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Abstract

Cell-matrix interactions form a crucial parameter for the design of a synthetic extracellular matrix (ECM),
as they ultimately dictate cell fate and functions. Universally, synthetic biomaterials are conjugated with a
linear or cyclic Arg-Gly-Asp (RGD) peptide to establish a direct link of the ECM with the cell. These
peptides, however, present low binding affinities and lack selectivity towards integrin subtypes presented
on the cell membrane. Here, a highly biomimetic synthetic ECM based on polyisocyanides (PIC) that has
been decorated with bicyclic peptides that show a high affinity towards specific integrin subtypes is
presented. 3D cell studies show that human adipose-derived stem cells (hASCs) in matrices carrying the
optimized bicyclic asPi-integrin binder, spread within 24 hours, which is much faster than in other PIC gels,
including the default RGD-decorated gel, but also much faster than in the positive Matrigel control.
YAP/TAZ staining shows that the rapid morphological change in the 3D microenvironments is YAP
independent. The data highlights that the design of synthetic matrices with appropriate, optimized guiding
signals is key to guide cells towards a predetermined outcome.
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Introduction

Human tissue is a complex system consisting of cells and the extracellular matrix (ECM). The latter
supports the structural integrity of the tissue and has profound effects on the embedded cells. For instance,
the ECM supports cell adhesion, regulates growth factor presentation to mediate cell functions and is
involved in the activation of many cell signaling pathways'. Cells sense their microenvironment and show
a corresponding biological response?.

Integrins form the physical connection between a cell and its extracellular matrix. They are allosteric
transmembrane proteins that mediate bi-directional interactions between cells and their (micro)environment
and, as such, they play a central role in communication®*. On the intracellular side, integrins interact with
arange of adhesion-supporting proteins and signaling factors to form force-responsive adhesion complexes.
These complexes bind the actomyosin cytoskeleton, regulating downstream signaling pathways that allow
the cell to react to physical cues. Reciprocally, on the extracellular side where the integrins bind to the ECM,
cell contraction leads to a change in the architecture and mechanical properties of the cellular
microenvironment.

Functional integrins consist of two non-covalently bound transmembrane subunits, named o and 3. On
human cells, 24 heterodimers have been observed experimentally, which are composed of combinations of
18 a and 8 B subunits>. Cells have phenotype-dependent presentation of integrins and the integrin
expression may change in physiological or pathological processes, for instance, during stem cell
differentiation’ or in cancer®.

Interestingly, selectivity is not always high for ECM-integrin interactions, e.g., collagen and laminin, two
major ECM proteins, both bind a;f; and axp; integrins. Laminin additionally binds with asp; integrins,
which in turn, also interacts with fibronectin. In 1984, a tripeptide sequence Arg-Gly-Asp (RGD) was
identified as a principle integrin-binding domain®. This peptide, subsequently, has become the golden
standard in research involving cell-adhesion'?, particularly in synthetic microenvironments. The advantages
of this classic sequence include its stability during sample preparation and processing, its minor immune
response and the availability of simple and economical conjugation strategies, for instance, via click
chemistry''. Together, they make RGD and its derivatives the primary choices to induce a cell-adhesion in
a non-biofunctional material. The simple RGD peptide also has some clear drawbacks. In the absence of a
secondary structure of the RGD peptide, cell anchoring through the integrin is not comparable to the full-
length proteinprotein!?!3, Furthermore, RGD binds generically to multiple integrin subtypes and cannot be
used when a specific heterodimer needs to be targeted, which limits the possibility of activation of specific
desired intracellular pathways.

To pursue a stronger and more selective binding towards integrins, cyclic peptides have been developed'.

