the procedure
374 described in (7). All available state-space habitats are shown in Fig. S6 and Fig. S7. Additional
375 information is provided in the SI.

376 Acknowledgments

377 The study was made possible by grants to C.D. from the National Oceanic and Atmospheric Admin-
378 istration (NOAA NA18NOS4780167), the California SeaGrant and Ocean Protection Council, and
379 the National Science Foundation (NSF OCE-1737282). E.A.S. is funded by NSF EAR-1922966
380 and an Environmental Ventures Project grant from the Stanford Woods Institute. We thank Leanne
381 Elder, Pincelli Hull, and Murray Duncan for helpful discussion, and Andy Marquez for laboratory
382 assistance.

383 Data and Code Availability

384 Sensitivity estimates for ventilation and circulation rates obtained from published results are avail-
385 able in Dataset S1. Biogeographic and environmental data are publicly available. Full physiological
386 measurements are shown in Fig. S1. and are available from the corresponding author upon rea-
387 sonable request. Python code will be made available upon publication.

388 References

389 [1] Collins M, et al. (2013) *Long-term climate change: Projections, commitments and irreversibil-*
390 *ity*, eds. Stocker TF, et al. (Cambridge University Press, Cambridge, UK), pp. 1029–1136.

391 [2] Seibel BA, Drazen JC (2007) The rate of metabolism in marine animals: environmental
392 constraints, ecological demands and energetic opportunities. *Phil. Trans. R. Soc. B* p. 18.

393 [3] Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temper-
394 *ature on metabolic rate. Science* 293(5538):2248–2251.

395 [4] Schmidtko S, Stramma L, Visbeck M (2017) Decline in global oceanic oxygen content during
396 the past five decades. *Nature* 542(7641):335–339.

397 [5] Ito T, Minobe S, Long MC, Deutsch C (2017) Upper ocean o₂ trends: 1958–2015. *Geophysical*
398 *Research Letters* 44(9):4214–4223.

399 [6] Deutsch C, Ferrel A, Seibel B, Portner HO, Huey RB (2015) Climate change tightens a
400 metabolic constraint on marine habitats. *Science* 348(6239):1132–1135.

401 [7] Deutsch C, Penn JL, Seibel B (2020) Metabolic trait diversity shapes marine biogeography.
402 *Nature* 585(7826):557–562.

403 [8] Stramma L, et al. (2012) Expansion of oxygen minimum zones may reduce available habitat
404 for tropical pelagic fishes. *Nature Climate Change* 2:33–37.

405 [9] Childress JJ (1975) The respiratory rates of midwater crustaceans as a function of depth of
406 occurrence and relation to the oxygen minimum layer off Southern California. *Comparative*
407 *Biochemistry and Physiology Part A: Physiology* 50(4):787–799.

408 [10] Howard EM, et al. (2020) Climate-driven aerobic habitat loss in the California Current System.
409 *Sci. Adv.* 6(20):eaay3188.

410 [11] Penn JL, Deutsch C, Payne JL, Sperling EA (2018) Temperature-dependent hypoxia
411 explains biogeography and severity of end-Permian marine mass extinction. *Science*
412 362(6419):eaat1327.

413 [12] Rogers NJ, Urbina MA, Reardon EE, McKenzie DJ, Wilson RW (2016) A new analysis of
414 hypoxia tolerance in fishes using a database of critical oxygen level (P_{crit}). *Conserv Physiol*
415 4(1):cow012.

416 [13] Regan MD, et al. (2019) Don't throw the fish out with the respirometry water. *J Exp Biol*
417 222(6):jeb200253.

418 [14] Fisher TR (1976) Oxygen uptake of the solitary tunicate *Styela plicata*. *The Biological Bulletin*
419 151(2):297–305.

420 [15] Wishner KF, et al. (2018) Ocean deoxygenation and zooplankton: Very small oxygen differ-
421 ences matter. *Sci. Adv.* 4(12):eaau5180.

422 [16] Duncan MI, James NC, Potts WM, Bates AE (2020) Different drivers, common mechanism;
423 the distribution of a reef fish is restricted by local-scale oxygen and temperature constraints on
424 aerobic metabolism. *Conservation Physiology* 8(1):coaa090.

