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Abstract 

Root phenotyping describes methods for measuring root properties, or traits. While root 

phenotyping can be challenging, it is advancing quickly. In order for the field to move forward, 

it is essential to understand the current state and challenges of root phenotyping, as well as 

the pressing needs of the root biology community. 

In this letter, we present and discuss the results of a survey that was created and disseminated 

by members of the Graduate Student and Postdoc Ambassador Program at the 11th 

symposium of the International Society of Root Research. This survey aimed to (1) provide an 

overview of the objectives, biological models and methodological approaches used in root 

phenotyping studies, and (2) identify the main limitations currently faced by plant scientists 

with regard to root phenotyping. 

Our survey highlighted that (1) monocotyledonous crops dominate the root phenotyping 

landscape, (2) root phenotyping is mainly used to quantify morphological and architectural 

root traits, (3) 2D root scanning/imaging is the most widely used root phenotyping technique, 

(4) time-consuming tasks are an important barrier to root phenotyping, (5) there is a need for 

standardised, high-throughput methods to sample and phenotype roots, particularly under 

field conditions, and to improve our understanding of trait-function relationships. 
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Roots are crucial plant organs that underpin soil organisms through carbon and energy 

deposition via root exudation, while acquiring water and nutrients for plants (Freschet et al., 

2021b). While the physical, chemical and biological functions of roots are now better 

understood, the ability to measure root properties and how they affect the functioning of 

ecosystems remains challenging to fill remaining knowledge gaps. Some of the most important 

knowledge gaps are which root traits to prioritise for breeding programs in agriculture, and 

which root traits influence carbon dynamics in the context of climate change in natural 

systems. Root phenotyping describes methods for measuring root properties, or traits, 

including root system architecture (e.g., branching angles, topology, classification by root type, 

etc.), morphology (e.g., specific root length, root tissue density, root hair length, etc.), 

mechanics (e.g., tensile strength, etc.), anatomy (e.g., root stele fraction, etc.), chemistry (e.g., 

root N concentration, etc.), physiology (e.g., nutrient uptake rates, root respiration, root 

exudation rates, etc.), and biotic interactions (e.g., root-associated microbes) (McCormack et 

al., 2017; Tracy et al., 2020; Freschet et al., 2021a). Methodological approaches for root 

phenotyping are diverse. They include image-based approaches using scanners, cameras 

and microscopes, as well as chemical abundance measurements based on infrared gas 

analysis, chromatography and mass spectrometry (van Dam & Bouwmeester, 2016; Atkinson 

et al., 2019; Wasson et al., 2020). Next-generation sequencing-based methods have also 

become very popular for characterising root-associated microbiota (Hannula et al., 2021) and 

quantifying species proportions in mixed root samples (Wagemaker et al., 2021). The diversity 

of approaches used in root phenotyping is illustrated in Fig. 1. While root phenotyping can be 

challenging, it is advancing quickly. In order for the field to move forward, it is therefore 

essential to understand the current state and challenges of root phenotyping, as well as the 

pressing needs of the root biology community. 

The triennial meeting of the International Society of Root Research (ISRR) was held on May 

24-28, 2021 and was hosted virtually by the University of Missouri (USA). Due to the Covid-19 

pandemic, a hands-on root phenotyping workshop was transitioned to a virtual “phenotyping 

Friday” that consisted of on-demand video tutorial collections and live discussion panels 

moderated by Drs. Darren Wells (University of Nottingham, UK) and Larry York (Oak Ridge 

National Laboratory, USA) as well as by members of the Graduate Student and Postdoc 

Ambassador Program. In connection with this root phenotyping workshop, the ISRR 

Ambassadors created and disseminated an online survey to gather key information on the 

current status, future directions and pressing obstacles in the field. The survey was aimed at 

researchers across all disciplines of plant biology. The main objectives of this survey were (1) 

to provide an overview of the objectives, biological models and methodological approaches 
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used in root phenotyping studies, and (2) to identify the main limitations currently faced by 

plant scientists with regard to root phenotyping.   

