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Abstract 

While genome databases are nearing a complete catalog of species commonly inhabiting the 
human gut, their representation of intraspecific diversity is lacking for all but the most abundant 
and frequently studied taxa. Statistical deconvolution of allele frequencies from shotgun 
metagenomic data into strain genotypes and relative abundances is a promising approach, but 
existing methods are limited by computational scalability. Here we introduce StrainFacts, a 
method for strain deconvolution that enables inference across tens of thousands of 
metagenomes. We harness a “fuzzy” genotype approximation that makes the underlying 
graphical model fully differentiable, unlike existing methods. This allows parameter estimates to 
be optimized with gradient-based methods, speeding up model fitting by two orders of 
magnitude. A GPU implementation provides additional scalability. Extensive simulations show 
that StrainFacts can perform strain inference on thousands of metagenomes and has 
comparable accuracy to more computationally intensive tools. We further validate our strain 
inferences using single-cell genomic sequencing from a human stool sample. Applying 
StrainFacts to a collection of more than 10,000 publicly available human stool metagenomes, 
we quantify patterns of strain diversity, biogeography, and linkage-disequilibrium that agree with 
and expand on what is known based on existing reference genomes. StrainFacts paves the way 
for large-scale biogeography and population genetic studies of microbiomes using metagenomic 
data. 
 

Keywords: metagenomics, strains, microbiome, biogeography, population genetics, model-
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Introduction 

Intra-specific variation in microbial traits are widespread and are biologically important in human 
associated microbiomes. Strains of a species may differ in their pathogenicity (Loman et al., 
2013), antibiotic resistance (Shoemaker et al., 2001), impacts on drug metabolism (Haiser et al., 
2014), and ability to utilize dietary components (Patrick et al.; Martens et al., 2021). Standard 
methods for analysis of complex microbial communities are limited to coarser taxonomic 
resolution due to their reliance on slowly evolving marker genes (Case et al., 2007-January) or 
on genome reference databases lacking diverse strain representation (Nayfach et al., 2020). 
Approaches that quantify microbiomes at the level of strains may better capture variation in 
microbial function (Albanese and Donati, 2017), provide insight into ecological and evolutionary 
processes (Garud and Pollard, 2019), and discover previously unknown microbial etiologies for 
disease (Yan et al., 2020). 

Shotgun metagenomic data can in principle be used to track strains by looking for distinct 
patterns of alleles observed across single nucleotide polymorphisms (SNPs) within the species. 
Several tools have recently been developed that count the number of metagenomic reads 
containing alleles across SNP sites (Nayfach et al., 2016; Costea et al., 2017b; Truong et al., 
2017; Beghini et al., 2021; Olm et al., 2021; Shi et al., 2021). Comparisons of the resulting 
“metagenotypes” across samples has been used to track shared strains (Li et al., 2016; Olm et 
al., 2021), or to interrogate the biogeography (Costea et al., 2017a; Truong et al., 2017) and 
population genetics of species (Garud et al., 2019). The application of this approach is limited, 
however, by low sequencing coverage, which results in missing values at some SNP sites, and 
co-existing mixtures of strains, which introduce ambiguity about the taxonomic source of each 
metagenomic read. 

One promising solution to these challenges is statistical strain deconvolution, which harnesses 
multiple metagenotypes (e.g., a collection of related samples) to simultaneously estimate the 
genotypes and relative abundances of strains across samples. Several tools have been 
developed that take this approach, including Lineage (O’Brien et al., 2014), Strain Finder 
(Smillie et al., 2018), DESMAN (Quince et al., 2017), and ConStrains (Luo et al., 2015). These 
methods have been used to track the transmission of inferred strains from donors’ to recipients’ 
microbiomes after fecal microbiota transplantation (FMT) (Smillie et al., 2018; Chu et al., 2021; 
Watson et al., 2021; Smith et al., 2022). The application of strain deconvolution has been 
limited, however, by the computational demands of existing methods, where runtimes scale 
poorly with increasing numbers of samples, latent strains, and SNPs considered. One reason 
for this poor scaling is the discreteness of alleles at each SNP, which has led existing methods 
to use expectation maximization algorithms to optimize model parameters (Smillie et al., 2018), 
or Markov chain Monte Carlo to sample from a posterior distribution (O’Brien et al., 2014; Luo et 
al., 2015; Quince et al., 2017). 

Here we take a different approach, extending the strain deconvolution framework by relaxing the 
discreteness constraint and allowing genotypes to vary continuously between alleles. The use of 
this “fuzzy” genotype approximation makes our underlying model fully differentiable, and allows 
us to apply modern, gradient-based optimization algorithms to estimate strain genotypes and 
abundances. Here we show that the resulting tool, StrainFacts, can scale to tens of thousands 
of samples, hundreds of strains, and thousands of SNPs, opening the door to strain inference in 
large metagenome collections. 
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Materials and Methods 

A fully differentiable probabilistic model of metagenotype data 

Table 1: Symbols used to describe the StrainFacts model 

Symbols Description 

𝑖 = 1, . . . , 𝑁 Index and number of samples 

𝑠 = 1, . . . , 𝑆 Index and number of strains 

𝑔 = 1, . . . , 𝐺 Index and number of SNP sites 

𝑦𝑖𝑔, 𝑚𝑖𝑔 Counts of reads with the alternative allele; the total count of both reference and 
alternative alleles at SNP 𝑔 in sample 𝑖 

𝑝𝑖𝑔 Alternative allele frequency at SNP 𝑔 in sample 𝑖 

𝛾𝑠𝑔, 𝛾𝑔 Allele at SNP 𝑔 in strain 𝑠; vector of alleles for all strains 

𝜋𝑖𝑠, 𝜋⃗⃗𝑖 Relative abundance of strain 𝑠 in sample 𝑖; vector of relative abundances for all 

strains 

𝜖𝑖  Sequencing error rate in sample 𝑖 

𝛼 Concentration parameter of the BetaBinomial distribution 

𝜌⃗ Metacommunity strain composition 

𝐘, 𝐌, 𝐏, 𝚪, 

𝚷 

Matrices composed of the above elements 

Metagenotypes 

A metagenotype is represented as a count matrix of the number of reads with each allele at a 
set of SNP sites for a single species in each sample. This can be gathered directly from 
metagenomic data, for instance by aligning reads to a reference genome and counting the 
number of reads with each allele at SNP sites. In this study we use GT-Pro (Shi et al., 2021), 
which instead counts exact k-mers associated with known single nucleotide variants. Although 
the set of variants at a SNP may include any of the four bases, here we constrain 
metagenotypes to be biallelic: reference or alternative. For a large majority of SNPs, only two 
alleles are observed across reference genomes (Shi et al., 2021). Metagenotypes from multiple 
samples are subsequently combined into a 3-dimensional array. 

Deconvolution of metagenotype data 

StrainFacts is based on a generative, graphical model of biallelic metagenotype data 
(summarized in Supplementary Fig. S1) which describes the allele frequencies at each SNP site 
in each sample (𝑝𝑖𝑔 for sample 𝑖 and SNP 𝑔) as the product of the relative abundance of strains 

(𝜋⃗⃗𝑖) and their genotypes, 𝛾𝑠𝑔, where 0 indicates the reference and 1 indicates the alternative 

allele for strain 𝑠. This functional relationship is therefore 𝑝𝑖𝑔 = ∑ 𝛾𝑠𝑔𝑠 × 𝜋𝑖𝑠, In matrix form, 

equivalently, we notate this as 𝐏 = 𝚪𝚷 (Table 1). 

The crux of strain deconvolution is taking noisy observations of 𝐏—based on the observed 
alternative allele counts 𝐘 and total counts 𝐌 obtained from metagenotypes across multiple 

samples—and determining suitable matrices 𝛤 and 𝚷. This notation highlights parallels to non-

negative matrix factorization (NMF). Like NMF, given a choice of loss function, 𝐿, this inference 
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task can be transformed into a constrained optimization problem, where arg min
𝚷,𝚪

 𝐿(𝚷, 𝚪|𝐘) is a 

scientifically useful estimate of these two unobserved matrices. We take the approach of 
explicitly modeling the stochasticity of observed metagenotypes, placing priors on 𝚷 and 𝚪, and 
taking the resulting posterior probability as the loss function. This “maximum a posteriori” (MAP) 
approach has also been applied to NMF (Schmidt et al., 2009). However, unlike NMF, where 
the key constraint is that all matrices are non-negative, the metagenotype deconvolution model 
also constrains the elements of 𝐏 and 𝚪 to lie in the closed interval [0,1], and the rows of 𝚷 are 

are “on the 𝑆 − 1-simplex”, i.e. they sum to one. 

Fuzzy genotypes and the shifted-scaled Dirichlet distribution 

StrainFacts does not constrain the elements of 𝚪 to be discrete—i.e. in the set {0,1} for biallelic 

sites—in contrast to prior tools: DESMAN (Quince et al., 2017), Lineage (O’Brien et al., 2014), 
and Strain Finder’s (Smillie et al., 2018) exhaustive search. Instead, we allow genotypes to vary 
continuously in the open interval between fully reference (0) and fully alternative (1). The use of 
fuzzy-genotypes serves a key purpose: by replacing the only discrete parameter with a 
continuous approximation, our posterior function becomes fully differentiable, and therefore 
amenable to efficient, gradient-based optimization. When not using the exhaustive search 
strategy, Strain Finder also treats genotypes as continuous to accelerate inference, but these 
are discretized after each iteration. We show below that inference with StrainFacts is faster than 
with Strain Finder. 

Since true genotypes are in fact discrete, we place a prior on the elements of 𝚪 that pushes 

estimates towards zero or one and away from intermediate—ambiguous—values. Similarly, we 
put a hierarchical prior on 𝚷 that regularizes estimates towards lower strain heterogeneity within 

samples, as well as less strain diversity across samples. This makes strain inferences more 
parsimonious and interpretable. We harness the same family of probability distributions, the 
shifted-scaled Dirichlet distribution (SSD) (Monti et al., 2011), for all three goals. We briefly 
describe our rationale and parameterization of the SSD distribution in the Supplementary 
Methods. 

For each element of 𝚪 we set the prior as (𝛾, 1 − 𝛾) ∼ SSD (𝟏, 𝟏,
1

𝛾∗
). (Note that we trivially 

transform the 1-simplex valued (𝛾, 1 − 𝛾) to the unit interval by dropping the second element.) 
Smaller values of the hyperparameter 𝛾∗ correspond to more sparsity in 𝚪. We put a hierarchical 

prior on 𝚷, with the rows subject to the prior 𝜋⃗⃗𝑖 ∼ SSD(𝟏, 𝜌⃗,
1

𝜋∗
) given a “metacommunity” 

hyperprior 𝜌⃗ ∼ SSD (𝟏, 𝟏,
1

𝜌∗
), reflecting the abundance of strains across all samples. Decreasing 

the values of 𝛾∗, 𝜌∗, and 𝜋∗ increases the strength of regularization imposed by the respective 

priors. 

Model specification 

The underlying allele frequencies 𝐏 are not directly observed due to sequencing error, and we 

include a measurement process in our model. We assume that the true allele is replaced with a 

random allele at a rate 𝜖𝑖  for all SNP sites 𝑔 in sample 𝑖: 𝑝𝑖𝑔 = 𝑝𝑖𝑔(1 − 𝜖𝑖/2) + (1 − 𝑝𝑖𝑔)(𝜖𝑖/2). 

