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Abstract

Schizophrenia and states induced by certain psychotomimetic drugs may share some physiological and phenomenological
properties, but they differ in fundamental ways: one is a crippling chronic mental disease, while the others are temporary,
pharmacologically-induced states presently being explored as treatments for mental illnesses. Building towards a deeper
understanding of these different alterations of normal consciousness, here we compare the changes in neural dynamics
induced by LSD and ketamine (in healthy volunteers) against those associated with schizophrenia, as observed in
resting-state M/EEG recordings. While both conditions exhibit increased neural signal diversity, our findings reveal that
this is accompanied by an increased transfer entropy from the front to the back of the brain in schizophrenia, versus an
overall reduction under the two drugs. Furthermore, we show that these effects can be reproduced via different alterations
of standard Bayesian inference applied on a computational model based on the predictive processing framework. In
particular, the effects observed under the drugs are modelled as a reduction of the precision of the priors, while the
effects of schizophrenia correspond to an increased precision of sensory information. These findings shed new light on the
similarities and differences between schizophrenia and two psychotomimetic drug states, and have potential implications
for the study of consciousness and future mental health treatments.
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1. Introduction

Classic serotonergic psychedelic drugs have seen a bloom-
ing resurgence among the public and the scientific commu-
nity in recent years, largely driven by promising clinical
research into their therapeutic potential [1, 2]. At the same5

time, and somewhat paradoxically, psychedelics are known
to elicit effects that mimic some symptoms of psychosis
– earning them the label of ‘psychotomimetic drugs’ [3].
Elucidating the similarities and differences between the
psychedelic state and schizophrenia is an important neuro-10

scientific challenge that could deepen our understanding
of the substantive alterations of perception, cognition, and
conscious experience induced by these conditions, while
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paving the way towards safe and effective psychedelic ther-
apy.15

To contrast these conditions in an empirical manner, we
compare neuroimaging data from patients suffering from
schizophrenia and healthy subjects under the effects of two
psychoactive substances: the classical psychedelic lyser-
gic acid diethylamide (LSD) [4] and the dissociative drug20

ketamine (KET) [5]. Using standardised assessments, it
has been claimed that KET reproduces both positive and
negative symptoms of schizophrenia in humans [6], and
its mechanism of action – NMDA receptor antagonism –
is thought to reproduce a key element of the molecular25

pathophysiology of schizophrenia [7, 8]. LSD – in common
with all classical psychedelics – is a potent agonist of a
number of serotonin receptors, but its characteristic effects
depend primarily on 5-HT2A [9]. These neurotransmitter
systems are linked to psychosis (in particular visual per-30

ceptual changes), and are implicated in psychotic disorders
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like schizophrenia – although see Ref. [10] for an alternative
account.

Both psychotomimetic drug states and schizophrenia
are also associated with marked changes in large-scale neu-35

ral dynamics. For both LSD and KET, previous studies
have found increased signal diversity in subjects’ neural
dynamics [11, 12] and reduced information transfer be-
tween brain regions [13]. However, in the case of KET,
evidence from intracranial recordings in cats suggests a40

much more complicated picture than that of LSD, with
very high variability across individuals, brain regions, and
dose levels [14]. In a separate line of enquiry, work on
EEG data from patients with schizophrenia has also found
increased signal diversity [15, 16], akin to the effect found45

under these drugs. Nonetheless, a parsimonious account
explaining the similarities and differences between the two
states is still lacking.

A promising approach to gain insights into the mecha-
nisms driving the core similarities and differences between50

psychotomimetic drug states and schizophrenia is to lever-
age principles from the predictive processing (PP) frame-
work of brain function [17, 18]. A key postulate of the PP
framework is that the dynamics of neural populations can
be viewed as engaged in processes of inference involving55

top-down and bottom-up signals. Under this framework,
brain activity can be viewed as resulting from a continuous
modelling process in which a prior distribution interacts
with new observations via incoming sensory information.
In accordance with principles of Bayesian inference, dis-60

crepancies between the prior distribution and incoming
signals (called ‘prediction errors’) carried by the bottom-up
signals drive revisions to the top-down activity, so as to
minimize future surprise.