15,16 and

In 2D in vitro settings, these peptides have been shown to promote cell adhesion to gel substrates
cell membrane binding'. In this work, we introduce combinatorically optimized cyclic peptides in a highly
biomimetic, but fully synthetic hydrogel based on polyisocyanides to study cell behavior in a controlled in
vivo-like microenvironment. Our first results show the dramatic effects that binding optimization offers but,
ultimately, we present a new method that allows one to start targeting specific integrins to guide desired

cell behavior such as migration, stem cell differentiation, and angiogenesis'”.
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Results and Discussion

As the synthetic biomimetic matrix, we employed polyisocyanide (PIC) gels'®. This polymer-based fibrous
hydrogel is developing into an ideal synthetic three-dimensional artificial ECM!-2!, PIC gels combine an
architecture and (nonlinear) mechanics that are common to hydrogels of natural ECM polymers and possess
excellent biocompatibility®* with high customizability in mechanical properties and biofunctionalization.

We exploited the straightforward customization strategies to introduce 9 different adhesive peptides (Table
1), including the routinely used linear GRGDS (P1), the cyclic fKRGD (P2), the knottin peptide (P3,
optimized for strong integrin binding) and a series of recently reported constrained, bicyclic peptides '+
that have been optimized for strong and selective integrin binding?* (P4-P9). For conjugation, we employed
the highly efficient strain-promoted azide-alkyne cycloaddition (SPAAC) reaction®® between the azide
(N3)-functionalized PIC polymers and the bicyclononyne-terminated peptides'® using earlier developed
protocols'®. To drive the conjugation reaction to completion, an excess of N3 groups is used?’. The design
of our 3D cell culture model system is displayed in Figure 1. The final peptide concentration after cell

encapsulation is 63 uM, which is considered low, compared to other synthetic matrices?*-!,

Table 1. Overview of hydrogels P1-P10 prepared after conjugation of PIC-N3 with the appropriate peptide sequence.

IC50 (nM) €
Gel Peptide sequence ? G’(Pa)b Ref
asP1 aBs afs
PO —d 709 — — —
P1 K(BCN)-linker-GRGDS 390 >10,000 ~6,500 ~5,000 14
P2 cyclo-[DfK(linkerK(BCN))RG] 313 >10,000 182 35
P3 K(BCN)-linker-knottin € 242 114 76 38 23
P4 K(BCN)-linker-CrsHPQcr3sRGDcr3 454 >10,000 >10,000 30 23
PS5 K(BCN)-linker-CrsHPQCT3RGDcr3 191 >10,000 >10,000 31 23
P6 K(BCN)-linker-Cr3HSQCt3RGDcr3 343 >10,000 >10,000 42 23
P7 K(BCN)-linker-CrsRGDcr3AYJCr3 466 90 >10,000 1,000 14
P8 K(BCN)-linker-CrsRGDcrsAWGCrs 323 173 >10,000 1,900 4
P9 K(BCN)-linker-CrsRGDcr3AYaCrs 297 156 ~4,000 1,000 14
P10 Matrigel (collagen-IV and laminin) <50 binds f.i. a1B1, a2B1 asB1, a1, a7B1 32

a Peptides indicated by standard one-letter amino acid codes. Note that lowercase ‘c’, ‘a’ and capital ‘)’ represent for p-cysteine,
p-alanine, and p-Leu, respectively. Cysteine labeled ‘cr3” and ‘Crs” are connected to the bicycle scaffold. For all samples, the linker
between the peptide in the BCN reactive handle is the same: PPPSG[Abz]SG, where Abz is 4-aminobenzoic acid. See Figure 1b
and Supplementary Figure 1 for structures of peptides. ® Hydrogel shear modulus G’ determined for hydrogels with concentration
¢=2mg/mLin a-MEM at T = 37 °C. Experimental data is given in Supplementary Figure 2. < ICso values of the peptides only, i.e.
without the spacer (and linking group) attached. Given literature values are determined by ELISA assays and exclude the standard
deviations of typically 10%. High binding is marked green, medium yellow, and low red. ¢ Data for PIC-N3 without peptides
attached. € Knottin = GCoxPRPRGDNPPLTC«QDSDCoxLAGCoxVCoxGPNGFCoxG, where the cysteines labeled ‘Cox’ form three disulfide
bridges.