Given the total counts, 𝐌, we then model the observed alternative allele counts, 𝐘,with the Beta-

Binomial likelihood, parameterized with 𝐏 and one additional parameter—𝛼∗—controlling count 

overdispersion relative to the Binomial model. 

To summarize, our model is as follows (in random variable notation; see Supplementary Fig. S1 
for a plate diagram): 
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𝑦𝑖𝑔 ∼ BetaBinom(𝑝𝑖𝑔 , 𝛼
∗ | 𝑚𝑖𝑔)

𝑝𝑖𝑔 = 𝑝𝑖𝑔(1 − 𝜖𝑖/2) + (1 − 𝑝𝑖𝑔)(𝜖𝑖/2)

𝑝𝑖𝑔 = ∑𝜋𝑖𝑠
𝑠

𝛾𝑠𝑔

(𝛾𝑠𝑔 , 1 − 𝛾𝑠𝑔) ∼ SSD(𝟏, 𝟏,
1

𝛾∗
)

𝜋⃗⃗𝑖 ∼ SSD(𝟏, 𝜌⃗,
1

𝜋∗)

𝜌⃗ ∼ SSD(𝟏, 𝟏,
1

𝜌∗
)

𝜖 ∼ Beta (𝜖𝑎
∗ ,
𝜖𝑎
∗

𝜖𝑏
∗)

 

Model fitting 

StrainFacts takes a MAP-based approach to inference on this model, using gradient-based 
methods to find parameter values that maximize the posterior probability of our model 
conditioned on the observed counts. We rely heavily on the probabilistic programming 
framework Pyro (Bingham et al., 2019), which is built on the PyTorch library (Paszke et al., 
2019) for numerical methods. 

Initial values for 𝚪 and 𝚷 are selected using NMF, and all other parameters are initialized 

randomly (Supplementary Methods). In order to promote global convergence, we take a prior 
annealing approach (Supplementary Methods). While it is impossible to know in practice if we 
converge to a global optimum, we find that this procedure often leads to accurate estimates 
without the need for replicate fits from independent initializations. 

Simulation and evaluation 

Metagenotype data was simulated in order to enable direct performance benchmarking against 
ground-truth genotypes and strain compositions. For each independent simulation, discrete 
genotypes of length 𝐺 for 𝑆 strains were sampled as 𝑆 × 𝐺 independent draws from a symmetric 
Bernoulli distribution. The composition of strains in each of 𝑁 samples were generated as 

independent draws from a Dirichlet distribution over 𝑆 components having a symmetric 
concentration parameter of 0.4. Per-sample allele frequencies were generated as the product of 
the genotypes and the strain-composition matrices. Sequence error was set to 𝜖 = 0.01 for all 

samples. Finally metagenotypes at each SNP site were drawn from a Binomial(𝑚, 𝑝𝑖𝑔) 

distribution, with a sequencing depth of 𝑚 = 10 across all sites. 

Estimates were evaluated against the simulated ground truth using five different measures of 
error (see Results). 

Metagenotypes and reference genomes 

We applied StrainFacts to data from two previously compiled human microbiome metagenomic 
datasets: stool samples from a fecal microbiota transplantation (FMT) study described in (Smith 
et al., 2022) and 20,550 metagenomes from a meta-analysis of publicly available data in (Shi et 
al., 2021). As described in that publication, metagenotypes for gut prokaryotic species were 
tallied using GT-Pro version 1.0.1 with the default database, which includes up to 1,000 of the 
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highest quality genomes for each species from the Unified Human Gastrointestinal Genome 
(UHGG) V1.0 (Almeida et al., 2021). This includes both cultured isolates and high-quality 
metagenomic assemblies. This same database was used as a reference set to which we 
compared our inferred genotypes. Estimated genomic distances between SNPs were based on 
the UHGG representative genome. 

We describe detailed results for Escherichia coli_D (id: 102506, MGYG-HGUT-02506), 
Agathobacter rectalis (id: 102492, MGYG-HGUT-02492), Methanobrevibacter_A smithii (id: 
102163, MGYG-HGUT-02163), and CAG-279 sp1 (id: 102556, MGYG-HGUT-02556). These 
were selected to demonstrate application of StrainFacts to prevalent gram-positive and gram-
negative bacteria in the human gut, the most prevalent archaeon, as well as an unnamed, 
uncultured, and largely unstudied species. We also describe detailed results for Streptococcus 
thermophilus (GT-Pro species id: 104345, representative UHGG genome: MGYG-HGUT-
04345), selected for its high diversity in one sample of our single-cell sequencing validation. 

Single-cell genome sequencing 

Of the 159 samples with metagenomes described in the FMT study, we selected two samples 
for single-cell genomics (which we refer to as the “focal samples”). These samples were 
obtained from two different study subjects; one is a baseline sample and the other was collected 
after several weeks of FMT doses as described in (Smith et al., 2022). A full description of the 
single-cell genomics pipeline is included in the Supplementary Methods, and will be briefly 
summarized here. For each of the focal samples, microbial cells were isolated from whole feces 
by homogenization in phosphate buffered saline, 50 μm filter-based removal of large fecal 
particles, and density gradient separation. After isolating and thoroughly washing the density 
layer corresponding to the microbiota, this cell suspension was mixed with polyacrylamide 
precursor solution, and emulsified with a hydrofluoric oil. Aqueous droplets in oil were allowed to 
gellate before separating the resulting beads from the oil phase and washing. Beads were size 
selected to between 5 and 25 μm, with the goal of enriching for those encapsulated a single 
microbial cell. Cell lysis was carried out inside the hydrogel beads by incubating with zymolyase, 
lysostaphin, mutanolysin, and lysozyme. After lysis, proteins were digested with proteinase K, 
before thoroughly washing the beads. Tn5 tagmentation and barcode PCR were carried out 
using the MissionBio Tapestri microfluidics DNA workflow with minor modifications. After 
amplification, the emulsion was broken and the aqueous phase containing the barcoded 
amplicons was used for sequencing library preparation with Nextera primers including P5 and 
P7 sequences followed by Ampure XP bead purification. Libraries were sequenced by 
Novogene on an Illumina NovaSeq 6000. 

Demultiplexed sequence data for each droplet barcode were independently processed with GT-
Pro identically to metagenomic sequences. For each barcode, GT-Pro allele counts for a given 
species were assumed to be representative of a single strain of that species. These single-cell 
genotypes (SCGs) were filtered to those with >1% horizontal coverage over SNP sites, leaving 
87 species with at least one SCG from either of the two focal samples. During analysis, a 
number of SCGs were found to have nearly identical patterns of horizontal coverage. These 
may have been formed by merging of droplets during barcoding PCR, which could have 
resulted in multiple barcodes in the same amplification. To reduce the impact of this artifact, 
allele counts from multiple SCGs were summed by complete-linkage, agglomerative clustering 
based on their depth profiles across SNP sites, at a 0.3 cosine dissimilarity threshold. 

Computational Analysis 

Metagenotype filtering 
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From GT-Pro metagenotypes, we extracted allele counts for select species and removed SNPs 
that had <5% occurance of the minor allele across samples. Species with more than 5,000 
SNPs after filtering, were randomly down-sampled without replacement to this number of sites. 
Samples with less than a minimum horizontal coverage (fraction of SNP sites with non-zero total 
counts), were also filtered out. This horizontal coverage threshold was set to 5% or 25% for the 
datasets from (Smith et al., 2022) or (Shi et al., 2021), respectively. 

Strain Inference 

For all analyses, StrainFacts was run with the following hyperparameters 𝜌∗ = 0.5, 𝜋∗ = 0.3, 

𝛾∗ = 10−10, 𝛼∗ = 10, 𝜖𝑎
∗ = 1.5, 𝜖𝑏

∗ = 0.01. The learning rate was initially set to 0.05. Prior 

annealing was applied to both 𝚪 and 𝜌⃗ by setting 𝛾∗ and 𝜌∗ to 1.0 and 5, respectively, for the first 

2,000 steps of gradient descent, before exponentially relaxing these hyperparameters to their 
final values over the next 8,000 steps. After this annealing period, when parameters had not 
improved for 100 steps, the learning rate was halved until it had fallen below 10-6, at which 
point we considered parameters to have converged. These hyperparameters were selected 
through manual optimization and we found that they gave reasonable performance across the 
diverse datasets in this study. 

The number of strains parameterized by our model was chosen as follows. For comparisons to 
SCGs, the number of strains was set at 30% of the number of samples—e.g. 33 strains were 
parameterized for S. thermophilus because metagenotypes from 109 samples remained after 
coverage filtering. For the analysis of thousands of samples described in (Shi et al., 2021), we 
parameterized our model with 200 strains and increased the numerical precision from 32 to 64 
bits. After strain inference using the 5,000 subsampled SNPs, full-length genotypes were 
estimated post-hoc by conditioning on our estimate of 𝚷 and iteratively refitting subsets of all 

SNPs (Supplementary Methods). 

For computational reproducibility we set fixed seeds for random number generators: 0 for all 
analyses where we only report one estimate, and 0, 1, 2, 3, and 4 for the five replicate estimates 
described for simulated datasets. Strain Finder was run with flags --dtol 1 --ntol 2 --

max_reps 1. We did not use --exhaustive, Strain Finder’s exhaustive genotype search 

strategy, as it is much more computationally intensive. 

Genotype comparisons 

Inferred fuzzy genotypes were discretized to zero or one for downstream analyses. SNP sites 
without coverage were treated as unobserved. Distances between genotypes were calculated 
as the masked, normalized Hamming distance, the fraction of alleles that do not agree, ignoring 
unobserved SNPs. Similarly, SCG genotypes and the metagenotype consensus were 
discretized to the majority allele. In comparing the distance between SCGs and these inferred 
genotypes sites missing from either the SCG or the metagenotype were treated as unobserved. 
Metagenotype entropy, a proxy for strain heterogeneity, was calculated for each sample as the 
depth weighted mean allele frequency entropy: 

1

∑ 𝑚𝑖𝑔𝑔
∑ −

𝑔

𝑚𝑖𝑔[(𝑝̂𝑖𝑔log2(𝑝̂𝑖𝑔) + (1 − 𝑝̂𝑖𝑔)log2(1 − 𝑝̂𝑖𝑔)] 

where 𝑝̂𝑖𝑔 is the observed alternative allele frequency. 

Where indicated, we dereplicated highly similar strains by applying average-neighbor 
agglomerative clustering at a 0.05 genotype distance threshold. Groups of these highly similar 
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strains were replaced with a single composite strain with a genotype derived from the majority 
allele at each SNP site and assigned the sum of strain relative abundances in each sample. 
Subsequent co-clustering of these dereplicated inferred and reference strains was done in the 
same way, but at a 0.15 genotype distance threshold. After co-clustering, to test for enrichment 
of strains in “shared” clusters, we permuted cluster labels and re-tallied the total number of 
strains found in clusters with both inferred and reference strains. Likewise, to test for enrichment 
of “inferred-only” clusters we tallied the total number of strains found in clusters without 
reference strains after this shuffling. By repeating the permutation 9999 times, we arrived at an 
empirical null distribution to which we compared our true, observed values to calculate a P-
value. 