The PP framework has been used to explain percep-65

tual alterations observed in both psychotomimetic drug
states [19, 20] as well as in psychiatric illnesses [21] with a
focus on schizophrenia [22, 23, 24, 25]. PP has also been
used to understand the action of psychedelics, most no-
tably through the ‘relaxed beliefs under psychedelics’ (or70

REBUS) model [26] which posits that psychedelics reduce
the precision of prior beliefs encoded in spontaneous brain’s
activity. REBUS has also been used to inform thinking on
the therapeutic mechanisms of psychedelics, where symp-
tomatology can be viewed as pathologically over-weighted75

beliefs or assumptions encoded in the precision weighting
of brain activity encoding them.

To deepen our understanding of the similarities and dif-
ferences between these conditions, in this paper we replicate
and extend findings on neural diversity and information80

transfer under the two psychotomimetic drugs (LSD and
KET) and in schizophrenia using EEG and MEG record-
ings, and we reproduce these experimental findings as per-
turbations to a single PP model. Our modelling results
reveal that the effects observed under the drugs are indeed85

reproduced by decreasing the precision-weighting of the
priors, while the effects observed under schizophrenia are
reproduced by increased precision-weighting of the bottom-

up sensory information. Overall, this study puts forward a
more nuanced understanding of the relationship between90

two different psychotomimetic drug states and schizophre-
nia, and offers a new model-based perspective on how these
conditions alter conscious experience.

2. Materials and Methods

2.1. Data acquisition and preprocessing95

Data from 29 patients diagnosed with schizophrenia
and 38 age-matched healthy control subjects were obtained
from the Bipolar-Schizophrenia Network on Intermediate
Phenotypes (BSNIP) database [27]. The subjects were
selected within an age range of 20-40 years to match the100

psychedelic datasets described below. Data included 64-
channel EEG recordings sampled at 1000Hz of each subject
in eyes-closed resting state, along with metadata about
demographics (age and gender), and patients’ medications.
The strength of the medication was estimated using the105

number of antipsychotics taken by each patient (mean:
2.7, range: 0-8), as the dosage of each medication was not
available.

Data from healthy subjects under the effects of both
drugs was obtained from previous studies with LSD [4]110

(N = 17) and ketamine [28] (N = 19). Data included
MEG recordings from a CTF 275-channel axial gradiometer
system with a sampling frequency of 600Hz. Each subject
underwent two scanning sessions in eyes-closed resting state:
one after drug administration and another after a placebo115

(PLA).
Preprocessing steps for all datasets were kept as consis-

tent as possible, and were performed using the Fieldtrip [29]
and EEGLAB [30] libraries. First, the data was segmented
into epochs of 2 seconds, and epochs with strong artefacts120

were removed via visual inspection. Next, muscle and eye
movement artefacts were removed using ICA [31]. Then,
a LCMV beamformer [32] was used to reconstruct activ-
ity of sources located at the centroids of regions in the
Automated Anatomical Labelling (AAL) brain atlas [33].125

Finally, source-level data was bandpass-filtered between 1–
100Hz, and downsampled with phase correction to 250Hz
(EEG) and 300Hz (MEG), and AAL areas were grouped
into 5 major Regions of Interest (ROIs): frontal, parietal,
occipital, temporal and sensorimotor (see Figure 1 and130

Table B.1 in the Appendix). In the rest of the paper we
refer to these 5 areas as “ROIs” and to the AAL regions
as “sources.”

2.2. Analysis metrics

Our analyses are focused on two complementary metrics135

of neural activity: Lempel-Ziv complexity (LZ) and transfer
entropy (TE). Both metrics are widely used and robustly
validated measures of neural dynamics across states of
consciousness [13, 34, 11, 12].

Lempel-Ziv complexity (LZ) is a measure of the diver-140

sity of patterns observed in a discrete – typically binary –
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Figure 1: Regions of interest (ROIs) represented on the MNI-
152 standard template. Each ROI is comprised of several regions
of the AAL atlas, as per Table B.1.

sequence. When applied to neuroimaging data, lower LZ
(with respect to wakeful rest) has been associated with
unconscious states such as sleep [35] or anaesthesia [36],
and higher LZ with states of richer phenomenal content145

under psychedelics, ketamine [11, 12] and states of flow
during musical improvisation [37].

To calculate LZ, first one needs to transform a given
signal of length T into a binary sequence. For a given
epoch of univariate M/EEG data, we do this by calculating150

the mean value and transforming each data point above
the mean to 1 and each point below to 0. Then, the
resulting binary sequence is scanned sequentially using the
LZ76 algorithm presented by Kaspar and Schuster [38],
which counts the number of distinct “patterns” in the155

signal. Finally, following results by Ziv [39], the number
of patterns is divided by log2(T )/T to yield an estimate of
the signal’s entropy rate [40], which we refer to generically
as LZ. This process is applied separately to each source
time series (i.e. to each AAL region), and the resulting160

values are averaged according to the grouping in Table B.1
to yield an average LZ value per ROI.

