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Abstract

The transition from bulk to single-cell analyses refocused the computational challenges for high-
throughput sequencing data-processing. The core of single-cell pipelines is partitioning cells
and assigning cell-identities; extensive consequences derive from this step; generating robust
and reproducible outputs is essential. From benchmarking established single-cell pipelines,
we observed that clustering results critically depend on algorithmic choices (e.g. method,
parameters) and technical details (e.g. random seeds).

We present ClustAssess, a suite of tools for quantifying clustering robustness both within
and across methods. The tools provide fine-grained information enabling (a) the detection of
optimal number of clusters, (b) identification of regions of similarity (and divergence) across
methods, (c) a data driven assessment of optimal parameter ranges. The aim is to assist
practitioners in evaluating the robustness of cell-identity inference based on the partitioning,
and provide information for choosing robust clustering methods and parameters.

We illustrate its use on three case studies: a single-cell dataset of in-vivo hematopoietic stem
and progenitors (10x Genomics scRNA-seq), in-vitro endoderm differentiation (SMART-seq),
and multimodal in-vivo peripheral blood (10x RNA+ATAC). The additional checks offer novel
viewpoints on clustering stability, and provide a framework for consistent decision-making on
preprocessing, method choice, and parameters for clustering.

Keywords: single-cell sequencing, clustering algorithms, element-centric clustering compari-
son, robustness, stability, cell identity, data-driven characterisation.
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1 Introduction

For recent studies, single-cell sequencing took over the sequencing landscape becoming the
de facto standard for high resolution studies. The size of resulting datasets, comprising up
to millions of cells [1], offer an unprecedented level of detail, advancing the understanding of
biological phenomena e.g. enabling the detailed characterisation of cell cycle [2] or zebrafish
embryogenesis [3]. The technology also holds a translational promise, including for cancer
patient stratification methods [4] and identification of novel therapeutic targets [5]. Major
challenges for single-cell analyses remain related to data integration, scalability, and leveraging
spatial information [6, [7]. Extracting information from these datasets relies on advances in
computational methods, and the robustness of the subsequent outputs.

As single-cell RNA-seq (scRNA-seq) datasets sizes grew exponentially [1], clustering emerged
as a central step of pipelines, either for the identification and characterisation of subpopulations
(cell-types, cell-states [§], [9]), or as an intermediate step before further analyses e.g. trajec-
tory inference [10]. Clustering is also essential to the analysis of other single-cell modalities
e.g. ATAC [11], cytometry [12], lipidomics [13], as well as to single-cell multi-omics |14} [15].
Frequently used scRNA-seq clustering methods are available in pipelines like Seurat [16] and
SCANPY [17], both using community detection on nearest-neighbour graphs, and Monocle [1§],
which provides several clustering methods, including a density-peak-based approach. Post clus-
tering, the assignment of subpopulations to cell-types relies on cluster-specific discriminative
genes, as well as known cell-type marker genes (manually curated and often validated through
low-throughput methods or identified automatically using classifiers [19]).

While it is desirable to cluster cells based on biological signal, partitions can also be driven
by technical nuisance effects (sequencing depth or noise [20, [21} 22]). Beyond the interplay
of technical [23] and biological signals affecting clustering outputs, the results also depend on
algorithmic decisions e.g. cell filtering, normalisation, feature selection, number of clusters,
and the clustering algorithm [24]. Computational details, e.g. random seed, also influence the
robustness of results. Currently, these decisions are often made in an ad-hoc manner, and vary
substantially across analyses. The evaluation of a cell-partitioning, in terms of reproducibility
and biological interpretation, is thus critical to ensure that relevant, functional information is
captured. Ideally, clustering results would be assessed against external, ground-truth cell-type
labels; however, the experimental context of most studies makes such labeling intractable. In
their absence, the validity of the output relies on the robustness of clustering results.

Previously, benchmark comparisons were performed on several clustering methods, on multi-
ple scRNA-seq data types, across feature sets |25, [26]. These studies relied on the adjusted
Rand index (ARI) versus ground-truth annotations or across resulting partitions and provided
valuable macro-scale information on clustering quality, stability, and speed, as well as appreci-
ation for how acutely clustering results depend on preprocessing and the characteristics of the
dataset. However, the benchmarks suggested no clustering method or pipeline as optimal across
data types and conditions. Therefore, the clustering evaluation of new data, with unfamiliar
characteristics, and which often lacks cell-type annotations, remains of major interest.

Here we present ClustAssess, a collection of tools that enable the quantification of the robust-
ness of partitions. We focus on the evaluation of dataset-specific clustering results, in contrast
to the wide-ranging and generic results provided by clustering benchmarks. We illustrate these


https://cran.r-project.org/package=ClustAssess
https://doi.org/10.1101/2022.01.31.478592
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.31.478592; this version posted February 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

tools on various partitions driven by choices of features, methods, on both 10x and SMART-
seq scRNA-seq datasets [27, [28], as well as a multimodal single-cell RNA and ATAC dataset.
We highlight several sources of variation that affect final clustering results, including method
parameters, input features and approximation errors.

2 Materials

We illustrate the ClustAssess pipeline on the two most frequently used types of single-cell
RNA-seq assays: the droplet-based 10x Chromium and the platelet-based SMART-seq i.e. (a)
an in-vivo 10x Genomics dataset of hematopoiesis (available at BioStudies accession SUBS4,
donor SAMEA6646090) comprising cells from spleen, peripheral blood, and blood marrow
[27] and (b) an in-vitro SMART-seq dataset of human endoderm differentiation (accession
ERP016000 at European Nucleotide Archive) [28]; cells from time points 0-3 of cell lines hayt,
naah, vils, pahc, melw and qunz were used.

For the multimodal analysis, we illustrate the stability of partitioning results on a 10x single-cell
ATAC and RNA assay from the 10x example datasets, specifically the “PBMC from a healthy
donor - granulocytes removed through cell sorting (10k)” dataset (https://www.10xgenomic
s.com/resources/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-thro
ugh-cell-sorting-10-k-1-standard-1-0-0).

3 Methods

All analyses were performed in R v4.0.3. Packages employed throughout (including their ver-
sions) are specified in line. The analyses and benchmarking were performed on dedicated Linux
servers (Debian GNU/Linux v10 and Linux kernel version 4.19.0-12-amd64).

