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Abstract

While genome databases are nearing a complete catalog of species commonly inhabiting the
human gut, their representation of intraspecific diversity is lacking for all but the most abundant
and frequently studied taxa. Statistical deconvolution of allele frequencies from shotgun
metagenomic data into strain genotypes and relative abundances is a promising approach, but
existing methods are limited by computational scalability. Here we introduce StrainFacts, a
method for strain deconvolution that enables inference across tens of thousands of
metagenomes. We harness a “fuzzy” genotype approximation that makes the underlying
graphical model fully differentiable, unlike existing methods. This allows parameter estimates to
be optimized with gradient-based methods, speeding up model fitting by two orders of
magnitude. A GPU implementation provides additional scalability. Extensive simulations show
that StrainFacts can perform strain inference on thousands of metagenomes and has
comparable accuracy to more computationally intensive tools. We further validate our strain
inferences using single-cell genomic sequencing from a human stool sample. Applying
StrainFacts to a collection of more than 10,000 publicly available human stool metagenomes,
we quantify patterns of strain diversity, biogeography, and linkage-disequilibrium that agree with
and expand on what is known based on existing reference genomes. StrainFacts paves the way
for large-scale biogeography and population genetic studies of microbiomes using metagenomic
data.
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Introduction

Intra-specific variation in microbial traits are widespread and are biologically important in human
associated microbiomes. Strains of a species may differ in their pathogenicity (Loman et al.,
2013), antibiotic resistance (Shoemaker et al., 2001), impacts on drug metabolism (Haiser et al.,
2014), and ability to utilize dietary components (Patrick et al.; Martens et al., 2021). Standard
methods for analysis of complex microbial communities are limited to coarser taxonomic
resolution due to their reliance on slowly evolving marker genes (Case et al., 2007-January) or
on genome reference databases lacking diverse strain representation (Nayfach et al., 2020).
Approaches that quantify microbiomes at the level of strains may better capture variation in
microbial function (Albanese and Donati, 2017), provide insight into ecological and evolutionary
processes (Garud and Pollard, 2019), and discover previously unknown microbial etiologies for
disease (Yan et al., 2020).

Shotgun metagenomic data can in principle be used to track strains by looking for distinct
patterns of alleles observed across single nucleotide polymorphisms (SNPs) within the species.
Several tools have recently been developed that count the number of metagenomic reads
containing alleles across SNP sites (Nayfach et al., 2016; Costea et al., 2017b; Truong et al.,
2017; Beghini et al., 2021; Olm et al., 2021; Shi et al., 2021). Comparisons of the resulting
“metagenotypes” across samples has been used to track shared strains (Li et al., 2016; Olm et
al., 2021), or to interrogate the biogeography (Costea et al., 2017a; Truong et al., 2017) and
population genetics of species (Garud et al., 2019). The application of this approach is limited,
however, by low sequencing coverage, which results in missing values at some SNP sites, and
co-existing mixtures of strains, which introduce ambiguity about the taxonomic source of each
metagenomic read.

One promising solution to these challenges is statistical strain deconvolution, which harnesses
multiple metagenotypes (e.g., a collection of related samples) to simultaneously estimate the
genotypes and relative abundances of strains across samples. Several tools have been
developed that take this approach, including Lineage (O'Brien et al., 2014), Strain Finder
(Smillie et al., 2018), DESMAN (Quince et al., 2017), and ConStrains (Luo et al., 2015). These
methods have been used to track the transmission of inferred strains from donors’ to recipients’
microbiomes after fecal microbiota transplantation (FMT) (Smillie et al., 2018; Chu et al., 2021;
Watson et al., 2021; Smith et al., 2022). The application of strain deconvolution has been
limited, however, by the computational demands of existing methods, where runtimes scale
poorly with increasing numbers of samples, latent strains, and SNPs considered. One reason
for this poor scaling is the discreteness of alleles at each SNP, which has led existing methods
to use expectation maximization algorithms to optimize model parameters (Smillie et al., 2018),
or Markov chain Monte Carlo to sample from a posterior distribution (O'Brien et al., 2014; Luo et
al., 2015; Quince et al., 2017).

Here we take a different approach, extending the strain deconvolution framework by relaxing the
discreteness constraint and allowing genotypes to vary continuously between alleles. The use of
this “fuzzy” genotype approximation makes our underlying model fully differentiable, and allows
us to apply modern, gradient-based optimization algorithms to estimate strain genotypes and
abundances. Here we show that the resulting tool, StrainFacts, can scale to tens of thousands
of samples, hundreds of strains, and thousands of SNPs, opening the door to strain inference in
large metagenome collections.
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Materials and Methods

A fully differentiable probabilistic model of metagenotype data

Table 1: Symbols used to describe the StrainFacts model

Symbols Description

i=1,...,N Index and number of samples
s=1,...,S Index and number of strains
g=1,...,G Index and number of SNP sites

Vig» Mig Counts of reads with the alternative allele; the total count of both reference and
alternative alleles at SNP g in sample i

Dig Alternative allele frequency at SNP g in sample i
Ysgr Vg Allele at SNP g in strain s; vector of alleles for all strains
T, T Relative abundance of strain s in sample i; vector of relative abundances for all
strains
€; Sequencing error rate in sample i
a Concentration parameter of the BetaBinomial distribution
p Metacommunity strain composition
Y, M, P, T, Matrices composed of the above elements
II
Metagenotypes

A metagenotype is represented as a count matrix of the number of reads with each allele at a
set of SNP sites for a single species in each sample. This can be gathered directly from
metagenomic data, for instance by aligning reads to a reference genome and counting the
number of reads with each allele at SNP sites. In this study we use GT-Pro (Shi et al., 2021),
which instead counts exact k-mers associated with known single nucleotide variants. Although
the set of variants at a SNP may include any of the four bases, here we constrain
metagenotypes to be biallelic: reference or alternative. For a large majority of SNPs, only two
alleles are observed across reference genomes (Shi et al., 2021). Metagenotypes from multiple
samples are subsequently combined into a 3-dimensional array.

Deconvolution of metagenotype data

StrainFacts is based on a generative, graphical model of biallelic metagenotype data
(summarized in Supplementary Fig. S1) which describes the allele frequencies at each SNP site
in each sample (p;, for sample i and SNP g) as the product of the relative abundance of strains
(72;) and their genotypes, ys,, where 0 indicates the reference and 1 indicates the alternative
allele for strain s. This functional relationship is therefore p;; = Y5 v54 X m;5, In matrix form,
equivalently, we notate this as P = T'Il (Table 1).

The crux of strain deconvolution is taking noisy observations of P—based on the observed
alternative allele counts Y and total counts M obtained from metagenotypes across multiple
samples—and determining suitable matrices I and II. This notation highlights parallels to non-
negative matrix factorization (NMF). Like NMF, given a choice of loss function, L, this inference
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task can be transformed into a constrained optimization problem, where arg min L(II,T|Y) is a
Inr

scientifically useful estimate of these two unobserved matrices. We take the approach of
explicitly modeling the stochasticity of observed metagenotypes, placing priors on I1 and I', and
taking the resulting posterior probability as the loss function. This “maximum a posteriori” (MAP)
approach has also been applied to NMF (Schmidt et al., 2009). However, unlike NMF, where
the key constraint is that all matrices are non-negative, the metagenotype deconvolution model
also constrains the elements of P and T to lie in the closed interval [0,1], and the rows of IT are
are “on the § — 1-simplex’, i.e. they sum to one.

Fuzzy genotypes and the shifted-scaled Dirichlet distribution

StrainFacts does not constrain the elements of T to be discrete—i.e. in the set {0,1} for biallelic
sites—in contrast to prior tools: DESMAN (Quince et al., 2017), Lineage (O’Brien et al., 2014),
and Strain Finder’'s (Smillie et al., 2018) exhaustive search. Instead, we allow genotypes to vary
continuously in the open interval between fully reference (0) and fully alternative (1). The use of
fuzzy-genotypes serves a key purpose: by replacing the only discrete parameter with a
continuous approximation, our posterior function becomes fully differentiable, and therefore
amenable to efficient, gradient-based optimization. When not using the exhaustive search
strategy, Strain Finder also treats genotypes as continuous to accelerate inference, but these
are discretized after each iteration. We show below that inference with StrainFacts is faster than
with Strain Finder.