Pairwise linkage disequilibrium (LD) was calculated as the squared Pearson correlation 
coefficient across genotypes of dereplicated strains. Genome-wide 90th percentile LD, was 
calculated from a random sample of 20,000 or, if fewer, all available SNP positions. To calculate 
the 90th percentile LD profile, SNP pairs were binned at either an exact genomic distance or 
within a window of distances, as indicated. In order to encourage a smooth distance-LD 
relationship, windows at larger pairwise-distance spanned a larger range. Specifically the ith 

window covers the span [⌊10(𝑖−1)/𝑐⌋, ⌊10𝑖/𝑐⌋) where 𝑐 = 30 so that 120 windows span the full 

range [1, 104). 

Software and code availability 

StrainFacts is implemented in Python3 and is available at 
https://github.com/bsmith89/StrainFacts and v0.1 was used for all results reported here. Strain 
Finder was not originally designed to take a random seed argument, necessitating minor 
modifications to the code. Similarly, we made several modifications to the MixtureS (Li et al.) 
code allowing us to run it directly on simulated metagenotypes and compare the results to 
StrainFacts and Strain Finder outputs. Patch files describing each set of changes, as well as all 
other code and metadata needed to re-run our analyses are available at 
https://doi.org/10.5281/zenodo.5942586. For reproducibility, analyses were performed using 
Snakemake (Mölder et al., 2021) and with a Singularity container (Kurtzer et al., 2017) that can 
be obtained at https://hub.docker.com/repository/docker/bsmith89/compbio. 

Runtime and memory benchmarking 

Runtimes were determined using the Snakemake benchmark: directive, and memory 

requirements using the GNU time utility, version 1.8 with all benchmarks run on the Wynton 

compute cluster at the University of California, San Francisco. Across strain numbers and 
replicates, maximum memory usage for models with 10,000 samples and 1000 SNPs was, 
counterintuitively, less than for smaller models, likely because portions of runtime data were 
“swapped” to disk instead of staying in RAM. We therefore excluded data for these largest 
models from our statistical analysis of memory requirements. 

Results 

Scaling strain inference to hundreds of genotypes in thousands of 
samples 

Inferring the genotypes and relative abundance of strains in large metagenome databases 
requires a deconvolution tool that can scale to metagenotypes with thousands of SNPs in tens-
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of-thousands of samples, while simultaneously tracking hundreds of microbial strains. To 
accomplish this we developed StrainFacts, harnessing fuzzy genotypes to accelerate inference 
on large datasets. We evaluated the practical scalability of the StrainFacts algorithm by applying 
it to simulated datasets of increasing size, and comparing its time and memory requirements to 
Strain Finder, a previously described method for strain inference. While several tools have been 
developed to perform strain deconvolution (e.g. Lineage O’Brien et al., 2014; and DESMAN 
Quince et al., 2017), Strain Finder’s model and approach to inference are the most similar to 
StrainFacts. We therefore selected it for comparison in order to directly assess the value of 
fuzzy genotypes. 

We simulated five replicate metagenotypes for 120 underlying strains in 400 samples, and 250 
SNPs, and then applied both StrainFacts and Strain Finder to these data parameterizing them 
with 120 strains. Both tools use random initializations, which can result in convergence to 
different optima. We therefore benchmarked runtimes for five independent initializations on each 
dataset, resulting in 25 total runs for each tool. In this setting, the median runtime for 
StrainFacts was just 17.2 minutes, while Strain Finder required a median of 6.4 hours. When 
run on a GPU instead of CPU, StrainFacts was able to fit these data in a median of just 5.1 
minutes. 

 

Figure 1: Computational scalability of strain inference on simulated data. (A) Runtime (in seconds, log 
scale) is plotted at a range of sample counts for both Strain Finder and StrainFacts, as well for the latter 
with GPU acceleration. Throughout, 250 SNPs are considered, and simulated strains are fixed at a 1:5 
ratio with samples. Models are specified with this same number of strains (“1x strains”, solid lines) or 50% 
more (“1.5x strains”, dashed lines). Median of 25 simulation runs is shown. (B) Maximum memory 
allocation in a model with 100 strains is plotted for StrainFacts models across a range of sample counts 
(N) and SNP counts (G, line shade). Median of 9 replicate runs is shown. Maximum memory 
requirements are extrapolated to higher numbers of samples for a model with 1000 SNPs (red line). A 
version of this panel that includes a range of strain counts is included as Supplementary Fig. S2. 

Since the correct strain number is not known a priori in real-world applications, existing strain 
inference tools need to be parameterized across a range of plausible strain counts, a step that 
significantly impacts runtime. To assess performance in this setting, we also fit versions of each 
model with 50% more strains than the ground-truth, here referred to as the “1.5x 
parameterization” in contrast to the 1x parameterization already described. In this setting, 
StrainFacts’ performance advantage was even more pronounced, running in a median of 17.1 
minutes and just 5.3 minutes on GPU, while Strain Finder required 30.8 hours. Given the speed 
of StrainFacts, we were able to fit an even larger simulation with 2,500 samples and 500 strains. 
On a GPU, this took a median of 12.6 minutes with the 1x parameterization and, surprisingly, 
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just 8.9 minutes with the 1.5x parameterization. We did not attempt to run Strain Finder on this 
dataset. 

We next examined runtime scaling across a range of sample counts between 50 and 2,500. We 
applied Strain Finder and StrainFacts (both CPU and GPU) to simulated metagenotypes with 
250 SNPs, and a fixed 1:5 ratio of strains to samples. Median runtimes for each tool at both the 
1x and 1.5x parameterization demonstrate a substantially slower increase for StrainFacts as 
model size increases (Fig. 1A). Strain Finder was faster than StrainFacts on the 1x 
parameterization of a small simulation with 50 samples and 10 strains: 1.3 minutes median 
runtime versus 4 minutes for StrainFacts on a CPU and 2.8 minutes on a GPU. However, 
StrainFacts had faster median runtimes on all other datasets. 

Given the good runtime scaling properties of StrainFacts, we next asked if computer memory 
constraints would limit its applicability to the largest datasets (Fig. 1A). A model fitting 10,000 
samples, 400 strains, and 500 SNPs had a maximum memory allocation of 7.7 GB, indicating 
that StrainFacts’ memory requirements are satisfied on most contemporary CPU or GPU 
hardware and opening the door to even larger models. Using ordinary least squares, we fit the 
observed memory requirements to the theoretical, asymptomatic expectations, 
𝒪(𝑁𝑆 + 𝑁𝐺 + 𝑆𝐺), resulting in a regression R2 of 0.997. We then used this empirical relationship 

to extrapolate for even larger models (Fig. 1B), estimating that for a model of 400 strains and 
1000 SNPs, 32 GB of memory would be able to simultaneously perform strain inference for 
more than 22,000 samples. This means StrainFacts can realistically analyse tens of thousands 
of samples on commercial GPUs. 

StrainFacts accurately reconstructs genotypes and population 
structure 

We next set out to evaluate the accuracy of StrainFacts and to compare it to Strain Finder. We 
simulated 250 SNPs for 40 strains, generating metagenotypes across 200 samples. For both 
tools, we specified a model with the true number of strains, fit the model to this data, and 
compared inferences to the simulated ground-truth. For each of five replicate simulations we 
performed inference with five independent initializations, thereby gathering 25 inferences for 
each tool. As in (Smillie et al., 2018), we use the weighted UniFrac distance (Lozupone et al., 
2007) as an integrated summary of both genotype and relative abundance error. By this index, 
StrainFacts and Strain Finder performed similarly well when applied to the simulated data 
(Fig. 2A). We repeated this analysis with the 1.5x parameterization to assess the robustness of 
inferences to model misspecification, finding that both tools maintained similar performance to 
the 1x parameterization. By comparison, considering too few strains (the 0.8x parameterization, 
fitting 32 strains) degraded performance dramatically for both tools, with StrainFacts performing 
slightly better. Thus, we conclude based on UniFrac distance that StrainFacts is as accurate as 
Strain Finder and that both models are robust to specifying too many strains. 

To further probe accuracy, we quantified the performance of StrainFacts and Strain Finder with 
several other measures. First, we evaluated pairwise comparisons of strain composition by 
calculating the mean absolute error of pairwise Bray-Curtis dissimilarities (Fig. 2B). While, with 
the 1x parameterization, Strain Finder slightly outperformed StrainFacts on this index, the 
magnitude of the difference was small. This suggests that StrainFacts can be used for 
applications in microbial ecology that rely on measurements of beta-diversity. 

Ideally, inferences should conform to Occam’s razor, estimating “as few strains as possible, but 
no fewer”. Unfortunately, Bray-Curtis error is not sensitive to the splitting or merging of co-
abundant strains and UniFrac error is not sensitive to the splitting or merging of strains with very 
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similar genotypes. To overcome this limitation, we calculated the mean absolute error of the 
Shannon entropy of the inferred strain composition for each sample (Fig. 2C). This score 
quantifies how accurately inferences reflect within-sample strain heterogeneity. StrainFacts 
performed substantially better on this score than Strain Finder for all three parameterizations, 
indicating more accurate estimation of strain heterogeneity. 

 

 

Figure 2: Accuracy of strain inference on simulated data. Performance of StrainFacts and Strain Finder 
are compared across five distinct accuracy indices, with lower scores reflecting better performance on 
each index. Simulated data had 200 samples, 40 underlying strains, and 250 SNPs. For each tool, 32, 40 
and 60 strain models were parameterized (“0.8x”, “1x” and “1.5x” respectively), and every model was fit 
with five independent initializations to each simulation. All 25 estimates for each tool-parameterization 
combination are shown. Scores reflect (A) mean Unifrac distance between simulated and inferred strain 
compositions, (B) mean absolute difference between all-by-all pairwise Bray-Curtis dissimilarities 
calculated on simulated versus inferred strain compositions, (C) mean absolute difference in Shannon 
entropy calculated on simulated versus inferred strain compositions, (D) abundance weighted mean 
Hamming distance from each ground-truth strain to its best-match inferred genotype, and (E) the reverse: 
abundance weighted mean Hamming distance from each inferred strain to its best-match true genotype. 
Markers at the top of each panel indicate a statistical difference between tools at a p<0.05 (*) or p<0.001 
(**) significance threshold by Wilcoxon signed-rank test. A version of this figure that includes accuracy 
comparisons to MixtureS is included as Supplementary Fig. S3. 

Finally, we assessed the quality of genotypes reconstructed by StrainFacts compared to Strain 
Finder using the abundance weighted mean Hamming distance. For each ground-truth 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.02.01.478746doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.01.478746
http://creativecommons.org/licenses/by/4.0/


12 
 

genotype, normalized Hamming distance is computed based on the best matching inferred 
genotype (Fig. 2D), then summarized as the mean weighted by the true strain abundance 
across all samples. We assessed the reverse as well: the abundance weighted mean, best-
match Hamming distance for each inferred genotype among the ground-truth genotypes 
(Fig. 2E). These two scores can be interpreted as answers to the distinct questions “how well 
were the true genotypes recovered?” and “how well do the inferred genotypes reflect the truth?”, 
respectively. While StrainFacts and Strain Finder performed similarly on these indexes—which 
tool had higher accuracy varied by score and parameterization—StrainFacts’ accuracy was 
more stable across the 1x and 1.5x parameterizations. It should be noted that since strain 
genotypes are only inferred for SNP sites, the genome-wide genotype reconstruction error 
(which includes invariant sites) will likely be much lower than this Hamming distance. We 
examine the relationship between genotype distances and average nucleotide identity (ANI) in 
Supplementary Fig. S4 in order to contextualize our simulation results for those more familiar 
with ANI comparisons. 

