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Abstract

Root phenotyping describes methods for measuring root properties, or traits. While root
phenotyping can be challenging, it is advancing quickly. In order for the field to move forward,
it is essential to understand the current state and challenges of root phenotyping, as well as

the pressing needs of the root biology community.

In this letter, we present and discuss the results of a survey that was created and disseminated
by members of the Graduate Student and Postdoc Ambassador Program at the 11th
symposium of the International Society of Root Research. This survey aimed to (1) provide an
overview of the objectives, biological models and methodological approaches used in root
phenotyping studies, and (2) identify the main limitations currently faced by plant scientists

with regard to root phenotyping.

Our survey highlighted that (1) monocotyledonous crops dominate the root phenotyping
landscape, (2) root phenotyping is mainly used to quantify morphological and architectural
root traits, (3) 2D root scanning/imaging is the most widely used root phenotyping technigue,
(4) time-consuming tasks are an important barrier to root phenotyping, (5) there is a need for
standardised, high-throughput methods to sample and phenotype roots, particularly under

field conditions, and to improve our understanding of trait-function relationships.
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Roots are crucial plant organs that underpin soil organisms through carbon and energy
deposition via root exudation, while acquiring water and nutrients for plants (Freschet et al.,
2021b). While the physical, chemical and biological functions of roots are now better
understood, the ability to measure root properties and how they affect the functioning of
ecosystems remains challenging to fill remaining knowledge gaps. Some of the most important
knowledge gaps are which root traits to prioritise for breeding programs in agriculture, and
which root traits influence carbon dynamics in the context of climate change in natural
systems. Root phenotyping describes methods for measuring root properties, or traits,
including root system architecture (e.g., branching angles, topology, classification by root type,
etc.), morphology (e.g., specific root length, root tissue density, root hair length, etc.),
mechanics (e.qg., tensile strength, etc.), anatomy (e.g., root stele fraction, etc.), chemistry (e.g.,
root N concentration, etc.), physiology (e.g., nutrient uptake rates, root respiration, root
exudation rates, etc.), and biotic interactions (e.g., root-associated microbes) (McCormack et
al., 2017; Tracy et al., 2020; Freschet et al., 2021a). Methodological approaches for root
phenotyping are diverse. They include image-based approaches using scanners, cameras
and microscopes, as well as chemical abundance measurements based on infrared gas
analysis, chromatography and mass spectrometry (van Dam & Bouwmeester, 2016; Atkinson
et al.,, 2019; Wasson et al., 2020). Next-generation sequencing-based methods have also
become very popular for characterising root-associated microbiota (Hannula et al., 2021) and
guantifying species proportions in mixed root samples (Wagemaker et al., 2021). The diversity
of approaches used in root phenotyping is illustrated in Fig. 1. While root phenotyping can be
challenging, it is advancing quickly. In order for the field to move forward, it is therefore
essential to understand the current state and challenges of root phenotyping, as well as the

pressing needs of the root biology community.

The triennial meeting of the International Society of Root Research (ISRR) was held on May
24-28, 2021 and was hosted virtually by the University of Missouri (USA). Due to the Covid-19
pandemic, a hands-on root phenotyping workshop was transitioned to a virtual “phenotyping
Friday” that consisted of on-demand video tutorial collections and live discussion panels
moderated by Drs. Darren Wells (University of Nottingham, UK) and Larry York (Oak Ridge
National Laboratory, USA) as well as by members of the Graduate Student and Postdoc
Ambassador Program. In connection with this root phenotyping workshop, the ISRR
Ambassadors created and disseminated an online survey to gather key information on the
current status, future directions and pressing obstacles in the field. The survey was aimed at
researchers across all disciplines of plant biology. The main objectives of this survey were (1)

to provide an overview of the objectives, biological models and methodological approaches
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used in root phenotyping studies, and (2) to identify the main limitations currently faced by

plant scientists with regard to root phenotyping.

The survey was launched at the start of the ISRR11/Rooting2021 event on May 25, 2021 and
closed on June 13, 2021. The web link to the questionnaire was shared by email, including
ISRR members, and via the social network Twitter. A detailed description of the questionnaire
and survey methodology is provided in Note S1 (Supporting information). A total of 216
researchers from 40 countries on all inhabited continents responded to the survey (Fig. 2), of
which 58% attended the ISRR11/Rooting2021 event. The participants were predominantly
based in the USA (21%), Germany (13%), India (11%), UK (9%) and Australia (7%) (Fig. 2).
Most participants were affiliated with academia or research centres, with only 3% of
participants from the industrial sector. All career stages from academia were represented, as
detailed in Fig. S1.