Since true genotypes are in fact discrete, we place a prior on the elements of T that pushes
estimates towards zero or one and away from intermediate—ambiguous—values. Similarly, we
put a hierarchical prior on II that regularizes estimates towards lower strain heterogeneity within
samples, as well as less strain diversity across samples. This makes strain inferences more
parsimonious and interpretable. We harness the same family of probability distributions, the
shifted-scaled Dirichlet distribution (SSD) (Monti et al., 2011), for all three goals. We briefly
describe our rationale and parameterization of the SSD distribution in the Supplementary
Methods.

For each element of I' we set the prior as (y,1 —y) ~ SSD (1, 1, yi) (Note that we trivially
transform the 1-simplex valued (y, 1 — y) to the unit interval by dropping the second element.)
Smaller values of the hyperparameter y* correspond to more sparsity in I'. We put a hierarchical
prior on II, with the rows subject to the prior 77; ~ SSD (1, ﬁni) given a “metacommunity”

hyperprior g ~ SSD (1, 1, pi) reflecting the abundance of strains across all samples. Decreasing

the values of y*, p*, and * increases the strength of regularization imposed by the respective
priors.

Model specification

The underlying allele frequencies P are not directly observed due to sequencing error, and we
include a measurement process in our model. We assume that the true allele is replaced with a
random allele at a rate ¢; for all SNP sites g in sample i: p;; = p;; (1 — €;/2) + (1 — pig) (€i/2).
Given the total counts, M, we then model the observed alternative allele counts, Y,with the Beta-
Binomial likelihood, parameterized with P and one additional parameter—a*—controlling count
overdispersion relative to the Binomial model.

To summarize, our model is as follows (in random variable notation; see Supplementary Fig. S1
for a plate diagram):
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Model fitting

StrainFacts takes a MAP-based approach to inference on this model, using gradient-based
methods to find parameter values that maximize the posterior probability of our model
conditioned on the observed counts. We rely heavily on the probabilistic programming
framework Pyro (Bingham et al., 2019), which is built on the PyTorch library (Paszke et al.,
2019) for numerical methods.

Initial values for I and IT are selected using NMF, and all other parameters are initialized
randomly (Supplementary Methods). In order to promote global convergence, we take a prior
annealing approach (Supplementary Methods). While it is impossible to know in practice if we
converge to a global optimum, we find that this procedure often leads to accurate estimates
without the need for replicate fits from independent initializations.

Simulation and evaluation

Metagenotype data was simulated in order to enable direct performance benchmarking against
ground-truth genotypes and strain compositions. For each independent simulation, discrete
genotypes of length G for S strains were sampled as S X G independent draws from a symmetric
Bernoulli distribution. The composition of strains in each of N samples were generated as
independent draws from a Dirichlet distribution over S components having a symmetric
concentration parameter of 0.4. Per-sample allele frequencies were generated as the product of
the genotypes and the strain-composition matrices. Sequence error was set to € = 0.01 for all
samples. Finally metagenotypes at each SNP site were drawn from a Binomial(m, ﬁig)
distribution, with a sequencing depth of m = 10 across all sites.

Estimates were evaluated against the simulated ground truth using five different measures of
error (see Results).

Metagenotypes and reference genomes

We applied StrainFacts to data from two previously compiled human microbiome metagenomic
datasets: stool samples from a fecal microbiota transplantation (FMT) study described in (Smith
etal., 2022) and 20,550 metagenomes from a meta-analysis of publicly available data in (Shi et
al., 2021). As described in that publication, metagenotypes for gut prokaryotic species were
tallied using GT-Pro version 1.0.1 with the default database, which includes up to 1,000 of the
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highest quality genomes for each species from the Unified Human Gastrointestinal Genome
(UHGG) V1.0 (Almeida et al., 2021). This includes both cultured isolates and high-quality
metagenomic assemblies. This same database was used as a reference set to which we
compared our inferred genotypes. Estimated genomic distances between SNPs were based on
the UHGG representative genome.

We describe detailed results for Escherichia coli_D (id: 102506, MGYG-HGUT-02506),
Agathobacter rectalis (id: 102492, MGYG-HGUT-02492), Methanobrevibacter_A smithii (id:
102163, MGYG-HGUT-02163), and CAG-279 sp1l (id: 102556, MGYG-HGUT-02556). These
were selected to demonstrate application of StrainFacts to prevalent gram-positive and gram-
negative bacteria in the human gut, the most prevalent archaeon, as well as an unnamed,
uncultured, and largely unstudied species. We also describe detailed results for Streptococcus
thermophilus (GT-Pro species id: 104345, representative UHGG genome: MGYG-HGUT-
04345), selected for its high diversity in one sample of our single-cell sequencing validation.

Single-cell genome sequencing

Of the 159 samples with metagenomes described in the FMT study, we selected two samples
for single-cell genomics (which we refer to as the “focal samples”). These samples were
obtained from two different study subjects; one is a baseline sample and the other was collected
after several weeks of FMT doses as described in (Smith et al., 2022). A full description of the
single-cell genomics pipeline is included in the Supplementary Methods, and will be briefly
summarized here. For each of the focal samples, microbial cells were isolated from whole feces
by homogenization in phosphate buffered saline, 50 um filter-based removal of large fecal
particles, and density gradient separation. After isolating and thoroughly washing the density
layer corresponding to the microbiota, this cell suspension was mixed with polyacrylamide
precursor solution, and emulsified with a hydrofluoric oil. Aqueous droplets in oil were allowed to
gellate before separating the resulting beads from the oil phase and washing. Beads were size
selected to between 5 and 25 ym, with the goal of enriching for those encapsulated a single
microbial cell. Cell lysis was carried out inside the hydrogel beads by incubating with zymolyase,
lysostaphin, mutanolysin, and lysozyme. After lysis, proteins were digested with proteinase K,
before thoroughly washing the beads. Tn5 tagmentation and barcode PCR were carried out
using the MissionBio Tapestri microfluidics DNA workflow with minor modifications. After
amplification, the emulsion was broken and the aqueous phase containing the barcoded
amplicons was used for sequencing library preparation with Nextera primers including P5 and
P7 sequences followed by Ampure XP bead purification. Libraries were sequenced by
Novogene on an lllumina NovaSeq 6000.

Demultiplexed sequence data for each droplet barcode were independently processed with GT-
Pro identically to metagenomic sequences. For each barcode, GT-Pro allele counts for a given
species were assumed to be representative of a single strain of that species. These single-cell
genotypes (SCGs) were filtered to those with >1% horizontal coverage over SNP sites, leaving
87 species with at least one SCG from either of the two focal samples. During analysis, a
number of SCGs were found to have nearly identical patterns of horizontal coverage. These
may have been formed by merging of droplets during barcoding PCR, which could have
resulted in multiple barcodes in the same amplification. To reduce the impact of this artifact,
allele counts from multiple SCGs were summed by complete-linkage, agglomerative clustering
based on their depth profiles across SNP sites, at a 0.3 cosine dissimilarity threshold.

Computational Analysis

Metagenotype filtering
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From GT-Pro metagenotypes, we extracted allele counts for select species and removed SNPs
that had <5% occurance of the minor allele across samples. Species with more than 5,000
SNPs after filtering, were randomly down-sampled without replacement to this number of sites.
Samples with less than a minimum horizontal coverage (fraction of SNP sites with non-zero total
counts), were also filtered out. This horizontal coverage threshold was set to 5% or 25% for the
datasets from (Smith et al., 2022) or (Shi et al., 2021), respectively.

Strain Inference

For all analyses, StrainFacts was run with the following hyperparameters p* = 0.5, #* = 0.3,
y*=1071% a* =10, € = 1.5, €; = 0.01. The learning rate was initially set to 0.05. Prior
annealing was applied to both T and g by setting y* and p* to 1.0 and 5, respectively, for the first
2,000 steps of gradient descent, before exponentially relaxing these hyperparameters to their
final values over the next 8,000 steps. After this annealing period, when parameters had not
improved for 100 steps, the learning rate was halved until it had fallen below 10-6, at which
point we considered parameters to have converged. These hyperparameters were selected
through manual optimization and we found that they gave reasonable performance across the
diverse datasets in this study.