425 [17] Boag TH, Stockey RG, Elder LE, Hull PM, Sperling EA (2018) Oxygen, temperature and the
426 deep-marine stenothermal cradle of Ediacaran evolution. *Proc. R. Soc. B* 285(1893):20181724.

427 [18] Dell AI, Pawar S, Savage VM (2011) Systematic variation in the temperature dependence
428 of physiological and ecological traits. *Proceedings of the National Academy of Sciences*
429 108(26):10591–10596.

430 [19] Verberk WCEP, Bilton DT, Calosi P, Spicer JI (2011) Oxygen supply in aquatic ectotherms:
431 Partial pressure and solubility together explain biodiversity and size patterns. *Ecology*
432 92(8):1565–1572.

433 [20] Portner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for inte-
434 grating climate-related stressor effects in marine ecosystems. *J Exp Biol* 213(6):881–893.

435 [21] Brett JR (1971) Energetic Responses of Salmon to Temperature. A Study of Some Ther-
436 mal Relations in the Physiology and Freshwater Ecology of Sockeye Salmon (*Oncorhynchus*
437 *nerka*). *American Zoologist* 11(1):99–113. _eprint: <https://academic.oup.com/icb/article-pdf/11/1/99/6021610/11-1-99.pdf>.

439 [22] Zeidberg L (2013) *Advances in Squid Biology, Ecology and Fisheries. Part I – Myopsid*
440 *Squids*. pp. 159–204.

441 [23] Wells R (2009) Chapter 6 Blood-Gas Transport and Hemoglobin Function: Adaptations for
442 Functional and Environmental Hypoxia. *Fish Physiology* 27:255–299.

443 [24] Kielland yN, Bech C, Einum S (2019) Warm and out of breath: Thermal phenotypic plasticity
444 in oxygen supply. *Funct Ecol* 33(11):2142–2149.

445 [25] Childress JJ, Seibel BA (1998) Life at stable low oxygen levels: adaptations of animals to
446 oceanic oxygen minimum layers. *J Exp Biol* 201(8):1223–1232.

447 [26] Nilsson GE (2007) Gill remodeling in fish - a new fashion or an ancient secret? *J Exp Biol*
448 210(14):2403–2409.

449 [27] Wootton TP, Sepulveda CA, Wegner NC (2015) Gill morphometrics of the thresher sharks
450 (Genus *Alopias*): Correlation of gill dimensions with aerobic demand and environmental
451 oxygen: Thresher Shark Gill Dimensions. *Journal of Morphology* 276(5):589–600.

452 [28] Filho DW, et al. (1992) Comparative hematology in marine fish. *Comparative Biochemistry
453 and Physiology Part A: Physiology* 102(2):311–321.

454 [29] Mislan KaS, Dunne JP, Sarmiento JL (2016) The fundamental niche of blood oxygen binding
455 in the pelagic ocean. *Oikos* 125(7):938–949.

456 [30] Reemeyer JE, Rees BB (2019) Standardizing the determination and interpretation of P_{crit} in
457 fishes. *J Exp Biol* 222(18):jeb210633.

458 [31] Kristensen E (1983) Ventilation and oxygen uptake by three species of *Nereis* (Annelida:
459 Polychaeta). II. Effects of temperature and salinity changes. *Marine Ecology Progress Series*
460 12:299–306.

461 [32] Melzner F, Bock C, Pörtner HO (2006) Temperature-dependent oxygen extraction from the
462 ventilatory current and the costs of ventilation in the cephalopod *Sepia officinalis*. *J Comp
463 Physiol B* 176(7):607–621.

464 [33] Gehrke P (1988) Response surface analysis of teleost cardio-respiratory responses to temper-
465 ature and dissolved oxygen. *Comparative Biochemistry and Physiology – Part A: Physiology*
466 89(4):587–592.

467 [34] Oschlies A (2021) A committed fourfold increase in ocean oxygen loss. *Nat Commun*
468 12(1):2307.

469 [35] OBIS (2019) Ocean biodiversity information system. *Intergovernmental Oceanographic
470 Commission of UNESCO*.

471 [36] Watters KW, Smith LS (1973) Respiratory dynamics of the starry flounder *Platichthys stellatus*
472 in response to low oxygen and high temperature. *Mar. Biol.* 19(2):133–148.

