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Abstract

In neurodegenerative diseases including Alzheimer’'s and ALS, proteins that bind RNA
are found in aggregated forms in autopsied brains. Evidence suggests that RNA aids
nucleation of these pathological aggregates; however, the mechanism has not been
investigated at the level of atomic structure. Here we present the 3.4 A resolution structure
of fibrils of full-length recombinant tau protein in the presence of RNA, determined by
electron cryo-microscopy (cryoEM). The structure reveals the familiar in-register cross-8
amyloid scaffold, but with a small fibril core spanning residues Glu391 to Ala426, a region
disordered in the fuzzy coat in all previously studied tau polymorphs. RNA is bound on
the fibril surface to the positively charged residues Arg406 and His407 and runs parallel
to the fibril axis. The fibrils dissolve when RNAse is added, showing that RNA is necessary
for fibril integrity. While this structure cannot exist simultaneously with the tau fibril
structures extracted from patients’ brains, it could conceivably account for the nucleating
effects of RNA cofactors followed by remodeling as fibrils mature.

Significance statement: Application of cryoEM has greatly expanded our understanding
of atomic structures of mature pathological amyloid fibrils, but little is known at the
molecular level of the initiation of fibril formation. RNA has been shown to be one cofactor
for formation of fibrils of tau protein, and is known also to bind to other proteins, including
TDP-43, FUS, and HNRNPA2, which form pathological inclusions. Our cryoEM structure
of recombinant tau protein with RNA reveals a 36 residue, C-terminal fibril core bound to
RNA which runs parallel to the fibril axis. We speculate that this structure could represent
an early step in the formation of tau fibrils.

Introduction

The two pathological hallmarks of Alzheimer’s disease (AD) are extracellular Ap plaques
and intracellular tau neurofibrillary tangles that accompany neuron loss in the brain (1).
The deposition of tau aggregates in the brain is also the pathological hallmark of dozens
of dementias and movement disorders known as tauopathies, including progressive
supranuclear palsy (PSP), Pick’'s Disease (PiD), chronic traumatic encephalopathy
(CTE), and corticobasal degeneration (CBD) (2). In each of these conditions, monomeric
tau proteins stack to form amyloid fibrils, but the trigger for fibrillization is poorly
understood (3). Identical copies of tau stack into long B-sheets which in turn mate together
tightly to form steric zippers; these fibrils are a common feature of all amyloid diseases

(4).

Cofactors are necessary to form and stabilize tau fibrils in vitro and in vivo. In vitro,
fibrillization of recombinant tau requires cofactors such as heparin, RNA, or arachidonic
acid (5-7). Recent cryo-EM structures of heparin-induced tau filaments show they are
heterogeneous and different from those of AD or PiD, which have larger fibril cores with
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different structures (8-10). In vivo, many cofactors are known to associate with NFTs in
AD. These cofactors have been shown to stimulate AD-like phosphorylation of
recombinant tau (5, 11, 12), and some of these cofactors are important for seeding activity
in vitro (3, 5, 13). CryoEM structures of tau filaments extracted from the brains of patients
with CTE, CBD, and PSP reveal residual density attributed to unknown cofactors:
hydrophobic in CTE and anionic in CBD (14-16). These cofactors may stabilize particular
tau fibril polymorphs (17) and together with post-translational modifications, govern which
fibril polymorph dominates in the human brain (3, 18, 19).

RNA is implicated as a cofactor in the formation of fibrils of RNA binding proteins (RBPs)
associated with amyotrophic lateral sclerosis (ALS), such as FUS, TDP-43, and
hnRNPA1. These RBPs play important roles in gene expression by forming
ribonucleoprotein complexes and participating in RNA processing steps including
alternative splicing, stress granule formation and RNA degradation (20, 21). RBPs such
as FUS and hnRNPA1 condense to form functional granules by liquid-liquid phase
separation. Further aggregation, sometimes facilitated by RBP mutations, leads to
pathological amyloid formation and accelerates development of neurodegenerative
disease (2, 22-24). Notably, these proteins contain low complexity domains (LCDs) which
further contribute to phase separation (22, 23, 25, 26) by a mechanism that is not yet
clear.

RNA also induces tau to condense into a separate phase similar to RBPs (27) despite the
fact that tau is not a bona fide RBP, nor does it contain an LCD. RNA forms a metastable
complex with tau (18). RNA’s negatively charged phosphate backbone is thought to
interact with the positive charge of the tau molecule to promote its aggregation (28, 29).
These aggregates have pathological consequences. For example, RNA-containing tau
aggregates in cell culture and mouse brains have been shown to alter pre-mRNA splicing
(30). Moreover, crowding of tau molecules in the condensed phase facilitates tau stacking
in a cross-B fashion to produce amyloid fibrils (6, 31). Similarly, RNA accelerates prion
propagation in vitro and in vivo (32).

To learn how RNA interacts with tau at the atomic level and triggers fibril formation, we
determined the cryo-EM structure of the fibril of recombinant full-length tau induced by
RNA. With this structure and associated biochemical experiments we addressed several
questions: (1) which tau residues comprise the RNA binding site? (2) why is the C-
terminal region of tau poorly ordered in tau fibrils extracted from autopsied brains of
patients with tauopathies? (3) how does RNA facilitate reversibility in fibril assembly and
modulate fibril stability? (4) what role does RNA play in nucleating or deterring (33)
formation of pathological tau fibril polymorphs?