The number of strains parameterized by our model was chosen as follows. For comparisons to
SCGs, the number of strains was set at 30% of the number of samples—e.g. 33 strains were
parameterized for S. thermophilus because metagenotypes from 109 samples remained after
coverage filtering. For the analysis of thousands of samples described in (Shi et al., 2021), we
parameterized our model with 200 strains and increased the numerical precision from 32 to 64
bits. After strain inference using the 5,000 subsampled SNPs, full-length genotypes were
estimated post-hoc by conditioning on our estimate of IT and iteratively refitting subsets of all
SNPs (Supplementary Methods).

For computational reproducibility we set fixed seeds for random number generators: 0 for all
analyses where we only report one estimate, and 0, 1, 2, 3, and 4 for the five replicate estimates
described for simulated datasets. Strain Finder was run with flags --dtol 1 --ntol 2 --
max reps 1.We did notuse --exhaustive, Strain Finder’s exhaustive genotype search
strategy, as it is much more computationally intensive.

Genotype comparisons

Inferred fuzzy genotypes were discretized to zero or one for downstream analyses. SNP sites
without coverage were treated as unobserved. Distances between genotypes were calculated
as the masked, normalized Hamming distance, the fraction of alleles that do not agree, ignoring
unobserved SNPs. Similarly, SCG genotypes and the metagenotype consensus were
discretized to the majority allele. In comparing the distance between SCGs and these inferred
genotypes sites missing from either the SCG or the metagenotype were treated as unobserved.
Metagenotype entropy, a proxy for strain heterogeneity, was calculated for each sample as the
depth weighted mean allele frequency entropy:

1
Y m, Z - mig[(ﬁiglogz(ﬁig) + (1 - ﬁig)logz(l — ﬁig)]
9 Mig

where p,, is the observed alternative allele frequency.

Where indicated, we dereplicated highly similar strains by applying average-neighbor
agglomerative clustering at a 0.05 genotype distance threshold. Groups of these highly similar
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strains were replaced with a single composite strain with a genotype derived from the majority
allele at each SNP site and assigned the sum of strain relative abundances in each sample.
Subsequent co-clustering of these dereplicated inferred and reference strains was done in the
same way, but at a 0.15 genotype distance threshold. After co-clustering, to test for enrichment
of strains in “shared” clusters, we permuted cluster labels and re-tallied the total number of
strains found in clusters with both inferred and reference strains. Likewise, to test for enrichment
of “inferred-only” clusters we tallied the total number of strains found in clusters without
reference strains after this shuffling. By repeating the permutation 9999 times, we arrived at an
empirical null distribution to which we compared our true, observed values to calculate a P-
value.

Pairwise linkage disequilibrium (LD) was calculated as the squared Pearson correlation
coefficient across genotypes of dereplicated strains. Genome-wide 90th percentile LD, was
calculated from a random sample of 20,000 or, if fewer, all available SNP positions. To calculate
the 90th percentile LD profile, SNP pairs were binned at either an exact genomic distance or
within a window of distances, as indicated. In order to encourage a smooth distance-LD
relationship, windows at larger pairwise-distance spanned a larger range. Specifically the ith
window covers the span [|10¢=D/¢|,|10¥/¢|) where ¢ = 30 so that 120 windows span the full
range [1,10%).

Software and code availability

StrainFacts is implemented in Python3 and is available at
https://github.com/bsmith89/StrainFacts and v0.1 was used for all results reported here. Strain
Finder was not originally designed to take a random seed argument, necessitating minor
modifications to the code. Similarly, we made several modifications to the MixtureS (Li et al.)
code allowing us to run it directly on simulated metagenotypes and compare the results to
StrainFacts and Strain Finder outputs. Patch files describing each set of changes, as well as all
other code and metadata needed to re-run our analyses are available at
https://doi.org/10.5281/zenodo.5942586. For reproducibility, analyses were performed using
Snakemake (Molder et al., 2021) and with a Singularity container (Kurtzer et al., 2017) that can
be obtained at https://hub.docker.com/repository/docker/bsmith89/compbio.

Runtime and memory benchmarking

Runtimes were determined using the Snakemake benchmark: directive, and memory
requirements using the GNU time utility, version 1.8 with all benchmarks run on the Wynton
compute cluster at the University of California, San Francisco. Across strain numbers and
replicates, maximum memory usage for models with 10,000 samples and 1000 SNPs was,
counterintuitively, less than for smaller models, likely because portions of runtime data were
“swapped” to disk instead of staying in RAM. We therefore excluded data for these largest
models from our statistical analysis of memory requirements.

Results

Scaling strain inference to hundreds of genotypes in thousands of
samples

Inferring the genotypes and relative abundance of strains in large metagenome databases
requires a deconvolution tool that can scale to metagenotypes with thousands of SNPs in tens-
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of-thousands of samples, while simultaneously tracking hundreds of microbial strains. To
accomplish this we developed StrainFacts, harnessing fuzzy genotypes to accelerate inference
on large datasets. We evaluated the practical scalability of the StrainFacts algorithm by applying
it to simulated datasets of increasing size, and comparing its time and memory requirements to
Strain Finder, a previously described method for strain inference. While several tools have been
developed to perform strain deconvolution (e.g. Lineage O’'Brien et al., 2014; and DESMAN
Quince et al., 2017), Strain Finder's model and approach to inference are the most similar to
StrainFacts. We therefore selected it for comparison in order to directly assess the value of
fuzzy genotypes.

We simulated five replicate metagenotypes for 120 underlying strains in 400 samples, and 250
SNPs, and then applied both StrainFacts and Strain Finder to these data parameterizing them
with 120 strains. Both tools use random initializations, which can result in convergence to
different optima. We therefore benchmarked runtimes for five independent initializations on each
dataset, resulting in 25 total runs for each tool. In this setting, the median runtime for
StrainFacts was just 17.2 minutes, while Strain Finder required a median of 6.4 hours. When
run on a GPU instead of CPU, StrainFacts was able to fit these data in a median of just 5.1
minutes.

10° 4 )/ = Strain Finder {CPU) G=250
’ = StrainFacts (CPU) & G=500
s —— StrainFacts (GPU) g —— G=1000
< /’ ——— 1x strains z —— predicted
_% 104 4 o — = 1.5x strains 8
cu &} 104 4
£ =]
o
.E 107 4 =
- 1
(] £
E x
3 10°
(=8
10? o4

102 104
samples (N) samples (N}

Figure 1: Computational scalability of strain inference on simulated data. (A) Runtime (in seconds, log
scale) is plotted at a range of sample counts for both Strain Finder and StrainFacts, as well for the latter
with GPU acceleration. Throughout, 250 SNPs are considered, and simulated strains are fixed at a 1:5
ratio with samples. Models are specified with this same number of strains (“1x strains”, solid lines) or 50%
more (“1.5x strains”, dashed lines). Median of 25 simulation runs is shown. (B) Maximum memory
allocation in a model with 100 strains is plotted for StrainFacts models across a range of sample counts
(N) and SNP counts (G, line shade). Median of 9 replicate runs is shown. Maximum memory
requirements are extrapolated to higher numbers of samples for a model with 1000 SNPs (red line). A
version of this panel that includes a range of strain counts is included as Supplementary Fig. S2.

Since the correct strain number is not known a priori in real-world applications, existing strain
inference tools need to be parameterized across a range of plausible strain counts, a step that
significantly impacts runtime. To assess performance in this setting, we also fit versions of each
model with 50% more strains than the ground-truth, here referred to as the “1.5x
parameterization” in contrast to the 1x parameterization already described. In this setting,
StrainFacts’ performance advantage was even more pronounced, running in a median of 17.1
minutes and just 5.3 minutes on GPU, while Strain Finder required 30.8 hours. Given the speed
of StrainFacts, we were able to fit an even larger simulation with 2,500 samples and 500 strains.
On a GPU, this took a median of 12.6 minutes with the 1x parameterization and, surprisingly,
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just 8.9 minutes with the 1.5x parameterization. We did not attempt to run Strain Finder on this
dataset.

We next examined runtime scaling across a range of sample counts between 50 and 2,500. We
applied Strain Finder and StrainFacts (both CPU and GPU) to simulated metagenotypes with
250 SNPs, and a fixed 1:5 ratio of strains to samples. Median runtimes for each tool at both the
1x and 1.5x parameterization demonstrate a substantially slower increase for StrainFacts as
model size increases (Fig. 1A). Strain Finder was faster than StrainFacts on the 1x
parameterization of a small simulation with 50 samples and 10 strains: 1.3 minutes median
runtime versus 4 minutes for StrainFacts on a CPU and 2.8 minutes on a GPU. However,
StrainFacts had faster median runtimes on all other datasets.