The survey was launched at the start of the ISRR11/Rooting2021 event on May 25, 2021 and 

closed on June 13, 2021. The web link to the questionnaire was shared by email, including 

ISRR members, and via the social network Twitter. A detailed description of the questionnaire 

and survey methodology is provided in Note S1 (Supporting information). A total of 216 

researchers from 40 countries on all inhabited continents responded to the survey (Fig. 2), of 

which 58% attended the ISRR11/Rooting2021 event. The participants were predominantly 

based in the USA (21%), Germany (13%), India (11%), UK (9%) and Australia (7%) (Fig. 2). 

Most participants were affiliated with academia or research centres, with only 3% of 

participants from the industrial sector. All career stages from academia were represented, as 

detailed in Fig. S1.   

By providing an analysis and summary of the results of the survey, this letter aims to take a 

snapshot of the root phenotyping landscape in 2021. In particular, we aim to highlight the main 

objectives and approaches used in current root phenotyping projects, and how these will 

evolve to enable scientists to answer emerging questions in root research. Key highlights of 

our root phenotyping survey are listed in Box 1.  

Monocotyledonous crops dominate the root phenotyping landscape 

The distribution of ecological habitats studied by participants was strongly skewed towards 

croplands (68% of the participants; Fig. 3a). This is reflected in the list of plant species most 

commonly used in studies using root phenotyping: maize (28%), wheat (28%), barley (16%), 

and rice (14%) (see Fig. S2 for a detailed description of plant species used in root phenotyping 

studies). Grasslands represent the second most common ecological habitat used in root 

phenotyping studies (17%), followed by temperate (6%), and tropical/subtropical woodlands 

(6%). Unsurprisingly, a significant proportion of participants (11%) use well-established lab 

model systems such as the model species Arabidopsis thaliana. Across all ecological habitats, 

the median soil depth to which roots are collected for phenotyping studies is 0.5 m (Fig. 3b), 

while a few survey participants indicated that they sampled roots in the field up to 5 m below 

ground. 

The survey also revealed the wide variety of growing conditions used to grow plants in root 

phenotyping projects, with 36% of survey participants declaring to grow plants in gel-based 

systems, 28% on filter papers, 79% in soil-filled pots, 40% in soil-filled rhizoboxes, 39% in 

hydroponics, 11% in aeroponics, 69% in growth chambers, 11% in an ecotron facility, 76% 

under greenhouse conditions, 36% in outdoor containers, and 63% under field conditions (Fig. 

S3).  
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Root phenotyping is mainly used to quantify morphological and architectural 

root traits 

Respondents reported that the main goal of using root phenotyping in their current research 

was to quantify morphological and architectural root traits (Fig. 3c, see also Fig. S4 for a 

complete description of reasons indicated by participants). We refer to McCormack et al. 

(2017) and Freschet et al. (2021b) for an in-depth description of the root trait categories used 

in our survey. Importantly, the different root trait categories were not equally represented, as 

physiological, chemical, biotic, and anatomical root traits seemed to be less commonly 

measured. Although this ranking is unlikely to change in future research (Fig. 3c), our survey 

revealed that a number of participants plan to expand the range of root trait categories 

included in their studies by also measuring physiological, chemical, biotic, and anatomical root 

traits. In addition to quantifying root traits, participants also highlighted another important 

aspect of root phenotyping, which is the characterisation of the plant and rhizosphere-

associated microbiota, as well as the plant and rhizosphere metabolome (Fig. 3c). Extending 

root measurements to include these additional traits is important because recent research 

highlights the multi-dimensionality of the root economics space (Bergmann et al., 2020; 

Weigelt et al., 2021; Xia et al., 2021; Han et al., 2021a). 