PIC hydrogels were prepared by dissolving the (peptide-functionalized) polymer in cold cell culture
medium and heating the solution beyond the gelation temperature Tge; = 15 °C. For all hydrogels, the low
peptide concentrations do not influence the gelation temperature of the polymer. At 2 mg mL™" and 37 °C,
all PIC gels form relatively soft hydrogels with storage moduli between 200-500 Pa, depending on the

peptide attached. Note that the PIC polymer without peptides forms a slightly stiffer gel (P0).
—3-
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Figure 1. Design of the cell culture materials. a, Structure of the PIC polymer with an azide (N3) that serves as a reactive handle
for bio-orthogonal click-chemistry and, schematically, the linker-peptide construct with reactive BCN (red) end:
K(BCN)PPPSG[Abz]SG-peptide, where Abz is 4-aminobenzoic acid. For PIC, the ratio between azide and methoxy-terminated
monomers is set to 1:29 (x = 0.033), but only ~1% of the monomer later is substituted with a peptide. b, Structure of linear (P1),
monocyclic (P2) and bicyclic peptides (P4—P9) using single letter amino acid codes. Note that lowercase ‘c’, ‘f’ and capital ‘)’
represent D-cysteine, D-phenylalanine and D-leucine, respectively. P3 is not presented in this figure due to its complex structure.
¢, For stem cell studies, we generated a synthetic fibrous microenvironment with a single cell adhesion peptide clicked onto the
polymer backbone.

Earlier reports quantified the binding of the peptides towards different target integrins: asBi, avp3 and awfs
(Table 1). The routinely applied linear GRGDS binds weakly to all integrins; while the frequent applied
cyclic RGD (in P2) has a higher binding affinity, but only towards the a,B3 and a.ps heterodimers. The
engineered knottin RGD, however, strongly interacts with all three integrin dimers (asp1, o3 and o,fs). Of
the two groups of optimized bicyclic peptides, the first group selectively binds a,[3; integrins (P4-P6) while
the second is selective for asf; (in P7-P9). Matrigel (P10) was used as the ‘golden standard’ reference
material in the 3D cell culture field.

We tested the role of the integrins in cell culture with human adipose-derived stem cells (hASCs). Earlier
work has shown that somatic stem cells are highly sensitive to their (mechanical) microenvironment®?, to
which they anchor through their integrins. In the case of hASCs, it has been observed that asf; is highly
expressed during the undifferentiated state’. We encapsulated hASCs in (200,000 cells mL™) in every gel
and cell viability (LIVE/DEAD staining) measurements after 72 h indicate that all gels are fully
biocompatible (Figure S3).

The influence of the different integrin binding peptides in cellular behavior was evaluated by monitoring
cell morphological responses (spreading and migration) in the first 24 hours after encapsulation. We
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focused on the initial time period to minimize the contribution of the extracellular matrix deposited by the
stem cells. Analysis of bright field images (Figure S4) shows that 24 hours after encapsulation, the stem
cells are still primarily spherical in all matrices, apart from P8, where a network of spread cells was imaged.
Based on the ICso values, gels with P8 are expected to have a strong interaction with the osP; integrin,
which is expressed by the stem cells. While P7 and P9 are decorated with peptides that bind similarly strong,
the encapsulated cells in the corresponding gels remain mostly spherical. Similarly, in gels with the generic
strong binder P3, no morphological changes are observed. We underline that integrin binding constants
were determined by ELISA with the peptides only and that conjugation of the peptides to a polymer
backbone may induce a different functionality as is sensed by the cells.

