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Abstract 

The ability to recognize and predict future spatiotemporal sequences is vital for perception. It 

has been proposed that the brain makes 8intelligent guesses9 about future inputs by forward 

replaying these events. However, it is unknown whether and how this mechanism incorporates 

the probabilistic structure that is inherent to naturalistic environments. Here we tested forward 

replay in human V1 and hippocampus using a probabilistic cueing paradigm. Participants were 

exposed to two visual moving dot sequences (A and B) that shared the same starting point. 

Each stimulus sequence was paired with either a high or a low tone that predicted which 

sequence would follow with 80% cue validity (probabilistic context) or 50% cue validity (random 

context). We found that after exposure, the auditory cue together with the starting point 

triggered simultaneous forward replay of both the likely (A) and the less likely (B) stimulus 

sequence. Crucially, forward replay preserved the probabilistic relationship of the environment, 

such that the likely sequence was associated with greater anticipatory V1 activity compared to 

the less likely stimulus sequence. Analogous to V1, forward replay in hippocampus was also 

found to preserve the probabilistic cue-sequence relationship. Further, the anterior 

hippocampus was found to represent the predicted stimulus sequence, irrespective of the input, 

while the posterior hippocampus revealed a prediction error-like signal that was only observed 

when predictions were violated. These findings show how mnemonic and sensory areas 

coordinate predictive representations in probabilistic contexts to improve perceptual 

processing. 

 

 

Introduction 

There is mounting evidence that visual computations are inherently predictive (Rust & Palmer, 

2021; Summerfield & De Lange, 2014) and rely on past experiences to anticipate future events 

(Gavornik & Bear, 2014; Xu et al., 2012). We previously found that merely presenting the 

starting point of a moving dot sequence triggered an activity wave in human primary visual 

cortex (V1) that resembled the full stimulus sequence (Ekman et al., 2017). This anticipatory 

activity wave, encoding possible future trajectories, is sometimes referred to as forward replay 

(Carr et al., 2011; Derdikman & Moser, 2010; Diba & Buzsáki, 2007), and is thought to play a 

crucial role in learning (Jadhav et al., 2012) and planning (Buzsáki & Moser, 2013; 

Momennejad, 2020; Pfeiffer & Foster, 2013; Wikenheiser & Redish, 2015). 
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While simple predictions based on extrapolation of motion trajectories could be 

implemented locally within V1 (Alink et al., 2010; Lee & Mumford, 2003; Rao & Ballard, 1999), 

it has been suggested that more complex relationships like context-modulation (McClelland et 

al., 1995), or cross-modal associations (Kok & Turk-Browne, 2018), depend on the memory 

system, specifically the hippocampus, for driving memory-based expectations in sensory areas 

like V1 (Hindy et al., 2016; Ji & Wilson, 2007). Supporting this notion, a recent study has shown 

that predictive sequence representations in V1 became absent after hippocampus lesioning 

(Finnie et al., 2021). 

Previous studies have shown that hippocampus acquires regularities of both simple 

(Aitken & Kok, 2021; Finnie et al., 2021; Kok & Turk-Browne, 2018; Schapiro et al., 2012) and 

more complex stimulus sequences (Kurth-Nelson et al., 2016; Liu et al., 2019; Schapiro et al., 

2013; Schuck & Niv, 2019), that can be exploited to encode representations of future 

trajectories (Diba & Buzsáki, 2007; Dragoi & Tonegawa, 2011) and potentially be shared via 

feedback connections with sensory cortices like V1 (Finnie et al., 2021; Hindy et al., 2016; Kok 

& Turk-Browne, 2018). 

However, natural environments are often inherently probabilistic and present us with 

the uncertainty of multiple, often competing, future sequences. It remains an open question 

how probabilistic future trajectories are represented after learning. One possibility is that 

hippocampus and V1 encode representations of multiple future states simultaneously. 

Alternatively, the hippocampus could simultaneously represent multiple options, but only 

communicate the most likely (or relevant) future outcome to downstream sensory area V1. 

To answer this question, we conducted an fMRI study where participants were 

presented with a probabilistic cueing paradigm, in which an auditory cue (tone A or B) was 

followed by one of two moving dot sequences (sequence A or B). After learning, we introduced 

occasional omission trials, where only the cue and the starting point of the sequence were 

presented, while the rest of the visual sequence was omitted. These omission trials allowed us 

to study expectations of future stimulus sequences in the absence of physical stimulation. 

Further, by systematically varying the cue-sequence probability across two separate sessions, 

we were able to test whether anticipatory activity in hippocampus and V1 also encodes the 

probability of the anticipated sequences. 