Results

Generating full-length recombinant tau-fibrils
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To test whether RNA can act as a cofactor to assist the fibril formation of full-length tau
(residues 1 to 441, termed: Tau40), we incubated tau40 in the presence of total RNA
extracted from mouse liver. We chose RNA from mouse liver because liver has less tau
protein than other organs (34). In the presence of RNA, monomeric tau40 aggregates into
amyloid fibrils (Fig. 1A). In contrast, no tau fibrils were observed in the absence of RNA,
indicating that RNA induces these fibrils, and may be incorporated as a building block
(Fig. 1B). To determine whether the fibrils contain full-length tau or a degraded product,
possibly due to self-cleavage of tau, the fibrils were pelleted, washed and their molecular
weight verified using SDS/PAGE. We observed that tau fibrils induced by RNA are
primarily composed of full-length tau, with a small quantity of higher molecular weight
species as shown in Fig. 1C.

Next, we examined whether the tau-RNA fibrils have the capability to seed tau
aggregation in HEK293 tau biosensor cells that express YFP-tagged tau-K18 (35). As
shown in Fig. 1D-E, tau-RNA fibrils robustly seed tau aggregation in biosensor cells,
whereas RNA alone displays essentially no seeding activity.

RNA cofactor is essential for formation and stability of full-length tau fibrils

To test the role of RNA length on RNA-induced tau fibril formation, we performed in vitro
fibrillation experiments using total RNA or RNA treated with RNAse (termed pre-digested
RNA). Pre-digested RNA was incubated with tau40 monomers, but no amyloid fibrils
formed even after 60 hours of shaking (Fig. 2). In contrast, undigested RNA induced
spontaneous fibril formation over the same time course, suggesting the role of
polymerized RNA as a cofactor in inducing tau aggregation.

Fichou et al., reported that the presence of synthetic RNA (polyU) is required to sustain
growth of fibrils of a truncated version of tau (termed: tau187, residues 255 to 441) even
when the barrier to nucleation is removed by seeding with heparin-induced tau fibrils or
mouse-derived fibrils (3). To investigate the influence of RNA on the seeding efficiency of
tau, we used RNA-induced tau40 fibrils to seed monomeric tau in the presence of either
pre-digested or undigested RNA, in vitro. We observed robust seeding of tau fibrils in the
presence of undigested RNA sample (Fig. S1 A). Fewer and shorter fibrils are formed in
the presence of digested RNA (Fig. S1 B). We didn’t observe any fibril in the presence of
5% seeds (2.5 uM of sonicated tau40 fibrils) and absence of RNA (Fig. S1 C-D),
consistent with the critical role of polymerized RNA in supporting fibril formation. Similarly,
no fibrils were observed when both RNA and seeds were predigested by RNAse (Fig. S1
E). We speculate that digested RNA would not have been sufficient to produce short tau
fibrils if it were not for the small amount of RNA that accompanied the fibril seeds,
consistent with the observation that seeding of monomer in the presence of digested RNA
and digested seeds lacks even short fibrillar structures. These results suggest that
polymerized RNA appears to be an essential constituent of self-assembling and seeding-
active tau fibrils.
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RNA is the building blocks of tau fibrils

To assess biochemically whether RNA molecules remain associated with tau fibrils or
dissociate upon fibril formation, we performed a co-sedimentation assay. We pelleted
fibrils and washed them twice with RNA-free water. After sedimentation, pellets were
resuspended in RNA-free water and RNA binding was evaluated by quantifying light
absorption at 260 nm and performing RNA electrophoresis. These experiments reveal
that RNA, predominantly of two molecular weighs, is incorporated into the fibril
architecture (Fig. S2), consistent with previous studies that reported the binding of polyA
RNA to tau-K18 and tau-K19 fibrils (29).

Cryo-EM structure of full-length tau-RNA fibril bound to RNA

To discover how RNA induces tau aggregation, we determined the cryoEM structure of
RNA-induced full-length tau fibrils to an overall resolution of 3.4 A. We identified two fibril
polymorphs in our cryoEM images and 2D classification: one fibril polymorph is twisted
and the other lacks a twist. The twisted species was the more abundant, accounting for
75% of the fibrils. The species lacking a twist accounted for the remaining 25% of fibrils
and was not suitable for structure determination. The twisted tau-RNA fibril exhibits a
pitch of 829 A. It is composed of two protofilaments related by a pseudo 21 screw axis. It
exhibits a helical twist of 179.16° and a helical rise of 2.4 A (Table 1, Fig. 3B and Fig.
S3). The protofilaments are composed of flattened tau molecules stacked in parallel, in-
register B-sheet alignment (Fig. S4). The fibril core spans 36 residues near the C-
terminus of tau, from Glu391 to Ala426 and encompasses five B-strands (B1: Glu391-
Val393, B2: Ser396-Serd400, B3: Asp402-Pro405, B4: His407-Ser413 and B5: Asp418-
Val420) (Fig. 3A & E). Notably, this region of tau has been characterized as a disordered
fuzzy coat in all previously determined structures of tau fibrils, which includes the ex-vivo
fibrils from AD, CBD, PSP, GGT and CTE patients as well as heparin-induced fibrils (8-
10, 16, 36).