Based on this data, we selected 5 culture matrices for more quantitative analysis of the role of the peptide
on cell behavior: PO (no peptide, negative control), P1 (default GRGDS peptide), P4 and P8 (bicyclic
peptides with high affinity for either the ayB3 or the asP; integrin receptor, resp.) and Matrigel (P10) as a
biological reference material containing abundant collagen (affinity towards a»B; integrins)**, and laminin
(that binds a1, a2B1 3P, aePi and asP; integrins)®. Time-lapse bright field microscopy (Supplementary
Movies M1-M5) clearly shows the remarkably fast spreading of cells in P8, in contrast to the other samples
(Figure 2a shows images at 7 and 24 h; Figure 2b, images at 1, 3, 5 and 7 h of P8 only). As a measure for
spreading, we determined cell circularity for ~20 representative and isolated cells. Quantitative analysis
using FIJI (Figure 2c¢), indeed confirms that already after 3 h, hASCs in P8 are significantly different from
cells in any of the other matrices, including Matrigel (Figure 2c). Even at 24 h, the cells in the other matrices
still show a rounded morphology, compared to a well-developed cellular network in P8. Confocal
fluorescence imaging of F-actin stained samples (24 h) confirms the results observed in the bright field
images (Figure 2d). Experiments to dilute the density of peptides in P8 (by culturing hASCs in mixed
P8/P0 hydrogels) shows that 63 pM is the minimum peptide concentration to obtain extensive spreading
(Figure S5).

Yes-associated protein (YAP) and the co-activator TAZ are key mechanotransduction components that
translocate from the cytosol to the cell nucleus upon mechanical cues from the cellular microenvironment®®.
Given the rapid cell spreading in P8, we evaluated YAP activation in our samples. Interestingly,
immunostaining reveals that there is no significant YAP localization in cell nuclei in either condition,
implying that within 24 hours, the YAP/TAZ mechanotransduction pathway is not activated in hASCs in
these 3D hydrogels (Figure S6). Our results contradict findings from 2D cell culture® that can give rapid
nuclear translocation but are in line with the other recent findings from 3D cell cultures, where no
redistribution of YAP is observed®’. Indeed, the lack of actin stress fibers, the decrease of nuclear content
per cross-section and low volumes of the cells may cause the difference between the 2D and 3D
microenvironments. Also, we suspect that, as a result of the short culture time, the YAP pathway may not
have been activated yet. In conclusion, the data suggest that YAP/TAZ is not involved in the observed rapid
spreading of stem cells in the first 24 hours.
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Figure 2. Cell spreading in gels functionalized with different peptides. a, Bright field images of stem cell cultures PO, P1, P4,
P8 and P10 at 7 and 24 h after encapsulation. b, Representative bright field images show the morphological change of stem
cells in the selective asfB; binder gel P8 at 1, 3, 5 and 7 h after encapsulation. ¢, Quantification of cell circularity as a measure
for spreading, based on bright field images. Box plot shows data points, median and + SD. For all cultures, ~20 non-overlapping
cells are traced for 24 h. Statistics: ** P<0.01, *** P<0.001. d, False color-coded (depth) confocal fluorescence microscopy

projection images showing F-actin organization after 7 and 24 h after encapsulation. For all cell cultures: PIC gel concentration
2 mg mL™1, adhesive peptide concentration 63 uM and cell encapsulation density 200,000 cells mL™1.,
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The capacity for matrix remodeling and migration are fundamental stem cell characteristics that are
necessary to carry out their function®®. The migration of cells in a 3D microenvironment is an extremely
intricate reciprocal process®, which also includes matrix degradation. Integrin-RGD complexes are central
to mechanical sensing of the microenvironment, and at the same time, they also function as traction points

t38

that are needed for cell movement™®. The migration observed during cell spreading in P8 is cell-adhesion

dependent but degradation independent, as the synthetic PIC gel cannot be degraded by proteases.