In addition to LZ, our analyses also consider transfer
entropy (TE) [34] — an information-theoretic version of
Granger causality [41] — to assess the dynamical interde-165

pendencies between ROIs. The TE from a source region to
a target region quantifies how much better one can predict
the activity of the target after the activity of the source
is known. This provides a notion of directed functional
connectivity, which can be used to analyse the structure of170

large-scale brain activity [13, 42].
Mathematically, TE is defined as follows. Denote the

activity of two given ROIs at time t by the vectors Xt and
Yt, and the activity of the rest of the brain by Zt. Note that
Xt, Yt, and Zt have one component for each AAL source
in the corresponding ROI(s). TE is computed in terms of
Shannon’s mutual information, I, as the information about
the future state of the target, Yt+1, provided by Xt over

and above the information in Yt and Zt:

TEY→X|Z = I(Xt;Y
−
t−1 | X−

t−1,Z
−
t−1), (1)

where X
−
t

refers to the (possibly infinite) past of Xt, up
to and including time t (and analogously for Yt and Zt).
This quantity can be accurately estimated using state-space
models with Gaussian innovations [43], implemented using175

the MVGC toolbox [44]. Note that, when calculating the
TE between ROIs, we consider each ROI as a vector —
without averaging the multiple AAL sources into a single
number. The result is a directed 5×5 network of conditional
TE values between pairs of ROIs, which can be tested for180

statistical differences across groups.

2.3. Statistical analysis

For both LSD and KET datasets, since the same sub-
jects were monitored under both drug and placebo condi-
tions, average subject-level differences (either in LZ or TE)185

were calculated for each subject, and one-sample t-tests
were used on those differences to estimate the effect of the
drug.

For the data of patients and controls in the schizophre-
nia dataset, group-level differences were estimated via linear190

models. These models used either LZ or TE as target vari-
able, and condition (schizophrenia or healthy), age, gender,
and number of antipsychotics (set to zero for healthy con-
trols) as predictors. Motivated by previous work suggesting
a quadratic relationship between complexity and age [45],195

each model was built with either a linear or quadratic de-
pendence on age, and the quadratic model was selected
if it was preferred over a linear model by a log-likelihood
ratio test (with a critical level of 0.05).

Finally, multiple comparisons when comparing TE val-200

ues across all pairs of ROIs were addressed by using the
Network-Based Statistic (NBS) [46] method, which iden-
tifies ‘clusters’ of differences – i.e. connected components
where a particular null hypothesis is consistently rejected
while controlling for family-wise error rate. Our analy-205

sis used an in-house adapted version of NBS that works
on directed networks, such as the ones provided by TE
analyses.

2.4. Computational modelling

A computational model was developed in order to inter-210

pret the LZ and TE findings observed on the neuroimaging
data. Building on predictive processing principles [18], we
constructed a Bayesian state-space model that provides an
idealised common ground to contrast the three studied con-
ditions – the psychotomimetic drug states, schizophrenia,215

and baseline (i.e. healthy controls). Our modelling is based
on the postulate that the activity of neuronal populations
across the brain can be interpreted as carrying out infer-
ence on the causes of their afferent signals. Following this
view, the proposed model considers the following elements:220

• the internal state of a low-level region (i.e. near the
sensory periphery), denoted by st;
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Figure 2: Graphical illustration of the predictive processing
model. The activity of a high-level neural population is represented
as a prediction ŝt, and the activity of a low-level population as a
prediction error ξt. The internal states of the high- and low-level
regions are captured by st and ht, respectively.

• the internal state of neural activity taking place func-
tionally one level above, denoted by ht;

• the signal generated at the high-level region in the225

form of a prediction of the low-level activity, denoted
by ŝt;

• the signal generated at the low-level region in the
form of a prediction error ξt; and

• the precision of the prior λp and precision of sen-230

sory/afferent information λs.