To expand our performance comparison to a second tool designed for strain inference, we also 
ran MixtureS on a subset of the simulations. MixtureS estimates strain genotype and relative 
abundance on each metagenotype individually and therefore does not leverage variation in 
strain abundance across samples. We found that it performed worse than Strain Finder and 
Strain Facts on the benchmarks (see Supplementary Fig. S3). 

Overall, these results suggest that StrainFacts is capable of state-of-the-art performance with 
respect to several different scientific objectives in a realistic set of simulations. Performance was 
surprisingly robust to model misspecification with more strains than the simulation. Eliminating 
the computational demands of a separate model selection step further improves the scaling 
properties of StrainFacts. 

Single-cell sequencing validates inferred strain genotypes 

Beyond simulations, we sought to confirm the accuracy of strain inferences in a real biological 
dataset subject to forms of noise and bias not reflected in the generative model we used for 
simulations. To accomplish this, we applied a recently developed, single-cell, genomic 
sequencing workflow to obtain ground-truth, strain genotypes from two fecal samples collected 
in a previously described, clinical FMT experiment (Smith et al., 2022) from two independent 
subjects. We ran StrainFacts on metagenotypes derived from these two focal samples as well 
as the other 157 samples in the same study. 

Genotypes that StrainFacts inferred to be present in each of these metagenomes matched the 
observed SCGs, with a mean, best-match normalized Hamming distance of 0.039. Furthermore, 
the median distance was just 0.013, reflecting the outsized influence of a small number of SCGs 
with more extreme deviations. For many species, SCGs also match a consensus genotype—the 
majority allele at each SNP site in each metagenotype (see Fig. 3A). We found a mean distance 
to the consensus of 0.037 and a median of 0.009. Because this distance excludes sites without 
observed counts in the metagenotype, we masked these same sites in our inferred genotypes to 
uniformly contrast the consensus approach to StrainFacts genotypes. Overall, inferred 
genotypes were similar to the consensus, with a mean, masked distance of 0.031 (median of 
0.009). However, the consensus approach fails for species with a mixture of multiple, co-
existing strains. When we select only species with a metagenotype entropy of greater than 0.05, 
an indication of strain heterogeneity, we see that StrainFacts inferences have a distinct 
advantage, with a mean distance of 0.055 versus 0.069 for the consensus approach (median of 
0.018 versus 0.022, p<0.001). These results validate inferred genotypes in a stool microbiome 
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using single-cell genomics and demonstrate that StrainFacts accounts for strain-mixtures better 
than consensus genotypes do. 

 

Figure 3: Inferred strains reflect genotypes from a single-cell sequencing experiment. (A) Distance 
between observed SCGs and StrainFacts inferences (X-axis) versus consensus genotypes (Y-axis). 
Points below and to the right of the red dotted line reflecting an improvement of our method over the 
consensus, based on the normalized, best-match Hamming distance. Each dot represents an individual 
SCG reflecting a putative genotype found in the analysed samples. SCGs from all species found in either 
of the focal samples are represented, and marker colors reflect the metagenotype entropy of that species 
in the relevant focal sample, a proxy for the potential strain diversity represented. Axes are on a 
“symmetric” log scale, with linear placement of values below 10-2. (B) A non-metric multidimensional 
scaling ordination of 68 SCGs and inferred genotypes for one species, S. thermophilus, with notably high 
strain diversity in one of the two focal samples. Circles represent SCGs, are colored by their assignment 
to one of four identified clusters, and larger markers indicate greater horizontal coverage. Triangles 
represent StrainFacts genotypes inferred to be at greater than 1% relative abundance, and larger 
markers reflect a higher inferred relative abundance. The red cross represents the consensus 
metagenotype of the focal sample. 

Of the 75 species represented in our SCG dataset, one stood out for having numerous SCGs 
while reflecting a remarkably high degree of strain heterogeneity. Among 68 high-quality SCGs 
for S. thermophilus, cluster analysis identified four distinct types (here referred to as Clusters A - 
D), accounting for 48, 7, 6, and 1 SCGs, respectively (Fig. 3B). Independently, StrainFacts 
inferred four strains in the metagenomic data from the same stool sample, (Strain 1 - 4) with 
57%, 32%, and 7%, and 3% relative abundance, respectively. We explored the concordance 
between clusters and StrainFacts inferences by assigning a best-match Hamming distance 
genotype among the inferred strains to each SCG (Table 2). For SCGs in three of the four 
clusters there was a low median distance to StrainFacts genotypes as well as a perfect 1-to-1 
correspondence between strains and clusters. While this genotype concordance was broken for 
SCGs in cluster B, strain 4 was also inferred to be at the lowest relative abundance, suggesting 
that there may have been too little information encoded in the metagenotype data to accurately 
reconstruct that strain’s genotype. While SCG counts and inferred strain fractions do not match 
perfectly in this sample, this may be due to large differences between SCG and metagenomic 
sequencing technologies that could result in differentially biased sampling of strains. The SCG 
cluster with the largest membership was, however, matched with the strain inferred to be at the 
highest relative abundance. Our findings for S. thermophilus show that StrainFacts’ estimates of 
genotypes and relative abundances are remarkably accurate for samples with high strain 
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heterogeneity, despite the challenges presented by real biological samples and low abundance 
strains. 

Table 2: Concordance among SCGs of cluster assignments and the closest-match StrainFacts inferred 
genotype, among the four strains inferred to be at greater than 1% relative abundance in the analysed 
sample. The total number of SCGs in each cluster and the relative abundance of each inferred strain are 
indicated in parentheses in the column and row labels, respectively. Numbers in each cell indicate the 
number of SCGs at that intersection and values in parentheses indicate the median normalized Hamming 
distance of those SCGs to the inferred strain genotype. 

 Cluster A (48) Cluster B (7) Cluster C (6) Cluster D (1) 

Strain 1 (57%) 48 (0.006) 1 (0.18)   

Strain 2 (32%)  3 (0.19) 6 (0.008)  

Strain 3 (7%)    1 (0.02) 

Strain 4 (3%)  3 (0.19)   

Analysis of genomic diversity using de novo strain inferences on 
thousands of samples 

Having established the accuracy and scalability of StrainFacts, we applied it to a corpus of 
metagenotype data derived from 20,550 metagenomes across 44 studies, covering a large 
fraction of all publicly available human-associated microbial metagenomes (Shi et al., 2021). We 
performed strain inference on GT-Pro metagenotypes for four species: Escherichia coli, 
Agathobacter rectalis, Methanobrevibacter smithii, and CAG-279 sp1. E. coli and A. rectalis are 
two highly prevalent and well studied bacterial inhabitants of the human gut microbiome, and M. 
smithii is the most prevalent and abundant archaeon detected in the human gut (Scanlan et al., 
2008). CAG-279, on the other hand, is an unnamed and little-studied genus and a member of 
the family Muribaculaceae. This family is common in mice (Lagkouvardos et al., 2019), but to 
our knowledge does not have representatives cultured from human samples. 

For each species, we compared strains inferred by StrainFacts to those represented in the GT-
Pro reference database, which is derived from the UHGG (Almeida et al., 2021). In order to 
standardize comparisons, we dereplicated inferred and reference strains at a 0.05 genotype 
distance threshold. Interestingly, dereplication had a negligible effect on StrainFacts results, 
reducing the number of E. coli strains by just 4 (to 119) with no reduction for the three other 
species. This suggests that the diversity regularization built into the StrainFacts model is 
sufficient to collapse closely related strains as part of inference. 

As GT-Pro only tallies alleles at a fixed subset of SNPs, the relationship between genotype 
distances and ANI is not fixed. In order to anchor our results to this widely-used measure of 
genome similarity, we compared the genotype distance to genome-wide ANI for all pairs of 
genomes in the GT-Pro reference database for all four species. We find that the fraction of 
positions differing genome wide (calculated as 1 - ANI) was nearly proportional to the fraction of 
genotyped positions differing, but with a different constant of proportionality for each species: E. 
coli (0.0776, uncentered R2=0.994), A. rectalis (0.1069, R2=0.990), M. smithii (0.0393, 
R2=0.967), and CAG-279 (0.0595, R2=0.991). Additional details of this analysis can be found in 
Supplementary Fig. S4. 
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StrainFacts recapitulates known diversity in well studied species 

E. coli, A. rectalis, and M. smithii all have many genome sequences in GT-Pro reference 
database, presenting an opportunity to contrast inferred against reference strains. In order to 
evaluate the concordance between the two (Table 3 and Fig. 4), we co-clustered all 
dereplicated strains (both reference and inferred) at a 0.15 normalized Hamming distance 
threshold—note, crucially, that this distance reflects a much smaller full-genome dissimilarity, as 
it is based only on genome positions with polymorphism across metagenomes, ignoring 
conserved positions. 

For E. coli, we identified 40 strain clusters with 93% of inferred strains and 94% of references 
falling into clusters containing strains from both sources (“shared” clusters), which is significantly 
more overlap than expected after random shuffling of cluster labels (p=0.002 by permutation 
test). While most metagenome-inferred genotypes are similar to those found in genome 
reference databases, we observed some clusters composed only of StrainFacts strains, 
representing novel lineages. However, these strains are no more common than after random 
permutation (p=0.81), matching our expectations for this well-studied species. 

We next asked if these trends hold for the other species. While A. rectalis had a much greater 
number of clusters (456), 69% of inferred strains and 45% of reference strains are nonetheless 
found to be in shared clusters, significantly more than would be expected with random shuffling 
of cluster labels (p=0.002 by permutation test). Correspondingly, we do not find evidence for 
enrichment of inferred strains in novel clusters (p=0.71). We find similar results for M. smithii 
and CAG-279—the fraction of strains in shared clusters is significantly greater than after 
random reassignment (p<0.001 for both), and there is no evidence for enrichment of inferred 
strains in novel clusters (p = 1.0 for both). Overall, the concordance between reference and 
inferred strains supports not only the credibility of StrainFacts’ estimates, but also suggests that 
our de novo inferences capture a substantial fraction of previously documented strain diversity, 
even in well studied species. 