We emphasize that the matrix remodeling and cell spreading/migration modes in Matrigel differ from the
ones in PIC gels, as reflected by the changes in cellular morphology in the two materials (Supplementary
Movies M4, MS5). In Matrigel, stem cells produce small non-directional protrusions, but no migration is
observed in the first 24 h. We speculate that cells are still degrading the surrounding ECM to create extra
space. In contrast to Matrigel, the PIC-based synthetic matrix allows (bio)chemical-independent
remodeling, also termed physical remodeling*® of ECM. The bicyclic peptides present in P8 allow the cell
to induce fast physical remodeling of the matrix by applying contractile forces. We hypothesize that in P8
the bicyclic peptide may contribute to the formation of filopodia*!, as asf; is crucial for stem cell
migration*>**. The clustering of peptides, caused by the bundling of PIC polymers into fibers during
gelation, may also facilitate cell adhesion and further morphological responses'’. Furthermore, the plasticity
of PIC hydrogel enables protease-free cell spreading and even migration in a short time span*.

Conclusions

Collectively, our results show that this novel combination of a synthetic network with architecture and
mechanical characteristics of naturally occurring biomaterials, together with strongly-binding cyclic
peptides results in an artificial ECM with properties that are well beyond what is possible with biological
materials. In one gel, we observe tremendous acceleration in cell spreading, which, to our knowledge, has
not been observed in any synthetic or biological matrix. Additionally, the results illustrate the importance
to target specific integrin subunits using cell-adhesion peptides when designing biomaterials. Although in
this work, we only vary the cell-adhesive peptide, the conjugation approach allows for the introduction of
a broad variety of active biomolecules. Using this strategy, such synthetic ECMs can be modified to achieve
specific properties, which opens the possibility to study cells in uniquely predefined 3D environments. For
instance, stem cell migration, matrix remodeling, focal adhesion, and mechanotransduction pathways may
be modeled. From a longer-term perspective, our system has the potential to be a powerful tool to
manipulate stem cell behavior and be used for more tissue engineering purposes that target specific cell

types.
Materials and methods

Polymer synthesis

Polyisocyanides were synthesized using an established protocol as reported previously'. In short, the
isocyanide monomers (azide-appended monomer and non-functional monomer in ratio 1:29) were
dissolved in freshly distilled toluene. A catalyst solution Ni(ClO4)>-6H>O (0.1 mg mL™") in freshly distilled
toluene/absolute ethanol 9:1) was added such that the total concentration monomer to Ni** ratio equaled
5000:1. Then toluene was added to adjust the final isocyanide concentration to 50 mg mL™'. The
polymerization mixture was stirred at room temperature, and the progress of the reaction was followed by
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IR-ATR (disappearance of the characteristic isocyanide absorption at 2140 cm™). Once the isocyanide was
consumed (48 h), the polymer was precipitated in diisopropyl ether under vigorous stirring and collected
by centrifugation. The polymer was dissolved in dichloromethane, precipitated for another two rounds, and
air-dried to yield the polymers as off-white solids. The molecular weight of the polymer was determined
by viscometry (from dilute solutions in acetonitrile 0.1-0.6 mg mL ") using the empirical Mark—Houwink
equation [#] = KM.,“, where [#] is the experimentally determined intrinsic viscosity, M, is the viscosity-
based molecular weight. We use values of the Mark—Houwink constants K and a that were previously
determined for other polyisocyanides: K = 1.4 x 10 and a = 1.75. For the polymer used in this study, we
found M, = 536 kg mol .

Bioconjugation

The azide-appended polymer was dissolved in acetonitrile (2.5 mg mL ™), and the appropriate amount of
the BCN—peptide (PEPSCAN, 6 mg mL ' solution in DMSO, 0.33 eq. with respect to N3 groups) was added.
The solution was stirred for 24 h at room temperature and the polymer—peptide conjugates were precipitated
in diisopropyl ether, then collected by centrifugation and air-dried for 24 h.