This model represents neural activity within a larger hi-
erarchical processing structure, as illustrated in Figure 2.
The key principle motivating this model is that minimisa-
tion of prediction error signals throughout the hierarchy,235

by updating top-down predictions, implements a tractable
approximation to Bayesian inference.2

Within this model, we represent the schizophrenia and
psychedelic conditions as different types of disruption to
Bayesian inference. To describe the psychedelic state, we240

build on the REBUS hypothesis [26], which posits a reduced
precision-weighting of prior beliefs, leading to increased
bottom-up influence. Conversely, to describe schizophrenia
we build on the canonical predictive processing account
of psychosis in schizophrenia [48], which postulates an245

increased precision of sensory input, along with decreased
precision of prior beliefs [22, 21]. Therefore, both conditions
are similar in that there is a relative strengthening of

2Note that in the simple scenario of Eqs. (3), with a single level
and Gaussian distributions, inference is in fact exact. In larger or
more complicated models inference is often carried out only approxi-
mately [47].

bottom-up influence, although instantiated in different ways
– which, as shown in Sec. 3.3, bears important consequences250

for the behaviour of the model.
It is important to note that predictive processing ac-

counts of schizophrenia remain hotly debated, with other
works proposing an increase of prior precision (instead
of decrease) as a model of auditory and visual halluci-255

nations [49, 50]. Recent reviews [48] have attempted to
reconcile both views by suggesting that sensory hallucina-
tions may be caused by stronger priors, while hallucinations
related to self-generated phenomena (like inner speech or
self-attention [51]) may stem from weaker priors. Here, we260

base our modelling of SCZ on the weak prior hypothesis, as
described above - we return to this issue in this discussion.

To simulate the aberrant dynamics of the inference
process, as described above, we consider a given afferent
signal (st) and construct the corresponding activity of a
higher area (ht), prediction (ŝt), and prediction error (ξt),
building on the rich literature of state-space models in
neuroscience [52, 53, 54]. Specifically, we use the linear
stochastic process:

ht = aht−1 + εt (2a)

st = bht + νt , (2b)

where a, b are weights, and εt, νt are zero-mean Gaussian
terms with precision (i.e. inverse variance) λp and λs,
respectively. Note that this formulation is equivalent to

ht|ht−1 ∼ N (aht−1, λ
−1
p ) , (3a)

st|ht ∼ N (bht, λ
−1
s ) . (3b)

As we show in the following, λp corresponds to the precision
of the prior and λs to the precision of sensory/afferent
information.265

The dynamics of this system can be described as a
recurrent update between predictions and prediction errors
as follows. Eq. (3b) implies that the internal state ht

generates a prediction about the low-level activity given by
ŝt = bht. At the same time, the dynamics of the high-level
region can be seen as a Bayesian update of ht given st
and ht−1. Under some simplifying assumptions, the mean
of the posterior distribution of ht+1 (denoted by ĥt+1) is
equal to (see Appendix A)

ĥt+1 = aĥt + βξt , (4)

which effectively combines a prior aĥt (which is the optimal

prediction of ht+1 given only ĥt, as seen from Eq. (3a))

and a likelihood given by the prediction error ξt = st − bĥt

that is precision-weighted via β, a parameter known as the
Kalman gain [55].270

In our simulations, the model is first calibrated using
as afferent signals (i.e. st) data from the primary visual
cortex, corresponding to epochs randomly sampled from
the placebo conditions in the LSD and KET datasets. This
calibration results in the estimation of the model param-
eters acon, bcon, λcon

p , λcon
s for the control condition, which

4
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Figure 3: Increased signal diversity in subjects under the effects of psychotomimetic drugs and in schizophrenia patients.
LZ changes are widespread across all ROIs in the three datasets. For the schizophrenia dataset, LZ values shown are corrected for age, gender,
and the number of antipsychotic medications taken by each patient using a linear model.

is done using the well-known expectation-maximisation
algorithm [56]. With these, the schizophrenia condition is
then modelled by setting

λscz
p = λcon

p and λscz
s = ηλcon

s , (5)

where η > 1 is referred to as a noise factor. This increase
of λs induces a strengthening of bottom-up prediction er-
rors, and makes the posterior of ht excessively precise.
Conversely, the drug condition is modelled by setting

λpsy
p =

λcon
p

η
and λpsy

s = λcon
s . (6)

Reducing λp also increases the influence of prediction er-
rors, but reduces the precision of the posterior of ht. Sub-
sequently, for both conditions the parameters a, b are re-
trained with another pass of the expectation-maximisation
algorithm on the placebo trials.275

Finally, to compare the model with the empirical M/EEG
data, the LZ of the neural activity elicited in the low-level
area (i.e. the prediction errors, ξt) and the top-down trans-
fer entropy (from the high-level activity ŝt towards the
low-level activity ξt) are calculated for each of these three280

models (control, schizophrenia, and drug).