3.1 Single-cell data processing and analysis

[10x scRNA-seq data] The quality of raw fastq files was assessed using FastQC v0.11.3 and
summarised with MultiQC v1.8 [29]; the alignment and feature quantification were performed
with 10x Cell Ranger v3.1.0, using the GRCh38 v3 reference transcriptome. The distributions
of sequencing depths, number of features and proportions of reads from mitochondrial (MT)
genes and from ribosomal protein-coding genes (RP), per cell, were summarised in violin plots;
cells with <1,000 unique features, >10% MT or <20% RP were discarded; after filtering, MT
and RP genes were excluded from the count matrices. Raw expression levels were normalized
with SCTransform [30]. Further quality checks included PCAs and UMAPs; raw and normalised
sequencing depths, MT% and RP% were represented on a colour gradient, to assess technical
variation. The Pearson residuals of the 2,000 most abundant genes were used for PCA, and the
first 30 principal components (PCs) were used to calculate the UMAP.

Cells were clustered with Seurat v4.0.5 [31], Monocle v3 |32], and Monocle v2.18 [33], separately.
For Seurat, a 20-shared nearest neighbour (SNN) graph was constructed on a PCA of the data,
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and partitioned with SLM clustering [34]. For Monocle v3, a 20-nearest neighbour graph was
created on a UMAP dimensionality reduction, and clustered with Leiden algorithm [35] with
resolution=5e-4. For Monocle v2, clusters were predicted with density-peak search on a tSNE
dimensionality reduction, searching for the number of clusters inferred using Seurat.

[SMART-seq data] The raw fastq files were evaluated analogously to 10x data. Reads were
aligned to the GRCh38.p13 reference genome using STAR v2.7.6a with Ensembl v102 annota-
tions [36]; the same annotations were used for feature quantification with featureCounts v2.0.1
[37]. The distributions of sequencing depths, number of features and MT and RP proportions,
per cell, were assessed; cells with <200 unique features were discarded, genes not present in
at least 3 cells were removed. Further quality checks included PCAs and UMAPs coloured by
covariates e.g. donor, time point, raw and normalised sequencing depth. The normalisation was
performed using SCTransform [30]; the MT and RP genes, post filtering, were excluded from
the expression matrix. The analysis-specific parameters are detailed in the following sections.

[CellphoneDB analysis] An SCT-normalized expression matrix was provided as input, along
with Seurat and Monocle cluster assignation; the CellphoneDB CLI v2.1.7 (method
statistical_analysis) was used for predicting interactions [38]. Interaction terms with p-
value <0.05 were grouped by sender and receiver cluster, respectively, and compared across
clustering outputs with JSI.

[Trajectory inference and pseudotime] Slingshot v2.1.0 [39] was used to perform trajectory
inference on the Mende et al. dataset [27]. Seurat and Monocle clusterings were used as input
with the isolated island corresponding to Seurat cluster 15 removed; Slingshot was applied (with
parameters stretch=2, approx_points=100) to infer cellular trajectories. The two partitions
were compared with the annotations from [27] to assess the correspondence (0 as HSC/MPP-
tier-1 and 3,5,9,12 as Lymphoid, Ery/Meg/Baso/MC, Myeloid, DC respectively in Seurat; 1 as
HSC/MPP-tier-1 and 6,10,12,8 as Lymphoid, Ery/Meg/Baso/MC, Myeloid, DC respectively
in Monocle v3; 5 as HSC/MPP-tier 1 and 1,2,4,11 as Lymphoid, Ery/Meg/Baso/MC, Myeloid,
DC respectively in Monocle v2). Subsequently, HSC/MPP-tier-1 cluster was used as the start
point, and each cluster corresponding to other cell types was used as end point for the slingshot
trajectories. Pseudotime was calculated along the cells belonging to each branch of the resulting
lineage tree. To obtain pseudotimes across the entire dataset, the median of pseudotimes was
calculated, per cell, across all branches. To quantify the dependence of Slingshot pseudotime
on the inferred partitioning, the resulting median pseudotime for the Seurat and the Monocle
clusterings were compared using the absolute difference between the inferred pseudotimes per
cell.

[Multimodal data processing] A Seurat object was created on the RNA and ATAC modal-
ities as separate assays. Any cells failing RNA/ATAC QC tests were removed; cells with
1,000<x<100,000 ATAC counts, <25,000 RNA counts, >1,000 unique genes in the RNA, <30%
MT genes and <40% RP genes (thresholds selected based on inspection of distributions) were
retained for downstream analysis, totalling 9,963 cells.

As for the scRNA-seq component, the MT and RP genes were removed from the counts matrix
before normalisation of gene expression (using SCTransform), and calculating a PCA reduction
of the RNA modality using the 2,000 most abundant genes. A 20-SNN graph was calculated
using the PCA. For the ATAC modality, after normalising the data with term frequency-
inverse document frequency normalisation [16], a latent semantic indexing (LSI) dimensionality
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reduction was calculated on the 5% most covered peaks (5,413 peaks) using Signac v1.1.0 [40].
The LSI reduction was subsequently used for the calculation of a 20-SNN graph. Finally, a
multimodal weighted 20-SNN graph was calculated jointly on the PCA and LSI dimensionality
reductions using the FindMultiModalNeighbors function in Seurat.

For each of the three generated SNN graphs, SLM community detection was employed to find
clusters, with the resolution parameter set to 0.8, across 100 random seeds. Using merge_partitions
from ClustAssess, partitions with ECS > 0.99 were merged to identify the most frequent par-
tition, which was then used for visualisations, ECS across modalities, confusion matrices, and
marker gene calculations for each modality.

3.2 ClustAssess pipeline

The ClustAssess R package comprises functions for evaluating clustering stability with regard
to the number of clusters using proportion of ambiguous clusterings (Supplementary Meth-
ods S1), functions for quantifying per-observation agreement between two or more clusterings
using element-centric clustering comparison (Supplementary Methods S2), as well as plotting
functions for visualisation of the results. The package also provides summary assessments to
evaluate the consequences of different parameters and method choices throughout the graph-
based clustering pipeline, including the effects of feature set, the number of neighbours, and
clustering resolution, detailed below and in the results section.

Dimensionality reduction: The input for the dimensionality reduction is a normalised ex-
pression matrix (methods illustrated in the manuscript and the vignette are SCTransform [30]
and log-normalisation [41]). For the precise (up to machine precision) calculation of PCA the
prcomp method was used [42] on standardised, normalised expression matrix (i.e. centred and
scaled); 30 PCs were selected using the rank parameter. Approximate PCA was calculated
using irlba [43] using the same number of PCs (30) as for the exact approach. The precision
was set using the tolerance parameter tol (values tested: le-5, le-10 and le-15).