Rheology

The mechanical analysis of the gels was performed according to a previously reported protocol. Briefly,
a stress-controlled rheometer (Discovery HR-1 or HR-2, TA Instruments) with an aluminum or steel parallel
plate geometry was used (diameter = 40 mm, gap = 500 um). All samples were loaded onto the rheometer
plate in the liquid state at 7= 5 °C followed by a temperature ramp to 7'= 37 °C at a rate of 1.0 °C min™".
The moduli were measured in the linear viscoelastic regime at an amplitude of y = 0.02 or 0.04 and a
frequency of @ = 1.0 Hz. The sample was allowed to equilibrate at 37 °C before the nonlinear measurements.
Here, the gel was subjected to a constant prestress of op = 0.5 to 200 Pa, and the differential modulus K’
was probed with a small superposed oscillatory stress at frequencies of @w = 10 to 0.1 Hz (reported data at
o = 1 Hz). The oscillatory stress was at least 10 times smaller than the applied prestress.

Cell culture and encapsulation

Human adipose-derived stem cells (hASCs, passage p<=6) were obtained from the Radboud Biobank and
cultured in Minimum Essential Medium Eagle (a-MEM) (Invitrogen, Thermo Fisher, USA). All media
were supplemented with 10% fetal bovine serum (Sigma-Aldrich, USA) and 1% penicillin/streptomycin
(final concentration of 100 IU mL! penicillin and 100 pg mL ™! streptomycin, Gibco, Thermo Fisher, USA).
Dry PIC polymers were sterilized by UV for 10 min and then dissolved in the medium for 24 h at 4 °C.
Cells were harvested by trypsin treatment once they reached 100% confluence and were resuspended in
fresh medium. After counting, cells were mixed with the polymer solution on ice in a pre-determined ratio
to achieve the required cell density and polymer concentration. After mixing, the solutions were transferred
to 48-well plates (Corning, USA), 8-well chambered cover slides (Sigma-Aldrich, USA) or p-Slide
Angiogenesis(IBIDI, Germany), and heated to 37 °C. After gel formation, warm culture medium was added
onto the samples. Then all samples were subject to standard cell culture conditions (humidified atmosphere,
37 °C, 5% CO»).

Matrigel experiments

For the Matrigel experiment, Corning® Matrigel® Growth Factor Reduced (GFR) Basement Membrane
Matrix (Phenol red-free, LDEV-free) was used. Briefly, the Matrigel solution and cell solution were mixed

-g-—


https://ibidi.com/chambered-coverslips/41--slide-angiogenesis.html#/surface_modification-ibitreat_15_polymer_coverslip_tissue_culture_treated_sterilized/pcs_box-15
https://ibidi.com/chambered-coverslips/41--slide-angiogenesis.html#/surface_modification-ibitreat_15_polymer_coverslip_tissue_culture_treated_sterilized/pcs_box-15
https://doi.org/10.1101/2022.02.01.478177
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478177; this version posted February 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

in a 7:3 volume ratio on ice. The samples were incubated at 37 °C for 30 minutes before adding supernatant
medium (a-MEM) on top.

LIVE/DEAD assay

The staining protocol was adapted from the product manual (Invitrogen, Thermo Fisher, USA). In brief,
first, cell culture medium on top of the gels was gently removed. Next, a 2 uM calcein AM and 4 uM EthD-
1 working solution was prepared in warm a-MEM medium and added onto gel samples. After a 30-minute
incubation in the cell incubator, all samples were washed by warm phosphate-buffed saline (PBS) and
imaged by an Olympus FV-1000 confocal fluorescence microscope.