By providing an analysis and summary of the results of the survey, this letter aims to take a
snapshot of the root phenotyping landscape in 2021. In particular, we aim to highlight the main
objectives and approaches used in current root phenotyping projects, and how these will
evolve to enable scientists to answer emerging questions in root research. Key highlights of

our root phenotyping survey are listed in Box 1.
Monocotyledonous crops dominate the root phenotyping landscape

The distribution of ecological habitats studied by participants was strongly skewed towards
croplands (68% of the participants; Fig. 3a). This is reflected in the list of plant species most
commonly used in studies using root phenotyping: maize (28%), wheat (28%), barley (16%),
and rice (14%) (see Fig. S2 for a detailed description of plant species used in root phenotyping
studies). Grasslands represent the second most common ecological habitat used in root
phenotyping studies (17%), followed by temperate (6%), and tropical/subtropical woodlands
(6%). Unsurprisingly, a significant proportion of participants (11%) use well-established lab
model systems such as the model species Arabidopsis thaliana. Across all ecological habitats,
the median soil depth to which roots are collected for phenotyping studies is 0.5 m (Fig. 3b),
while a few survey participants indicated that they sampled roots in the field up to 5 m below
ground.

The survey also revealed the wide variety of growing conditions used to grow plants in root
phenotyping projects, with 36% of survey participants declaring to grow plants in gel-based
systems, 28% on filter papers, 79% in soil-filled pots, 40% in soil-filled rhizoboxes, 39% in
hydroponics, 11% in aeroponics, 69% in growth chambers, 11% in an ecotron facility, 76%
under greenhouse conditions, 36% in outdoor containers, and 63% under field conditions (Fig.
S3).
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Root phenotyping is mainly used to quantify morphological and architectural

root traits

Respondents reported that the main goal of using root phenotyping in their current research
was to quantify morphological and architectural root traits (Fig. 3c, see also Fig. S4 for a
complete description of reasons indicated by participants). We refer to McCormack et al.
(2017) and Freschet et al. (2021b) for an in-depth description of the root trait categories used
in our survey. Importantly, the different root trait categories were not equally represented, as
physiological, chemical, biotic, and anatomical root traits seemed to be less commonly
measured. Although this ranking is unlikely to change in future research (Fig. 3c), our survey
revealed that a number of participants plan to expand the range of root trait categories
included in their studies by also measuring physiological, chemical, biotic, and anatomical root
traits. In addition to quantifying root traits, participants also highlighted another important
aspect of root phenotyping, which is the characterisation of the plant and rhizosphere-
associated microbiota, as well as the plant and rhizosphere metabolome (Fig. 3c). Extending
root measurements to include these additional traits is important because recent research
highlights the multi-dimensionality of the root economics space (Bergmann et al., 2020;
Weigelt et al., 2021; Xia et al., 2021; Han et al., 2021a).

Free, open-access and high-performance root image analysis software tools are
on therise

Among the wide variety of techniques used for root phenotyping, 2D root scanning/imaging is
currently the most widely used technique (60% of participants) (Fig. 3D, see also Fig. S5 for
a complete description of techniques indicated by participants). 2D root scanning/imaging is
followed by root crown phenotyping (29%), which is a popular root phenotyping method in the
field. In 2021, WinRhizo was still the most popular software package to analyse root images
(Fig. 3e, see also Fig. S6 for a complete description of root image analysis software tools
indicated by participants). However, we expect this situation to change in the future, as free,
open-source, high-performance and complementary software tools such as RootPainter
(Smith et al., 2020; Han et al., 2021b) and RhizoVision Explorer (Seethepalli et al., 2021) are

becoming increasingly popular in the root research community.

Except for 2D root scanning/imaging and photogrammetry, all the other root phenotyping
techniques listed in Fig. 3d will probably gain importance over time since a greater proportion
of the survey participants expressed an interest in including one or more of these approaches
in their future research. This is particularly true for approaches relying on root observation
windows (rhizoboxes) and minirhizotrons, 3D imaging, plant modelling, or (un)targeted

metabolomics. Results from our survey also highlighted the popularity of next generation
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sequencing-based methods in root phenotyping, which have become methods of choice to
characterise the plant and soil-associated microbiota (Schdéler et al., 2017) as well as to
guantify the relative abundance of plant species in mixed root samples (Wagemaker et al.,
2021).