Given the good runtime scaling properties of StrainFacts, we next asked if computer memory
constraints would limit its applicability to the largest datasets (Fig. 1A). A model fitting 10,000
samples, 400 strains, and 500 SNPs had a maximum memory allocation of 7.7 GB, indicating
that StrainFacts’ memory requirements are satisfied on most contemporary CPU or GPU
hardware and opening the door to even larger models. Using ordinary least squares, we fit the
observed memory requirements to the theoretical, asymptomatic expectations,

O(NS + NG + SG), resulting in a regression R? of 0.997. We then used this empirical relationship
to extrapolate for even larger models (Fig. 1B), estimating that for a model of 400 strains and
1000 SNPs, 32 GB of memory would be able to simultaneously perform strain inference for
more than 22,000 samples. This means StrainFacts can realistically analyse tens of thousands
of samples on commercial GPUs.

StrainFacts accurately reconstructs genotypes and population
structure

We next set out to evaluate the accuracy of StrainFacts and to compare it to Strain Finder. We
simulated 250 SNPs for 40 strains, generating metagenotypes across 200 samples. For both
tools, we specified a model with the true number of strains, fit the model to this data, and
compared inferences to the simulated ground-truth. For each of five replicate simulations we
performed inference with five independent initializations, thereby gathering 25 inferences for
each tool. As in (Smillie et al., 2018), we use the weighted UniFrac distance (Lozupone et al.,
2007) as an integrated summary of both genotype and relative abundance error. By this index,
StrainFacts and Strain Finder performed similarly well when applied to the simulated data

(Fig. 2A). We repeated this analysis with the 1.5x parameterization to assess the robustness of
inferences to model misspecification, finding that both tools maintained similar performance to
the 1x parameterization. By comparison, considering too few strains (the 0.8x parameterization,
fitting 32 strains) degraded performance dramatically for both tools, with StrainFacts performing
slightly better. Thus, we conclude based on UniFrac distance that StrainFacts is as accurate as
Strain Finder and that both models are robust to specifying too many strains.

To further probe accuracy, we quantified the performance of StrainFacts and Strain Finder with
several other measures. First, we evaluated pairwise comparisons of strain composition by
calculating the mean absolute error of pairwise Bray-Curtis dissimilarities (Fig. 2B). While, with
the 1x parameterization, Strain Finder slightly outperformed StrainFacts on this index, the
magnitude of the difference was small. This suggests that StrainFacts can be used for
applications in microbial ecology that rely on measurements of beta-diversity.

Ideally, inferences should conform to Occam’s razor, estimating “as few strains as possible, but
no fewer”. Unfortunately, Bray-Curtis error is not sensitive to the splitting or merging of co-
abundant strains and UniFrac error is not sensitive to the splitting or merging of strains with very
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similar genotypes. To overcome this limitation, we calculated the mean absolute error of the
Shannon entropy of the inferred strain composition for each sample (Fig. 2C). This score
quantifies how accurately inferences reflect within-sample strain heterogeneity. StrainFacts
performed substantially better on this score than Strain Finder for all three parameterizations,
indicating more accurate estimation of strain heterogeneity.
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Figure 2: Accuracy of strain inference on simulated data. Performance of StrainFacts and Strain Finder
are compared across five distinct accuracy indices, with lower scores reflecting better performance on
each index. Simulated data had 200 samples, 40 underlying strains, and 250 SNPs. For each tool, 32, 40
and 60 strain models were parameterized (“0.8x”, “1x” and “1.5x” respectively), and every model was fit
with five independent initializations to each simulation. All 25 estimates for each tool-parameterization
combination are shown. Scores reflect (A) mean Unifrac distance between simulated and inferred strain
compositions, (B) mean absolute difference between all-by-all pairwise Bray-Curtis dissimilarities
calculated on simulated versus inferred strain compositions, (C) mean absolute difference in Shannon
entropy calculated on simulated versus inferred strain compositions, (D) abundance weighted mean
Hamming distance from each ground-truth strain to its best-match inferred genotype, and (E) the reverse:
abundance weighted mean Hamming distance from each inferred strain to its best-match true genotype.
Markers at the top of each panel indicate a statistical difference between tools at a p<0.05 (*) or p<0.001
(**) significance threshold by Wilcoxon signed-rank test. A version of this figure that includes accuracy
comparisons to MixtureS is included as Supplementary Fig. S3.

Finally, we assessed the quality of genotypes reconstructed by StrainFacts compared to Strain
Finder using the abundance weighted mean Hamming distance. For each ground-truth
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genotype, normalized Hamming distance is computed based on the best matching inferred
genotype (Fig. 2D), then summarized as the mean weighted by the true strain abundance
across all samples. We assessed the reverse as well: the abundance weighted mean, best-
match Hamming distance for each inferred genotype among the ground-truth genotypes

(Fig. 2E). These two scores can be interpreted as answers to the distinct questions “how well
were the true genotypes recovered?” and “how well do the inferred genotypes reflect the truth?”,
respectively. While StrainFacts and Strain Finder performed similarly on these indexes—which
tool had higher accuracy varied by score and parameterization—StrainFacts’ accuracy was
more stable across the 1x and 1.5x parameterizations. It should be noted that since strain
genotypes are only inferred for SNP sites, the genome-wide genotype reconstruction error
(which includes invariant sites) will likely be much lower than this Hamming distance. We
examine the relationship between genotype distances and average nucleotide identity (ANI) in
Supplementary Fig. S4 in order to contextualize our simulation results for those more familiar
with ANI comparisons.

To expand our performance comparison to a second tool designed for strain inference, we also
ran MixtureS on a subset of the simulations. MixtureS estimates strain genotype and relative
abundance on each metagenotype individually and therefore does not leverage variation in
strain abundance across samples. We found that it performed worse than Strain Finder and
Strain Facts on the benchmarks (see Supplementary Fig. S3).

Overall, these results suggest that StrainFacts is capable of state-of-the-art performance with
respect to several different scientific objectives in a realistic set of simulations. Performance was
surprisingly robust to model misspecification with more strains than the simulation. Eliminating
the computational demands of a separate model selection step further improves the scaling
properties of StrainFacts.

Single-cell sequencing validates inferred strain genotypes

Beyond simulations, we sought to confirm the accuracy of strain inferences in a real biological
dataset subject to forms of noise and bias not reflected in the generative model we used for
simulations. To accomplish this, we applied a recently developed, single-cell, genomic
sequencing workflow to obtain ground-truth, strain genotypes from two fecal samples collected
in a previously described, clinical FMT experiment (Smith et al., 2022) from two independent
subjects. We ran StrainFacts on metagenotypes derived from these two focal samples as well
as the other 157 samples in the same study.

Genotypes that StrainFacts inferred to be present in each of these metagenomes matched the
observed SCGs, with a mean, best-match normalized Hamming distance of 0.039. Furthermore,
the median distance was just 0.013, reflecting the outsized influence of a small number of SCGs
with more extreme deviations. For many species, SCGs also match a consensus genotype—the
majority allele at each SNP site in each metagenotype (see Fig. 3A). We found a mean distance
to the consensus of 0.037 and a median of 0.009. Because this distance excludes sites without
observed counts in the metagenotype, we masked these same sites in our inferred genotypes to
uniformly contrast the consensus approach to StrainFacts genotypes. Overall, inferred
genotypes were similar to the consensus, with a mean, masked distance of 0.031 (median of
0.009). However, the consensus approach fails for species with a mixture of multiple, co-
existing strains. When we select only species with a metagenotype entropy of greater than 0.05,
an indication of strain heterogeneity, we see that StrainFacts inferences have a distinct
advantage, with a mean distance of 0.055 versus 0.069 for the consensus approach (median of
0.018 versus 0.022, p<0.001). These results validate inferred genotypes in a stool microbiome
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using single-cell genomics and demonstrate that StrainFacts accounts for strain-mixtures better

than consensus genotypes do.
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Figure 3: Inferred strains reflect genotypes from a single-cell sequencing experiment. (A) Distance
between observed SCGs and StrainFacts inferences (X-axis) versus consensus genotypes (Y-axis).
Points below and to the right of the red dotted line reflecting an improvement of our method over the
consensus, based on the normalized, best-match Hamming distance. Each dot represents an individual
SCG reflecting a putative genotype found in the analysed samples. SCGs from all species found in either
of the focal samples are represented, and marker colors reflect the metagenotype entropy of that species
in the relevant focal sample, a proxy for the potential strain diversity represented. Axes are on a
“symmetric” log scale, with linear placement of values below 102. (B) A non-metric multidimensional
scaling ordination of 68 SCGs and inferred genotypes for one species, S. thermophilus, with notably high
strain diversity in one of the two focal samples. Circles represent SCGs, are colored by their assignment
to one of four identified clusters, and larger markers indicate greater horizontal coverage. Triangles
represent StrainFacts genotypes inferred to be at greater than 1% relative abundance, and larger

markers reflect a higher inferred relative abundance. The red cross represents the consensus

metagenotype of the focal sample.