Stripes of residual cryoEM density run along the length of the two tau protofilaments,
resembling RNA strands on the fibril surface (Fig. 3C & D). Within each stripe, we see
three adjacent blobs of density resembling a phosphate, ribose, and base moiety
repeating every 4.8 A along the fibril axis, commensurate with the repeat of stacked tau
molecules. The density is not sufficiently strong to clearly distinguish among the 4
nucleotide bases, so we modeled polyA and polyG (separately) into the residual density
(Fig. 3C & F). PolyA has been recently reported to be a cofactor for tau aggregation and
localized with nuclear and cytosolic tau aggregates in P301S mouse brains (3, 29,
30).The location of our docked RNA chain is chemically compatible with the surface of
the tau fibril where it is docked: (i) the phosphate OP1 atoms are positioned 2.8-3.0 A
from Arg406 NH1 atoms, suggesting they are hydrogen bonded; (ii) the ribose 2°-OH
atoms are positioned 2.7 A from His407 NE2 atoms, suggesting these atoms are also
hydrogen bonded, and the adenine base contacts His407 and Pro423 (Fig. 3C & D); (iii)
arginine-rich motifs are common among RNA binding domains including human
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ribosomal protein L7, the lambdoid bacteriophage N protein and HIV-1 Rev protein (37-
40).

The interaction of RNA and side chains in our tau-RNA fibril is reminiscent of the
interaction between side chains and unidentified cofactors in recent brain-derived fibril
structures. The proximity of residual density near two positively charged side chains
(Arg406 and His407) in our tau-RNA fibril matches the pattern seen in cryoEM maps of
ex-vivo a-synuclein fibrils (41). For example, residual density is located near surface
exposed Lys58 and Lys60 sidechains, and near Lys32 and Lys34 in MSA case 2 type II-
1 (6xyp). Similarly, in tau fibrils extracted from CTE patients, residual density is prominent
near the adjacent Lys317 and Lys321 side chains (6nwq). Hence, it is a common pattern
among amyloid fibrils that adjacent pairs of positively charged sidechains cling to putative
cofactors of compensating negative charge.

We note that density for RNA is relatively weak. One explanation for this weakness is the
potential mismatch in distance between repeating units of tau and RNA. Tau molecules
stack in a protofilament with a repeat distance of 4.8 A, whereas the preferred base
stacking distance of RNA nucleotides is 3.3 A. As a result, the nucleotide bases stack
with less aromatic overlap than normally observed in canonical A-form RNA structures.
The lack of overlap probably limits the stability of the RNA-tau interaction.

Tau-RNA fibrils are reversible amyloid

To determine whether RNA is integrated in the fibril architecture or plays only a catalytic
role in amyloid fibril formation, we exposed mature fibrils to enzymatic digestion. Tau-
RNA fibrils were digested by mixing the fibrils with RNase at 1: 0.6 and 1: 3 molar ratios
(fibrils: RNase) for 2 hours at 37 “C. As shown in Fig. 4A, tau fibrils break down into small
pieces with increasing RNase concentrations, suggesting that the RNA is a molecular
glue for the fibril scaffold and an integral part of the fibril structure. Based on these
findings, we conclude that RNA-induced tau fibrils are reversible amyloid and
disaggregate when RNA is digested.

To elucidate the structural features that impart reversibility to tau-RNA fibril assembly, we
calculated a stabilization energy map of our structure (Fig. 4B). Our formulation of
stabilization energy derives primarily from the penalty associated with dissolving and
exposing atoms to water. Large negative values imply stable assemblies, difficult to
dissolve. The modest stabilization energy of our fibril structure (-14 kcal mol™' chain™,
-0.39 kcal mol™' residue™) is similar in value to other reversible amyloids such as
hnRNPA2 low-complexity domain (-19.5 kcal mol~" chain™', —0.34 kcal mol~' residue™)
and FUS (-12.2kcalmol™" chain™', —0.20 kcal mol™' residue™) (42, 43) (Fig. 4B & C).
FUS and hnRNPA2-LCD belong to a group of RNA-binding proteins known to phase
separate and function in membraneless organelles. Pathological versions of hnRNPA2
and FUS fibrils are implicated in disease (22, 44). In contrast to reversible fibrils, more
favorable stabilization energy values are observed among ex vivo pathological fibrils such
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as human serum amyloid A (-34.4 kcal mol™" chain™!, —0.64 kcal mol™" residue™) (4, 45)
and the brain extracted tau fibrils from patients of AD, PiD, Chronic traumatic
encephalopathy (CTE) and Corticobasal degeneration (CBD) (Fig. 4C).