Plant modelling: an underused approach to root phenotyping?

Mathematical modelling is a powerful tool to better understand roots and rhizosphere
processes and to help us identify optimal root phenotypes in contrasting environments (Roose
et al., 2016; Postma et al., 2017; Pascut et al., 2021). Functional-structural root architecture
models are particularly well suited for such endeavour (Dunbabin et al., 2013; Landl et al.,
2021). However, despite the high degree of complementarity between modelling and
experimental approaches, only 21% of the survey participants reported using root modelling
in their research. Among those, 24% have used CPlantBox (Schnepf et al., 2018; Zhou et al.,
2020), 22% OpenSimRoot (Postma et al., 2017), 18% RootTyp (Pagés et al., 2004), 13%
ROOTMAP (Diggle, 1988), 13% Archisimple (Pagés et al., 2014), 11% GRANAR (Heymans
et al., 2020), and 9% R-SWMS (Javaux et al., 2008) (Fig. S7).

The root scientists’ wish list

When survey participants were asked about the main challenges and limitations they faced
with regard to root phenotyping, 72% mentioned the fact that data collection is time-consuming
(e.g., root washing). This limitation was followed by no or limited access to large and/or
expensive root phenotyping equipment (e.g., X-ray computed tomography) (42%), the lack of
appropriate methodologies (26%), and the lack of data and statistical analysis appropriate for
root biology (21%) (Fig. S8). Between 19% and 18% of survey participants also indicated that
they had no or limited access to basic root phenotyping equipment (e.g., flatbed scanner) and

suffered from the lack of maintenance of available image or data analysis tools.

Hence, it is not surprising that participants emphasised the need for new methodological
approaches to sample and phenotype roots, particularly under field conditions, when asked
about the most urgent developments needed to enable future research plans. Overall, there
was consensus on the need for standardised, high-throughput methods to collect roots, root
exudates and microbial communities in the field. In addition, the need to develop advanced
but affordable imaging and analysis tools for collecting data at different spatial scales was
often mentioned (e.g. from root and rhizosphere metabolites to whole root systems). Non-
destructive and cost-effective methods to monitor root growth and root-associated functions
in systems that better represent the natural growing environment were often requested by the
survey participants. The development of free, automated, accurate and easy to use image

analysis software tools as well as better accessibility to root phenotyping equipment and
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facilities was also emphasised by survey responses. A number of participants also stressed
the importance of measuring root-associated functions to enable the study of trait-function
relationships in order to improve our mechanistic understanding of the roles of roots in plant
and ecosystem functioning. A detailed summary of survey responses is provided in Note S2

(Supporting information).
A way forward

This overview of the root phenotyping landscape shows a current focus of root phenotyping
on the quantification of morphological and architectural traits in crops, grassland species, and
the model species Arabidopsis thaliana. The strong dominance of monocotyledonous crops
in root phenotyping studies was expected given the importance of root system traits in
determining plant productivity and yield in a rapidly changing world (Tracy et al., 2020). The
current focus on morphological and architectural traits is mainly because root phenotyping
studies still rely heavily on the analysis of 2D images of roots taken with a scanner or camera,
which only provide a limited set of easily measurable traits (e.g., specific root length, root

tissue density, average root diameter, branching intensity, etc.) (Freschet et al., 2021b).

Assuming that trait data (and their associated metadata) are shared in open access global
root trait databases such as FRED (lversen et al., 2017) and GRooT (Guerrero-Ramirez et
al., 2021), we see at least two benefits that would directly result from increasing the diversity
of ecological habitats and the number of species included in root phenotyping studies, as well
as measuring not only morphological and architectural traits, but also anatomical, mechanical,
chemical, physiological and biotic traits. Firstly, it would increase the representation of species
and traits that are still poorly represented in trait databases, which would allow us to better
understand the mechanistic links between root traits and plant and ecosystem functioning
(Freschet et al., 2021b). Secondly, it would improve the predictions of plant models since their
parameterisation often requires information on the anatomy (e.g. stele diameter, proportion of
root cortical aerenchyma, etc.) and physiological properties (e.g. root respiration, water
conductivity, nutrient uptake, root exudation rate, etc.) of different root types (Postma et al.,
2017; Schnepf et al., 2018; Couvreur et al., 2018; Heymans et al., 2020; Landl et al., 2021).