Graph building: The unweighted nearest neighbour graph is built using the nn2 function
(RANN package [44]). For this implementation a point is its own neighbour i.e. it is based on
an actual number of k& — 1 nearest neighbours (further implementation details on calculating
neighbourhoods are presented in Supplementary Information 1); the SNN graph is built using
the FindNeighbors function (Seurat package) or the cluster_cells function ( Monocle pack-
age). Default parameters are used, except for nn.method from Seurat, which is set to rann,
and weight from Monocle, which is set to TRUE.

Graph clustering: The clustering is assessed on the Louvain [45], Louvain with multi-level
refinement [46], SLM [34] and Leiden [35] community detection methods, available as options
for the algorithm argument in the FindClusters function from Seurat. The resolution (set
with the resolution parameter) was evaluated for the 0.1 to 1 range. For comparisons of
the quality functions, we focused on the Leiden implementation(cluster_cells function) in
Monocle; the quality function was changed using the partition_type parameter (values used:
CPMVertexPartition, RBConfigurationVertexPartition, RBERConfigurationVertexPartition).

Multiple steps, including the approximate PCA, non-linear dimensionality reduction, graph
building and clustering, are stochastic methods; we therefore also evaluated the effect of random
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seeds. The solution presented as optimal in ClustAssess corresponds to the most frequent
partition.

4 Results

4.1 Clustering parameters critically influence downstream results

A first case study for illustrating the analysis-induced variability is based on the Mende et al.
data (10x scRNA-seq in-vivo dataset of human hematopoietic stem and progenitor cells origi-
nating from bone marrow, peripheral blood, and spleen [27]). As initial QC, the distributions of
sequencing depths, number of detected features, proportions of MT and RP genes were assessed
(Supplementary Table S1). Based on these distributions, cells with fewer than 1,000 features,
>10% mitochondrial genes, or <20% ribosomal protein-coding genes were discarded; these fil-
ters reduced the number of cells from 15,030 to 13,189. Expression levels were subsequently
normalised using SCTranform [30].

Throughout the analysis we focus on 2 pipelines: Seurat v4, Monocle v3, denoted as the Seurat
pipeline and the Monocle pipeline respectively.

[Independent approaches for determining optimal parameters] A recurrent, essential
question in single-cell data analysis is the number of cell sub-populations. Independent of
other pipeline-specific parameters, the proportion of ambiguously clustered pairs (PAC) [47],
overviewed in Supplementary Methods S1, can be used to assess the robustness of partitions
with regard to the number of clusters (k); lower PAC indicates a more stable clustering. The
PAC landscape (PAC vs k) can be used to avoid k values leading to particularly high PAC (high
local variability), or, when focusing on local minima, to identify a optimal range for k. On the
Mende et al. dataset, the PAC is monotonously decreasing with k i.e. higher k results in more
stable partitions (Figure S1A); however, no obvious local optimum is observed rendering this
angle inconclusive.

[Assessment of clustering method-induced variability| Next, we assessed the partitioning
outputs obtained using standard pipelines (Monocle [32] and Seurat [31]). For the latter,
applying SLM community detection, on default parameters, i.e. on the 20-nearest neighbour
graph with resolution parameter 0.8, resulted in 16 clusters (Figure ) Separately, the data
was clustered with Monocle v3, using Leiden clustering with resolution=5e-4 to delineate 13
clusters. These two methods cluster certain areas of the UMAP similarly, e.g. the far right
of the UMAP (cluster 3 in Seurat, cluster 6 in Monocle); however, discrepancies between the
methods emerge for bridging cells (clusters 10, 12 in Seurat vs cluster 8 in Monocle) or for
compact regions, for which a robust partitioning is more challenging (cluster 1 in Seurat vs
clusters 3, 4, 7 in Monocle).
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Figure 4.1: Differences between Seurat and Monocle clustering outputs, and their
knock-on effects on downstream results.

A-B. Seurat v4 (A) and Monocle v3 (B) clustering each cluster the Mende et al. single-cell data
into 16 clusters. C. Element-centric similarity (ECS) of Seurat and Monocle clusterings quan-
tifies per-cell clustering agreement between the two methods. D. Cell-wise Jaccard similarity
index (JSI) of cluster marker genes reveals discrepancies with potential ramifications for cell
type annotations. E-F. Element-centric consistency (ECC), represented on the colour gradient,
across 100 repetitions of SLM community detection (E) and Leiden community detection (F),
generated on Seurat and Monocle nearest neighbour graphs, respectively. Regions variably
clustered across repetitions are revealed. G-H. JSI of CellphoneDB interaction terms, grouped
by sender cluster (G) and receiver cluster (H), between Seurat clusters (rows) and Monocle
clusters (columns). A one-to-one correspondence between rows and columns would indicate the
same inter-cellular activity is inferred for clusters found by both methods; no such correspon-
dence is observed in either heatmap. I-J. Pseudotime lineages inferred on the Seurat v4 (I)
and Monocle v3 (J) partitions using Slingshot. The resulting trajectories depend strongly on
the upstream clustering. K. The absolute difference between pseudotimes, inferred using the
corresponding Seurat and Monocle pseudotimes in I and J, illustrates areas where the temporal
ordering of cells varies strongly depending on the clustering results. Note the colour scale is
reversed compared to other panels i.e. yellow shades indicate agreement between methods.

[Assessment of clustering agreement] To quantify the similarity between the partitioning
induced by the two methods, element-centric similarity (ECS) is employed (figure 4.1]C); the
ECS ranges from 0 to 1, with higher values indicating greater similarity in how a cell is clustered
between the two methods (Supplementary Methods S2). As ECS measures clustering similar-
ity per cell, while taking into account higher-order interactions between cells induced by the
clusterings, it avoids the biases of other similarity measures with respect to cluster sizes while
providing detailed information (Supplementary Methods S3). In comparing the clusterings, we
note that ECS captures an intuitive notion of similarity; on the UMAP, the consistently clus-
tered right-hand group of cells displays relatively high ECS, while the disagreed-upon central
upper part has low ECS values.