473 [37] Cowles DL, Childress JJ, Wells ME (1991) Metabolic rates of midwater crustaceans as a
474 function of depth of occurrence off the Hawaiian Islands: Food availability as a selective
475 factor? *Mar. Biol.* 110(1):75–83.

476 [38] Tittensor DP, et al. (2010) Global patterns and predictors of marine biodiversity across taxa.
477 *Nature* 466(7310):1098–1101.

478 [39] Sunday JM (2012) Thermal tolerance and the global redistribution of animals. *Nature Climate
479 Change* p. 6.

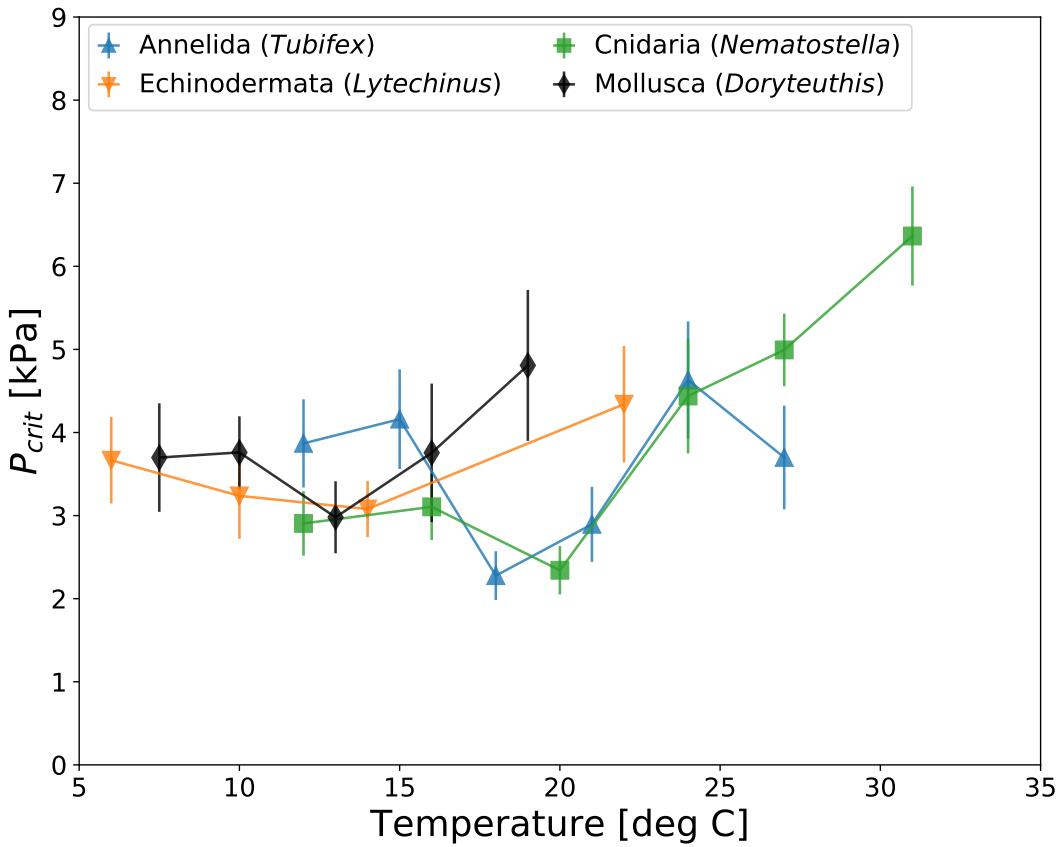
480 [40] Pinsky ML, Selden RL, Kitchel ZJ (2020) Climate-Driven Shifts in Marine Species Ranges:
481 Scaling from Organisms to Communities. *Annu. Rev. Mar. Sci.* 12(1):153–179.

482 [41] Saupe EE, et al. (2020) Extinction intensity during Ordovician and Cenozoic glaciations
483 explained by cooling and palaeogeography. *Nat. Geosci.* 13(1):65–70.