In addition to the fantastic community resources for sampling and processing roots and
measuring root traits in a standardised way (Freschet et al., 2021a), root researchers are aided
by the many technological advances in root phenotyping in recent years (Atkinson et al.,
2019). For example, X-ray computed tomography, positron emission tomography, and
magnetic resonance imaging can be used to non-destructively image roots growing in soil
(Atkinson et al., 2019; Pflugfelder et al., 2021). The qualitative and quantitative analysis of root
anatomy has been facilitated by the development of high-throughput root phenotyping
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techniques such as laser ablation tomography (Strock et al., 2019) or vibratome sectioning
coupled with confocal microscopy (Atkinson & Wells, 2017). The development of high-
resolution minirhizotrons has revolutionised our understanding of root-fungal dynamics
(Defrenne et al., 2020), and automated root imaging platforms have enabled an in-depth
characterisation of the natural variation in growth dynamics and root system architecture within
species (Rellan-Alvarez et al., 2015; LaRue et al., 2021). The measurement of physiological
root traits is being facilitated by the development of functional phenomics platforms for the
high-throughput phenotyping of ion uptake rates and root respiration (Griffiths et al., 2021,
Guo et al., 2021), as well as methods for collecting and characterising root exudates (Oburger
& Jones, 2018; Uthe et al., 2021; Williams et al., 2021). Amplicon sequencing of marker genes
has become a method of choice for characterising soil and plant-associated microbiota
(Scholer et al., 2017; Nannipieri et al., 2019). The throughput of root image analysis pipelines
has also greatly benefited from the development of tools relying on deep learning for root tip
detection (Pound et al., 2017) or the quantification of plant-associated fungi (Evangelisti et al.,
2021). Moreover, the complementarity that can exist between free, open access and high-
performance software packages, as is the case with RootPainter (Smith et al., 2020) and
RhizoVision Explorer (Seethepalli et al., 2021), holds great promise for eliminating the image
analysis bottleneck that root researchers often face in their daily work. While RootPainter
allows users to easily train a convolutional neural network to segment roots embedded in soil,
RhizoVision Explorer allows users to automatically analyse root images providing that there is
a good contrast between roots and their associated background, which is the case for the
segmented images produced by RootPainter (Bauer et al., 2021). However, there are still
some important frontiers, such as the analysis of time series for demographic studies, which
require the automatic determination of the birth and death of individual roots. At this time there
is more potential for more research to study root architecture and morphology than ever before

in the history of plant science, from which we expect to see great gains in knowledge.

Despite these innovations, root phenotyping still poses many challenges, including the fact
that it involves time-consuming tasks that may require expensive equipment and specific
methodologies. Some of these challenges were highlighted by our survey participants when
asked what were the most urgent developments in the field of root phenotyping that needed
to be made to enable them to carry out their future research plans. In an attempt to summarise
responses provided by participants, we created a root scientists’ wish list (Note S2 in
Supporting information). Although not exhaustive, this list can serve as a source of inspiration
for future developments and innovations to remove existing limitations, solve current

challenges and enable more researchers to phenotype roots, which is essential to advance
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our knowledge of rhizosphere processes and species coexistence, move towards more

sustainable agriculture, and develop solutions to mitigate global environmental change.
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Box 1. Key highlights of our root phenotyping survey

Monocotyledonous crops dominate the root phenotyping landscape
Root phenotyping is mainly used to quantify morphological and architectural root traits
2D root scanning/imaging is the most widely used root phenotyping technique

Time-consuming tasks (e.g., root washing) and limited access to large and/or

expensive equipment are the main barriers to root phenotyping
Limited use of plant modelling

Need for standardised, high-throughput methods to sample and phenotype roots,
particularly under field conditions