The relative ease of dissolving tau-RNA fibrils may be partly attributed to the lack of a
sizable hydrophobic core. Note the paucity of strongly stabilizing residues (Fig 4B. bright
red colors) and also the burial of an acidic residue, Asp418 (dark blue color). The interface
between protofilaments is composed primarily of polar residues (Lys395, Thr403,
Asn410, Ser412, Thr414); their modest contribution to stability is manifested as faint pink
and blue colors in Fig. 4B. Most notably, Asp418 is buried and has no compensating
charge nearby (Fig. 4B, dark blue color). Almost certainly, it is protonated in the fibril or
else charge repulsion between neighboring Asp418 residues would strongly destabilize
the fibril. An analogous buried glutamate (Glu8) is attributed to imparting reversibility in
B-endorphin fibrils (46), and three buried aspartates in glucagon likely impart its proclivity
to fibril formation at low pH (47). It seems likely that, in addition to RNA, protons may be
considered to be cofactors for assembly of this fibril.

To test the capability of tau fibrils in the presence of RNA to disassemble upon raising the
pH value, tau fibrils were incubated with 30 mM CAPS at pH 9.5 for 3 hrs at 37 °C. The
abundance of tau fibrils in electron micrographs decreased approximately 5-fold at pH
9.5, supporting the validity of the hypothesis that pH elevation deprotonates Asp418 and
Asp421 and facilitates tau fibril disassembly (Fig. S5).

CryoEM structure of tau-RNA fibril reveals five steric zipper interfaces

The cryoEM reconstruction of the tau-RNA fibril reveals tight-fitting interfaces between its
B-sheets that entirely exclude water molecules. Such stable structural motifs consisting
of mated B-sheets are termed steric zippers. Our RNA-induced tau fibril is stabilized by
five steric zippers, referred to as A1, Az, B1, Bz, C (Fig. 5A). Steric zippers A1 and Az are
symmetrically identical zippers residing in protofilaments 1 and 2, respectively. Each is
composed of a pair of B-sheets, strengthened by van der Waals contacts between side
chains of one sheet face (Asp418, Val420 and Asp421) and its mated sheet face (His407,
Ser409, Val411 and Ser413). Steric zippers B1 & B2 are composed of a surface displaying
residues Pro397, Val399, and Thr403 mated with a complementary surface displaying
residues Thr414, Gly415, and lle417. Steric zipper C differs from the preceding zippers
because it mates together identical B-sheets from separate protofilaments (homotypic).
B-sheet residues Leu408, Asn410, Ser412 mate with identical residues of the opposing
protofilament. In agreement with our cryoEM model, the potential for forming such a
homotypic steric zipper was predicted by our ZipperDB database. Rosetta calculates
energetic stabilities for homotypic hexapeptide segments. The segment 408-LSNVSS -
413 exceeds the -23 kcal/mol threshold for identifying amyloid fibril-forming segments (by
1.4 kcal/mol).
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Notice that the polyanion RNA interacts with tau basic residues of Arg406 and His407,
thereby stabilizing the B-arch motif (residues 408-421) at the C-terminus of the ordered
tau segment (Fig. S6). The hydrophobic interactions between the side chains of Val411
and Val420 stabilize steric zippers B1 and B2, and helps assemble the RNA binding site.
The tau-RNA structured core, residues His407-Ser422 adopt a beta-arch motif, formed
by multiple copies of antiparallel protein strands (B4 and B5), which stack in layers
perpendicular to the fibril axis (Fig. S6).

RNA stimulates conversion of tau microtubule binding repeats into fibrils

To test whether RNA may induce tau fibril formation by binding to other regions of the tau
molecule than visualized in our tau-RNA structure, we tested fibrillation of three truncated
versions of tau: tau-K18 (residues 244-372 with Repeat 2), tau-K18+ (244-380 with
Repeat 2), and tau-K19+ (244-380 without Repeat 2) (Fig. S7 & S8). Tau-K18+/K19+
include an additional 8 residues C-terminal to tau-K18 in order to encompass all residues
found in the core of AD fibril structures (residues 306-378). All three of these constructs
lack the C-terminal domain of tau that is ordered in our full-length tau-RNA structure. EM
micrographs show that addition of RNA facilitates fibril formation of 50 pM or 100 uM tau-
K18 (Fig. S7). Interestingly, the yield of fibrils generated by tau-K18 with RNA is lower
than the yield from tau40 (with RNA). The tau-K18 fibril yield increases when seeded by
tau40-RNA fibrils, indicating these C-terminus-containing seeds can coax the C-terminus-
deficient tau-K18 monomers into fibrils. In addition to tau-K18, we found that the
constructs tau-K18+ and tau-K19+ have a greater amount of fibril formation in the
presence of RNA compared to tau-K18. EM data also indicates that seeding with tau40-
RNA can lead to faster and more abundant fibril formation (Fig. S8). These data suggest
that RNA may be able to bind to regions in the microtubule binding region of tau and
promote fibril assembly. Although the fact that residues from K18, K18+, and K19+ are
not found in our full-length tau-RNA structure indicates the strongest RNA-tau binding site
is that visualized in our structure: Arg406 and His407.