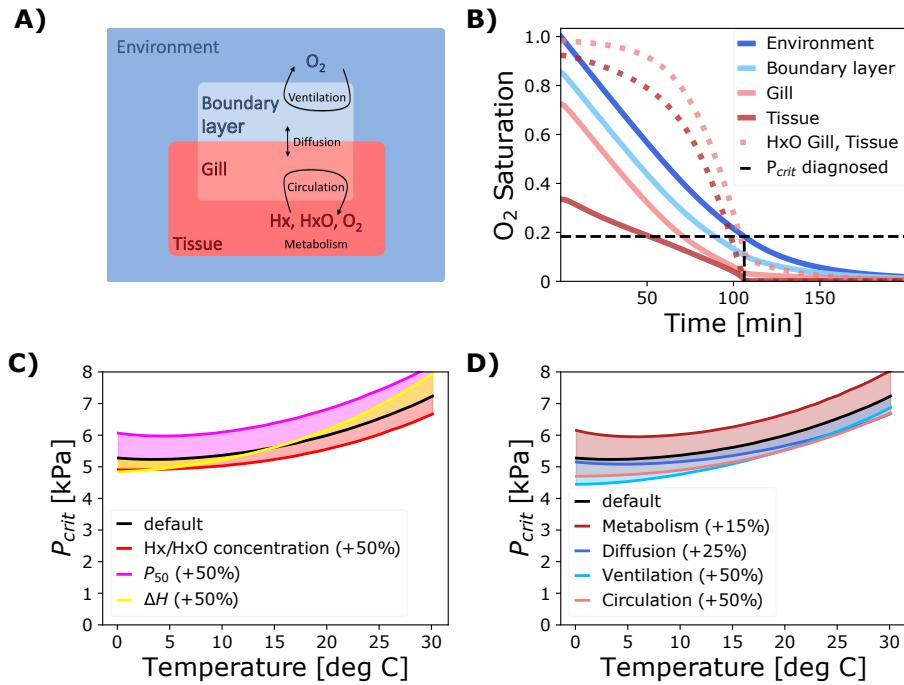
484 [42] Reddin CJ, Kocsis dT, Kiessling W (2019) Climate change and the latitudinal selectivity of
485 ancient marine extinctions. *Paleobiology* 45(1):70–84.

486 [43] Elder LE, Seibel BA (2015) Ecophysiological implications of vertical migration into oxygen
487 minimum zones for the hyperiid amphipod *Phronima sedentaria*. *J. Plankton Res.* 37(5):897–
488 911.

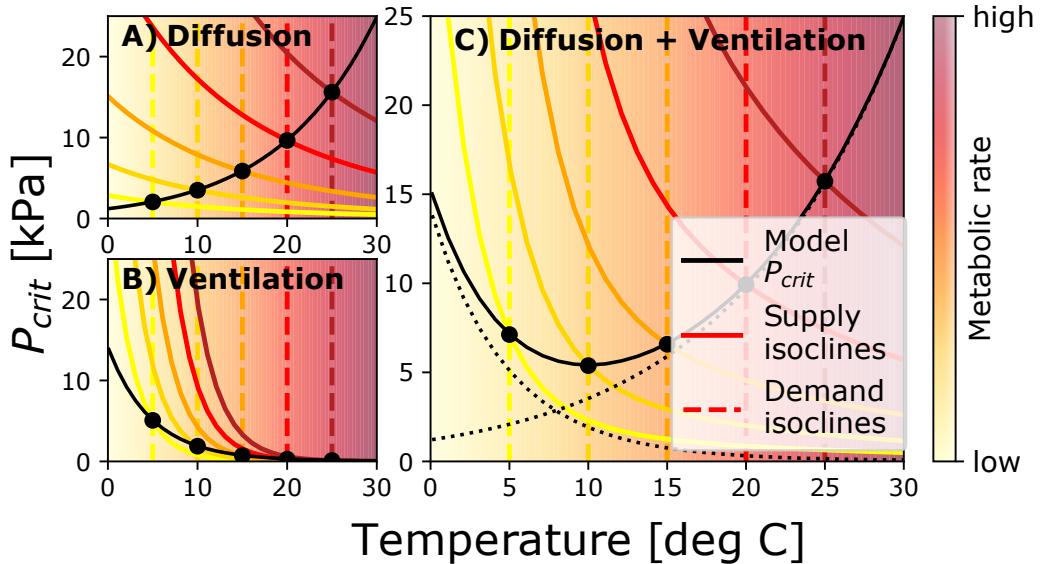
489 [44] Burford BP, Carey N, Gilly WF, Goldbogen JA (2019) Grouping reduces the metabolic
490 demand of a social squid. *Mar Ecol Prog Ser* 612:141–150.