Of the 75 species represented in our SCG dataset, one stood out for having numerous SCGs
while reflecting a remarkably high degree of strain heterogeneity. Among 68 high-quality SCGs
for S. thermophilus, cluster analysis identified four distinct types (here referred to as Clusters A -
D), accounting for 48, 7, 6, and 1 SCGs, respectively (Fig. 3B). Independently, StrainFacts
inferred four strains in the metagenomic data from the same stool sample, (Strain 1 - 4) with
57%, 32%, and 7%, and 3% relative abundance, respectively. We explored the concordance
between clusters and StrainFacts inferences by assigning a best-match Hamming distance
genotype among the inferred strains to each SCG (Table 2). For SCGs in three of the four
clusters there was a low median distance to StrainFacts genotypes as well as a perfect 1-to-1
correspondence between strains and clusters. While this genotype concordance was broken for
SCGs in cluster B, strain 4 was also inferred to be at the lowest relative abundance, suggesting
that there may have been too little information encoded in the metagenotype data to accurately
reconstruct that strain’s genotype. While SCG counts and inferred strain fractions do not match
perfectly in this sample, this may be due to large differences between SCG and metagenomic
sequencing technologies that could result in differentially biased sampling of strains. The SCG
cluster with the largest membership was, however, matched with the strain inferred to be at the
highest relative abundance. Our findings for S. thermophilus show that StrainFacts’ estimates of
genotypes and relative abundances are remarkably accurate for samples with high strain
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heterogeneity, despite the challenges presented by real biological samples and low abundance
strains.

Table 2: Concordance among SCGs of cluster assignments and the closest-match StrainFacts inferred
genotype, among the four strains inferred to be at greater than 1% relative abundance in the analysed
sample. The total number of SCGs in each cluster and the relative abundance of each inferred strain are
indicated in parentheses in the column and row labels, respectively. Numbers in each cell indicate the
number of SCGs at that intersection and values in parentheses indicate the median normalized Hamming
distance of those SCGs to the inferred strain genotype.

Cluster A (48) Cluster B (7) Cluster C (6) Cluster D (1)

Strain 1 (57%) 48 (0.006) 1(0.18)

Strain 2 (32%) 3(0.19) 6 (0.008)

Strain 3 (7%) 1 (0.02)
Strain 4 (3%) 3(0.19)

Analysis of genomic diversity using de novo strain inferences on
thousands of samples

Having established the accuracy and scalability of StrainFacts, we applied it to a corpus of
metagenotype data derived from 20,550 metagenomes across 44 studies, covering a large
fraction of all publicly available human-associated microbial metagenomes (Shi et al., 2021). We
performed strain inference on GT-Pro metagenotypes for four species: Escherichia coli,
Agathobacter rectalis, Methanobrevibacter smithii, and CAG-279 spl. E. coli and A. rectalis are
two highly prevalent and well studied bacterial inhabitants of the human gut microbiome, and M.
smithii is the most prevalent and abundant archaeon detected in the human gut (Scanlan et al.,
2008). CAG-279, on the other hand, is an unnamed and little-studied genus and a member of
the family Muribaculaceae. This family is common in mice (Lagkouvardos et al., 2019), but to
our knowledge does not have representatives cultured from human samples.

For each species, we compared strains inferred by StrainFacts to those represented in the GT-
Pro reference database, which is derived from the UHGG (Almeida et al., 2021). In order to
standardize comparisons, we dereplicated inferred and reference strains at a 0.05 genotype
distance threshold. Interestingly, dereplication had a negligible effect on StrainFacts results,
reducing the number of E. coli strains by just 4 (to 119) with no reduction for the three other
species. This suggests that the diversity regularization built into the StrainFacts model is
sufficient to collapse closely related strains as part of inference.

As GT-Pro only tallies alleles at a fixed subset of SNPs, the relationship between genotype
distances and ANI is not fixed. In order to anchor our results to this widely-used measure of
genome similarity, we compared the genotype distance to genome-wide ANI for all pairs of
genomes in the GT-Pro reference database for all four species. We find that the fraction of
positions differing genome wide (calculated as 1 - ANI) was nearly proportional to the fraction of
genotyped positions differing, but with a different constant of proportionality for each species: E.
coli (0.0776, uncentered R?=0.994), A. rectalis (0.1069, R?=0.990), M. smithii (0.0393,
R?=0.967), and CAG-279 (0.0595, R?=0.991). Additional details of this analysis can be found in
Supplementary Fig. S4.
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StrainFacts recapitulates known diversity in well studied species

E. coli, A. rectalis, and M. smithii all have many genome sequences in GT-Pro reference
database, presenting an opportunity to contrast inferred against reference strains. In order to
evaluate the concordance between the two (Table 3 and Fig. 4), we co-clustered all
dereplicated strains (both reference and inferred) at a 0.15 normalized Hamming distance
threshold—note, crucially, that this distance reflects a much smaller full-genome dissimilarity, as
it is based only on genome positions with polymorphism across metagenomes, ignoring
conserved positions.

For E. coli, we identified 40 strain clusters with 93% of inferred strains and 94% of references
falling into clusters containing strains from both sources (“shared” clusters), which is significantly
more overlap than expected after random shuffling of cluster labels (p=0.002 by permutation
test). While most metagenome-inferred genotypes are similar to those found in genome
reference databases, we observed some clusters composed only of StrainFacts strains,
representing novel lineages. However, these strains are no more common than after random
permutation (p=0.81), matching our expectations for this well-studied species.

We next asked if these trends hold for the other species. While A. rectalis had a much greater
number of clusters (456), 69% of inferred strains and 45% of reference strains are nonetheless
found to be in shared clusters, significantly more than would be expected with random shuffling
of cluster labels (p=0.002 by permutation test). Correspondingly, we do not find evidence for
enrichment of inferred strains in novel clusters (p=0.71). We find similar results for M. smithii
and CAG-279—the fraction of strains in shared clusters is significantly greater than after
random reassignment (p<0.001 for both), and there is no evidence for enrichment of inferred
strains in novel clusters (p = 1.0 for both). Overall, the concordance between reference and
inferred strains supports not only the credibility of StrainFacts’ estimates, but also suggests that
our de novo inferences capture a substantial fraction of previously documented strain diversity,
even in well studied species.