3. Results

3.1. LSD, KET and schizophrenia all show increased LZ

We begin the analysis by comparing changes in signal
diversity, as measured by LZ, across the LSD, ketamine285

(KET), and schizophrenia (SCZ) datasets.
Our results show strong and significant increases in

LZ in all three datasets (Fig. 3), in line with previous
work [11, 12, 15, 16]. In all three cases the LZ increases
are widespread throughout the brain, with the effects in290

schizophrenia patients being more pronounced in frontal
and parietal regions. While the t-scores are higher in LSD

and KET than schizophrenia, this could be due to the
within-subjects design of both drug experiments – which
are more statistically powerful than the between-subjects295

analysis used on the schizophrenia dataset.
Interestingly, we found that controlling for the med-

ication status of each schizophrenia patient was crucial
to obtain results that match prior work [15]. A direct
comparison of LZ values between patients and controls300

yielded no significant differences (t = −0.38, p = 0.70);
however, when using a linear model correcting for age,
gender, and number of antipsychotics, the antipsychotics
coefficient of the model reveals a negative effect on LZ
(β = −0.016, t = −2.3, p = 0.021). Additionally, a two-305

sample t-test calculated between the corrected LZ values of
patients and controls yields a substantial difference (t = 3.4,
p = 0.001). Nonetheless, the sensitivity of this result to
these pre-processing steps means it should be considered
preliminary and explored further in future research (see310

the corresponding discussion in Sec. 4.3).

3.2. Opposite effect of psychotomimetic drugs and schizophre-

nia on information transfer

We next report the effects of LSD, KET, and schizophre-
nia on large-scale information flow in the brain, as measured315

via transfer entropy (TE). The TE between each pair of
ROIs (conditioned on all other ROIs) is calculated for each
subject, and used to build directed TE networks. The
resulting networks were tested for differences between the
drug states and placebo conditions (for LSD and KET),320

and between patients and controls (for SCZ), correcting
for multiple comparisons via cluster permutation testing
(see Sec. 2.3).

We found a ubiquitous decrease in the TE between
most pairs of ROIs under LSD and KET (Fig. 4), which325

is consistent with previous findings [13]. In contrast, SCZ
patients exhibit marked localised increases in TE – and no
decreases – with respect to the control subjects. Notably,

5
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Figure 4: Lower information transfer under LSD and ketamine but higher information transfer for schizophrenia patients.
Transfer entropy (TE) shows a strong widespread decrease in subjects under the effect of LSD or ketamine (KET), compared to a placebo.
Conversely, schizophrenia (SCZ) patients show an increase in TE with respect to controls (CTRL), especially from the frontal region to the
rest of the brain (controlling for age, gender and antipsychotic use). Links shown are significant after multiple comparisons correction.

most increases in TE originated in the frontal ROI, and
are strongest between the frontal and occipital ROIs. The330

increase of information transfer seen in schizophrenia pa-
tients therefore takes place “front to back” – aligned with
the pathways thought to carry top-down information in
the brain from highly cognitive, decision-making regions
to unimodal regions closer to the sensory periphery.335

As was the case for LZ, controlling for antipsychotic
use was key to revealing differences between the healthy
controls and schizophrenia patients. In addition, we found
a small negative correlation between antipsychotic use and
TE between certain ROI pairs – but, unlike for LZ, this340

effect did not survive correction for multiple comparisons.

3.3. Computational model reproduces experimental results

So far, we have seen that subjects under the effects of
two different psychotomimetic drugs display increased sig-
nal diversity and reduced information flow in their neural345

dynamics. In comparison, schizophrenia patients display in-
creased complexity but also increased information flow with
respect to healthy controls. We now show how complemen-
tary perturbations to the precision terms of the predictive
processing model introduced in Section 2.4 reproduce these350

findings.
We compared the basline model against the drug and

schizophrenia variants by systematically increasing the
noise factor η, which results in reduced prior precision
in the drug model, and increased sensory precision in the355

schizophrenia model. We then computed the corresponding
LZ and TE based on the model-generated time series ξt,
ŝt as per Sec. 2.4 (Fig. 5).