Discussion

Interactions of RNA with amyloid fibrils are common in both normal metabolism and
pathogenesis, yet little has been uncovered about the structural basis of these
complexes. To help to fill this void, we have formed amyloid fibrils of full-length
recombinant tau protein with unfractionated RNA from mouse liver. The cryoEM structure
of these fibrils reveals a familiar cross-beta scaffold formed by a two-protofilament tau
36-residue core. RNA runs parallel to tau’s helical fibril axis, interacting with positively
charged tau sidechains (Fig. 3C). Because the periodic spacing of the RNA sidechains
is not commensurate with the 4.8 A spacing of tau amyloid layers, the RNA structure is
blurred, but evidently covalently intact. Its integrity is shown by the disruption of adding
RNase, which causes disaggregation and dissolution of tau.
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The ordered core of tau-RNA fibrils is composed of parallel, in-register 3-sheets folded to
form five steric zipper interfaces that stabilize the fibril, together with the extensive
network of backbone hydrogen bonds (48). However, these zippers lack strong
hydrophobic character. Most contacts between (3-sheets involve a polar side chain (Fig.
4B). Moreover, the core size is small, only 37 residues (compared to 73-107 residues in
other tau fibril structures). Calculations suggest the stabilization energy of the tau core is
poor (Fig. 4C). RNA binding appears to stabilize the tau core by contributing electrostatic
and cation-Tr interactions with Arg406 and His407. Indeed, our fibrils degrade into short
segments upon RNase treatment. Disaggregation of tau fibrils upon cofactor removal has
also been observed by others (18). The polymeric connectivity of the RNA appears to be
the crucial feature of its stabilization of tau fibrils because pre-digested RNA is unable to
coax tau monomers into a fibril. This evidence suggests that RNA strands act as
molecular glue for stabilizing the fibril (Fig. 4A). All of these observations are consistent
with the hypothesis that RNA can serve as a structural cofactor for reversible amyloid fibril
formation of tau protein.

In addition to studies in vitro (6, 29, 49), other observations suggest that RNA acts as a
cofactor for tau aggregation in vivo. RNA staining reveals that RNA associates with tau
aggregates in AD and PiD (13, 50). Also, cytosolic and nuclear tau complexes with small
nuclear RNAs and small nucleolar RNAs in cell culture and mouse brain models (30). And
tau undergoes liquid-liquid phase separation upon binding to tRNA in neuronal cells and
then transitions to a conformation resembling pathological fibrils (49).

If we assume that tau-RNA filaments akin to that of Fig. 5 form in vivo, we can imagine
two outcomes: either the filaments catalyze the nucleation of formation of a pathogenic
amyloid polymorph, or that they protect against pathogenic forms, as envisaged from
NMR studies (33). In the first outcome, our C-terminal tau filaments could facilitate the
assembly of pathogenic tau filaments by epitaxial nucleation (Fig. 6A, B, F) by providing
a 4.8 A spacing to template growth of a commensurately spaced pathogenic fibril.
Alternatively, structural order could spread from the C-terminal core to the R1-R4 regions,
creating a new pathogenic core, followed by dissolution of the original core (Fig. 6B, D,
E). The second possible outcome is that an ordered C-terminal core such as the one we
observe, can coexist with an ordered repeat region (33) which might protect the repeat
region from forming pathological conformations. We imagine that our RNA-induced fibril
core could be the precursor to this larger, but benign fibril core (Fig. 6C).

In order to test the possibilities outlined in Figure 6, in future work several experiments
could be imagined. To test whether residues outside the tau-RNA fibril core become
ordered over time as depicted in Fig. 6C & D, a time-resolved structural study of tau-RNA
fibrils could be performed. If additional residues become ordered, CryoEM maps would
reveal their structure. In order to test the possibility of epitaxial nucleation as depicted in
Fig. 6F, the structures of fibrils seeded by tau-RNA could be studied. Indeed, our
experiments already lend some support to the templating of different tau structures via
the tau-RNA structure we determined here. Full-length tau, K18, K18+, and K19+ are all
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able to be seeded by full-length tau-RNA. Although seeding of full-length tau in the
presence of RNA may result in the replication of the structure of the seed, seeding of K18,
K18+, and K19+ would all result in a different fibril structure than the seed due to
sequence differences (K18, K18+, and K19+ do not contain the core sequence of full-
length tau-RNA fibrils). This suggests that the tau-RNA fibril may facilitate epitaxial
nucleation of other tau molecules into different tau fibril structures, providing for the
possibility of the mechanism illustrated in Fig. 6F. Future work is needed to perform time-
resolved structural studies of tau-RNA fibrils and to optimize the fibrils of different tau
constructs fibrillated in the presence of RNA with or without seeding to test the various
possibilities we outline in Fig. 6.

In summary, the cryo-EM structure of tau-RNA fibrils we report here offers a near-atomic-
resolution view of a structured tau C-terminus and provides a structural explanation for
why tau-RNA fibrils are reversible amyloid. If it turns out that this tau-RNA structure forms
in vivo, and is an intermediate to formation of pathogenic fibrils, our structure then offers
information for the design of structure-based chemical interventions of tauopathies.
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Methods

Recombinant protein expression and purification

Human WT tau-K18 (residues 244-372), human tau-K18+ (residues 244-380 of 4R) and
human tau-K19+ (residues 244—-380 of 3R tau) were expressed in a pPNG2 vector in BL21-
Gold E. coli. Human tau40 (residues 1-441) was expressed in pET28b vector in BL21-
Gold E. coli. All proteins were purified as previously described (51-53).