Table 3: Dereplication and co-clustering of strains inferred from metagenomes or from a reference
database

a Dereplicated at 0.05 distance threshold

b Co-clustered at a 0.15 distance threshold

Species Metagenome Reference Inferred  Total Novel Shared
samples fit strains? strains®  Clusters? Clusters® Clusters®

E. coli 9232 176 119 40 20% 60%

A.rectalis 11860 752 198 456 13% 25%

M. smithii 3528 384 178 205 7% 38%

CAG-279 3579 135 200 228 50% 25%

Going beyond the extensive overlap of strains with reference genomes and StrainFacts
inferences, we examined clusters in which references are absent or relatively rare. Visualizing a
dendrogram of consensus genotypes from co-clustered strains (Fig. 4) we observe some
sections of the A. rectalis dendrogram with many novel strains. Similarly, for CAG-279, the
sheer number of inferred strains relative to genomes in reference databases means that fully
half of all genotype clusters are entirely novel, emphasizing the power of StrainFacts inferences
in understudied species. Future work will be needed to determine if these represent new
subspecies currently missing from reference databases.
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M. smithii

Reference Both Inferred

Figure 4: Concordance between reference and StrainFacts inferred strain genotypes for four prevalent
species in the human gut microbiome. Heatmap rows represent consensus genotypes from co-clustering
of reference and inferred strains and columns are 3500 randomly sampled SNP sites (grey: reference and
black: alternative allele). Colors to the left of the heatmap indicate clusters with only reference strains
(dark purple), only inferred strains (yellow), or both (teal). Rows are ordered by hierarchical clustering built
on distances between consensus genotypes and columns are ordered arbitrarily to highlight correlations
between SNPs.
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Figure 5: Patterns in strain dominance according to geography and lifestyle across thousands of publicly
available metagenomes in dozens of independent studies for two common members of the human gut
microbiome. Columns represent collections of samples from individual studies and are further segmented
by country and lifestyle (westernized or not). Rows represent strains inferred by StrainFacts. Cell colors
reflect the fraction of samples in that study segment with that strain as the most abundant member. Study
segments are omitted if they include fewer than 10 samples. Row ordering and the associated
dendrogram reflect strain genotype distances, while the dendrogram for columns is based on their cosine
similarity. Studies with samples collected in several countries with notable clustering for one or more
species are highlighted with colors above the heatmap. Additionally, studies from westernized populations
are indicated. Both a study identifier and the ISO 3166-ISO country-code are included in the column
labels.
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Species inhabiting the human gut exhibit distinct biogeography observed across
independent metagenomic studies

Large metagenomic collections allow us to examine intraspecific microbial diversity at a global
scale and among dozens of studies. Towards this end, we identified the most abundant
StrainFacts strain of E. coli, A. rectalis, M. smithii, and CAG-279 in stool samples across 34
independent studies. Across all four species, we observe some strains that are distributed
globally as well as others that appear specific to one country of origin (Fig. 5, Supplementary
Fig. S5). For example, among the 198 dereplicated, inferred strains of A. rectalis, 75 were found
as the dominant strain (i.e. highest relative abundance) in samples collected on three or more
continents. While this makes it challenging to consistently discern where a sample was collected
based on its dominant strain of a given species, we nonetheless find that studies with samples
collected in the United States of America form a distinct cluster, as do those from China, and the
two are easily distinguished from one another and from most other studies conducted across
Europe and North America (Fig. 5). Our observation of a distinct group of A. rectalis strains
enriched in samples from China is consistent with previous results (Scholz et al., 2016; Costea
etal., 2017a; Truong et al., 2017).

These general trends hold across the other three species. In M. smithii, independent studies in
the same country often share very similar strain dominance patterns (e.g. see clustering of
studies performed in each of China, Mongolia, Denmark, and Spain in Fig. 5). In E. coli , while
many strains appear to be distributed globally, independent studies from China still cluster
together based on patterns in strain dominance (see Supplementary Fig. S5). Notably, in CAG-
279, studies with individuals in westernized societies do not cluster separately from the five
other studies, suggesting that host lifestyle is not highly correlated with specific strains of this
species. The variety of dominance patterns across the four species described here suggest that
different mechanisms may drive intraspecific biogeography depending on the biology and
natural history of the species. As the coverage of diverse microbiomes grows, StrainFacts will
enable future studies disentangling the contributions of lifestyle, dispersal limitation and other
factors in the global distribution of strains.

Linkage disequilibrium decay suggests variation in recombination rates across
microbial species

Studying the population genetics of host-associated microbes has the potential to elucidate
processes of transmission, diversification, and selection with implications for human health and
perhaps even our understanding of human origins (Linz et al., 2007; Garud and Pollard, 2019).
To demonstrate the application of StrainFacts to the study of microbial evolution, we examined
patterns in pairwise LD, here calculated as the squared Pearson correlation coefficient (r?). This
statistic can inform understanding of recombination rates in microbial populations (VVos, 2009;
Garud et al., 2019). Genome-wide, LD, summarized as the 90th percentile r? (LDgo, VOs et al.,
2017), was substantially higher for E. coli (0.24) than A. rectalis (0.04), M. smithii (0.11), or
CAG-279 (0.04), perhaps suggesting greater population structure in the species and less
panmictic recombination.

We estimated LD distance-decay curves for SNPs, using a single, high-quality reference
genome for each species to obtain estimates of pairwise distance between SNP sites. For all
four species, adjacent SNPs were much more tightly linked, with an LDgo of >0.999. LD was still
dramatically above background at 50 bases of separation, and fell rapidly with increasing
distance (Fig. 6). The speed of this decay was different between species, which we
characterized with the LD, 90: the distance at which the LDy was less than 50% of the value for
adjacent SNPs (Vos et al., 2017). M. smithii exhibited by far the slowest decay, with a LD, g0 Of
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520 bases, followed by E. coli at 93 bases, CAG-279 at 66, and A. rectalis at just 28 bases. This
variation in decay profiles may reflect major differences in recombination rates across
populations.

To validate our findings, we ran identical analyses with dereplicated genotypes from genomes in
the GT-Pro reference database. Estimates of both LD and the distance-decay relationship are
very similar between inferred and reference strains, reinforcing the value of genotypes inferred
from metagenomes for microbial population genetics. Interestingly, for three of the four species
(E. coli, A. rectalis, and M. smithii), LD estimates from StrainFacts strains were significantly
higher than from references (p<1e-10 for all three by Wilcoxon test), while CAG-279 exhibited a
trend towards the reverse (p=0.85). It is not clear what might cause these quantitative
discrepancies, but they could reflect differences in the set of strains in each dataset. Future
studies expanding this analysis to additional species will identify patterns in recombination rates
across broader microbial diversity.

E. coli A. rectalis
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Figure 6: Pairwise LD across genomic distance estimated from inferred genotypes for four species. LD
was calculated as r? and genomic distance between polymorphic loci is based on distances in a single,
representative genome. The distribution of SNP pairs in each distance window is shown as a histogram
with darker colors reflecting a larger fraction of the pairs in that LD bin, and the LDgo for pairs at each
distance is shown for inferred strains (red), along with an identical analysis on strains in the reference
database (blue). Genome-wide LDgo (dashed lines) is also indicated.
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Discussion

Here we have described StrainFacts, a novel tool for strain inference in metagenomic data.
StrainFacts models metagenotype data using a fuzzy-genotype approximation, allowing us to
estimate both the relative abundance of strains across samples as well as their genotypes. To
accelerate analysis compared to the current state-of-the-art, we harness the differentiability of
our model to apply modern, gradient-based optimization and GPU-parallelization. Consequently,
StrainFacts can scale to tens-of-thousands of samples while inferring genotypes for hundreds of
strains. On simulated benchmarks, we show that StrainFacts has comparable accuracy to Strain
Finder, and we validate strain inferences in vivo against genotypes observed by single-cell
genomics. Finally, we apply StrainFacts to a database of tens of thousands of metagenomes
from the human microbiome to estimate strains de novo, allowing us to characterize strain
diversity, biogeography, and population genetics, without the need for cultured isolates.

Beyond Strain Finder, other alternatives exist for strain inference in metagenomic data. While
we do not directly compare to DESMAN, runtimes of several hours have been reported for that
tool on substantially smaller simulated datasets (Quince et al., 2017), and hence we believe that
StrainFacts is likely the most scalable implementation of the metagenotype deconvolution
approach. Still other methods apply regularized regression (e.g. Lasso Albanese and Donati,
2017) to decompose metagenotypes—essentially solving the abundance half of the
deconvolution problem but not the genotypes half—or look for previously determined strain
signatures (e.g. k-mers Panyukov et al., 2020) based on known strain genotypes. However,
both of these require an a priori database of the genotypes that might be present in a sample.
An expanding database of strain references can make these approaches increasingly useful,
and StrainFacts can help to build this reference.

Several studies avoid deconvolution by directly examining allele frequencies inferred from
metagenotypes. While consensus (Truong et al., 2017; Zolfo et al., 2017) or phasing (Garud et
al., 2019) approaches can accurately recover genotypes in some cases, their use is limited to
low complexity datasets, with sufficient sequencing depth and low strain heterogeneity.
Likewise, measuring the dissimilarity of metagenotypes among pairwise samples indicates
shared strains (Podlesny and Fricke, 2020), but this approach risks confounding strain mixing
with genotype similarity. Finally, assembly (Li et al., 2019) and read-based methods (Cleary et
al., 2015) for disentangling strains are most applicable when multiple SNPs can be found in
each sequencing read. With ongoing advancements in long-read (Vicedomini et al., 2021) and
read-cloud sequencing (Kuleshov et al., 2016; Kang et al., 2018), these approaches will become
increasingly feasible. Thus, StrainFacts occupies the same analysis niche as Strain Finder and
DESMAN, and it expands upon these reliable approaches by providing a scalable model fitting
procedure.