Free, open-access and high-performance root image analysis software tools are 

on the rise 

Among the wide variety of techniques used for root phenotyping, 2D root scanning/imaging is 

currently the most widely used technique (60% of participants) (Fig. 3D, see also Fig. S5 for 

a complete description of techniques indicated by participants). 2D root scanning/imaging is 

followed by root crown phenotyping (29%), which is a popular root phenotyping method in the 

field. In 2021, WinRhizo was still the most popular software package to analyse root images 

(Fig. 3e, see also Fig. S6 for a complete description of root image analysis software tools 

indicated by participants). However, we expect this situation to change in the future, as free, 

open-source, high-performance and complementary software tools such as RootPainter 

(Smith et al., 2020; Han et al., 2021b) and RhizoVision Explorer (Seethepalli et al., 2021) are 

becoming increasingly popular in the root research community. 

Except for 2D root scanning/imaging and photogrammetry, all the other root phenotyping 

techniques listed in Fig. 3d will probably gain importance over time since a greater proportion 

of the survey participants expressed an interest in including one or more of these approaches 

in their future research. This is particularly true for approaches relying on root observation 

windows (rhizoboxes) and minirhizotrons, 3D imaging, plant modelling, or (un)targeted 

metabolomics. Results from our survey also highlighted the popularity of next generation 
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sequencing-based methods in root phenotyping, which have become methods of choice to 

characterise the plant and soil-associated microbiota (Schöler et al., 2017) as well as to 

quantify the relative abundance of plant species in mixed root samples (Wagemaker et al., 

2021). 

Plant modelling: an underused approach to root phenotyping? 

Mathematical modelling is a powerful tool to better understand roots and rhizosphere 

processes and to help us identify optimal root phenotypes in contrasting environments (Roose 

et al., 2016; Postma et al., 2017; Pascut et al., 2021). Functional-structural root architecture 

models are particularly well suited for such endeavour (Dunbabin et al., 2013; Landl et al., 

2021). However, despite the high degree of complementarity between modelling and 

experimental approaches, only 21% of the survey participants reported using root modelling 

in their research. Among those, 24% have used CPlantBox (Schnepf et al., 2018; Zhou et al., 

2020), 22% OpenSimRoot (Postma et al., 2017), 18% RootTyp (Pagès et al., 2004), 13% 

ROOTMAP (Diggle, 1988), 13% Archisimple (Pagès et al., 2014), 11% GRANAR (Heymans 

et al., 2020), and 9% R-SWMS (Javaux et al., 2008) (Fig. S7). 

The root scientists’ wish list 

When survey participants were asked about the main challenges and limitations they faced 

with regard to root phenotyping, 72% mentioned the fact that data collection is time-consuming 

(e.g., root washing). This limitation was followed by no or limited access to large and/or 

expensive root phenotyping equipment (e.g., X-ray computed tomography) (42%), the lack of 

appropriate methodologies (26%), and the lack of data and statistical analysis appropriate for 

root biology (21%) (Fig. S8). Between 19% and 18% of survey participants also indicated that 

they had no or limited access to basic root phenotyping equipment (e.g., flatbed scanner) and 

suffered from the lack of maintenance of available image or data analysis tools. 

Hence, it is not surprising that participants emphasised the need for new methodological 

approaches to sample and phenotype roots, particularly under field conditions, when asked 

about the most urgent developments needed to enable future research plans. Overall, there 

was consensus on the need for standardised, high-throughput methods to collect roots, root 

exudates and microbial communities in the field. In addition, the need to develop advanced 

but affordable imaging and analysis tools for collecting data at different spatial scales was 

often mentioned (e.g. from root and rhizosphere metabolites to whole root systems). Non-

destructive and cost-effective methods to monitor root growth and root-associated functions 

in systems that better represent the natural growing environment were often requested by the 

survey participants. The development of free, automated, accurate and easy to use image 

analysis software tools as well as better accessibility to root phenotyping equipment and 
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facilities was also emphasised by survey responses. A number of participants also stressed 

the importance of measuring root-associated functions to enable the study of trait-function 

relationships in order to improve our mechanistic understanding of the roles of roots in plant 

and ecosystem functioning. A detailed summary of survey responses is provided in Note S2 

(Supporting information). 