Need to improve our understanding of trait-function relationships
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Figure 1. Methodological approaches for root phenotyping are diverse. (a) Root washing

station (credit: Larry York). (b) Washed root systems of grassland species (from left to right:
Trifolium pratense, Galium verum, Achillea millefolium, Festuca rubra, Lotus corniculatus)
(credit: Angela Straathof). (c) Root scanning area with an Epson Expression 12000XL
equipped with a transparency unit (credit: Larry York). (d) Example of an image of roots
obtained with the scanner shown in panel (c). Prior to imaging, the roots were spread in a

transparent plastic tray filled with a few millimetres of water (credit: Larry York). (€) Root
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exudate collection from tree roots (Triadica sebifera). A detailed description of the method can
be found in (Weinhold et al., 2022) (credit: Sylvia Haider). (f) Collection of exudates released
by Prunella vulgaris roots using the hydroponics-hybrid method described in (Williams et al.,
2021, 2022) (credit: Angela Straathof). (g) Root crown phenotyping using the RhizoVision
Crown platform (Seethepalli et al., 2020) (credit: Larry York). (h) Anatomy of a millet root
imaged using laser ablation tomography (credit: Darren Wells). (i) Illustration of a high-
throughput phenotyping platform (RhizoFlux) developed to measure the uptake rate of multiple
ions simultaneously (Griffiths et al., 2021) (credit: Larry York). (j) Excavation of the root system
of a 19-year-old pine tree (Pinus pinaster) (credit: Frédéric Danjon). (k) Digitised version of
the root system shown in panel (j) (the roots have been coloured by root type). The root system
was digitised using a Polhemus Fastrak low magnetic field 3D digitizer (credit: Frédéric
Danjon). A description of this method as well as others to analyse the architecture of woody
root systems can be found in (Danjon et al., 2005; Danjon & Reubens, 2008) (I) 14-day-old
maize root system imaged using X-ray computed tomography (credit:
https://www.nottingham.ac.uk/hiddenhalf/crop/maize.aspx). (m) In vivo imaging of pH
variations in the rhizosphere of Brachypodium distachyon (Bd21) using planar optodes (credit:
Benjamin Delory). The scale bar represents 1 mm. The image was obtained with the VisiSens
A2 system from PreSens (Germany). (n) Minirhizotron image taken in a grassland field
experiment with the VSI-BARTZ MS-190 camera from Vienna Scientific Instruments (Austria)
(credits: Benjamin Delory, Inés Alonso-Crespo). The scale bar represents 5 mm. (0)
Phenotyping platform developed to measure root respiration using a LI-COR gas analyser at
a controlled temperature (credit: Larry York). A full description of this platform can be found in
(Guo et al., 2021).
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Figure 2. Global map depicting the distribution and number of participants who completed the
online root phenotyping survey: 216 participants working in 40 countries. The circles are

centred on the capital of the countries in which the participants reported working.
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Figure 3. Main results of the root phenotyping survey. (a) Distribution of ecological
habitats studied by survey participants in the context of root phenotyping (n=213). (b)
Distribution of root sampling depths at which survey participants collect roots for root
phenotyping (n=159). (c) Distribution of the main reasons why survey participants use or plan
to use root phenotyping in their current and future research (current research: n=216; future
research: n=215). (d) Distribution of the main root phenotyping techniques that survey

participants use or plan to use in their current and future research (current research: n=215;
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future research: n=213). (e) Most commonly used root image analysis software tools for root
phenotyping (n=196). In panel (a), “Lab model system” includes plants, such as Arabidopsis,
grown under lab or greenhouse conditions (e.g., Petri dishes, hydroponics or artificial soil).
The "Other" category in Panel (a) includes habitat descriptions provided by survey participants
that could not be easily classified into one of the existing categories. In panel (b), the horizontal
dashed line shows the median value of the distribution (0.5 m). When more than one depth
value was provided by a participant, the average value was calculated and used for the
analysis. Panel (e) highlights the 10 most commonly used root image analysis software tools
(out of a total of 52, Fig. S6). NGS, next generation sequencing.

16


https://doi.org/10.1101/2022.01.28.478001
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.478001; this version posted January 31, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

References

Atkinson JA, Pound MP, Bennett MJ, Wells DM. 2019. Uncovering the hidden half of plants
using new advances in root phenotyping. Current opinion in biotechnology 55: 1-8.

Atkinson JA, Wells DM. 2017. An Updated Protocol for High Throughput Plant Tissue
Sectioning. Frontiers in plant science 8: 1721.

Bauer F, Laerm L, Morandage S, Lobet G, Vanderborght J, Vereecken H, Schnepf A.
2021. Combining deep learning and automated feature extraction to analyze minirhizotron
images: development and validation of a new pipeline. bioRxiv: 2021.12.01.470811.