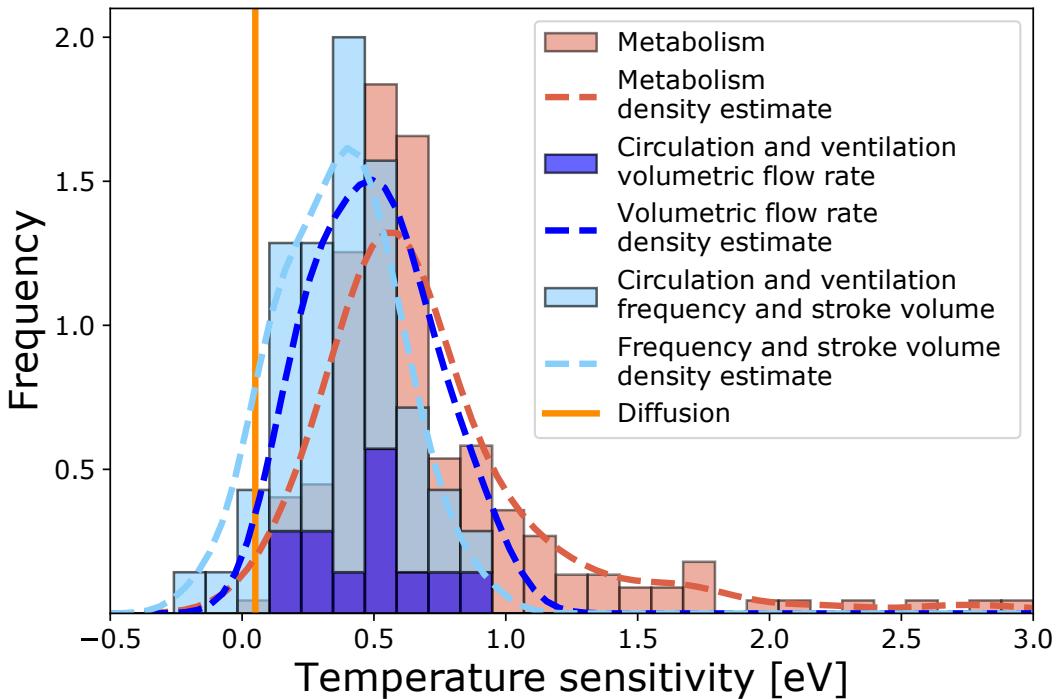

491 [45] Muggeo VMR (2008) segmented: an R Package to Fit Regression Models with Broken-Line
492 Relationships. *R News* 8(1):20–25.

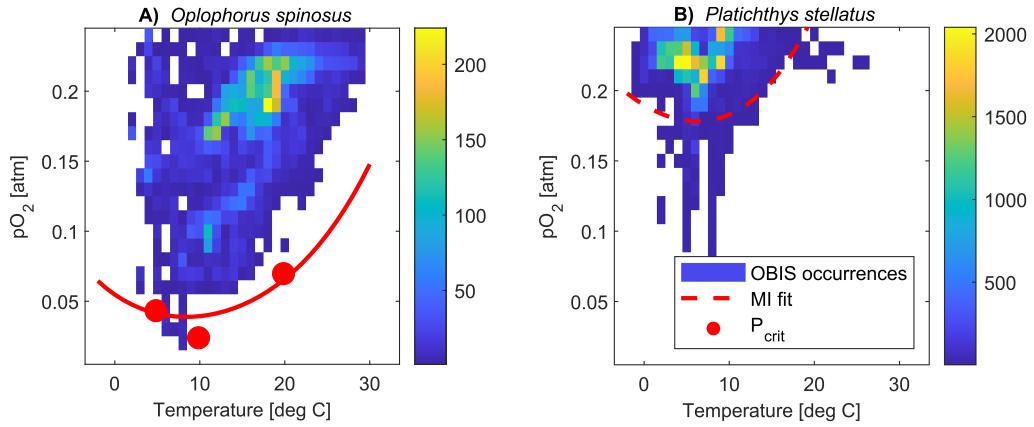
493 [46] Virtanen P, et al. (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in
494 Python. *Nature Methods* 17:261–272.