To preview our results, we found that only presenting the cue and sequence starting 

point triggered V1 BOLD activity that reactivated both sequences A and B, with stronger 

reactivation of the sequence that was more likely given the cue. Importantly, we observed a 

spatiotemporal dissociation in hippocampal representations. Predictive representations 

emerged temporally early in the anterior hippocampus and were coordinated with V1, while 

posterior hippocampus showed a later, prediction error-like response, in case predictions were 

violated. The finding that V1 and anterior hippocampus activity patterns preferentially represent 

the likely sequence suggests that sensory and mnemonic representations take the probabilistic 

relationship of the environment into account when predicting future trajectories. 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2022. ; https://doi.org/10.1101/2022.01.26.477907doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.26.477907
http://creativecommons.org/licenses/by-nc/4.0/


 3 

Results 

Human observers (N=28) were exposed to a probabilistic cueing paradigm, in which an auditory 

cue (cue A: high tone, or cue B: low tone) was followed by one of two possible visual dot 

sequences (Sequence A or Sequence B; Figure 1A). Note that both sequences share the 

identical starting point location. Therefore, merely presenting the starting point does not provide 

any information about the respective sequence. 

 

Figure 1 | Probabilistic cueing paradigm. (a) Probabilistic cue contingency and context modulation. In the 
probabilistic context, Cue A was followed by sequence A 80% of the time and sequence B 20% of the time (top). In 
the random context, the cue contingency was at chance level (50%). (b) Stimulus timing for full sequence and 
starting point only trials. An auditory cue (high, low) was followed by one of two possible moving dot sequences 
consisting of four dots. During omission trials, only the auditory cue together with the first dot of the sequence was 
presented. During an initial learning period, only full sequence trials were shown and participants were instructed to 
detect a small temporal delay in the presentation of the last dot of the sequence. After learning, participants were 
randomly presented with full sequence trials and starting point trials, while performing a detection task at fixation. 
Dva, degrees of visual angle. 

After an initial exposure period (~12 min) with full sequence trials only, we continued to present 

full stimulus sequence trials (full sequence condition), but occasionally only the auditory cue 

together with the starting point of the sequence was shown, omitting the remaining sequence 

dots (omission condition) (Figure 1B). 

We hypothesized that V1 may forward replay the remaining sequence dots and that 

cortical activity during cue-triggered replay should resemble the activity of the full sequence 

condition at retinotopically defined sequence locations. In order to probe the potential 

probabilistic representation of forward replay, we manipulated the probabilistic cue-sequence 

association in the following way. In the probabilistic context, the auditory cue A was followed 

by sequence A 80% and sequence B 20% of the time (Figure 1A). Conversely, cue B was 

followed by sequence B 80% of the time. In the random context, the cue validity was at 50% 

(chance level) for cue A and cue B. In other words, in the random context there was no 

probabilistic relationship between the auditory cue and the visual sequence, as both sequences 

were equally likely to be followed by either cue A or B. For the context manipulation, participants 

were tested in two separate and counterbalanced sessions (probabilistic vs. random context) 

that were on average 14 days apart. 
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Internalization of the probabilistic cue-sequence structure leads to behavioral benefits  

First, we tested whether participants indeed learned the probabilistic cue-sequence 

relationship. During the initial exposure, participants were instructed to maintain fixation while 

detecting an infrequent temporal delay in the visual sequence (in 15% of trials the last dot of 

the sequence was delayed by 170 ms). We reasoned that being able to correctly predict the 

upcoming sequence A vs B should facilitate the detection of the temporal delay. We therefore 

predicted that if participants successfully learned the cue-sequence relationship, behavioral 

responses in the probabilistic context should be faster for cue-valid trials (e.g. sequence A was 

cued and presented), compared to cue-invalid trials. Conversely, no benefit should be present 

in the random context. Note that due to the chance-level cue contingency the random context 

does technically not have valid, or invalid trials. In this case we labeled trials as valid or invalid 

based on the cue-association in the probabilistic context. 

As expected, reaction times (RTs) in valid trials were found to be significantly faster 

(t(27) = -3.03, P = 0.005) compared to RTs in invalid trials (RTvalid = 459 ms; RTinvalid = 471 ms), 

confirming that subjects built an internal representation of the probabilistic cue-sequence 

relationship. Further, in line with our prediction, no behavioral facilitation was found in the 

random context (t(26) = 1.49, P = 0.15; RTvalid = 462 ms; RTinvalid = 458 ms). The Cue [Valid, 

Invalid] x Context [Probabilistic, Random] interaction was found to be significant (F(1,26) = 9.86, 

p = 0.004, h2 = 0.03), indicating a significant context modulation of participants9 performance. 