Bergmann J, Weigelt A, van der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N,
Valverde-Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM, et al. 2020. The fungal
collaboration gradient dominates the root economics space in plants. Science Advances 6:
eaba3756.

Couvreur V, Faget M, Lobet G, Javaux M, Chaumont F, Draye X. 2018. Going with the
Flow: Multiscale Insights into the Composite Nature of Water Transport in Roots. Plant
physiology 178: 1689-1703.

van Dam NM, Bouwmeester HJ. 2016. Metabolomics in the rhizosphere: tapping into
belowground chemical communication. Trends in plant science 21: 256—-265.

Danjon F, Fourcaud T, Bert D. 2005. Root architecture and wind-firmness of mature Pinus
pinaster. The New phytologist 168: 387—400.

Danjon F, Reubens B. 2008. Assessing and analyzing 3D architecture of woody root
systems, a review of methods and applications in tree and soil stability, resource acquisition
and allocation. Plant and soil 303: 1-34.

Defrenne CE, Childs J, Fernandez CW, Taggart M, Nettles WR, Allen MF, Hanson PJ,
Iversen CM. 2020. High-resolution minirhizotrons advance our understanding of root-fungal
dynamics in an experimentally warmed peatland. Plants People Planet: 1-13.

Diggle AJ. 1988. ROOTMAP—a model in three-dimensional coordinates of the growth and
structure of fibrous root systems. Plant and soil 105: 169-178.

Dunbabin VM, Postma JA, Schnepf A, Pagés L, Javaux M, Wu L, Leitner D, Chen YL,
Rengel Z, Diggle AJ. 2013. Modelling root—soil interactions using three—dimensional models
of root growth, architecture and function. Plant and soil 372: 93-124.

Evangelisti E, Turner C, McDowell A, Shenhav L, Yunusov T, Gavrin A, Servante EK,
Quan C, Schornack S. 2021. Deep learning-based quantification of arbuscular mycorrhizal
fungi in plant roots. The New phytologist 232: 2207-2219.

Freschet GT, Pagés L, Iversen CM, Comas LH, Rewald B, Roumet C, KlimeSova J,
Zadworny M, Poorter H, Postma JA, et al. 2021a. A starting guide to root ecology:
strengthening ecological concepts and standardising root classification, sampling, processing
and trait measurements. The New phytologist 232: 973-1122.

Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Bardgett
RD, De Deyn GB, Johnson D, KlimeSova J, et al. 2021b. Root traits as drivers of plant and
ecosystem functioning: current understanding, pitfalls and future research needs. The New
phytologist 232: 1123-1158.

Griffiths M, Roy S, Guo H, Seethepalli A, Huhman D, Ge Y, Sharp RE, Fritschi FB, York

17


https://doi.org/10.1101/2022.01.28.478001
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.478001; this version posted January 31, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

LM. 2021. A multiple ion-uptake phenotyping platform reveals shared mechanisms affecting
nutrient uptake by roots. Plant physiology 185: 781-795.

Guerrero-Ramirez NR, Mommer L, Freschet GT, Iversen CM, McCormack ML, Kattge J,
Poorter H, van der Plas F, Bergmann J, Kuyper TW, et al. 2021. Global root traits (GRooT)
database. Global ecology and biogeography: a journal of macroecology 30: 25-37.

Guo H, Ayalew H, Seethepalli A, Dhakal K, Griffiths M, Ma X-F, York LM. 2021. Functional
phenomics and genetics of the root economics space in winter wheat using high-throughput
phenotyping of respiration and architecture. The New phytologist 232: 98-112.

Han M, Chen Y, Li R, Yu M, Fu L, Li S, Su J, Zhu B. 2021a. Root phosphatase activity aligns
with the collaboration gradient of the root economics space. The New phytologist.

Han E, Smith AG, Kemper R, White R, Kirkegaard JA, Thorup-Kristensen K, Athmann
M. 2021b. Digging roots is easier with Al. Journal of experimental botany 72: 4680—4690.

Hannula SE, Heinen R, Huberty M, Steinauer K, De Long JR, Jongen R, Bezemer TM.
2021. Persistence of plant-mediated microbial soil legacy effects in soil and inside roots.
Nature communications 12: 5686.