Fuzzy genotypes enable more computationally efficient inference by eliminating the need for
discrete optimization. Specifically, we used well-tested and optimized gradient descent
algorithms implemented in PyTorch for parameter estimation. In addition, fuzzy genotypes may
be more robust to deviations from model assumptions. For instance, an intermediate genotype
could be a satisfactory approximation when gene duplications or deletions are present in some
strains. While we do not explore the possibility here, fuzzy genotypes may provide a heuristic for
capturing uncertainty in strain genotypes. Future work could consider propagating intermediate
genotype values instead of discretizing them.

StrainFacts builds on recent advances in metagenotyping, in particular our analyses harnessed
GT-Pro (Shi et al., 2021) to greatly accelerate SNP counting in metagenomic reads. While we
leave a comparison of StrainFacts performance on the outputs of other metagenotypers to
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future work, StrainFacts itself is agnostic to the source of input data. It would be straightforward
to extend StrainFacts to operate on loci with more than two alleles or to use metagenotypes
from a tool other than GT-Pro. It would also be interesting to extend StrainFacts to use SNPs
outside the core genome that vary in their presence across strains.

Combined with the explosive growth in publicly available metagenomic data and the
development of rapid metagenotyping tools, StrainFacts enables the de novo exploration of
intraspecific microbial diversity at a global scale and on well-powered cohorts with thousands of
samples. Future applications could examine intraspecific associations with disease, track the
history of recombination between microbial subpopulations, and measure the global
transmission of host-associated microbes across human populations.
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Figure S1: Graphical representation of the StrainFacts model including hyperparameters. Symbols
include observed data (blue box), deterministic terms (circles), key parameters being estimated (red
boxes), and key hyperparameters (unenclosed). Plates behind terms indicate the dimensionality and
indexing of the variables and arrows connect the terms that directly depend on one another.

The shifted, scaled Dirichlet distribution

The k-dimensional SSD is a 2k + 1 parameter family which includes the Dirichlet distribution as
a special case, and is defined by Aitchenson “perturbation” (@) and “powering” () operations
(Aitchison, 1986) applied to a Dirichlet-distributed random variable. Given a random variable

X ~ Dirichlet(a), a € RX, Xe SPifY=pD (@O X), aeR,, pe K, YeESKthenY ~

SSD(a, p, a).

In this work, we limit our use of this distribution to a = 1, i.e. X distributed uniformly on the K-
simplex before powering and perturbation. For values of a > 1, the probability mass shifts
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towards the edges of the simplex, and we use this property in order to induce sparsity in our
estimates.

Parameter initialization and optimization

In select initial values of IT and I using an NMF based approach. First, we transform
metagenotypes from counts to an N X G x 2 matrix of allele frequencies, and stack this into an
N x 2G matrix, P’, with columns of reference alleles followed by columns of alternative alleles.
We then use canonical NMF—implemented in the scikit-learn library (Pedregosa et al., 2011)—
to factorize this data matrix into I’ and I'’, where P’ =~ I’ x I’ with a shared, inner dimension of
size S. After reversing the stacking of alleles, we get back a matrix I'” € R$*¢*2, Since II' and I'”
likely do not conform to the constraints of strain deconvolution, we transform them into initial

values as follows: Ty = C(1/¢ *I'") and Mjy; = C(¢ + M) where ¢, = %Zg (¥sgo + ¥sg1) » *

denotes element-wise multiplication, and C(-) is normalization over the last dimension to the
standard simplex (i.e. summing-to-one).

Model parameters are transformed to the unconstrained space using Pyro’s built-in defaults.
Parameters other than IT and T are initialized randomly to a point on the interval (—2,2) in the
transformed space. We then apply the Adamax algorithm for stochastic gradient descent using
an initial learning rate 1r init. To increase the probability of finding a global maximum, we
take a prior annealing approach (Neuwald and Liu, 2004): for an initial n_wait number of steps
of the optimization routine, the hyperparameters y* and p* are set to initial values with less
stringent regularization and are then exponentially relaxed to their final values during the next

n anneal steps. After this annealing period, we continue taking gradient steps until the value
of the loss function has not improved for 100 steps, at which point we halve the learning rate.
Optimization is stopped when the learning rate falls below a minimum threshold, 1r min.

Fitting full length genotypes

Because many metagenotypes had more than 5,000 SNP sites, we use a refitting approach to
get full length strain genotypes. This is accomplished by conditioning our model on both the
observed data and the previously estimated II. In addition, we update the value of two of the
hyperparameters; we sety* = 1.0, and a* = 200. After refitting the other parameters, this results
in a new estimate of I'. Since SNPs are statistically separable when I is conditioned out, this
allows us to iteratively refit arbitrary subsets of SNPs before recombining them into a full length
genotype matrix.

Single-cell genomic sequencing
Cell isolation from stool samples

Bacterial cells were isolated from fecal samples according to previously published protocol
(Hevia et al., 2015) with modifications. Briefly, 0.2-0.5 g of fecal samples were homogenized in
10 mL of PBS buffer by vertexing. After filtering with a 50 um cell strainer (Corning, 431752) to
remove most of the fecal particles, the flow through suspension was loaded on top of 3.5 mL of
80% Nycodenz® (Cosmo Bio USA, AXS-1002424) in a 15 mL conical tube. The tube was
centrifuged for 40 min at 4 °C (4700 x g). The layer corresponding to microbiota was extracted
and washed with PBS for 3 times. The cells were directly processed for hydrogel encapsulation
or stored in DNA/RNA shield (Zymo Research, R1100-50) at -80 °C for long term storage.
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High-throughput single bacterial sequencing

Barcoded single cell bacterial sequencing libraries were constructed by modified SiC- protocol
Seq leveraging Mission Bio Tapestri (Lan et al., 2017).

Cell encapsulation in hydrogel beads

Cell suspension (100 million per mL in PBS, 500 pL) was mixed with 500 pL of polyacrylamide
precursor solution with 12% acrylamide(Thermo Scientific, AAJ62480AP), 1% N,N'-
bis(acryloyl)cystamine (Sigma, A5912), 20 mM Tris (pH 8.0), 0.6% sodium persulfate (Sigma,
216232), and 20 mM NacCl. After adding 1mL of HFE 7500 with 2% surfactant (008-
FluoroSurfactant, RanBiotechnologies), heterogenous droplets were generated by passing the
oil/agueous mixture through a syringe with 23.5 G blunt needle for 5 time. 20 yL of N,N,N’,N'-
tetramethylethylenediamine (Sigma, 411019) was added into the emulsion and the emulsion
was incubated at 70 °C for 30 min and at room temperature for 1 hour for gelation. The
emulsion was centrifuged at 1000xG for 10 min and the oil layer was removed by a gel loading
tip. To the hydrogel layer, 1 mL of 20% PFO (1H,1H,2H,2H-perfluoro-1-octanol, Sigma, 370533)
in HFE 7500 and the mixture was vortexed and shaking for 10 min to break the emulsions. After
centrifugation at 1000xG for 10 min, PFO were removed, and the hydrogel beads were then
washed with PBS with 0.4% tween 20 for 3 times. The beads were then resuspended in 40%
sucrose in PBS with 0.4% tween 20. A differential velocity centrifugation was performed to
select the hydrogel beads within the size between 5 to 25 um.

Cell lysis and DNA purification in hydrogel beads

100 pL of beads were treated in a solution of 1 mL TE buffer solution containing 2.5 mM EDTA
(Teknova), 10mM NaCl (Sigma-Aldrich), 2U zymolyase, 5 U Lysostaphin, 50 U mutanolysin,
and 20 mg Lysozyme at 37 °C overnight. The lysate mixture was then centrifuged at 3000 xG
for 3 min, the supernatant removed, and 1 mL of TE buffer with 4U of Proteinase K, 1% triton
X100 and 100 mM of NaCl was added to digest cellular proteins. The solution is incubated at 50
°C for 30 min. Following lysis, the beads was thoroughly washed to ensure complete removal of
detergents and other chemicals which may inhibit the downstream reactions. The washes were
performed in 10 mL volume with centrifugation magnitudes of 3000 x g between washes.