A way forward 

This overview of the root phenotyping landscape shows a current focus of root phenotyping 

on the quantification of morphological and architectural traits in crops, grassland species, and 

the model species Arabidopsis thaliana. The strong dominance of monocotyledonous crops 

in root phenotyping studies was expected given the importance of root system traits in 

determining plant productivity and yield in a rapidly changing world (Tracy et al., 2020). The 

current focus on morphological and architectural traits is mainly because root phenotyping 

studies still rely heavily on the analysis of 2D images of roots taken with a scanner or camera, 

which only provide a limited set of easily measurable traits (e.g., specific root length, root 

tissue density, average root diameter, branching intensity, etc.) (Freschet et al., 2021b). 

Assuming that trait data (and their associated metadata) are shared in open access global 

root trait databases such as FRED (Iversen et al., 2017) and GRooT (Guerrero‐Ramírez et 

al., 2021), we see at least two benefits that would directly result from increasing the diversity 

of ecological habitats and the number of species included in root phenotyping studies, as well 

as measuring not only morphological and architectural traits, but also anatomical, mechanical, 

chemical, physiological and biotic traits. Firstly, it would increase the representation of species 

and traits that are still poorly represented in trait databases, which would allow us to better 

understand the mechanistic links between root traits and plant and ecosystem functioning 

(Freschet et al., 2021b). Secondly, it would improve the predictions of plant models since their 

parameterisation often requires information on the anatomy (e.g. stele diameter, proportion of 

root cortical aerenchyma, etc.) and physiological properties (e.g. root respiration, water 

conductivity, nutrient uptake, root exudation rate, etc.) of different root types (Postma et al., 

2017; Schnepf et al., 2018; Couvreur et al., 2018; Heymans et al., 2020; Landl et al., 2021).  

In addition to the fantastic community resources for sampling and processing roots and 

measuring root traits in a standardised way (Freschet et al., 2021a), root researchers are aided 

by the many technological advances in root phenotyping in recent years (Atkinson et al., 

2019). For example, X-ray computed tomography, positron emission tomography, and 

magnetic resonance imaging can be used to non-destructively image roots growing in soil 

(Atkinson et al., 2019; Pflugfelder et al., 2021). The qualitative and quantitative analysis of root 

anatomy has been facilitated by the development of high-throughput root phenotyping 
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techniques such as laser ablation tomography (Strock et al., 2019) or vibratome sectioning 

coupled with confocal microscopy (Atkinson & Wells, 2017). The development of high-

resolution minirhizotrons has revolutionised our understanding of root-fungal dynamics 

(Defrenne et al., 2020), and automated root imaging platforms have enabled an in-depth 

characterisation of the natural variation in growth dynamics and root system architecture within 

species (Rellán-Álvarez et al., 2015; LaRue et al., 2021). The measurement of physiological 

root traits is being facilitated by the development of functional phenomics platforms for the 

high-throughput phenotyping of ion uptake rates and root respiration (Griffiths et al., 2021; 

Guo et al., 2021), as well as methods for collecting and characterising root exudates (Oburger 

& Jones, 2018; Uthe et al., 2021; Williams et al., 2021). Amplicon sequencing of marker genes 

has become a method of choice for characterising soil and plant-associated microbiota 

(Schöler et al., 2017; Nannipieri et al., 2019). The throughput of root image analysis pipelines 

has also greatly benefited from the development of tools relying on deep learning for root tip 

detection (Pound et al., 2017) or the quantification of plant-associated fungi (Evangelisti et al., 

2021). Moreover, the complementarity that can exist between free, open access and high-

performance software packages, as is the case with RootPainter (Smith et al., 2020) and 