Heymans A, Couvreur V, LaRue T, Paez-Garcia A, Lobet G. 2020. GRANAR, a
Computational Tool to Better Understand the Functional Importance of Monocotyledon Root
Anatomy. Plant physiology 182: 707—720.

Iversen CM, McCormack ML, Powell AS, Blackwood CB, Freschet GT, Kattge J, Roumet
C, Stover DB, Soudzilovskaia NA, Valverde-Barrantes OJ, et al. 2017. A global Fine-Root
Ecology Database to address below-ground challenges in plant ecology. The New phytologist
215: 15-26.

Javaux M, Schroéder T, Vanderborght J, Vereecken H. 2008. Use of a three-dimensional
detailed modeling approach for predicting root water uptake. Vadose zone journal: VZJ 7:
1079-1088.

Landl M, Haupenthal A, Leitner D, Kroener E, Vetterlein D, Bol R, Vereecken H,
Vanderborght J, Schnepf A. 2021. Simulating rhizodeposition patterns around growing and
exuding root systems. in silico Plants 3: diab028.

LaRue T, Lindner H, Srinivas A, Exposito-Alonso M, Lobet G, Dinneny JR. 2021.
Uncovering natural variation in root system architecture and growth dynamics using a robotics-
assisted phenomics platform. bioRxiv: 2021.11.13.468476.

McCormack ML, lversen CM, Chen W, Eissenstat DM, Fernandez CW, Li L, Ma C, Ma Z,
Poorter H, Reich PB, et al. 2017. Building a better foundation: improving root-trait
measurements to understand and model plant and ecosystem processes. The New
phytologist 215: 27-37.

Nannipieri P, Penton CR, Purahong W, Schloter M, van Elsas JD. 2019.
Recommendations for soil microbiome analyses. Biology and fertility of soils 55: 765—766.

Oburger E, Jones DL. 2018. Sampling root exudates — Mission impossible? Rhizosphere 6:
116-133.

Pages L, Bécel C, Boukcim H, Moreau D, Nguyen C, Voisin A-S. 2014. Calibration and

evaluation of ArchiSimple, a simple model of root system architecture. Ecological modelling
290: 76-84.

18


https://doi.org/10.1101/2022.01.28.478001
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.478001; this version posted January 31, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Pages L, Vercambre G, Drouet J-L, Lecompte F, Collet C, Le Bot J. 2004. Root Typ: a
generic model to depict and analyse the root system architecture. Plant and soil 258: 103—
119.

Pascut FC, Couvreur V, Dietrich D, Leftley N, Reyt G, Boursiac Y, Calvo-Polanco M,
Casimiro I, Maurel C, Salt DE, et al. 2021. Non-invasive hydrodynamic imaging in plant roots
at cellular resolution. Nature communications 12: 1-7.

Pflugfelder D, Kochs J, Koller R, Jahnke S, Mohl C, Pariyar S, Fassbender H, Nagel KA,
Watt M, van Dusschoten D. 2021. The root system architecture of wheat establishing in soll
is associated with varying elongation rates of seminal roots: quantification using 4D MRI.
Journal of experimental botany.

Postma JA, Kuppe C, Owen MR, Mellor N, Griffiths M, Bennett MJ, Lynch JP, Watt M.
2017. OpenSimRoot: widening the scope and application of root architectural models. The
New phytologist 215: 1274-1286.

Pound MP, Atkinson JA, Townsend AJ, Wilson MH, Griffiths M, Jackson AS, Bulat A,
Tzimiropoulos G, Wells DM, Murchie EH, et al. 2017. Deep machine learning provides state-
of-the-art performance in image-based plant phenotyping. GigaScience 6: 1-10.

Rellan-Alvarez R, Lobet G, Lindner H, Pradier P-L, Sebastian J, Yee M-C, Geng Y,
Trontin C, LaRue T, Schrager-Lavelle A, et al. 2015. GLO-Roots: an imaging platform
enabling multidimensional characterization of soil-grown root systems. eLife 4. 1-26.

Roose T, Keyes SD, Daly KR, Carminati A, Otten W, Vetterlein D, Peth S. 2016.
Challenges in imaging and predictive modeling of rhizosphere processes. Plant and soil 407:
9-38.

Schnepf A, Leitner D, Landl M, Lobet G, Mai TH, Morandage S, Sheng C, Zoerner M,
Vanderborght J, Vereecken H. 2018. CRootBox: A structural-functional modelling framework
for root systems. Annals of botany 121: 1033-1053.