For non-deterministic clustering methods, the question of stability with regard to random seed
also arises i.e. assessment of the clustering variability due to the stochasticity of the clustering
method. We evaluate this stability by repeatedly clustering the entire dataset with the Seurat
and Monocle pipelines separately, each across 100 random seeds. Subsequently, the consistency;,
or frustration [48], of the clustering is evaluated by computing element-centric consistency
(ECC); the ECC is computed by taking the pairwise ECS scores between all clusterings, and
calculating averages per cell (Figure —F). For the Mende et al. dataset, the Seurat pipeline
overall clusters the data more consistently than the Monocle pipeline (ECC summaries: for
Seurat min 0.35, median 0.96, max 1.0, stddev 0.12; for Monocle min ECC 0.33, median 0.67,
max 1.0, stddev 0.17). Some regions of the UMAP, like the far right (cluster 3 in Seurat, cluster
4 in Monocle), are stable in both while others, like the lower left (clusters 4, 5, 8 in Seurat),
are stable in one but not the other.

[Assessment of biological interpretation consequences of the assignment variability]
To further investigate the effects of clustering variability on cell type inference, we look into
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statistically discriminative marker genes, per cluster. These are often considered a starting
point for the annotation of clusters (i.e. for assigning a biological interpretation). We compare
the sets of marker genes using the Jaccard similarity index (JSI) across the ones inferred for each
partitioning (figure [£.1D). Higher values for the JSI indicate greater similarity of the marker
genes per cell, across both methods i.e. the cell’s identity would be interpreted similarly. We
observe overall low JSI throughout the UMAP, indicating that the interpretation of the cells
may vary depending on the clustering method.

Downstream from clustering and cell type identification, one common analysis is cell-cell in-
teraction inference. Here we illustrate the outputs of CellphoneDB [38], which uses expression
levels per cluster in combination with a database of ligand-receptor interactions to infer poten-
tial cellular crosstalk. This analysis is often used as a hypothesis generator, offering leads to
be investigated later. CellphoneDB generates a list of interaction terms, with corresponding
p-values, per pair of interacting clusters; ligands originate from a sender cluster and receptors
from a receiver cluster. When applying CellphoneDB on the Mende et al. data, the inferred
interaction terms differ between the Seurat and Monocle outputs. Grouping the obtained terms
per sender cluster (Figure [1.1(G), a binary confusion matrix, with a one-to-one relationship be-
tween rows and columns (corresponding to Seurat and Monocle clusters) would be expected if
the same interactions were inferred. No such (near-perfect) relationship is observed in practice
(98.6% of matrix entries 0.1 < x < 0.9; the 1st, 5th, 10th, 90th, 95th, 99th percentiles of the
matrix entries are 0.21, 0.24, 0.27, 0.73, 0.83, 0.91, respectively). When grouping interaction
terms per receiver cluster (Figure ), again no one-to-one relationship is observed (97.6%
of matrix entries 0.1 < x < 0.9; the 1st, 5th, 10th, 90th, 95th, 99th percentiles of the matrix
entries are 0.23, 0.26, 0.30, 0.80, 0.87, 0.93, respectively). This disparity in results suggests
that inferred interactions, which may spur follow-up investigations, depend strongly on the
upstream clustering.

For hematopoietic stem and progenitor cells, characterising differentiation trajectories is of
particular interest [27]. Slingshot infers a trajectory on scRNA-seq data using cluster centroids
[39]. To select start and end clusters for the inferred lineages, we used previous cell type
annotations of the data (details in Methods). The resulting trajectories depend strongly on the
upstream clustering (Figure ,J ). In addition, using the Slingshot trajectories derived from
Seurat and Monocle clusterings, a pseudotime was calculated separately on each trajectory. The
resulting pseudotimes were compared per cell, revealing large differences at the top, left, and
bottom of the UMAP (Figure ) This analysis illustrates that trajectory and pseudotime
analyses, and resulting interpretations of differentiation dynamics, may be highly dependent
on upstream clusterings.

[Assessment of variability on density-based clustering approaches| A major difference
between Monocle v2 vs v3 was the shift from using density-peak based clustering as default. To
provide a legacy assessment, and to perform a comparison against a non graph-based clustering,
we looked into the results obtained using Monocle v2 on the Mende et al. dataset. With the
aim of finding the same number of clusters as Seurat, using density-peak clustering on a t-SNE
dimensionality reduction yielded the partitioning of cells observed in Supplementary Figure
S1B. The corresponding ECS and JSI summaries on marker genes, when comparing with the
Seurat v4 clustering (Supplementary Figure SIC-D), highlight areas of similarity and difference
across methods, recapitulating previous conclusions. The Slingshot trajectory, inferred from the
Monocle v2 partitioning, links cell states in a biologically implausible manner (Supplementary
Figure S1E). The differences between the resulting trajectories vs those based on the Seurat
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clustering have knock-on effects for the inferred pseudotimes (Supplementary Figure S1F).
Finally, per-cluster cell-cell interaction analyses, predicted with CellphoneDB, reinforce the
relatively low similarity with the Seurat outputs (Supplementary Figure S1G-H). Thus, on
the Mende et al. dataset used as case study, both when comparing graph-based clustering
pipelines and when comparing one graph-based and one density-peak-based pipeline, resulting
hypotheses are strongly dependent on the pipeline and method in question.

4.2 Assessment of parameters influencing clustering results

A central task for scRNA-seq analyses is inferring cell-types; established pipelines such as Seurat
[31], Monocle v3 [32], and SCANPY [17] use graph-based clustering for partitioning the data.
With minor variations, the pipelines comprise 3 steps: [a] dimensionality reduction (linear or
non-linear), [b] k-nearest neighbour graph inference, and [c] graph clustering. The clustering
output can be significantly altered by several parameters (illustrated in ) Since algorithms
across all steps are stochastic, we first evaluated the effect of using different random seeds,
by calculating the EC consistency over 100 runs (i.e. the resulting partitions). As shown in
the random seeds do have an effect on the stability of the output (ECC summary: min
0.38, mean 0.90, median 0.97, max 1.0, stdev 0.12); the corresponding resulting partitions and
their frequencies are overviewed in Supplementary Figure for this dataset, using default
parameters there is no high-frequency partition, however we also note that some of the changes
in cluster assignation are minimal. Across all subsequent analyses the stability of results is
assessed, and summarised over 100 random seeds.