RhizoVision Explorer (Seethepalli et al., 2021), holds great promise for eliminating the image 

analysis bottleneck that root researchers often face in their daily work. While RootPainter 

allows users to easily train a convolutional neural network to segment roots embedded in soil, 

RhizoVision Explorer allows users to automatically analyse root images providing that there is 

a good contrast between roots and their associated background, which is the case for the 

segmented images produced by RootPainter (Bauer et al., 2021). However, there are still 

some important frontiers, such as the analysis of time series for demographic studies, which 

require the automatic determination of the birth and death of individual roots. At this time there 

is more potential for more research to study root architecture and morphology than ever before 

in the history of plant science, from which we expect to see great gains in knowledge. 

Despite these innovations, root phenotyping still poses many challenges, including the fact 

that it involves time-consuming tasks that may require expensive equipment and specific 

methodologies. Some of these challenges were highlighted by our survey participants when 

asked what were the most urgent developments in the field of root phenotyping that needed 

to be made to enable them to carry out their future research plans. In an attempt to summarise 

responses provided by participants, we created a root scientists’ wish list (Note S2 in 

Supporting information). Although not exhaustive, this list can serve as a source of inspiration 

for future developments and innovations to remove existing limitations, solve current 

challenges and enable more researchers to phenotype roots, which is essential to advance 
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our knowledge of rhizosphere processes and species coexistence, move towards more 

sustainable agriculture, and develop solutions to mitigate global environmental change. 

Acknowledgements 

The authors thank New Phytologist for supporting the Ambassador Program, and John 

Kirkegaard and Hallie Thompson for initiating the ISRR Ambassador Program in 2015. We 

thank Michelle Watt, Bob Sharp, Malcolm Bennett and the organisers of the 

ISRR11/Rooting2021 symposium from the Interdisciplinary Plant Group at the University of 

Missouri (Columbia, USA) and the University of Nottingham (UK). We thank Darren Wells for 

co-organising an excellent virtual root phenotyping workshop during the ISRR11/Rooting2021 

conference with generous financial support from the International Plant Phenotyping Network. 

All authors would like to thank Darren Wells, Frédéric Danjon, Alex Williams, Franciska de 

Vries, Alexander Weinhold and Sylvia Haider for providing some of the images used in Figure 

1. Finally, thanks to all those who responded to our root phenotyping survey. BMD is supported 

by a grant from the German Research Foundation (project 470604360). MCHS thanks Daphne 

Jackson Trust, BBSRC and JIC for a postdoctoral fellowship. 

Author contributions 

BD analysed the data and led the writing of the manuscript, with contributions from all co-

authors. All authors provided feedback before publication. The authors declare no conflict of 

interest. 

Data availability 

Raw data and R code are available on Zenodo at https://doi.org/10.5281/zenodo.5901959.  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2022. ; https://doi.org/10.1101/2022.01.28.478001doi: bioRxiv preprint 

https://doi.org/10.5281/zenodo.5901959
https://doi.org/10.1101/2022.01.28.478001
http://creativecommons.org/licenses/by/4.0/


11 

Box 1. Key highlights of our root phenotyping survey 

● Monocotyledonous crops dominate the root phenotyping landscape 

● Root phenotyping is mainly used to quantify morphological and architectural root traits 

● 2D root scanning/imaging is the most widely used root phenotyping technique 

● Time-consuming tasks (e.g., root washing) and limited access to large and/or 

expensive equipment are the main barriers to root phenotyping 

● Limited use of plant modelling 

● Need for standardised, high-throughput methods to sample and phenotype roots, 

particularly under field conditions 

● Need to improve our understanding of trait-function relationships 
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Figure 1. Methodological approaches for root phenotyping are diverse. (a) Root washing 

station (credit: Larry York). (b) Washed root systems of grassland species (from left to right: 

Trifolium pratense, Galium verum, Achillea millefolium, Festuca rubra, Lotus corniculatus) 