Human tau-K18, tau-K18+ and tau-K19+ purification: BL21-Gold E. coli cells grown in LB
to an OD600 = 0.7. Cells were induced with 0.5 mM IPTG for 3 hours at 37 “C and lysed
by sonication in 20 mM MES buffer (pH 6.8) with 1 mM EDTA, 1 mM MgCI2, 1 mM DTT
and HALT protease inhibitor before addition of NaCl 500 mM final concentration. Lysate
was boiled for 15 minutes and the clarified by centrifugation at 32,0009 for 15 minutes
and dialyzed to 20 mM MES buffer (pH 6.8) with 50 mM NaCl and 5 mM DTT. Dialyzed
lysate was purified on a 5 ml HighTrap SP ion exchange column and eluted over a
gradient of NaCl from 50 to 600 mM. Proteins were polished on a HiLoad 16/600
Superdex 75 pg in 10 mM Tris (pH 7.6) with 100 mM NaCl and 1 mM DTT, and
concentrated to ~20-60 mg/ml by ultrafiltration using a 3 kDa cutoff.

Human tau40 purification: Tau40 was expressed in pET28b with a C-terminal His-tag in
BL21-Gold E. coli cells grown in TB to an OD600 = 0.8. Cells were induced with 1mM
IPTG for 3 hours at 37 °C and lysed by sonication in 50 mM Tris (pH 8.0) with 500 mM
NaCl, 20 mM imidazole, 1 mM beta-mercaptoethanol, and HALT protease inhibitor. Cells
were lysed by sonication, clarified by centrifugation at 32,0009 for 15 minutes, and passed
over a 5 ml HisTrap affinity column. The column was washed with lysis buffer and eluted
over a gradient of imidazole from 20 to 300 mM. Fractions containing purified tau40 were
dialyzed into 50 mM MES buffer (pH 6.0) with 50 mM NaCl and 1 mM beta-
mercaptoethanol and purified by cation exchange. Peak fractions were polished on a
HiLoad 16/600 Superdex 200 pg in 1X PBS (pH 7.4), ImM DTT and concentrated to ~20-
60 mg/ml by ultrafiltration using a 10 kDa cutoff.

Isolation of total RNA from mouse liver

Wild type mouse liver RNA was isolated with RNA TRIzol™ Reagent (Ambion by life
technologies, Cat No: 15596018) according to manufacturer’s protocol. Briefly, 100 mg
of mouse liver was homogenized in 1 ml Trizol reagent, extracted by 0.2 ml chloroform,
precipitated by 0.5 ml isopropanol, and dissolved in 100 pl RNase-free H20.

Preparation of tau40 fibrils for cryo-EM

Recombinant tau40 was diluted at 50 uM in 20 mM ammonium acetate, pH 7.0 and
incubated with 400 pg/ml of RNA. The amyloid fibril formation was examined using
negative stain transmission EM after 2 days of shaking at 37 °C.

In vitro ThT fluorescence assay

Recombinant tau40, tau-K18, tau-K18+ and tau-K19+ were diluted individually to 50
MM in 20 mM ammonium acetate, pH 7.0, 10 uM ThT, and mixed with 400 pg/ml of RNA.
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Protein was liquated to 3 replicate wells of a 384-well-plate (Thermo Scientific Nunc),
and plates were incubated at 37 °C for 60 h with shaking. The fibrillation was confirmed
by negative stain transmission EM.

RNA digestions

Digestions of RNA were carried out by incubating RNA or tau-RNA seeds with RNase A
(Invitrogen by Thermo Fisher Scientific, Lot: 00522943) in 20 mM ammonium acetate, pH
7.0 as shown in Fig. 2 & Fig. S1. The digestion of RNA was performed by incubating
RNA or tau-RNA seeds with RNase at 4:1 ratio at 37°C for 6 hours.

Effect of RNase on tau-RNA fibril stability

Tau fibrils were centrifuged at 159,000¢g for 1 hour and followed by washing twice with
RNA free water. Fibrils was treated with RNase A at 1: 0.6 and 1: 3 molar ratio (Fibrils:
RNase) in 20 mM ammonium acetate, pH 7.0 for 2 hours at 37 °C.

Negative-stain transmission election microscopy

Negative-stain transmission EM samples were prepared by applying 4 ul of solution to
400 mesh carbon-coated formvar support films mounted on cooper grids (Ted Pella, Inc.).
The grids were glow-discharged for 30 s before applying the samples. The samples were
incubated on the grid for 1 min and then blotted off with a filter paper. The grids were
stained with 4 ul of 2% uranyl acetate for 2 min and washed with an additional 4 ul of 2%
uranyl acetate and allowed to dry for 10 min. The grids were imaged using a T12 (FEI)
election microscope.