Table 3: Dereplication and co-clustering of strains inferred from metagenomes or from a reference 
database 
a Dereplicated at 0.05 distance threshold 
b Co-clustered at a 0.15 distance threshold 
 

Species Metagenome 
samples fit 

Reference 
strainsa 

Inferred 
strainsa 

Total 
Clustersb 

Novel 
Clustersb 

Shared 
Clustersb 

E. coli 9232 176 119 40 20% 60% 

A. rectalis 11860 752 198 456 13% 25% 

M. smithii 3528 384 178 205 7% 38% 

CAG-279 3579 135 200 228 50% 25% 

Going beyond the extensive overlap of strains with reference genomes and StrainFacts 
inferences, we examined clusters in which references are absent or relatively rare. Visualizing a 
dendrogram of consensus genotypes from co-clustered strains (Fig. 4) we observe some 
sections of the A. rectalis dendrogram with many novel strains. Similarly, for CAG-279, the 
sheer number of inferred strains relative to genomes in reference databases means that fully 
half of all genotype clusters are entirely novel, emphasizing the power of StrainFacts inferences 
in understudied species. Future work will be needed to determine if these represent new 
subspecies currently missing from reference databases. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.02.01.478746doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.01.478746
http://creativecommons.org/licenses/by/4.0/


16 
 

 

Figure 4: Concordance between reference and StrainFacts inferred strain genotypes for four prevalent 
species in the human gut microbiome. Heatmap rows represent consensus genotypes from co-clustering 
of reference and inferred strains and columns are 3500 randomly sampled SNP sites (grey: reference and 
black: alternative allele). Colors to the left of the heatmap indicate clusters with only reference strains 
(dark purple), only inferred strains (yellow), or both (teal). Rows are ordered by hierarchical clustering built 
on distances between consensus genotypes and columns are ordered arbitrarily to highlight correlations 
between SNPs. 
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Figure 5: Patterns in strain dominance according to geography and lifestyle across thousands of publicly 
available metagenomes in dozens of independent studies for two common members of the human gut 
microbiome. Columns represent collections of samples from individual studies and are further segmented 
by country and lifestyle (westernized or not). Rows represent strains inferred by StrainFacts. Cell colors 
reflect the fraction of samples in that study segment with that strain as the most abundant member. Study 
segments are omitted if they include fewer than 10 samples. Row ordering and the associated 
dendrogram reflect strain genotype distances, while the dendrogram for columns is based on their cosine 
similarity. Studies with samples collected in several countries with notable clustering for one or more 
species are highlighted with colors above the heatmap. Additionally, studies from westernized populations 
are indicated. Both a study identifier and the ISO 3166-ISO country-code are included in the column 
labels. 
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Species inhabiting the human gut exhibit distinct biogeography observed across 
independent metagenomic studies 

Large metagenomic collections allow us to examine intraspecific microbial diversity at a global 
scale and among dozens of studies. Towards this end, we identified the most abundant 
StrainFacts strain of E. coli, A. rectalis, M. smithii, and CAG-279 in stool samples across 34 
independent studies. Across all four species, we observe some strains that are distributed 
globally as well as others that appear specific to one country of origin (Fig. 5, Supplementary 
Fig. S5). For example, among the 198 dereplicated, inferred strains of A. rectalis, 75 were found 
as the dominant strain (i.e. highest relative abundance) in samples collected on three or more 
continents. While this makes it challenging to consistently discern where a sample was collected 
based on its dominant strain of a given species, we nonetheless find that studies with samples 
collected in the United States of America form a distinct cluster, as do those from China, and the 
two are easily distinguished from one another and from most other studies conducted across 
Europe and North America (Fig. 5). Our observation of a distinct group of A. rectalis strains 
enriched in samples from China is consistent with previous results (Scholz et al., 2016; Costea 
et al., 2017a; Truong et al., 2017). 

These general trends hold across the other three species. In M. smithii, independent studies in 
the same country often share very similar strain dominance patterns (e.g. see clustering of 
studies performed in each of China, Mongolia, Denmark, and Spain in Fig. 5). In E. coli , while 
many strains appear to be distributed globally, independent studies from China still cluster 
together based on patterns in strain dominance (see Supplementary Fig. S5). Notably, in CAG-
279, studies with individuals in westernized societies do not cluster separately from the five 
other studies, suggesting that host lifestyle is not highly correlated with specific strains of this 
species. The variety of dominance patterns across the four species described here suggest that 
different mechanisms may drive intraspecific biogeography depending on the biology and 
natural history of the species. As the coverage of diverse microbiomes grows, StrainFacts will 
enable future studies disentangling the contributions of lifestyle, dispersal limitation and other 
factors in the global distribution of strains. 

Linkage disequilibrium decay suggests variation in recombination rates across 
microbial species 

Studying the population genetics of host-associated microbes has the potential to elucidate 
processes of transmission, diversification, and selection with implications for human health and 
perhaps even our understanding of human origins (Linz et al., 2007; Garud and Pollard, 2019). 
To demonstrate the application of StrainFacts to the study of microbial evolution, we examined 
patterns in pairwise LD, here calculated as the squared Pearson correlation coefficient (r2). This 
statistic can inform understanding of recombination rates in microbial populations (Vos, 2009; 
Garud et al., 2019). Genome-wide, LD, summarized as the 90th percentile r2 (LD90, Vos et al., 
2017), was substantially higher for E. coli (0.24) than A. rectalis (0.04), M. smithii (0.11), or 
CAG-279 (0.04), perhaps suggesting greater population structure in the species and less 
panmictic recombination. 

We estimated LD distance-decay curves for SNPs, using a single, high-quality reference 
genome for each species to obtain estimates of pairwise distance between SNP sites. For all 
four species, adjacent SNPs were much more tightly linked, with an LD90 of >0.999. LD was still 
dramatically above background at 50 bases of separation, and fell rapidly with increasing 
distance (Fig. 6). The speed of this decay was different between species, which we 
characterized with the LD½,90: the distance at which the LD90 was less than 50% of the value for 
adjacent SNPs (Vos et al., 2017). M. smithii exhibited by far the slowest decay, with a LD½,90 of 
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520 bases, followed by E. coli at 93 bases, CAG-279 at 66, and A. rectalis at just 28 bases. This 
variation in decay profiles may reflect major differences in recombination rates across 
populations. 

To validate our findings, we ran identical analyses with dereplicated genotypes from genomes in 
the GT-Pro reference database. Estimates of both LD and the distance-decay relationship are 
very similar between inferred and reference strains, reinforcing the value of genotypes inferred 
from metagenomes for microbial population genetics. Interestingly, for three of the four species 
(E. coli, A. rectalis, and M. smithii), LD estimates from StrainFacts strains were significantly 
higher than from references (p<1e-10 for all three by Wilcoxon test), while CAG-279 exhibited a 
trend towards the reverse (p=0.85). It is not clear what might cause these quantitative 
discrepancies, but they could reflect differences in the set of strains in each dataset. Future 
studies expanding this analysis to additional species will identify patterns in recombination rates 
across broader microbial diversity. 

 

Figure 6: Pairwise LD across genomic distance estimated from inferred genotypes for four species. LD 
was calculated as r2 and genomic distance between polymorphic loci is based on distances in a single, 
representative genome. The distribution of SNP pairs in each distance window is shown as a histogram 
with darker colors reflecting a larger fraction of the pairs in that LD bin, and the LD90 for pairs at each 
distance is shown for inferred strains (red), along with an identical analysis on strains in the reference 
database (blue). Genome-wide LD90 (dashed lines) is also indicated. 
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Discussion 

Here we have described StrainFacts, a novel tool for strain inference in metagenomic data. 
StrainFacts models metagenotype data using a fuzzy-genotype approximation, allowing us to 
estimate both the relative abundance of strains across samples as well as their genotypes. To 
accelerate analysis compared to the current state-of-the-art, we harness the differentiability of 
our model to apply modern, gradient-based optimization and GPU-parallelization. Consequently, 
StrainFacts can scale to tens-of-thousands of samples while inferring genotypes for hundreds of 
strains. On simulated benchmarks, we show that StrainFacts has comparable accuracy to Strain 
Finder, and we validate strain inferences in vivo against genotypes observed by single-cell 
genomics. Finally, we apply StrainFacts to a database of tens of thousands of metagenomes 
from the human microbiome to estimate strains de novo, allowing us to characterize strain 
diversity, biogeography, and population genetics, without the need for cultured isolates. 

Beyond Strain Finder, other alternatives exist for strain inference in metagenomic data. While 
we do not directly compare to DESMAN, runtimes of several hours have been reported for that 
tool on substantially smaller simulated datasets (Quince et al., 2017), and hence we believe that 
StrainFacts is likely the most scalable implementation of the metagenotype deconvolution 
approach. Still other methods apply regularized regression (e.g. Lasso Albanese and Donati, 
2017) to decompose metagenotypes—essentially solving the abundance half of the 
deconvolution problem but not the genotypes half—or look for previously determined strain 
signatures (e.g. k-mers Panyukov et al., 2020) based on known strain genotypes. However, 
both of these require an a priori database of the genotypes that might be present in a sample. 
An expanding database of strain references can make these approaches increasingly useful, 
and StrainFacts can help to build this reference. 

Several studies avoid deconvolution by directly examining allele frequencies inferred from 
metagenotypes. While consensus (Truong et al., 2017; Zolfo et al., 2017) or phasing (Garud et 
al., 2019) approaches can accurately recover genotypes in some cases, their use is limited to 
low complexity datasets, with sufficient sequencing depth and low strain heterogeneity. 
Likewise, measuring the dissimilarity of metagenotypes among pairwise samples indicates 
shared strains (Podlesny and Fricke, 2020), but this approach risks confounding strain mixing 
with genotype similarity. Finally, assembly (Li et al., 2019) and read-based methods (Cleary et 
al., 2015) for disentangling strains are most applicable when multiple SNPs can be found in 
each sequencing read. With ongoing advancements in long-read (Vicedomini et al., 2021) and 
read-cloud sequencing (Kuleshov et al., 2016; Kang et al., 2018), these approaches will become 
increasingly feasible. Thus, StrainFacts occupies the same analysis niche as Strain Finder and 
DESMAN, and it expands upon these reliable approaches by providing a scalable model fitting 
procedure. 

Fuzzy genotypes enable more computationally efficient inference by eliminating the need for 
discrete optimization. Specifically, we used well-tested and optimized gradient descent 
algorithms implemented in PyTorch for parameter estimation. In addition, fuzzy genotypes may 
be more robust to deviations from model assumptions. For instance, an intermediate genotype 
could be a satisfactory approximation when gene duplications or deletions are present in some 
strains. While we do not explore the possibility here, fuzzy genotypes may provide a heuristic for 
capturing uncertainty in strain genotypes. Future work could consider propagating intermediate 
genotype values instead of discretizing them. 

StrainFacts builds on recent advances in metagenotyping, in particular our analyses harnessed 
GT-Pro (Shi et al., 2021) to greatly accelerate SNP counting in metagenomic reads. While we 
leave a comparison of StrainFacts performance on the outputs of other metagenotypers to 
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future work, StrainFacts itself is agnostic to the source of input data. It would be straightforward 
to extend StrainFacts to operate on loci with more than two alleles or to use metagenotypes 
from a tool other than GT-Pro. It would also be interesting to extend StrainFacts to use SNPs 
outside the core genome that vary in their presence across strains. 

Combined with the explosive growth in publicly available metagenomic data and the 
development of rapid metagenotyping tools, StrainFacts enables the de novo exploration of 
intraspecific microbial diversity at a global scale and on well-powered cohorts with thousands of 
samples. Future applications could examine intraspecific associations with disease, track the 
history of recombination between microbial subpopulations, and measure the global 
transmission of host-associated microbes across human populations. 
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Supplementary Materials 

Supplementary Methods 

 

Figure S1: Graphical representation of the StrainFacts model including hyperparameters. Symbols 
include observed data (blue box), deterministic terms (circles), key parameters being estimated (red 
boxes), and key hyperparameters (unenclosed). Plates behind terms indicate the dimensionality and 
indexing of the variables and arrows connect the terms that directly depend on one another. 

The shifted, scaled Dirichlet distribution 

The k-dimensional SSD is a 2k + 1 parameter family which includes the Dirichlet distribution as 
a special case, and is defined by Aitchenson “perturbation” (⊕) and “powering” (⊙) operations 
(Aitchison, 1986) applied to a Dirichlet-distributed random variable. Given a random variable 

𝐗 ∼ Dirichlet(𝛂),  𝛂 ∈ ℝ𝐾 ,  𝐗 ∈ 𝒮𝐷 if 𝐘 = 𝐩⊕ (𝑎 ⊙ 𝐗),  𝑎 ∈ ℝ+,  𝐩 ∈ 𝒮𝐾 ,  𝐘 ∈ 𝒮𝐾 then 𝐘 ∼
SSD(𝛂, 𝐩, 𝑎). 