Results show that the proposed model successfully repro-
duced the experimental findings of both LZ and TE under360

the two different psychotomimetic drugs and schizophrenia
(Fig. 5). Interestingly, the model also shows (Fig. 5b) that
a relative strengthening of sensory information (via either
increased sensory precision, or decreased prior precision)
can trigger either an increase or a decrease (respectively)365

of top-down transfer entropy. This suggests that transfer
entropy changes cannot be directly interpreted as reveal-
ing the changes in any underlying predictive processing
mechanisms (see Discussion).

Finally, as a control, we repeated the analysis on the370

model but exploring the variation of the precision terms
in the two unexplored directions — either reducing λp or
increasing λs (see Section 2.4). Neither of these changes
reproduced the experimental findings (results not shown),
which highlights the specificity of the modelling choices.375

4. Discussion

In this paper we have analysed MEG data from healthy
subjects under the effects of the psychotomimetic drugs
LSD and ketamine, as well as EEG data from a cohort of
schizophrenia patients and healthy control subjects. We380

focused on signal diversity and information transfer, both
widely utilised metrics of neural dynamics. We found
that all datasets show increases in signal diversity, but
diverging changes in information transfer, which was higher
in schizophrenia patients but lower for subjects under the385

effects of either drug. In addition to replicating previous
results reporting signal diversity and information transfer
under the effects of both drugs [11, 12, 13], we described
new findings applying these metrics to schizophrenia.

Using a computational model inspired by predictive390

processing principles [18, 57], we showed that this combina-
tion of effects can be reproduced via specific alterations to
prediction updating, which can be interpreted as specific
forms of disruption to Bayesian inference. Critically, the
effects of both psychotomimetic drugs and schizophrenia,395

on both signal diversity and information transfer, are ex-
plained by a relative strengthening of sensory information
over prior beliefs, although triggered by different mecha-
nisms – a decrease in the precision of priors in the case
of psychotomimetic drugs (consistent with Ref. [26]), and400
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Figure 5: A computational model based on predictive processing principles reproduces experimental findings in the LSD,
ketamine and schizophrenia datasets. (a) By increasing the sensory precision (for schizophrenia; blue), or reducing the prior’s precision
(for LSD and KET; orange) by a given ‘noise’ factor η, the model can reproduce the experimental findings of (b) increased in LZ in both
conditions, and (c) opposite changes in TE in both conditions, compared to a baseline (grey).

an increase in the precision of sensory information for
schizophrenia.

4.1. Increased sensory precision in schizophrenia

The idea that the symptoms of schizophrenia can be
understood as alterations to processes of Bayesian infer-405

ence has been particularly fertile in the field of compu-
tational psychiatry [21]. In particular, various studies
based on PP have related psychosis to decreased preci-
sion of prior beliefs and increased precision of the sensory
inputs [58, 19, 22, 59, 60]. These computational models410

have been supported by a growing number of related ex-
perimental findings, including an enhanced confirmation
bias [61], impaired reversal learning [62, 63], and a greater
resistance to visual illusions [64]. For instance, schizophre-
nia patients are less susceptible to the Ebbinghaus illusion,415

which arises primarily from misleading prior expectations,
suggesting that patients do not integrate this prior con-
text with sensory evidence and thus achieve more accurate
judgements [65].

Most of the above mentioned studies are task-based, fo-420

cusing on differentiating perceptual learning behaviours be-
tween healthy controls and schizophrenia patients. Though
these studies provide a range of experimental markers, the
corresponding methodologies cannot be applied to resting-
state or task-free conditions, under which it is known that425

certain behavioural alterations (e.g. delusions, anhedonia,
and paranoia) persist [66, 67].

The findings presented in this paper provide a step to-
wards bridging this important knowledge gap by providing
empirical and theoretical insights into resting-state neural430

activity under schizophrenia. Although we build on and
replicate results related to signal diversity, we are not aware
of previous studies of information transfer on schizophrenia
in resting state.

4.2. Beyond unidimensional accounts of top-down vs bottom-435

up processing

The findings presented here link spontaneous brain ac-
tivity to the PP framework using empirical metrics of signal
diversity and information transfer. In the psychotomimetic
drug condition, the former increases while the latter de-440

creases; in schizophrenia, both increase – in both cases as
compared to baseline placebo or control. The explanation
for this pattern of results, articulated by our computational
model, is based on the idea that a bias favouring bottom-up
over top-down processing can be triggered by changing dif-445

ferent precision parameters, which can give rise to opposite
effects in specific aspects of the neural dynamics. This
observation, we argue, opens the door to more nuanced
analyses for future studies.