[Dimensionality reduction| Focusing first on the dimensionality reduction step, we analyzed
the inputs, the parameters and algorithmic details that influence the PCA outputs. The input
set (feature set) is crucial for calculating the distribution of cells in the reduced space. Four
categories of feature sets frequently used in practice are the all genes or most abundant genes
(default in Monocle [49, 41]), highly variable genes (default in Seurat [50, [16]), and the inter-
section between the most abundant and the highly variable genes [41]. In we summarise
the ECC distributions and note the differences in variability; the set of most abundant features
tends to drive tighter distributions, with an ECC converging to 1 (i.e. no variability) as the size
of the set increases (ECC summaries: for PCA with all genes min 0.96, mean 0.99, median 1.00,
max 1.0, stdev 0.001; for UMAP with all genes min 0.37, mean 0.90, median 0.94, max 1.0,
stdev 0.10). More variability is observed for the highly variable set of features (ECC summaries:
for PCA with 3000 genes min 0.51, mean 0.92, median 0.96, max 1.0, stdev 0.09; for UMAP
with 3000 genes min 0.34, mean 0.80, median 0.84, max 1.0, stdev 0.15); a middle ground, in
terms of ECC variability is observed for the intersection of most abundant and most variable
features (ECC summaries: for PCA with 300 genes min 0.50, mean 0.93, median 0.99, max
1.0, stdev 0.11; for UMAP with 300 genes min 0.26, mean 0.85, median 0.88, max 1.0, stdev
0.15). In addition, the underlying embedding influences the stability; the UMAP embedding
(represented in blue in [.2C) leads to lower and more variable ECC than the PCA one. The
purpose of the incremental approach was to determine the largest subset of genes not affected
by noise. For the PCA embedding we note an increase of variability for 2000+ most abundant
features; for the UMAP embedding little variability is observed for the <2000 HV features,
followed by a reduction for 2000+ genes (Supplementary Figures [S2.2] S2.3).
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Figure 4.2: Stability of graph-based clustering pipeline parameters across random
seeds.

The analysis is performed on the Cuomo et al. SMART-seq dataset. A. Diagram underlining
the steps of the clustering pipeline (common to e.g. Seurat and Monocle) and the corresponding
main parameters that drive the variability. B. UMAP representation of ECC, summarising the
variability across 100 different random seeds. C. Summary of the ECC distributions (over 100
runs) for various feature sets (most abundant genes, highly variable genes and their intersec-
tion), various numbers of genes considered (500 to 3000, in increments of 500) and on a PCA or
UMAP base embedding used for building the graph (orange and blue gradients, respectively).
D. Summary of the distributions of differences (over 100 runs) across components for the precise
vs the approximate (irlba) calculation of the PCA. The colour scheme corresponds to typical
precision levels. E. Summary of the co-variation (over 100 runs) between the number of nearest
neighbours and number of connected components; the differences induced by the embedding
(PCA and UMAP) are underlined by colour. F. Summary of the co-variation (over 100 runs) of
the number of the nearest neighbours vs number of clusters; the differences induced by the base
embedding and the graph type (NN: unweighted; SNN: weighted) are underlined by colour. G.
Summary of ECC distributions (over 100 runs) induced by the graph type (NN vs SNN); the
differences induced by the base embedding are underlined by colour. H. Summary of ECC
distributions (over 100 runs) induced by the clustering method vs the resolution parameter (x-
axis). Above each boxplot the number of clusters for the most frequent partition is presented.
[. Summary of co-variation between the resolution parameter and the number of clusters. The
point shape indicates the graph type, the colour gradient is proportional to the frequency of
the most common partition. J. Summary of the stability of partitioning (over 100 runs), on
fixed number of clusters, evaluated on the number of resulting partitions (y-axis); the colour
gradient is proportional to the frequency of the most common partition.

Yet another technical parameter, that influences the stability of the PCA results, is the tol-
erance. In practice, approximate PCA calculations are often used for runtime efficiency at a
minimal cost on precision; the Monocle and Seurat pipelines rely on the irlba package [43]
with default values for the tolerance set at le-5. The user-defined threshold for the tolerance
impacts the stability of the results, through error propagation; in we illustrate the PC
differences obtained for tolerance thresholds of le-5, 1e-10 and le-15 especially noticeable on
the last PCs (differences are calculated against the prcomp calculation, precise up to machine
precision); additional PCs are presented in Supplementary Figure S2.4.

[Graph construction]| The building of the graph relies on the kNN algorithm [51]; therefore
the number of neighbours will have an impact on the partitioning. In panelsfd.2F, G we illustrate
the co-variation between the number of neighbours (x-axis) and the number of clusters (k) and
the EC consistency, respectively. Panels and F underline that an increase in the number
of neighbours leads to a better connected graph; the number of connected components acts
as a lower bound for the number of clusters. Individual clusters can still be sub-partitioned
into finer populations. Panel also underlines the effect of two other parameters: the
embedding and the graph type (unweighted vs weighted). The former contrasts the PCA vs
UMAP embedding, with the UMAP systematically producing more connected components (for
the Cuomo et al. dataset twice as many) than the PCA. The latter focuses on the edge weights
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of the resulting graph. The shared nearest neighbor (SNN) weighted version, used in Seurat and
Monocle, results in more stable partitions across different seeds (Figure ); moreover a better
stability is obtained in comparison with the NN version as well. The differences in the SNN
implementation between the Seurat and the Monocle pipelines are detailed in Supplementary
Information. This summary panel also recapitulates the differences between UMAP and PCA-
based graphs; for fewer neighbours, the ECC difference is significant, however the increase in
the number of neighbours evens out the comparison (ECC summary when using 30 number of
neighbours: for SNN based on PCA, min 0.82, mean 0.99, median 0.99, max 1.0, stdev 0.008;
for NN based on PCA, min 0.46, mean 0.91, median 0.96, max 0.99, stdev 0.11; for SNN based
on UMAP, min 0.26, mean 0.85, median 0.88, max 1.0, stdev 0.15; for NN based on UMAP, min
0.26, mean 0.84, median 0.86, max 1.0, stdev 0.13); an overview of areas of lower consistency
is presented in Supplementary Figure S2.5.