In this work, we limit our use of this distribution to 𝛂 = 𝟏, i.e. 𝐗 distributed uniformly on the K-

simplex before powering and perturbation. For values of 𝑎 > 1, the probability mass shifts 
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towards the edges of the simplex, and we use this property in order to induce sparsity in our 
estimates. 

Parameter initialization and optimization 

In select initial values of 𝚷 and 𝚪 using an NMF based approach. First, we transform 

metagenotypes from counts to an 𝑁 × 𝐺 × 2 matrix of allele frequencies, and stack this into an 
𝑁 × 2𝐺 matrix, 𝐏′, with columns of reference alleles followed by columns of alternative alleles. 

We then use canonical NMF—implemented in the scikit-learn library (Pedregosa et al., 2011)—
to factorize this data matrix into 𝚷′ and 𝚪′, where 𝐏′ ≈ 𝚷′ × 𝚪′ with a shared, inner dimension of 

size 𝑆. After reversing the stacking of alleles, we get back a matrix 𝚪″ ∈ ℝ+
𝑆×𝐺×2. Since 𝚷′ and 𝚪″ 

likely do not conform to the constraints of strain deconvolution, we transform them into initial 

values as follows: 𝚪init = 𝒞(1/𝑐 ∗ 𝚪″) and 𝚷init = 𝒞(𝑐 ∗ 𝚷′) where 𝑐𝑠 =
1

𝐺
∑ (𝛾𝑠𝑔0 + 𝛾𝑠𝑔1)𝑔  , ∗ 

denotes element-wise multiplication, and 𝒞(⋅) is normalization over the last dimension to the 

standard simplex (i.e. summing-to-one). 

Model parameters are transformed to the unconstrained space using Pyro’s built-in defaults. 
Parameters other than 𝚷 and 𝚪 are initialized randomly to a point on the interval (−2,2) in the 
transformed space. We then apply the Adamax algorithm for stochastic gradient descent using 
an initial learning rate lr_init. To increase the probability of finding a global maximum, we 

take a prior annealing approach (Neuwald and Liu, 2004): for an initial n_wait number of steps 

of the optimization routine, the hyperparameters 𝛾∗ and 𝜌∗ are set to initial values with less 
stringent regularization and are then exponentially relaxed to their final values during the next 
n_anneal steps. After this annealing period, we continue taking gradient steps until the value 

of the loss function has not improved for 100 steps, at which point we halve the learning rate. 
Optimization is stopped when the learning rate falls below a minimum threshold, lr_min. 

Fitting full length genotypes 

Because many metagenotypes had more than 5,000 SNP sites, we use a refitting approach to 
get full length strain genotypes. This is accomplished by conditioning our model on both the 
observed data and the previously estimated 𝚷. In addition, we update the value of two of the 

hyperparameters; we set 𝛾∗ = 1.0, and 𝛼∗ = 200. After refitting the other parameters, this results 
in a new estimate of 𝚪. Since SNPs are statistically separable when 𝚷 is conditioned out, this 

allows us to iteratively refit arbitrary subsets of SNPs before recombining them into a full length 
genotype matrix. 

Single-cell genomic sequencing 

Cell isolation from stool samples 

Bacterial cells were isolated from fecal samples according to previously published protocol 
(Hevia et al., 2015) with modifications. Briefly, 0.2-0.5 g of fecal samples were homogenized in 
10 mL of PBS buffer by vertexing. After filtering with a 50 µm cell strainer (Corning, 431752) to 
remove most of the fecal particles, the flow through suspension was loaded on top of 3.5 mL of 
80% Nycodenz® (Cosmo Bio USA, AXS-1002424) in a 15 mL conical tube. The tube was 
centrifuged for 40 min at 4 °C (4700 x g). The layer corresponding to microbiota was extracted 
and washed with PBS for 3 times. The cells were directly processed for hydrogel encapsulation 
or stored in DNA/RNA shield (Zymo Research, R1100-50) at -80 °C for long term storage. 
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High-throughput single bacterial sequencing 

Barcoded single cell bacterial sequencing libraries were constructed by modified SiC- protocol 
Seq leveraging Mission Bio Tapestri (Lan et al., 2017). 

Cell encapsulation in hydrogel beads 

Cell suspension (100 million per mL in PBS, 500 µL) was mixed with 500 µL of polyacrylamide 
precursor solution with 12% acrylamide(Thermo Scientific, AAJ62480AP), 1% N,N′-
bis(acryloyl)cystamine (Sigma, A5912), 20 mM Tris (pH 8.0), 0.6% sodium persulfate (Sigma, 
216232), and 20 mM NaCl. After adding 1mL of HFE 7500 with 2% surfactant (008-
FluoroSurfactant, RanBiotechnologies), heterogenous droplets were generated by passing the 
oil/aqueous mixture through a syringe with 23.5 G blunt needle for 5 time. 20 µL of N,N,N′,N′- 
tetramethylethylenediamine (Sigma, 411019) was added into the emulsion and the emulsion 
was incubated at 70 °C for 30 min and at room temperature for 1 hour for gelation. The 
emulsion was centrifuged at 1000xG for 10 min and the oil layer was removed by a gel loading 
tip. To the hydrogel layer, 1 mL of 20% PFO (1H,1H,2H,2H-perfluoro-1-octanol, Sigma, 370533) 
in HFE 7500 and the mixture was vortexed and shaking for 10 min to break the emulsions. After 
centrifugation at 1000xG for 10 min, PFO were removed, and the hydrogel beads were then 
washed with PBS with 0.4% tween 20 for 3 times. The beads were then resuspended in 40% 
sucrose in PBS with 0.4% tween 20. A differential velocity centrifugation was performed to 
select the hydrogel beads within the size between 5 to 25 µm. 

Cell lysis and DNA purification in hydrogel beads 

100 µL of beads were treated in a solution of 1 mL TE buffer solution containing 2.5 mM EDTA 
(Teknova), 10mM NaCl (Sigma-Aldrich), 2U zymolyase, 5 U Lysostaphin, 50 U mutanolysin, 
and 20 mg Lysozyme at 37 °C overnight. The lysate mixture was then centrifuged at 3000 xG 
for 3 min, the supernatant removed, and 1 mL of TE buffer with 4U of Proteinase K, 1% triton 
X100 and 100 mM of NaCl was added to digest cellular proteins. The solution is incubated at 50 
°C for 30 min. Following lysis, the beads was thoroughly washed to ensure complete removal of 
detergents and other chemicals which may inhibit the downstream reactions. The washes were 
performed in 10 mL volume with centrifugation magnitudes of 3000 x g between washes. 

Tagmentsation reagents 

25 µL Blocked ME Complement /5Phos/C*T* G*T*C* T*C*T* T*A*T* A*C*A*/3ddC/ (200 nM, 
IDT), 25 µL Tn5-Fwd-oligo GTACTCGCAGTAGTCAGATGTGTATAAGAGACAG (100 nM, IDT), 
and 25 µL Tn5-Rev-oligo TACCCTTCCAATTTAACCCTCCAAGATGTGTATAAGAGACAG (100 
nM, IDT) and 25 µLTris buffer were mixed well in a PCR tube by pipetting. The mixture was 
incubated on a thermal cycler using the following program: 85°C for 2 min, cools to 20 °C with a 
ramping rate at 0.1 °C/s, 20 °C for 1 min, then hold at 4 °C with lid at 105°C. 100 µL of glycerol 
was then added into the annealed oligo. The unloaded Tn5 (1 mg/mL, expressed by QB3 
MacroLab, Berkeley, CA.) was diluted at a 1:1 ratio in the Illumina dilution buffer (50% Glycerol, 
100 mM NaCl, 0.1 mM EDTA, 1 mM DTT, and 0.1% NP40 in 50 mM Tris-HCl pH 7.5 buffer), 
followed by mixing at a 1:1 ratio with the pre-annealed adapter/glycerol mix. The mixture was 
incubated at room temperature for 30 min then stored at -20 °C. 

Single cell DNA tagmentaion 

The beads were resuspended in the density matching buffer (10 mM MgCl2, 1% NP40, and 
17% Optiprep in 20 mM TAPS pH 7.0 buffer) to the final cell density of 3000 cells/µL. 25 µL of 
assembled Tn5 was mixed with 25 µL of tagmention buffer (10 mM MgCl2, 10 mM DTT in 20 
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mM TAPS pH 7.0 buffer). The MissionBio Tapestri DNA cartridge and a 0.2 mL PCR tube were 
mounted onto the Tapestri instrument. 50 µL of the beads in density matching buffer was loaded 
into the reservoir 2 (the reservoir for cell suspension), 50 µL of the Tn5 in tagmentation buffer 
was loaded into reservoir 1 (the reservoir for lysis buffer), and 200 µL of Encapsulation oil was 
loaded into reservoir 3. After applying the DNA gasket on top of the cartridge and closing the 
instrument lid, droplets were generated by running the Step1: Encapsulation program. The 
droplets were incubated at 37°C for 60 min and then 50°C for 30 min. 

Barcoding PCR 

Barcoding droplet PCR were performed according to the MissionBio Tapestri protocol with 
minor modification. 8 PCR tubes and DNA cartridge were mounted onto the Tapestri instrument. 
200 µL and 500 µL of Electrode solution were loaded into reservoirs 4 and 5 respectively. After 
running the Priming program, 5 µL of reverse barcoding oligo was mixed with 295 µL MissionBio 
Barcoding Mix and loaded into reservoir 8 of the DNA cartridge. The droplets from previous step 
(~80 uL), 200 µL of barcoding beads, and 1.25 mL of Barcoding oil were loaded into reservoir 6, 
7 and 9, respectively. After applying the DNA gasket on top of the cartridge and closing the lid, 
the droplets were merged with barcoding beads and PCR reagents by running the Cell 
Barcoding program on the Tapestri instrument. The droplets collected in the 8 PCR tubes were 
treated with UV for 8 min (Analytik Jena Blak-Ray XX-15L UV light source) and the bottom layer 
of oil in each tube were removed using a gel loading tip to leave up to 100 µL of droplets. The 
tubes were then thermo-cycled on a PCR instrument with the following program: 10 min at 72°C 
for 1 cycle, 3 min at 95°C for 1 cycle, (15 s at 95°C, 15 s for 55°C, and 2 min at 72°C) for 20 
cycles, and 5 min at 72°C for 1 cycle. 

Sequencing library preparation 

The thermal cycled droplets in the 8 PCR tubes were carefully transferred into two 1.5 mL 
centrifuge tubes (4 PCR tube content in each). If there were merged droplets present, they were 
carefully removed using a 2 µL pipette. 20 µL PFO were added into each tube and mixed well 
by vortex. After centrifuging the top aqueous layers in each tube was transferred into new 1.5 
mL tubes and water was added to bring the total volume to 400 µL. The barcoding product was 
purified using 0.7X Ampure XP beads (Beckman Coulter, A63882) and eluted into 60 µL H2O 
and stored at -20°C until next step. The concentrations of the barcoding product were measured 
with Qubit™ 1X dsDNA Assay Kits (ThermoFisher, Q33230). 