Seeding in tau biosensor cells

HEK293 cell lines stably expressing tau-K18 was engineered by Marc Diamond's
laboratory at the University of Texas Southwestern Medical Center (54). Cells were
maintained in Dulbecco's modified Eagle's medium (Life Technologies, Inc., catalog no.
11965092) supplemented with 10% (v/v) FBS (Life Technologies, catalog no. A3160401),
1% antibiotic-antimycotic (Life Technologies, Inc., catalog no. 15240062), and 1%
Glutamax (Life Technologies, catalog no. 35050061) at 37 °C, 5% CO2 in a humidified
incubator. Tau RNA-fibrils seeds was sonicated in a cup horn water bath for 5 min and
then mixed with 1 volume of Lipofectamine 3000 (Life Technologies, catalog no.
11668027) prepared by diluting 1 ul of Lipofectamine in 19 ul of OptiMEM. After 20 min,
10 ul of fibrils were added to 90 ul of tau biosensor cells. The number of seeded
aggregates was determined by imaging the entire well of a 96-well plate in triplicate using
a Celigo image cytometer (Nexcelom) in the YFP channel. Aggregates were counted
using Imaged (55) by subtracting the background fluorescence from unseeded cells and
then counting the number of peaks with fluorescence above background using the built-
in particle analyzer. The number of aggregates was normalized to the confluence of each
well, and dose—response plots were generated by calculating the average and S.D.
values from triplicate measurements. For high-quality images, cells were photographed
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on a ZEISS Axio Observer D1 fluorescence microscope using the YFP fluorescence
channel.

CryoEM data collection, reconstruction, and model building

Two and half microliters of tau fibril solution were applied to Quantifoil 1.2/1.3 electron
microscope grid which was glow-discharged for 4 minutes. Grids were blotted with filter
paper to remove excess sample and plunge frozen into liquid ethane using a Vitrobot
Mark IV (FEI). The cryo-EM dataset were collect on 300 kV Titan Krios (FEI) microscope
with a Gatan K3 camera located at the S2C2 cryo-EM center. The microscope was
operated with 300 kV acceleration voltage and slit width of 20 eV. Movies were
acquired using super-resolution mode with a nominal physical pixel size of 1.06 A per
pixel! (0.53 A per pixel in super-resolution movie frames) with a dose per frame of ~1.3
e / A2. Forty frames were recorded for each movie (total dose per image 52 e / A?).
Automated data collection was driven by EPU automation software package. Motion
correction and dose weighting was performed using Unblur and CTF estimation was
performed using CTFFIND 4.1.8 (56). All fibril particles were picked manually using
EMAN2 e2helixboxer.py (57). We used RELION to perform particle extraction, 2D
classification, helical reconstruction, and 3D refinement (58, 59). Particles were extracted
using a box size of 1024 and 686 pixels. We used 1024 pixel particles to perform the 2D
classification and estimate the fibril pitch and helical parameters. We next performed 2D
classifications with a box size of 686 pixels. Helical reconstruction was performed with a
cylindrical reference (58).The 3D classification was performed using three classes and
manually controlling the tau_fudge factor and healpix_order to separate the particles into
good and bad classes. To obtain a higher resolution reconstruction, the best particles
from 686-pixel box 3D classification were selected and helical “tubes” corresponding to
good particles were extracted using a box size of 320 pixels. After several more rounds
of 3D classification with refinement of helical twist and rise, we then used the final subset
of particles to perform high-resolution gold-standard refinement. The final overall
resolution estimate was evaluated to be 3.4 A based on the 0.143 Fourier shell correlation
(FSC) resolution cutoff.

Atomic model building

The refined map was sharpened using phenix.auto_sharpen at the resolution cutoff as
indicated by half-map FSC (60). We used COOQOT to build de novo near-atomic resolution
model the sharpened map (61). The sequence registration was validated using
phenix.sequence_from_map. In the final 3D refinement, we generated a five-layer model
via the helical parameters and then refined the structure using phenix.real_space_refine
(61). The final model was validated using phenix.comprehensive_validation (62, 63). All
the statistics are summarized in Table 1.

Stabilization energy calculation
The stabilization energy was calculated for each residue by the sum of the products of
the area buried for each atom and the corresponding atomic solvation parameters. The
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overall energy was calculated by the sum of energies of all residues and different colors
were assigned to each residue in the solvation energy map.
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Fig. 1. RNA induces formation of full-length tau amyloid fibrils. (A) Negative stain
electron micrograph of tau40 fibrils grown in the presence of total RNA extracted from
mouse liver. Tau fibrils were prepared by mixing 200 ul of 50 uM of monomeric tau40 in
20 mM ammonium acetate buffer pH7 with 400 pg/mL RNA and incubated with shaking
for two days at 37 °C. (B) Electron micrograph of monomeric tau40 in the absence of RNA
under the conditions of panel A. (C) SDS/PAGE analysis of tau-RNA fibrils after
centrifugation at 159,000g and washing twice with RNA free water. (D-E) Quantification
of the seeding activity of Tau-RNA fibrils, measured in HEK293 biosensor cells
expressing YFP-tagged tau-K18. (E) Representative images of aggregates produced by
seeding in HEK293 biosensor cells. Cells seeded with tau-RNA fibrils (left panel), and
RNA only as a control (right panel). The red arrow highlights a cell representative of those
that contain aggregates. The white arrows highlight cells representative of those that
contain no aggregates. Scale bar 25 pym.
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0 (+Digested RNA)