[Graph clustering] Community detection or graph clustering methods were adopted by the
community due to their increased performance and ability to adapt to size and shape charac-
teristics of clusters. These were proposed in clustering pipelines such as PhenoGraph [52] and
became default choices for single-cell pipelines (Seurat, Monocle). With a bottom-up approach,
the methods aim to form clusters that optimise an objective function, with convergence reached
after several iterations. The longstanding Louvain algorithm [45] was superseeded by improved
methods such as Louvain with multi-level refinement [46] or SLM [34]; the current improvement
is the Leiden algorithm [35].

To assess the stability of results with respect to the clustering method, we illustrate in Figure
the ECC distributions corresponding to the four approaches (all available in the Seurat
package; only Louvain and Leiden are available in Monocle). Also contrasted is densityPeak,
a density-based clustering method used as default in Monocle v2. (in Supplementary Figure
S2.6 we also included the k-means with random initialisation, for theoretical consistency). The
stability does not significantly differ across methods, although Louvain refined performs notice-
ably worse for resolution=0.9 (ECC summary: for SLM, min 0.51, mean 0.99, median 0.99,
max 1.0, stdev 0.02; for densityPeak min 0.49, mean 0.96, median 0.97, max 1.0, stdev 0.07; for
Leiden RBConfiguration min 0.55, mean 0.97, median 0.99, max 1.0, stdev 0.07; for Louvain
min 0.59, mean 0.97, median 0.99, max 1.0, stdev 0.04; for Louvain refined min 0.42, mean 0.92,
median 0.97, max 1.0, stdev 0.11). Also assessed is the difference between objective functions
(quality functions or metrics) optimised by a graph-based clustering algorithm, namely Con-
stant Potts model (CPM), Reichardt and Bornholdt’s Potts model with a configuration null
model (RBConfiguration), and Reichardt and Bornholdt’s Potts model with an Erdds-Rényi
null model (RBER) [53] (Figure [£.2H). For the same resolution, the quality functions may
lead to a different number of clusters (e.g., for resolution of 0.7, CPM leads to 1663 clusters,
RBConfiguration 11 and RBER 13). The CPM quality function used as default in Monocle,
bounds the cluster size based on the clustering resolution and number of nearest neighbours
(Supplementary Figure S3). These bounds can partly explain the increased number of clusters
obtained when using CPM rather than RBConfiguration and RBER, while keeping the other
parameters constant.

Lastly, an essential parameter that directly controls the number of communities is the resolution.
The co-variation between the resolution and the number of clusters is summarised in Figure |4.2]
(higher values of the resolution lead to an increase in the number of clusters). This summary
also provides an overview of suitable (stable) ranges for the resolution parameter and reviews
the overall stability of the partition on random seeds; the colour gradient is proportional to the
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number of occurrences of the most frequent partition. Another detail embedded in the panel is
the effect/ difference between the two graph types; the number of clusters is smaller for the NN
graph compared to the SNN. In addition, the number of stable resolution - number of cluster
correspondences is higher for the SNN (7 entries have a frequency >0.85) compared with NN
(3 entries have a frequency >0.85).

Another important characteristic is the number of partitions (the co-variation between the
stability of the number of clusters and the number of resulting, different partitions is sum-
marised in Figure [£.2]]). A high number of different partitions implies a lower stability for a
given number of clusters. The colour gradient is proportional to the frequency of the most
common partition for a fixed number of clusters. A high number of different partitions may be
acceptable if the frequency of the most common one is close to 1. Conversely, a high number
of partitions, each with low frequency, indicates high instability. The graph-type detail is also
embedded in the panel; similarly as in panel I, NN graphs are more unstable compared to SNN
graphs (the maximum number of different partitions for NN is 57, compared with 10 for SNN).
The conclusions also hold for a wider range of resolutions, and with different ECS thresholds
(Supplementary Figures S2.7, S2.8, S2.9).

4.3 Clustering results vary across data modalities

As new assays become available for high-throughput profiling of multiple modalities at single-
cell resolution, new analysis-driven challenges emerge [54]. As with individual single-cell modal-
ities (e.g. scRNA-seq) the grouping of cells into clusters is central to multimodal analyses [55].
Recently developed approaches for multimodal clustering draw on the information available
in each modality to calculate the partitioning of cells |14} [15]. These approaches rely on the
assumption that there exists an underlying cell grouping that could be retrieved regardless of
modality, and using information across modalities will help recover this latent partitioning.
The agreement across individual modalities was considered by Gao et al. [56], who developed
a statistical test of independence between clusterings. The test was initially applied on the
Pioneer 100 Wellness Project dataset of multiple data types, across several timepoints, on a
cohort of participants; the authors concluded that clusterings derived from different modalities
were not dependent for several pairwise comparisons. While their statistical test fits Gaus-
sian mixture models to each data modality to test for independence, ECS compares concrete
partitions. In addition, ECS offers a per-observation measure of the extent to which modality-
specific clusterings agree, providing a more detailed picture of the similarities across modalities
(Supplementary Methods S2).

To assess the applicability of ClustAssess on multiomics data, we present a case study on
a single-cell RNA and ATAC dataset of peripheral blood provided by 10x Genomics. First,
we consider each modality separately; to obtain representative results, we construct nearest
neighbour graphs separately for each modality and partition 100 times across random seeds
with SLM clustering. We select the most common partition, for each modality, for downstream
analyses. We identify 15 clusters for the RNA modality and 11 for the ATAC one (Figure
,B). Using ECS we underline the differences between the partitions generated on each
modality (Figure [£.3D; ECS summary: min 0.0, max 0.96, median 0.47, mean 0.47). The two
isolated islands in the upper part of the UMAP display good agreement, as they each make up
one cluster in both clusterings. Conversely, the two larger bodies of cells towards the bottom
of the UMAP display lower ECS scores overall, underlining the variability in how the cells are
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Figure 4.3: Differences between clustering results created on different modalities of
single-cell RNA+ATAC data. A-C. Partitions obtained using SLM community detection
on nearest neighbour graphs generated on PCA reduction of RNA modality (A), LSI reduction
of ATAC modality (B), and on the weighted nearest neighbour graph created jointly on the
PCA and LSI reductions (C). Each graph was clustered 100 times across random seeds; the
most frequent partition for each modality is presented (with frequency 0.12, 0.13, 0.09 for RNA,
ATAC, and joint RNA+ATAC partitions, respectively). D-F. Element-centric similarity (colour
gradient) comparing RNA and ATAC clusterings (D), RNA and joint clustering (E), ATAC
and joint clustering (F). Differences are observed between the RNA and ATAC clusterings,
while the RNA and joint clusterings display higher agreement. G-H. Jaccard similarity index
(JSI) of cluster marker genes obtained using the partitionings on each modality. Higher JSI
indicates better agreement between markers across modalities, which may have implications
for downstream annotations of cellular identity. All results visualised on UMAP generated on
PCA from RNA modality of the data.
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partitioned depending on modality.