495 [47] Locarnini RA, et al. (2013) World ocean atlas 2013, volume 1: Temperature. *NOAA Atlas*
496 *NESDIS* 73:40 pp.

497 [48] Garcia HE, et al. (2013) World ocean atlas 2013, volume 3: Dissolved oxygen, apparent
498 oxygen utilization, and oxygen saturation. *NOAA Atlas NESDIS* 75:27 pp.


499 **Figures and Tables**


500 Fig. 1. Temperature-dependent critical oxygen pressures (P_{crit} , mean \pm SE) of 4 marine invertebrate
501 species from new closed-system respirometry experiments exhibit a minimum at intermediate tem-
502 peratures, indicating a thermal optimum in hypoxia tolerance. The species include an oligochaete
503 worm (*Tubifex tubifex*), a sea urchin (*Lytechinus pictus*), an anemone (*Nematostella vectensis*) and
504 a cephalopod (*Doryteuthis opalescens*). See text for details.


505 Fig. 2. Structure and output of the dynamical model used to investigate the effects of a multi-
 506 step O_2 supply chain. **A)** The model tracks the concentrations of O_2 as well as unbound and
 507 bound O_2 transporting proteins ('Hx', 'HxO') in 4 compartments representing external and internal
 508 volumes of water or body fluid, which are connected through a linear O_2 supply chain with external
 509 ventilation, diffusion and internal circulation. **B)** A model run at a single temperature resembles
 510 a closed system respirometry experiment. The saturation of O_2 (solid colored) and proportion of
 511 HxO (dashed colored) decline in all compartments until the O_2 level in the metabolizing tissue
 512 (dark red) reaches a critical limit near zero, at which point metabolic consumption slows down and
 513 P_{crit} can be determined from the rate of environmental O_2 depletion (dashed black). **C)** Effects of
 514 increasing the concentration, half-saturation pressure (P_{50}) or temperature sensitivity (ΔH) of O_2
 515 transport protein on the P_{crit} curve. **D)** Effects of increasing the rate coefficients of biophysical
 516 supply and demand processes. A higher metabolism elevates the curve, while increasing the rate
 517 of any supply process lowers it.

518 Fig. 3. Quantitative analysis of the P_{crit} curve of a model with a two-step supply chain consisting
 519 of ventilation and diffusive gas exchange. At any given temperature, the model P_{crit} can be
 520 found analytically as the intersection (black dots) of the demand isocline (dashed colored) and the
 521 corresponding supply isocline (solid colored), aligning with the curve diagnosed from numerical
 522 simulations (solid black). **A)** In a model with only diffusive gas exchange characterized by a smaller
 523 temperature sensitivity than metabolic demand, the isocline intersections yield an increasing P_{crit}
 524 curve. **B)** Conversely, the steeper supply isoclines lead to a decreasing pattern in a single supply
 525 step model with ventilation that accelerates faster than metabolic demand. **C)** Combining the two
 526 supply steps in series results in a P_{crit} curve that is the sum of the single step curves (dotted black),
 527 giving rise to a thermal optimum at intermediate temperatures.

528 Fig. 4. The temperature sensitivities of ventilation and circulation rates estimated from published
529 experimental data (blue, 58 estimates from 35 species) fall between the theoretical prediction for the
530 sensitivity of diffusion (vertical orange line) and existing estimates for the sensitivity of metabolic
531 rates (186 species, [7]) on average. Dashed lines show kernel density estimates of the trait frequency
532 distributions.

533 Fig. 5. Temperature and pO_2 state-space habitats using global occurrence data from the Ocean
534 Biodiversity Information System reveal a thermal optimum at intermediate temperatures in agree-
535 ment with physiological evidence. **A)** In the midwater shrimp *Oplophorus spinosus*, measured
536 P_{crit} values (red dots) as well as the curve fit based on the Metabolic Index (solid red line) align
537 with the lowest inhabited pO_2 across the temperature range. **B)** In the flounder *Platichthys stellatus*,
538 the P_{crit} curve (dashed red) predicted from the Metabolic Index framework and physiological rates
539 also exhibits a thermal optimum consistent with the occurrence data.