The sequencing library were then prepared by attaching P5 and P7 sequences to the barcoding 
products using Nextera primers. The library PCR reactions were performed with 25 uL Kapa 
HiFi Master mix 2X, 5 uL Library P5 index primer (4 uM), 5 uL Library P7 index primer (4 uM), 
10 uL purified barcoding products (normalized to 0.2 ng/uL), and 5 uL of nuclease free water. 
The PCR tubes were thermal cycled with the following program: 3 min at 95°C for 1 cycle, (20 s 
at 98°C, 20 s for 62°C, and 45 s at 72°C) for 10 cycles, and 2 min at 72°C for 1 cycle. The 
sequencing library was purified with 0.69X Ampure XP beads and eluted into 12 uL nuclease-
free water. The library was quantified with Qubit™ 1X dsDNA Assay Kits and DNA HS chips on 
bioanalyzer or D5000 ScreenTape (Agilent, 5067- 5588) on Tapestation (Agilent, G2964AA). 
The libraries were pooled and paired-end sequenced by Novogene with a partial lane on 
Illumina NovaSeq 6000. 

Single cell read files preparation 

Sequencing data were processed using a custom python script (mb_barcode_and_trim.py) 

available on GitHub at https://github.com/AbateLab/MissonBioTools. For all reads, combinatorial 
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cell barcodes were parsed from Read 1, using cutadapt (v2.4) and matched to a barcode 
whitelist. Barcode sequences within a Hamming distance of 1 from a whitelist barcode were 
corrected. Reads with valid barcodes were trimmed with cutadapt to remove 5′ and 3′ adapter 
sequences and demultiplexed into single-cell FASTQ files by barcode sequences using the 
script demuxbyname.sh from the BBMap package (v.38.57). 

Supplementary Results 

 

Figure S2: Maximum memory allocation across varying numbers of strains (S, line shade), SNPs (G, line 
style), and samples is plotted for StrainFacts models. Median of 9 replicate runs is shown. Maximum 
memory requirements are extrapolated to higher numbers of samples for a model with 1000 SNP sites 
(red line). An abridged version of this plot is included as Fig. 1. 
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Figure S3: Extension of accuracy evaluation for StrainFacts and Strain Finder with additional results for 
MixtureS. Results are identical to panels A, C, D, and E in Fig. 2 (here panels A-D, respectively). 
Simulations are shown for five simulations with 250 SNP positions, 200 samples, and 40 strains. While 
StrainFacts and Strain Finder each have 32, 40, and 60 strains specified (the 0.8x, 1.0x, 1.5x 
parameterizations), MixtureS does not specify the number of strains a priori, and points are arbitrarily 
placed with the 1x parameterization. Similarly, MixtureS runs are deterministic; hence only one fit for each 
of the five simulations is shown. 
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Figure S4: Emipirical relationship between ANI and genotype distance among reference genomes in the 
GT-Pro database. Genotype distance is defined as the normalized Hamming distance at SNP sites 
considered by GT-Pro. All pairwise genome comparisons are plotted as a 2D histogram, with greater 
density indicated with darker colors. For each species, a linear regression calculated without an intercept 
term is shown (black line), and the constant of proportionality and uncentered R2 is also indicated. 
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Figure S5: Patterns in strain dominance according to geography and lifestyle across thousands of 
publicly available metagenomes in dozens of independent studies for two additional members of the 
human gut microbiome. Visual elements are identical to Fig. 5: Columns represent collections of samples 
from individual studies and are further segmented by country and lifestyle (westernized or not). Rows 
represent strains inferred by StrainFacts. Cell colors reflect the fraction of samples in that study segment 
with that strain as the most abundant member. Study segments are omitted if they include fewer than 10 
samples. Row ordering and the associated dendrogram reflect strain genotype distances, while the 
dendrogram for columns is based on their cosine similarity. Colors above the heatmap reflect the country 
in which samples were collected as well as whether samples were collected from individuals with a 
westernized lifestyle. Both a study identifier and the ISO 3166-ISO country-code are included in the 
column labels. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.02.01.478746doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.01.478746
http://creativecommons.org/licenses/by/4.0/


30 
 

References 

Aitchison, J. (1986). The statistical analysis of compositional data. London; New York: Chapman 
and Hall. 

Albanese, D., and Donati, C. (2017). Strain profiling and epidemiology of bacterial species from 
metagenomic sequencing. Nat. Commun. 8, 2260. doi:10.1038/s41467-017-02209-5. 

Almeida, A., Nayfach, S., Boland, M., Strozzi, F., Beracochea, M., Shi, Z. J., et al. (2021). A 
unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol 
39, 105–114. doi:10.1038/s41587-020-0603-3. 

Beghini, F., McIver, L. J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., et al. (2021). 
Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with 
bioBakery 3. eLife 10, e65088. doi:10.7554/eLife.65088. 

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., et al. 
(2019). Pyro: Deep Universal Probabilistic Programming. J. Mach. Learn. Res. 20, 1–6. 
Available at: http://jmlr.org/papers/v20/18-403.html [Accessed April 8, 2021]. 

Case, R. J., Boucher, Y., Dahllöf, I., Holmström, C., Doolittle, W. F., and Kjelleberg, S. (2007-
January). Use of 16S rRNA and rpoB Genes as Molecular Markers for Microbial Ecology 
Studies. Appl. Environ. Microbiol. doi:10.1128/AEM.01177-06. 

Chu, N. D., Crothers, J. W., Nguyen, L. T. T., Kearney, S. M., Smith, M. B., Kassam, Z., et al. 
(2021). Dynamic Colonization of Microbes and Their Functions after Fecal Microbiota 
Transplantation for Inflammatory Bowel Disease. mBio. doi:10.1128/mBio.00975-21. 

Cleary, B., Brito, I. L., Huang, K., Gevers, D., Shea, T., Young, S., et al. (2015). Detection of 
low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning. Nat. 
Biotechnol. 33, 1053–1060. doi:10.1038/nbt.3329. 

Costea, P. I., Coelho, L. P., Sunagawa, S., Munch, R., Huerta-Cepas, J., Forslund, K., et al. 
(2017a). Subspecies in the global human gut microbiome. Mol Syst Biol 13, 960. 
doi:10.15252/msb.20177589. 

Costea, P. I., Hildebrand, F., Arumugam, M., Bäckhed, F., Blaser, M. J., Bushman, F. D., et al. 
(2017b). Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 
Accepted. doi:10.1038/s41564-017-0072-8. 

Garud, N. R., Good, B. H., Hallatschek, O., and Pollard, K. S. (2019). Evolutionary dynamics of 
bacteria in the gut microbiome within and across hosts. PLOS Biology 17, e3000102. 
doi:10.1371/journal.pbio.3000102. 

Garud, N. R., and Pollard, K. S. (2019). Population Genetics in the Human Microbiome. Trends 
in Genetics 0. doi:10.1016/j.tig.2019.10.010. 

Haiser, H. J., Seim, K. L., Balskus, E. P., and Turnbaugh, P. J. (2014). Mechanistic insight into 
digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. 
Gut Microbes 5, 233–238. doi:10.4161/gmic.27915. 

Hevia, A., Delgado, S., Margolles, A., and Sánchez, B. (2015). Application of density gradient 
for the isolation of the fecal microbial stool component and the potential use thereof. Sci Rep 5, 
16807. doi:10.1038/srep16807. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.02.01.478746doi: bioRxiv preprint 

https://doi.org/10.1038/s41467-017-02209-5
https://doi.org/10.1038/s41587-020-0603-3
https://doi.org/10.7554/eLife.65088
http://jmlr.org/papers/v20/18-403.html
https://doi.org/10.1128/AEM.01177-06
https://doi.org/10.1128/mBio.00975-21
https://doi.org/10.1038/nbt.3329
https://doi.org/10.15252/msb.20177589
https://doi.org/10.1038/s41564-017-0072-8
https://doi.org/10.1371/journal.pbio.3000102
https://doi.org/10.1016/j.tig.2019.10.010
https://doi.org/10.4161/gmic.27915
https://doi.org/10.1038/srep16807
https://doi.org/10.1101/2022.02.01.478746
http://creativecommons.org/licenses/by/4.0/


31 
 

Kang, J. B., Siranosian, B., Moss, E., Andermann, T., and Bhatt, A. (2018). Read cloud 
sequencing elucidates microbiome dynamics in a hematopoietic cell transplant patient. 2018 
IEEE Int. Conf. Bioinforma. Biomed. BIBM. doi:10.1109/BIBM.2018.8621297. 

Kuleshov, V., Snyder, M. P., and Batzoglou, S. (2016). Genome assembly from synthetic long 
read clouds. Bioinformatics 32, i216–i224. doi:10.1093/bioinformatics/btw267. 

Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singularity: Scientific containers for 
mobility of compute. PLOS ONE 12, e0177459. doi:10.1371/journal.pone.0177459. 

Lagkouvardos, I., Lesker, T. R., Hitch, T. C. A., Gálvez, E. J. C., Smit, N., Neuhaus, K., et al. 
(2019). Sequence and cultivation study of Muribaculaceae reveals novel species, host 
preference, and functional potential of this yet undescribed family. Microbiome 7, 28. 
doi:10.1186/s40168-019-0637-2. 

Lan, F., Demaree, B., Ahmed, N., and Abate, A. (2017). SiC-Seq: Single-cell genome 
sequencing at ultra high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 
640. doi:10.1038/nbt.3880. 

Li, S. S., Zhu, A., Benes, V., Costea, P. I., Hercog, R., Hildebrand, F., et al. (2016). Durable 
coexistence of donor and recipient strains after fecal microbiota transplantation. Science 352, 
586–589. doi:10.1126/science.aad8852. 

Li, X., Hu, H., and Li, X. mixtureS: A novel tool for bacterial strain reconstruction from reads. 
Bioinformatics. doi:10.1093/bioinformatics/btaa728. 

Li, X., Saadat, S., Hu, H., and Li, X. (2019). BHap: A novel approach for bacterial haplotype 
reconstruction. Bioinformatics 35, 4624–4631. doi:10.1093/bioinformatics/btz280. 

Linz, B., Balloux, F., Moodley, Y., Manica, A., Liu, H., Roumagnac, P., et al. (2007). An African 
origin for the intimate association between humans and Helicobacter pylori. Nature 445, 915–
918. doi:10.1038/nature05562. 

Loman, N. J., Constantinidou, C., Christner, M., Rohde, H., Chan, J. Z.-M., Quick, J., et al. 
(2013). A culture-independent sequence-based metagenomics approach to the investigation of 
an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA 309, 1502–1510. 
doi:10.1001/jama.2013.3231. 

Lozupone, C. A., Hamady, M., Kelley, S. T., and Knight, R. (2007). Quantitative and Qualitative 
𝛽 Diversity Measures Lead to Different Insights into Factors That Structure Microbial 

Communities. Appl Environ Microbiol 73, 1576–1585. doi:10.1128/AEM.01996-06. 

Luo, C., Knight, R., Siljander, H., Knip, M., Xavier, R. J., and Gevers, D. (2015). ConStrains 
identifies microbial strains in metagenomic datasets. Nat. Biotechnol. 33, 1045–1052. 
doi:10.1038/nbt.3319. 

Martens, E., Ostrowski, M., Rosa, S. L., Kunath, B., Robertson, A., Pereira, G., et al. (2021). 
The Food Additive Xanthan Gum Drives Adaptation of the Human Gut Microbiota. In Review 
doi:10.21203/rs.3.rs-607163/v1. 