Tagmentsation reagents

25 pL Blocked ME Complement /5Phos/C*T* G*T*C* T*C*T* T*A*T* A*C*A*/3ddC/ (200 nM,
IDT), 25 pL Tn5-Fwd-oligo GTACTCGCAGTAGTCAGATGTGTATAAGAGACAG (100 nM, IDT),
and 25 pL Tn5-Rev-oligo TACCCTTCCAATTTAACCCTCCAAGATGTGTATAAGAGACAG (100
nM, IDT) and 25 uLTris buffer were mixed well in a PCR tube by pipetting. The mixture was
incubated on a thermal cycler using the following program: 85°C for 2 min, cools to 20 °C with a
ramping rate at 0.1 °C/s, 20 °C for 1 min, then hold at 4 °C with lid at 105°C. 100 uL of glycerol
was then added into the annealed oligo. The unloaded Tn5 (1 mg/mL, expressed by QB3
MacroLab, Berkeley, CA.) was diluted at a 1:1 ratio in the lllumina dilution buffer (50% Glycerol,
100 mM NaCl, 0.1 mM EDTA, 1 mM DTT, and 0.1% NP40 in 50 mM Tris-HCI pH 7.5 buffer),
followed by mixing at a 1:1 ratio with the pre-annealed adapter/glycerol mix. The mixture was
incubated at room temperature for 30 min then stored at -20 °C.

Single cell DNA tagmentaion

The beads were resuspended in the density matching buffer (10 mM MgCI2, 1% NP40, and
17% Optiprep in 20 mM TAPS pH 7.0 buffer) to the final cell density of 3000 cells/pL. 25 pL of
assembled Tn5 was mixed with 25 L of tagmention buffer (10 mM MgCI2, 10 mM DTT in 20


https://doi.org/10.1101/2022.02.01.478746
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478746; this version posted April 9, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

25

mM TAPS pH 7.0 buffer). The MissionBio Tapestri DNA cartridge and a 0.2 mL PCR tube were
mounted onto the Tapestri instrument. 50 pL of the beads in density matching buffer was loaded
into the reservoir 2 (the reservoir for cell suspension), 50 pL of the Tn5 in tagmentation buffer
was loaded into reservoir 1 (the reservoir for lysis buffer), and 200 pL of Encapsulation oil was
loaded into reservoir 3. After applying the DNA gasket on top of the cartridge and closing the
instrument lid, droplets were generated by running the Stepl: Encapsulation program. The
droplets were incubated at 37°C for 60 min and then 50°C for 30 min.

Barcoding PCR

Barcoding droplet PCR were performed according to the MissionBio Tapestri protocol with
minor modification. 8 PCR tubes and DNA cartridge were mounted onto the Tapestri instrument.
200 pL and 500 pL of Electrode solution were loaded into reservoirs 4 and 5 respectively. After
running the Priming program, 5 pL of reverse barcoding oligo was mixed with 295 pyL MissionBio
Barcoding Mix and loaded into reservoir 8 of the DNA cartridge. The droplets from previous step
(=80 uL), 200 uL of barcoding beads, and 1.25 mL of Barcoding oil were loaded into reservoir 6,
7 and 9, respectively. After applying the DNA gasket on top of the cartridge and closing the lid,
the droplets were merged with barcoding beads and PCR reagents by running the Cell
Barcoding program on the Tapestri instrument. The droplets collected in the 8 PCR tubes were
treated with UV for 8 min (Analytik Jena Blak-Ray XX-15L UV light source) and the bottom layer
of oil in each tube were removed using a gel loading tip to leave up to 100 pL of droplets. The
tubes were then thermo-cycled on a PCR instrument with the following program: 10 min at 72°C
for 1 cycle, 3 min at 95°C for 1 cycle, (15 s at 95°C, 15 s for 55°C, and 2 min at 72°C) for 20
cycles, and 5 min at 72°C for 1 cycle.

Sequencing library preparation

The thermal cycled droplets in the 8 PCR tubes were carefully transferred into two 1.5 mL
centrifuge tubes (4 PCR tube content in each). If there were merged droplets present, they were
carefully removed using a 2 L pipette. 20 uL PFO were added into each tube and mixed well
by vortex. After centrifuging the top aqueous layers in each tube was transferred into new 1.5
mL tubes and water was added to bring the total volume to 400 pL. The barcoding product was
purified using 0.7X Ampure XP beads (Beckman Coulter, A63882) and eluted into 60 uL H20
and stored at -20°C until next step. The concentrations of the barcoding product were measured
with Qubit™ 1X dsDNA Assay Kits (ThermoFisher, Q33230).

The sequencing library were then prepared by attaching P5 and P7 sequences to the barcoding
products using Nextera primers. The library PCR reactions were performed with 25 uL Kapa
HiFi Master mix 2X, 5 uL Library P5 index primer (4 uM), 5 uL Library P7 index primer (4 uM),
10 uL purified barcoding products (normalized to 0.2 ng/uL), and 5 uL of nuclease free water.
The PCR tubes were thermal cycled with the following program: 3 min at 95°C for 1 cycle, (20 s
at 98°C, 20 s for 62°C, and 45 s at 72°C) for 10 cycles, and 2 min at 72°C for 1 cycle. The
sequencing library was purified with 0.69X Ampure XP beads and eluted into 12 uL nuclease-
free water. The library was quantified with Qubit™ 1X dsDNA Assay Kits and DNA HS chips on
bioanalyzer or D5000 ScreenTape (Agilent, 5067- 5588) on Tapestation (Agilent, G2964AA).
The libraries were pooled and paired-end sequenced by Novogene with a partial lane on
Illumina NovaSeq 6000.

Single cell read files preparation

Sequencing data were processed using a custom python script (mb_barcode and trim.py)
available on GitHub at https://github.com/AbateLab/MissonBioTools. For all reads, combinatorial
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cell barcodes were parsed from Read 1, using cutadapt (v2.4) and matched to a barcode
whitelist. Barcode sequences within a Hamming distance of 1 from a whitelist barcode were
corrected. Reads with valid barcodes were trimmed with cutadapt to remove 5’ and 3' adapter
sequences and demultiplexed into single-cell FASTQ files by barcode sequences using the
script demuxbyname . sh from the BBMap package (v.38.57).

Supplementary Results
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Figure S2: Maximum memory allocation across varying numbers of strains (S, line shade), SNPs (G, line
style), and samples is plotted for StrainFacts models. Median of 9 replicate runs is shown. Maximum
memory requirements are extrapolated to higher numbers of samples for a model with 1000 SNP sites
(red line). An abridged version of this plot is included as Fig. 1.
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Figure S3: Extension of accuracy evaluation for StrainFacts and Strain Finder with additional results for

MixtureS. Results are identical to panels A, C, D, and E in Fig. 2 (here panels A-D, respectively).
Simulations are shown for five simulations with 250 SNP positions, 200 samples, and 40 strains. While
StrainFacts and Strain Finder each have 32, 40, and 60 strains specified (the 0.8x, 1.0x, 1.5x
parameterizations), MixtureS does not specify the number of strains a priori, and points are arbitrarily

placed with the 1x parameterization. Similarly, MixtureS runs are deterministic; hence only one fit for each
of the five simulations is shown.
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term is shown (black line), and the constant of proportionality and uncentered R? is also indicated.
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Figure S5: Patterns in strain dominance according to geography and lifestyle across thousands of
publicly available metagenomes in dozens of independent studies for two additional members of the
human gut microbiome. Visual elements are identical to Fig. 5: Columns represent collections of samples
from individual studies and are further segmented by country and lifestyle (westernized or not). Rows
represent strains inferred by StrainFacts. Cell colors reflect the fraction of samples in that study segment
with that strain as the most abundant member. Study segments are omitted if they include fewer than 10
samples. Row ordering and the associated dendrogram reflect strain genotype distances, while the
dendrogram for columns is based on their cosine similarity. Colors above the heatmap reflect the country
in which samples were collected as well as whether samples were collected from individuals with a

westernized lifestyle. Both a study identifier and the 1ISO 3166-1SO country-code are included in the
column labels.
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