The increased transfer entropy from frontal to posterior450

brain areas observed under schizophrenia could be naively
interpreted as supporting increased top-down regulation;
however, neither the empirical analysis nor the computa-
tional model warrant this conclusion. Transfer entropy
simply indicates information flow and is agnostic about455

functional role. Moreover, our model-based analyses illus-
trate how aberrant Bayesian inference in which bottom-up
influences become strong can trigger either an increase or
a decrease in transfer entropy from frontal to posterior
regions, depending on which precision terms are involved.460

An interesting possible explanation for this divergence be-
tween mechanisms and TE is provided by recent results
that show that TE is an aggregate of qualitatively different
information modes [68]. Future work may explore if resolv-
ing TE into its finer constituents might provide a more465

informative mapping from observed patterns to underlying
mechanisms.

Taken together, these findings suggest that conceiv-
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ing the bottom-up vs top-down dichotomy as a single-
dimensional trade-off might be too simplistic, and that470

multi-dimensional approaches could shed more light on this
issue. In particular, our results show how such a simplistic
view fails to account for the rich interplay of similarities
and differences between schizophrenia and psychosis.

4.3. Limitations and future work475

While our empirical and modelling results agree with the
canonical PP account of psychosis [48], some reports have
suggested a stronger influence of priors over sensory signals
– especially in some cases of hallucinations [69, 70, 71]. It
is important to remark that the ‘strengthened prior’ inter-480

pretation put forward by these task-based studies cannot
be accounted for by the simple computational modelling
developed here. Future work on multi-level extensions of
this model could test if a richer hierarchical model could
implicate a stronger influence of certain high-level priors485

under certain conditions.
Regarding the empirical analyses, it is important to

note that our analyses are subject to a few limitations due
to the nature of the data used. First, the analyses used only
60 AAL sources across 5 ROIs (due to the spatial resolution490

limitations of EEG), and therefore may neglect potential
PP effects that may exist at smaller spatial scales. In ad-
dition, the studies on both drugs and schizophrenia used
different imaging methods (MEG vs EEG), sampling rate,
and experiment designs (within vs between subjects), com-495

plicating direct comparisons. Finally, future work should
examine how power spectra across the different conditions
relate to the findings presented, in terms of both their
effect on LZ [72], and their relationship with top-down
and bottom-up signalling, for example using band-limited500

Granger causality [73], as well as how directed functional
connectivity measures relate to undirected measures such
as mutual information and coherence [13].

Similarly, while the measures discussed here capture
significant differences between schizophrenia patients and505

healthy controls, more work needs to be done to further
characterise the differences within the schizophrenia spec-
trum, which features a heterogenous array of symptoms and
states, e.g. at different phases of the so-called ‘psychotic
process’ [74]. This might entail a closer look at the clinical510

symptom scores of the patients and their relationship to
neural dynamics, which was not possible here due to the
lack of appropriate metadata. An interesting possibility
is that the neural underpinnings of positive and negative
symptoms could be different [22], and investigating these515

differences may yield further insight into schizophrenia it-
self and its relationship with the psychotomimetic drug
states. Moreover, both schizophrenia and drug-induced
states can be conceived of as dynamic states of conscious-
ness, comprised of several sub-states and/or episodes with520

hallucinations, delusions and negative symptoms varying
widely between and within individuals. Future studies
could explore these finer fluctuations in conscious state [75],
as well as what features or episodes overlap in the neural

and psychological levels between psychotomimetic drug525

states and schizophrenia.
Finally, recall that (as described in Sec. 2.1) we used

the number of antipsychotic medications being used by
each patient as a proxy measure for their medication load.
We acknowledge that this is an oversimplification, and that530

richer datasets may allow a more detailed inspection of
the effects of each particular medication – which would
potentially bring more nuance to these analyses. Also, the
models used for statistical analysis (as per Sec. 2.3) are lin-
ear and may not capture possible non-linear dependencies535

between antipsychotic use and its effect on neural dynamics
(in our case, LZ or TE). Bearing this caveat in mind, the
preliminary results regarding antipsychotic use suggest that
they bring the patients’ neural dynamics closer to the range
of healthy controls. This finding should be replicated with540

more detailed analyses, and, if robust, could potentially
be used to investigate the mechanism of action of current
antipsychotic drugs.