Schdler A, Jacquiod S, Vestergaard G, Schulz S, Schloter M. 2017. Analysis of soil
microbial communities based on amplicon sequencing of marker genes. Biology and fertility
of soils 53: 485-489.

Seethepalli A, Dhakal K, Griffiths M, Guo H, Freschet GT, York LM. 2021. RhizoVision
Explorer: Open-source software for root image analysis and measurement standardization.
AoB plants 13: lab056.

Seethepalli A, Guo H, Liu X, Griffiths M, Almtarfi H, Li Z, Liu S, Zare A, Fritschi FB,
Blancaflor EB, et al. 2020. RhizoVision Crown: An Integrated Hardware and Software
Platform for Root Crown Phenotyping. Plant phenomics (Washington, D.C.) 2020: 3074916.

Smith AG, Han E, Petersen J, Olsen NAF, Giese C, Athmann M, Dresbgll DB, Thorup-
Kristensen K. 2020. RootPainter: Deep Learning Segmentation of Biological Images with
Corrective Annotation. bioRxiv: 2020.04.16.044461.

Strock CF, Schneider HM, Galindo-Castafieda T, Hall BT, Van Gansbeke B, Mather DE,
Roth MG, Chilvers MI, Guo X, Brown K, et al. 2019. Laser ablation tomography for
visualization of root colonization by edaphic organisms. Journal of experimental botany 70:
5327-5342.

Tracy SR, Nagel KA, Postma JA, Fassbender H, Wasson A, Wait M. 2020. Crop
Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities. Trends in

19


https://doi.org/10.1101/2022.01.28.478001
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.28.478001; this version posted January 31, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

plant science 25: 105-118.

Uthe H, van Dam NM, Hervé MR, Sorokina M, Peters K, Weinhold A. 2021. Chapter Six -
A practical guide to implementing metabolomics in plant ecology and biodiversity research. In:
Pétriacq P, Bouchereau A, eds. Advances in Botanical Research. Academic Press, 163-203.

Wagemaker CAM, Mommer L, Visser EJW, Weigelt A, van Gurp TP, Postuma M, Smit-
Tiekstra AE, de Kroon H. 2021. msGBS: A new high-throughput approach to quantify the
relative species abundance in root samples of multispecies plant communities. Molecular
ecology resources 21: 1021-1036.

Wasson AP, Nagel KA, Tracy S, Watt M. 2020. Beyond Digging: Noninvasive Root and
Rhizosphere Phenotyping. Trends in plant science 25: 119-120.

Weigelt A, Mommer L, Andraczek K, Iversen CM, Bergmann J, Bruelheide H, Fan Y,
Freschet GT, Guerrero-Ramirez NR, Kattge J, et al. 2021. An integrated framework of plant
form and function: the belowground perspective. The New phytologist 232: 42-59.

Weinhold A, DOl S, Liu M, Schedl A, Poschl Y, Xu X, Neumann S, Dam NM. 2022. Tree
species richness differentially affects the chemical composition of leaves, roots and root
exudates in four subtropical tree species. The Journal of ecology 110: 97-116.

Williams A, Langridge H, Straathof AL, Fox G, Muhammadali H, Hollywood KA, Xu Y,
Goodacre R, de Vries FT. 2021. Comparing root exudate collection techniques: An improved
hybrid method. Soil biology & biochemistry 161: 108391.

Williams A, Langridge H, Straathof AL, Muhamadali H, Hollywood KA, Goodacre R,
Vries FT. 2022. Root functional traits explain root exudation rate and composition across a
range of grassland species. The Journal of ecology 110: 21-33.

Xia M, Valverde-Barrantes OJ, Suseela V, Blackwood CB, Tharayil N. 2021. Coordination
between compound-specific chemistry and morphology in plant roots aligns with ancestral
mycorrhizal association in woody angiosperms. The New phytologist 232: 1259-1271.

Zhou X-R, Schnepf A, Vanderborght J, Leitner D, Lacointe A, Vereecken H, Lobet G.
2020. CPlantBox, a whole plant modelling framework for the simulation of water and carbon
related processes. in silico Plants 2: 1-19.

20


https://doi.org/10.1101/2022.01.28.478001
http://creativecommons.org/licenses/by/4.0/