Cytoskeleton staining

Gels with encapsulated cells were washed with PBS and then fixed with 4% paraformaldehyde (PFA) in
PBS for 40 min. After fixation, the samples were permeabilized with 0.1% Triton X-100 in PBS for 10 min
and blocked with 1% BSA in PBS for 30 min. They were then incubated with Phalloidin Atto-520 (10 uM,
1:20 in 1%BSA/PBS, Sigma-Aldrich, USA) for 1 h. All procedures were performed at 37 °C. Fluorescence
images were acquired on a Leica TCS SP8 X confocal microscope, using a water objective (HC PL APO
20x/0.75, Leica and Fluotar VISIR 25x/0.95, Leica). For detection, we used a field-of-view scanner (400
Hz, bidirectional) and a hybrid photomultiplier detector (HYD-SMD, Leica). As the excitation source, a
supercontinuum White Light Laser (470670 nm, pulsed, 80 MHz, NKT Photonics) was used. The
phalloidin Atto-520 was excited at 520 nm and fluorescence was collected between 530 nm and 670 nm.
Images were acquired over a range of 500 um in the z-direction. During measurements, the temperature
was kept at 37 °C. The maximum projection images were prepared by compressing all the frames into one
z projection using the FIJI software.

YAP Immunostaining

Samples were gently washed with warm PBS and fixed with 4 % paraformaldehyde in PBS for 1 h at 37 °C.
Next, the samples were washed with warm PBS and permeabilized with 0.1% Triton X-100 in PBS for 30
min at 37 °C. Subsequently, the samples were washed with warm PBS and blocked with 1% BSA in PBS
for 24 h at 37°C. Thereafter, the samples were incubated in primary antibody (YAP Antibody (63.7): sc-
101199, Santa Cruz Biotechnology, USA) 1:200 in 1 % BSA/PBS for 24 h at 37 °C and washed with warm
PBS, then in secondary antibody (Goat anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary
Antibody, Alexa Fluor 633, Invitrogen, USA) 1:200 in PBS for 4 h at 37 °C. All samples were
counterstained with DAPI (2.5 pg mL™! in PBS) and washed with warm PBS. Fluorescence images were
acquired on a Leica TCS SP8 X confocal microscope, using a water objective (HC PL APO 63x/1.20,
motCORR, Leica), a hybrid photomultiplier tube as the detector (HYD-SMD, Leica) and a field-of-view
scanner (200 Hz, bidirectional). As excitation sources, a supercontinuum White Light Laser (470—670 nm,
pulsed, 80 MHz, NKT Photonics) was used for the Alexa Fluor 633 secondary antibody label and a UV
diode laser (405 nm, pulsed, 40 MHz, PicoQuant) was used for DAPI. The Alexa Fluor 633 was excited at
632 nm and fluorescence was collected between 639 nm and 773 nm. DAPI was excited at 405 nm and
fluorescence was collected between 410 nm and 551 nm. Transmission light detection was done in a
separate channel using a standard Photomultiplier tube (Leica). All measurements were performed in a
temperature-controlled environment (37 °C).

Live cell imaging
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A Cytosmart Lux 2 inverted bright-field microscope was placed in an incubator (37 °C, humidified) to
monitor the morphology of the cells in hydrogels. Cold cell-gel mixtures (100 uL) were pipetted in a 35
mm glass-bottom dish (Cellvis, #1.5) and allowed to gelate at 37°C for 15 min. Afterward, 3 mL of CO,-
independent a-MEM culture medium (Thermo Fisher) was pipetted on top of the samples. 24-hour
monitoring was performed to acquire real-time videos with a 10x air objective. Images were acquired every
10 minutes.

Morphology analysis

FIJT was used for analysis, images were automatically preprocessed (script 1, Supplementary information)
and randomly selected cell segments were measured for morphological features (script 2, Supplementary
information). A median filter was applied to the images to reduce the noise in the image while least affecting
the form of the imaged cells. The filter size was chosen as small as possible to retain morphological detail,
but large enough to enable a good segmentation result for the cells. One representative video per condition
was used for analysis. Cell number per condition n = 20, except: PO at 1 hr (n = 19); P4 at 1 hr (n = 14), at
3hr (n=17),at5 hr (n =19) and at 24 hr (n = 14). One-way analysis of variance (ANOVA) with Tuckey

tests was performed for comparison between different conditions using Origin 2020.

Data availability

All data supporting the results of this study are available in the article and the Supplementary Information
Files or from the corresponding author on reasonable request.
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