4.4. Final remarks

In this paper we have contrasted changes in brain activ-545

ity in individuals with schizophrenia (compared to healthy
controls) with changes induced by a classic 5-HT2A recep-
tor agonist psychedelic, LSD, and an NMDA antagonist
dissociative, ketamine (compared to placebo). Empirical
analyses revealed that both schizophrenia and drug states550

show an increase in neural signal diversity, but they have
divergent transfer entropy profiles. Furthermore, we pro-
posed a simple computational model based on the predictive
processing framework [18] that recapitulates the empirical
findings through distinct alterations to optimal Bayesian555

inference. In doing so, we argued that both schizophrenia
and psychotomimetic drugs can be described as inducing
a stronger “bottom-up” influence of sensory information,
but in qualitatively different ways, thus painting a more
nuanced picture of the functional dynamics of predictive560

processing systems. Crucially, the proposed model differs
from others in the literature in that it is a model of resting-
state (as opposed to task-based) brain activity, bringing
this methodology closer to other approaches to neuroimag-
ing data analysis based on complexity science [76].565

Overall, this study illustrates the benefits of combin-
ing information-theoretic analyses of experimental data
and computational modelling, as integrating datasets from
patients with those from healthy subjects. We hope our
findings will inspire further work deepening our understand-570

ing about the relationship between neural dynamics and
high-level brain functions, which in turn may accelerate
the development of novel, mechanism-based treatments to
foster and promote mental health.
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Appendix A. Further details on the predictive pro-595

cessing model

This appendix outlines how a process of Bayesian infer-
ence on the probability distribution described by Eq. (3)
can be interpreted in terms of the joint dynamics of pre-
diction and prediction error. This is covered in standard600

textbooks of time series analysis (e.g. in Ref. [55]) – how-
ever, it is provided here for completeness and accessibility.

As a starting point, we assume that a given brain region
is trying to infer the hidden cause ht of its afferent signal,
st. The brain can use all the previous signals, s

t−1 =
(s1, . . . , st−1), to generate an optimal prior estimation of
ht, which is given by p(ht|s

t−1). When a new sample st is
observed, this prior can be updated using Bayes’ rule,

p(ht|s
t) =

p(ht, st, s
t−1)

p(st, st−1)
=

p(st|ht)p(ht|s
t−1)

p(st|st−1)
.

Note that, while in general computing p(ht|s
t) can be

computationally challenging, when all the distributions in
the right-hand side of the equation above are Gaussian605

(as per Eq. (3)) the posterior is easily calculable – as we
explain below.

For consistency with the model in Eq. (2), we assume

that ht|s
t−1 is a Gaussian random variable with mean ĥt

and variance λ−1
t

. By considering p(ht|s
t−1) as a prior

and p(st|ht) as a likelihood, we can compute the posterior
p(ht|s

t) by using Bayes’ rule above for Gaussian variables.
In this case, standard results for conditional Gaussian
distributions (e.g. Ref. [55, Eq. (4.2)]) show that

E[ht|s
t] = ĥt + λ−1

t
bF−1

t
ξt, (A.1)

where ξt = st − E[st|s
t−1] = st − bĥt is the error in the

prediction of st given s
t−1, and Ft = b2λ−1

t
+ λ−1

s is the
predictive covariance of st given s

t−1. Then, by using
Eq. (3a), one can propagate the prediction in Eq. (A.1) to
the next step, and obtain a recurrent update equation for
ĥt given by

ĥt+1 := E[ht+1|s
t] = aE[ht|s

t] = aĥt + βtξt , (A.2)

where βt = abλ−1
t

F−1
t

is known as the Kalman gain pa-
rameter [55, Sec. 4.3] and which, as described in Sec. 2.4,

depends only on its previous value ĥt−1 and the prediction610

error ξt.
Furthermore, from the definition of βt and Ft it can be

seen that increasing λs leads to a higher βt, thus increasing
the bottom-up influence of prediction errors. A similar
argument can be made for the increase of βt with lower615

λp, although this requires writing a recurrent expression
analogous to Eq. (A.2) for λt and is more mathematically
involved. Interested readers are referred to Sec. 4.3 of
Ref. [55] for a detailed derivation.

Appendix B. Table with definition of the selected620

ROIs

ROI AAL indices
Frontal 3-16, 19-20, 23-26
Occipital 43-54
Parietal 59-70

Sensorimotor 1-2, 17-18, 57-58
Temporal 81-90

Table B.1: Selected regions from the AAL atlas and their correspond-
ing region of interest (ROI).
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