Fig. 2. RNA enables in vitro fibril formation of tau. (A) Representative EM image of
recombinant tau40 in the presence of RNA. (B) EM image of tau40 in the absence of
RNA. (C) EM image of tau40 in the presence of pre-digested RNA. (D) Representative
EM image of RNA only. (E) EM image of the digested RNA only. The digestion of RNA
was performed by incubating the RNA with RNase at 4:1 ratio at 37°C for 6 hours. Scale
bar 100 nm.
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Fig. 3. Cryo-EM structure of full-length recombinant tau fibril bound to RNA. (A)
Schematic representation of full-length tau (tau40, residues 1-441) including the two
alternatively spliced N-terminal domains and four microtubule binding domains (R1-R4).
The sequence of the ordered core in our tau-RNA fibril structure is shown in black. (B)
The CryoEM reconstruction of our tau-RNA fibril, showing two identical
protofilaments (pink and yellow) with left-handed twist. (C) Parallel, in register alignment
of tau molecules (pink) and polyG RNA (cyan) running parallel to the fibril axis. (D) Close-
up view of tau fibril-RNA model showing H-bonding between Arg406, His407 and Asp402
and residues and polyG RNA. (E) Atomic model and density map of one cross-sectional
layer of the tau fibril core viewed down the fibril axis. (F) Close-up view of tau fibril-RNA
interaction showing modeled H-bonding between Arg406, His407 residues and polyA
RNA.
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Fig. 4. Tau-RNA fibrils are reversible amyloid. (A) Influence of RNase on tau fibril
stability. EM image of tau-RNA fibrils in the absence of RNase (Top panel). Tau fibrils
begin to cluster and breakdown in the presence of RNase at 1: 0.6 molar ratio (Fibrils:
RNase, middle panel). Fibrils treated with higher molar ratio of RNase (1:3) break down
into short fragments (Bottom panel). RNase was incubated with tau fibrils for 2 hours at
37 °C in 20 mM ammonium acetate buffer, pH 7.0. Scale bar 100 nm. (B) Solvation energy
maps of tau-RNA fibrils ordered segment. Residues are colored according to their
stabilization energies from unfavorable (blue, +2.5kcalmol™') to favorable (red,
-2.5kcal mol™). (C) Comparison of the solvation energy values of the tau-RNA fiber
structure with other amyloid structures.
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Fig. 5. Structure of tau-RNA fibril. (A) Cartoon of the two identical protofilaments (pink
and yellow) of tau-RNA fibrils. Eight tau layers of each protofilament are shown. 3-sheet
surfaces are mated together in five steric zipper interfaces (interface: A1, A2, B1, Bz, and
C, colored by letter). (B) The amino acid sequence of the ordered fibril core of tau-RNA
cryoEM structure. The RNA-tau fibril core is composed of residues Glu391 to Ala426
arranged on a cross-f3 scaffold. The steric zipper interfaces involve B-strands 2, 3, 4, and
5 (B1: Glu391-Val393, 32: Ser396-Ser400, 33: Asp402-Pro405, B4: His407-Ser413 and
B5: Asp418-Val420) that stack in layers perpendicular to the fibril axis.
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Fig. 6. RNA-induced tau fibrils might be protective or they might facilitate formation
of pathogenic tau conformations. (A) When intrinsically disordered tau molecules
become concentrated in the presence of RNA, (B) RNA induces the C-terminal segment
(residues 391-426) to form an amyloid core. We anticipate four possible outcomes: loss
of RNA causes the fibrils to dissolve, returning tau to the soluble state (A); (C) the amyloid-
RNA core facilitates ordering of R3 and R4 which pack aside the C-terminal core in a
conformation that protects tau from forming pathological conformations as suggested by
Dregni et al. (33) (D) the amyloid-RNA core facilitates ordering of R3 and R4 in a
pathological conformation, such as the "C" shaped conformation of paired helical
filaments (PHF) in Alzheimer's disease, and then the C-terminal core disassembles,
leaving (E) the PHF conformations; or (F) the RNA-amyloid core epitaxially nucleates a
pathological tau conformation.
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Table 1: Statistics of data collection atomic refinement

Tau-RNA fibrils (PDB:

7SP1)
Data collection and processing
Magnification x130,000
Voltage (kV) 300
Electron exposure (e~ A7) 52
Defocus range (um) 0.76-3.9
Pixel size (A) 1.06
Symmetry imposed C1; Helical
Helical Twist 179.16
Helical Rise 2.40
Initial particle images (no.) 234,037
Final particle images (no.) 26,061
Map resolution (A) 3.4
FSC threshold 0.143
Map resolution range (A) 200-3.4
Refinement
Initial model used De Novo
Model resolution (A) 3.4
FSC threshold 0.5
Model resolution range (A) 200-3.4
Map sharpening B factor (A?) -233.0
Model composition
Non-hydrogen atoms 4343
Protein residues 540
RNA residues 20
B factors (A°) 84.4
Protein
R.m.s. deviations
Bond lengths (A) 0.007
Bond angles (°) 1.435
Validation
MolProbity score 1.75
Clashscore 11.67
Poor rotamers (%) 0
Ramachandran plot
Favored (%) 97.1
Allowed (%) 0
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Disallowed (%) 0
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