When considering a multimodal clustering using information from both RNA and ATAC modal-
ities, we obtain 16 clusters (Figure ) Notably, the uppermost island of cells, grouped into
a single cluster in both RNA and ATAC modalities, is now split into two parts. Using ECS to
evaluate the per-cell agreement between the multimodal clustering with each of the unimodal
clusterings (Figure ,F), we observe overall high similarity between the multimodal and
the RNA clusterings (ECS summary: min 0.0, max 0.99, median 0.87, mean 0.76), while the
agreement between multimodal and ATAC modalities is lower (ECS summary: min 0.0, max
0.95, median 0.41, mean 0.44), and broadly similar to the agreement between RNA and ATAC,
apart from the top island ) Confusion matrices of the partitions for each modality under-
line the discrepancies between the clusterings (Supplementary Figure S4A-C). We also assessed
the clustering stability on random seeds, on each modality. Across 100 random seeds, ECC
distributions reveal high stability overall, and suggest the ATAC modality is most consistently
clustered, while the RNA and joint RNA+ATAC modalities have some areas of inconsistently
clustered cells; these areas are generally disjoint on the UMAP across the modalities (Supple-
mentary Figure S4D-F).

To observe how the differences in clustering across modalities may affect downstream interpre-
tation, we calculate the most discriminative marker genes, per cluster, for each partitioning.
Comparing the marker genes across modalities using the JSI approach, we identify a mixture of
areas of both higher and lower agreement (Figure —I). Notably, the top island has high JSI
for RNA vs ATAC, but lower when comparing against the multimodal clustering. Overall, the
patterns of JSI recapitulate the ECS results obtained when comparing each unimodal clustering
against the multimodal one.

Given the conceptual differences between the measured assays and the discrepancies between
the RNA and ATAC clusterings, it is worth considering whether there is indeed an underlying
grouping of cells that will be reflected in every modality. If no such universal grouping is visible
and each modality reflects a distinct pattern of cell groups, attempts at pooling information
across modalities during clustering, as we have done here, may be unwise. For this specific
dataset, the multimodal clustering draws heavily on the RNA component, while the contribution
from the ATAC modality is less significant; ECS quantifies this co-variation for each region of
the UMAP.

5 Discussion

5.1 ClustAssess identifies robust, dataset-specific parameter ranges

The outputs of each step of the clustering pipeline are influenced by user-defined parameters.
The main aim of ClustAssess is to evaluate the robustness of inferred partitions to technical
variations (e.g. changes in random seed) to ensure a reflection of true biological signal. The
assessment of the stability is built on the ECC across partitions generated with different ran-
dom seeds. A side effect of this analysis is also the identification of “optimal” ranges, and the
characterisation of complex co-variations, for the various parameters used throughout the clus-
tering pipeline. This alternative use of ClustAssess is exemplified in an additional vignette
provided as part of the package.

We first focus on the dimensionality reduction step; an essential parameter is the feature set.
The user can provide a feature set, including frequently used options such as the most abundant
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genes [49, 41], or highly variable genes [50, |16], or other custom subset specified by the user
[57]. Also assessed are different sizes (number of entries) of the feature set; this incremental
approach is essential for determining the largest subset of genes unaffected by noise |22, [21]
which can alter downstream interpretations. The stability of each feature set is summarised
using boxplots; the distribution of the ECC on the reduced UMAP space provides additional
insights on the localisation of unstable regions on the UMAP topography.

Next, several parameters involved in the graph construction phase are evaluated: [a] the base
embedding i.e. the dimensionality reduction of the input data on which the graph is built, [b]
the number of neighbours and [c| the graph type i.e. unweighted on nearest neighbours, or
weighted using shared nearest neighbours. In turn, these parameters are assessed with respect
to the graph connectivity (number of connected components). While PCA embeddings are
widely used, nonlinear dimensionality reductions including UMAP are popular in single-cell
data analysis for their ability to preserve local structure without overcrowding the visualisation
[58]. Increasing the number of neighbours leads to a decrease in the number of connected
components (more neighbours result in a better connected graph); the number of connected
components provides a lower bound for the number of clusters obtainable by downstream
community detection methods. The concept of shared nearest neighbours was adapted to the
single cell setting in [52]. Changing the approach from nearest neighbours to shared nearest
neighbours leads to differences such as: the SNN approach adds weights to the graph using
the JSI between neighbourhoods of cells and increases the connectivity by introducing edges
between cells that are indirect neighbours. Also assessed is the relationship between graph
construction parameters and the number of communities that a graph clustering algorithm will
delineate.

The central component of the clustering pipeline is the clustering method; we evaluate the
impact of frequently used community detection algorithms in the context of varying/ optimising
the resolution parameter. We focus on four methods available in Seurat: Louvain [45], Louvain
with multilevel refinement [46], SLM [34] and Leiden |35]. The resolution parameter is critical
for determining the final number of clusters (increasing the resolution results in a higher number
of partitions) and in the subsequent biological interpretation. The stability of results is assessed
across a gradient of resolutions versus the number of clusters in summary plots (as presented in
Figure ) showcasing the frequency of the most stable partition and the number of resulting
partitions as well as using the ECCs on UMAP representations.

5.2 Aligning the Seurat and Monocle pipelines by adjusting and
assessing step-wise parameters

The two most frequently used R-based single-cell pipelines, Seurat [31] and Monocle [32], share
similar steps for processing the data i.e. normalisation of expression levels, linear and non-
linear dimensionality reduction, graph building based on k nearest neighbours, and community
detection on the resulting graph. However, as observed in the 10x and SMART-seq case stud-
ies presented in the Results section, there are two main sources of variability: [a] the default
(and occasionally optimised) parameter values/ choices lead to different results, and potentially
different biological interpretations and [b] the stochastic components of the methods may in-
troduce significant variability e.g. in UMAP topologies (Supplementary Figure S5 panels S1-2,
M1-2). Both sources of variability are technical; to address the reproducibility of results, we
focused on the adjustment of parameters to ensure identical outputs. Each pipeline uses a
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specific set of default values; thus, to obtain identical outputs, it is necessary to match the
values. The comparison is performed step-wise (Supplementary Figure S5).