(credit: Angela Straathof). (c) Root scanning area with an Epson Expression 12000XL 

equipped with a transparency unit (credit: Larry York). (d) Example of an image of roots 

obtained with the scanner shown in panel (c). Prior to imaging, the roots were spread in a 

transparent plastic tray filled with a few millimetres of water (credit: Larry York). (e) Root 
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exudate collection from tree roots (Triadica sebifera). A detailed description of the method can 

be found in (Weinhold et al., 2022) (credit: Sylvia Haider). (f) Collection of exudates released 

by Prunella vulgaris roots using the hydroponics-hybrid method described in (Williams et al., 

2021, 2022) (credit: Angela Straathof). (g) Root crown phenotyping using the RhizoVision 

Crown platform (Seethepalli et al., 2020) (credit: Larry York). (h) Anatomy of a millet root 

imaged using laser ablation tomography (credit: Darren Wells). (i) Illustration of a high-

throughput phenotyping platform (RhizoFlux) developed to measure the uptake rate of multiple 

ions simultaneously (Griffiths et al., 2021) (credit: Larry York). (j) Excavation of the root system 

of a 19-year-old pine tree (Pinus pinaster) (credit: Frédéric Danjon). (k) Digitised version of 

the root system shown in panel (j) (the roots have been coloured by root type). The root system 

was digitised using a Polhemus Fastrak low magnetic field 3D digitizer (credit: Frédéric 

Danjon). A description of this method as well as others to analyse the architecture of woody 

root systems can be found in (Danjon et al., 2005; Danjon & Reubens, 2008) (l) 14-day-old 

maize root system imaged using X-ray computed tomography (credit: 

https://www.nottingham.ac.uk/hiddenhalf/crop/maize.aspx). (m) In vivo imaging of pH 

variations in the rhizosphere of Brachypodium distachyon (Bd21) using planar optodes (credit: 

Benjamin Delory). The scale bar represents 1 mm. The image was obtained with the VisiSens 

A2 system from PreSens (Germany). (n) Minirhizotron image taken in a grassland field 

experiment with the VSI-BARTZ MS-190 camera from Vienna Scientific Instruments (Austria) 

(credits: Benjamin Delory, Inés Alonso-Crespo). The scale bar represents 5 mm. (o) 

Phenotyping platform developed to measure root respiration using a LI-COR gas analyser at 

a controlled temperature (credit: Larry York). A full description of this platform can be found in 

(Guo et al., 2021).            
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Figure 2. Global map depicting the distribution and number of participants who completed the 

online root phenotyping survey: 216 participants working in 40 countries. The circles are 

centred on the capital of the countries in which the participants reported working.  
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Figure 3. Main results of the root phenotyping survey. (a) Distribution of ecological 

habitats studied by survey participants in the context of root phenotyping (n=213). (b) 

Distribution of root sampling depths at which survey participants collect roots for root 

phenotyping (n=159). (c) Distribution of the main reasons why survey participants use or plan 

to use root phenotyping in their current and future research (current research: n=216; future 

research: n=215). (d) Distribution of the main root phenotyping techniques that survey 

participants use or plan to use in their current and future research (current research: n=215; 
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future research: n=213). (e) Most commonly used root image analysis software tools for root 

phenotyping (n=196). In panel (a), “Lab model system” includes plants, such as Arabidopsis, 

grown under lab or greenhouse conditions (e.g., Petri dishes, hydroponics or artificial soil). 

The "Other" category in Panel (a) includes habitat descriptions provided by survey participants 

that could not be easily classified into one of the existing categories. In panel (b), the horizontal 

dashed line shows the median value of the distribution (0.5 m). When more than one depth 

value was provided by a participant, the average value was calculated and used for the 

analysis. Panel (e) highlights the 10 most commonly used root image analysis software tools 

(out of a total of 52, Fig. S6). NGS, next generation sequencing. 
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