Mölder, F., Jablonski, K. P., Letcher, B., Hall, M. B., Tomkins-Tinch, C. H., Sochat, V., et al. 
(2021). Sustainable data analysis with Snakemake. F1000Research 10. 
doi:10.12688/f1000research.29032.2. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.02.01.478746doi: bioRxiv preprint 

https://doi.org/10.1109/BIBM.2018.8621297
https://doi.org/10.1093/bioinformatics/btw267
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1186/s40168-019-0637-2
https://doi.org/10.1038/nbt.3880
https://doi.org/10.1126/science.aad8852
https://doi.org/10.1093/bioinformatics/btaa728
https://doi.org/10.1093/bioinformatics/btz280
https://doi.org/10.1038/nature05562
https://doi.org/10.1001/jama.2013.3231
https://doi.org/10.1128/AEM.01996-06
https://doi.org/10.1038/nbt.3319
https://doi.org/10.21203/rs.3.rs-607163/v1
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.1101/2022.02.01.478746
http://creativecommons.org/licenses/by/4.0/


32 
 

Monti, G. S., Mateu-Figueras, G., Pawlowsky-Glahn, V., and Egozcue, J. J. (2011). The shifted-
scaled Dirichlet distribution in the simplex. in. 

Nayfach, S., Rodriguez-Mueller, B., Garud, N., and Pollard, K. S. (2016). An integrated 
metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and 
biogeography. Genome Res 26, 1612–1625. doi:10.1101/gr.201863.115. 

Nayfach, S., Roux, S., Seshadri, R., Udwary, D., Varghese, N., Schulz, F., et al. (2020). A 
genomic catalog of Earth’s microbiomes. Nat. Biotechnol., 1–11. doi:10.1038/s41587-020-0718-
6. 

Neuwald, A. F., and Liu, J. S. (2004). Gapped alignment of protein sequence motifs through 
Monte Carlo optimization of a hidden Markov model. BMC Bioinformatics 5, 157. 
doi:10.1186/1471-2105-5-157. 

O’Brien, J. D., Didelot, X., Iqbal, Z., Amenga-Etego, L., Ahiska, B., and Falush, D. (2014). A 
Bayesian Approach to Inferring the Phylogenetic Structure of Communities from Metagenomic 
Data. Genetics 197, 925–937. doi:10.1534/genetics.114.161299. 

Olm, M. R., Crits-Christoph, A., Bouma-Gregson, K., Firek, B. A., Morowitz, M. J., and Banfield, 
J. F. (2021). inStrain profiles population microdiversity from metagenomic data and sensitively 
detects shared microbial strains. Nat. Biotechnol., 1–10. doi:10.1038/s41587-020-00797-0. 

Panyukov, V. V., Kiselev, S. S., and Ozoline, O. N. (2020). Unique k-mers as Strain-Specific 
Barcodes for Phylogenetic Analysis and Natural Microbiome Profiling. IJMS 21, 944. 
doi:10.3390/ijms21030944. 

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019). PyTorch: An 
Imperative Style, High-Performance Deep Learning Library. in Advances in Neural Information 
Processing Systems (ancouver, Canada: Curran Associates, Inc.). Available at: 
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-
Abstract.html [Accessed January 30, 2022]. 

Patrick, S., Blakely, G. W., Houston, S., Moore, J., Abratt, V. R., Bertalan, M., et al. Twenty-
eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in 
three strains of Bacteroides fragilis. Microbiology 156, 3255–3269. doi:10.1099/mic.0.042978-0. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). 
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830. Available at: 
http://www.jmlr.org/papers/v12/pedregosa11a.html. 

Podlesny, D., and Fricke, W. F. (2020). Microbial Strain Engraftment, Persistence and 
Replacement after Fecal Microbiota Transplantation. medRxiv, 2020.09.29.20203638. 
doi:10.1101/2020.09.29.20203638. 

Quince, C., Delmont, T. O., Raguideau, S., Alneberg, J., Darling, A. E., Collins, G., et al. (2017). 
DESMAN: A new tool for de novo extraction of strains from metagenomes. Genome Biol. 18, 1–
22. doi:10.1186/s13059-017-1309-9. 

Scanlan, P. D., Shanahan, F., and Marchesi, J. R. (2008). Human methanogen diversity and 
incidence in healthy and diseased colonic groups using mcrA gene analysis. BMC Microbiol. 8, 
79. doi:10.1186/1471-2180-8-79. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.02.01.478746doi: bioRxiv preprint 

https://doi.org/10.1101/gr.201863.115
https://doi.org/10.1038/s41587-020-0718-6
https://doi.org/10.1038/s41587-020-0718-6
https://doi.org/10.1186/1471-2105-5-157
https://doi.org/10.1534/genetics.114.161299
https://doi.org/10.1038/s41587-020-00797-0
https://doi.org/10.3390/ijms21030944
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1099/mic.0.042978-0
http://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1101/2020.09.29.20203638
https://doi.org/10.1186/s13059-017-1309-9
https://doi.org/10.1186/1471-2180-8-79
https://doi.org/10.1101/2022.02.01.478746
http://creativecommons.org/licenses/by/4.0/


33 
 

Schmidt, M. N., Winther, O., and Hansen, L. K. (2009). Bayesian Non-negative Matrix 
Factorization. in Independent Component Analysis and Signal Separation Lecture Notes in 
Computer Science., eds. T. Adali, C. Jutten, J. M. T. Romano, and A. K. Barros (Berlin, 
Heidelberg: Springer), 540–547. doi:10.1007/978-3-642-00599-2_68. 

Scholz, M., Ward, D. V., Pasolli, E., Tolio, T., Zolfo, M., Asnicar, F., et al. (2016). Strain-level 
microbial epidemiology and population genomics from shotgun metagenomics. Nat. Methods 
13, 435–438. doi:10.1038/nmeth.3802. 

Shi, Z. J., Dimitrov, B., Zhao, C., Nayfach, S., and Pollard, K. S. (2021). Fast and accurate 
metagenotyping of the human gut microbiome with GT-Pro. Nat Biotechnol, 1–10. 
doi:10.1038/s41587-021-01102-3. 

Shoemaker, N. B., Vlamakis, H., Hayes, K., and Salyers, A. A. (2001). Evidence for Extensive 
Resistance Gene Transfer among Bacteroides spp. And among Bacteroides and Other Genera 
in the Human Colon. Appl. Environ. Microbiol. doi:10.1128/AEM.67.2.561-568.2001. 

Smillie, C. S., Sauk, J., Gevers, D., Friedman, J., Sung, J., Youngster, I., et al. (2018). Strain 
Tracking Reveals the Determinants of Bacterial Engraftment in the Human Gut Following Fecal 
Microbiota Transplantation. Cell Host Microbe 23, 229–240.e5. 
doi:10.1016/j.chom.2018.01.003. 

Smith, B. J., Piceno, Y., Zydek, M., Zhang, B., Syriani, L. A., Terdiman, J. P., et al. (2022). 
Strain-resolved analysis in a randomized trial of antibiotic pretreatment and maintenance dose 
delivery mode with fecal microbiota transplant for ulcerative colitis. medRxiv. 
doi:10.1101/2021.08.07.21261556. 

Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C., and Segata, N. (2017). Microbial strain-level 
population structure and genetic diversity from metagenomes. Genome Res. 27, 626–638. 
doi:10.1101/gr.216242.116. 

Vicedomini, R., Quince, C., Darling, A. E., and Chikhi, R. (2021). Strainberry: Automated strain 
separation in low-complexity metagenomes using long reads. Nat Commun 12, 4485. 
doi:10.1038/s41467-021-24515-9. 

Vos, M. (2009). Why do bacteria engage in homologous recombination? Trends Microbiol. 17, 
226–32. doi:10.1016/j.tim.2009.03.001. 

Vos, P. G., Paulo, M. J., Voorrips, R. E., Visser, R. G. F., van Eck, H. J., and van Eeuwijk, F. A. 
(2017). Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array 
data of tetraploid potato. Theor Appl Genet 130, 123–135. doi:10.1007/s00122-016-2798-8. 

Watson, A. R., Füssel, J., Veseli, I., DeLongchamp, J. Z., Silva, M., Trigodet, F., et al. (2021). 
Adaptive ecological processes and metabolic independence drive microbial colonization and 
resilience in the human gut. bioRxiv, 2021.03.02.433653. doi:10.1101/2021.03.02.433653. 

Yan, Y., Nguyen, L. H., Franzosa, E. A., and Huttenhower, C. (2020). Strain-level epidemiology 
of microbial communities and the human microbiome. Genome Med 12, 71. 
doi:10.1186/s13073-020-00765-y. 

Zolfo, M., Tett, A., Jousson, O., Donati, C., and Segata, N. (2017). MetaMLST: Multi-locus 
strain-level bacterial typing from metagenomic samples. Nucleic Acids Research 45, e7. 
doi:10.1093/nar/gkw837. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2022. ; https://doi.org/10.1101/2022.02.01.478746doi: bioRxiv preprint 

https://doi.org/10.1007/978-3-642-00599-2_68
https://doi.org/10.1038/nmeth.3802
https://doi.org/10.1038/s41587-021-01102-3
https://doi.org/10.1128/AEM.67.2.561-568.2001
https://doi.org/10.1016/j.chom.2018.01.003
https://doi.org/10.1101/2021.08.07.21261556
https://doi.org/10.1101/gr.216242.116
https://doi.org/10.1038/s41467-021-24515-9
https://doi.org/10.1016/j.tim.2009.03.001
https://doi.org/10.1007/s00122-016-2798-8
https://doi.org/10.1101/2021.03.02.433653
https://doi.org/10.1186/s13073-020-00765-y
https://doi.org/10.1093/nar/gkw837
https://doi.org/10.1101/2022.02.01.478746
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	Materials and Methods
	A fully differentiable probabilistic model of metagenotype data
	Metagenotypes
	Deconvolution of metagenotype data
	Fuzzy genotypes and the shifted-scaled Dirichlet distribution
	Model specification

	Model fitting
	Simulation and evaluation
	Metagenotypes and reference genomes
	Single-cell genome sequencing
	Computational Analysis
	Metagenotype filtering
	Strain Inference
	Genotype comparisons
	Software and code availability
	Runtime and memory benchmarking


	Results
	Scaling strain inference to hundreds of genotypes in thousands of samples
	StrainFacts accurately reconstructs genotypes and population structure
	Single-cell sequencing validates inferred strain genotypes
	Analysis of genomic diversity using de novo strain inferences on thousands of samples
	StrainFacts recapitulates known diversity in well studied species
	Species inhabiting the human gut exhibit distinct biogeography observed across independent metagenomic studies
	Linkage disequilibrium decay suggests variation in recombination rates across microbial species


	Discussion
	Endmatter
	Funding Statement
	Acknowledgements
	Conflicts
	Author Contributions
	Data Availability Statement

	Supplementary Materials
	Supplementary Methods
	The shifted, scaled Dirichlet distribution
	Parameter initialization and optimization
	Fitting full length genotypes
	Single-cell genomic sequencing
	Cell isolation from stool samples
	High-throughput single bacterial sequencing
	Cell encapsulation in hydrogel beads
	Cell lysis and DNA purification in hydrogel beads
	Tagmentsation reagents
	Single cell DNA tagmentaion
	Barcoding PCR
	Sequencing library preparation
	Single cell read files preparation


	Supplementary Results

	References