The first task is achieving identical representations on a dimensionality reduction; Seurat and
Monocle rely on different sets of features for the PCA dimensionality reduction i.e. Monocle uses
all genes [32], while Seurat focuses only the highly variable ones [31]. The underlying feature set
influences the topography (Supplementary Figure S5 panels S3,4 and M3.,4); the all genes set
induces a partitioning into numerous small islands (Supplementary Figure S5 panels S4, M3),
whereas the highly variable set of genes produces more compact groups (Supplementary Figure
S5 panels S3, M4). Moreover, even though UMAP is the default non-linear representation in
both pipelines, default values for the min_dist and n_neighbors parameters differ (S5 S5-8,
M5-8), and impact the embedding. Using identical values for min_dist and n_neighbors (0.3
and 30 respectively) results in identical dimensionality reductions.

Next, the graph is built on a reduced space embedding; by default, Seurat uses the Principal
Components as a base embedding [31], while Monocle uses UMAP [32]. Different bases induce
a variable number of clusters (Supplementary Figure S5 panels S9 - S10 and M9 - M10). Yet
another difference stems from the weighting of graphs (Monocle uses as default NN, Seurat
uses as default SNN). The graph type influences the number of clusters and the cells assigned
to them (Supplementary Figure S5 panels S11 and S12); to achieve agreement we set these two
parameters to PCA and SNN respectively. It is worth noting that Seurat and Monocle have
a slightly different implementation of the graph construction method, thus achieving identi-
cal graphs requires an additional processing of the results (further details in Supplementary
Information).

The pipeline concludes with applying a graph clustering algorithm (Supplementary Figure
S5 panels S13-18 and M13-18). To assess the comparability of results, we applied the same
clustering methods, yet some differences were observed (Supplementary Figure S5 panels S13,
S14, M13, M14). The community detection algorithms delineate clusters by optimising an
objective function [35], and changing objective functions leads to a different final partitioning
(Supplementary Figure S5 panels S15, S16, M15, M16). The range of values for the resolution
parameter impacting the clustering output is highly dependant on the objective function (i.e.
the resolution is incorporated differently in different objective functions). In addition, the
resolution parameter directly impacts the final number of clusters (Supplementary Figure S5
panels S17, S18, M17, M18); for the CPM quality function in particular, the combination of
resolution and number of neighbours provides tight bounds on the size of communities [53],
which may be overly restrictive for the context of subpopulation identification in single-cell
data (Supplementary Figure S3). Given the iterative nature of the graph clustering methods,
the convergence of the graph clusters depends on the number of iterations. Seurat and Monocle
use as default different number of iterations (10 and 2, respectively), which generate slightly
different results (Supplementary Figure S5 panel SM19). Using the same value (10) leads to
identical partitions(Supplementary Figure S5 panels S20, M20 and SM21).

We thus illustrated that Monocle v3 and Seurat v4 do lead to identical partitions if the corre-
sponding parameters are set to the same values. We affirmed that the observed differences are
purely down to choices of parameters and underlined the importance of parameter optimisation
to ensure robust and reproducible partitions (and downstream biological interpretations).
These results are recapitulated on earlier versions of Seurat; the only difference in the clustering
pipeline between v3 and v4 of Seurat focuses on the FindNeighbors method (used for graph
construction). The default package used for computing the nearest neighbours changed from
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rann to annoy, but Seurat v4 accommodates both options. Our previous conclusions hold for
the Monocle v3 vs Seurat v3 comparison.

5.3 Scalability of the data-driven assessment of parameters

To assess the scalability of ClustAssess components, with a particular focus on the stability
assessment pipeline, we performed time benchmarks across variable numbers of cells; the results
were obtained by applying the pipeline on variable-size subsamples of cells of the Mende et al.
dataset; the subsamples were generated using geometric sketching [59]. The number of iterations
for parameter assessment functions was set to 30 (the function calls were similar to the ones
presented in the vignette).

The clustering_importance, feature_stability and nn_importance scale similarly and
monotonically as the number of cells increases (Supplementary Figure S6A,B). The
resolution_importance steps performs better, although performance is still superlinear.
nn_n_conn_comps is the only method scaling sublinearly with the number of cells, which may
be explained by the absence of calls to clustering functions. Little variability is observed for
different values of the ECS threshold (Supplementary Figure S6A,B).

The performance gain associated with using multiple cores increases with the size of the dataset
(Supplementary Figure S6B)); however for small datasets the additional overhead may lead to
an increase in runtime (e.g. resolution_importance and clustering_importance achieve
minimal runtime, on 1319 cells, on only one core, Supplementary Figure S6B). Using smaller
subsets of cells on the benchmark data, the sequential run was faster than the parallelised
R instances, which need to copy the variables and collate the results obtained on individual
threads. Another context when multiple cores increase the runtime is observed for a small
number of iterations.

The performance of all methods is highly dependent on the characteristics of the dataset (e.g.
number of cells, sequencing depth), the number of repetitions and the values of the parameters
selected throughout the clustering pipeline (e.g. UMAP calculations are slower than PCA, and
Louvain is a faster clustering method than SLM). The package documentation and vignettes
provide further guidance on usage and parameter choices, and additionally illustrate how to
integrate ClustAssess with the Seurat single-cell toolkit [31].

6 Conclusion

Despite their shortcomings, ARI and other measures of clustering similarity are widely used
in benchmarks, either for assessing clustering methods themselves |25, 60], or to gauge the
consequences of upstream decisions such as batch correction and feature selection |41, 61].
In these studies, partitions are compared both against ground-truth clusterings and across
methods, parameters, etc. Through ClustAssess, we make ECS readily available for the R
community, as a more reliable and flexible alternative when evaluating clustering similarity.

Moreover, progressing from a pairwise view (PAC, ARI) to an element-wise view (ECS) on
stability and similarity enables the understanding of clustering robustness at a finer level of
resolution than before. In this work, its efficiency was exemplified from different angles that
assist with distinguishing between technical variability and robust and reproducible biological
signal. We illustrated the impact of (non-biological) technical factors, from parameter choices
to random seeds, on single-cell partitionings, and their downstream effects on the biological
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conclusions. Through ClustAssess, we enable quantitative evaluations of technical effects on
single-cell analyses, and assist users with the identification of parameter ranges that lead to
more robust analyses.
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