 

Probabilistic forward replay in early visual cortex V1 

Probing BOLD activation patterns in early visual cortex (V1), we first wanted to confirm that the 

physical presentation of the visual sequence elicits a sequence-specific activation pattern at 

the receptive field locations that receive bottom-up visual input. To this end, we first determined 

V1 receptive fields (RFs) in a separate session using population receptive field (pRF) mapping 

(see Materials and Methods). Then we compared BOLD activity at V1 RFs covering the last 

three sequence locations during presentation of sequence A and sequence B. As expected, 

presentation of sequence A elicited higher BOLD activity at RFs corresponding to sequence A 

compared to RFs corresponding to sequence B (Figure 2A; paired-sample t-test for BOLD 

averaged across locations, sequence A: t(27) = 10.80, p = 2.65 ´ 10-11). The reverse BOLD 

pattern was observed when sequence B was presented, i.e., higher BOLD activity at sequence 

B RFs compared to sequence A RFs (t-test t(27) = 7.39, p = 5.87 ´ 10-8). BOLD activity at the 

non-stimulated sequence RFs (i.e., sequence B RFs during cue A/sequence A trials) was not 

significantly different from baseline activity (one-sample t-test for BOLD averaged across 

locations and sequence A/B: t(27) = -0.98, p = 0.34). 
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Figure 2 | Probabilistic forward replay in human V1. (a). BOLD activity during full sequence trials for cue A à 

sequence A trials (top) shows greater BOLD activity at sequence A receptive field locations (RFs, green) compared 

to sequence B RFs (red). The reverse pattern was observed for cue B à sequence B trials (bottom), i.e. greater 

BOLD activity at sequence B RFs (red) compared to sequence A RFs (green). (b). Anticipatory BOLD activity during 

omission trials for cue A à starting point A/B (top) shows greater BOLD activity at averaged sequence A RFs 

compared to sequence B RFs in the probabilistic context, but not in the random context. The reverse pattern was 

observed for cue B replay trials (bottom). Error bars denote ± s.e.m.; ***P<0.001; *P<0.05. 

After learning, participants were presented with full sequence trials, but occasionally 

only the auditory cue together with the starting point of the sequence was shown (Figure 2B). 

We examined whether the sequence-specific activation pattern that was observed during full 

sequence trials was re-instantiated in response to omission trials where only the sequence 

starting-point was presented. Importantly, we predicted that the forward replay of the sequence 

would be modulated by the probabilistic cue-sequence relationship, such that cue A would elicit 

higher BOLD activity at the RFs overlying sequence A, while cue B would elicit higher BOLD 

activity at the RFs overlying sequence B. Additionally, if forward replay took the probabilistic 

cue-sequence relationship into account, the preferable replay of sequence A vs B should only 

be present in the probabilistic context, while replay in the random learning context should 

represent both sequences to an equal amount. 

In line with our predictions, V1 BOLD activity during omission trials indeed revealed a 

preferential re-activation of the likely sequence RFs compared to the less likely sequence RFs 

(i.e. greater activity of sequence A vs B RFs in cue A trials) in the probabilistic context (paired 

sample t-test t(27) = 3.88, p = 0.001), but not in the random context (t(26) = 0.47, p = 0.64), 

culminating in a significant Location [RFs A, RFs B] x Context [Probabilistic, Random] 

interaction (F(1,26) = 10.32, p = 0.003, h2 = 0.04). BOLD activity in the probabilistic context was 

significantly higher than baseline for the likely sequence RFs (paired sample t-test, t(27) = 6.51, 
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p = 5.532 ´ 10-7) and for the less likely sequence RFs (paired sample t-test, t(27) = 2.70, p = 

0.012). Similarly, in the random context both (equally likely) sequence RFs showed significantly 

greater BOLD activity compared to baseline for cue A trials (paired sample t-test, t(26) = 2.49, 

p = 0.019) and cue B trials (paired sample t-test, t(26) = 2.28, p = 0.031). 

 

Coordinated forward replay in V1 and hippocampus 

Next, we investigated whether the probabilistic forward replay that we observed in V1 was also 

present in the hippocampus. Note that while the hippocampus formation and nearby entorhinal 

cortex might feature a coarse representation of visual space (Killian et al., 2012; Knapen, 2021; 

Nau et al., 2018; Silson et al., 2020), it does not feature the same fine-scaled retinotopic 

organization present in V1 (Dumoulin & Wandell, 2008). Therefore, we employed a different 

analysis approach for hippocampus, focusing on population activity pattern across the entire 

ROI. In order to probe hippocampal representations, we trained a multivariate pattern classifier 

to distinguish between sequence A and B representations during full sequence trials and then 

applied the classifier to omission trials (see Materials and Methods). For comparison sake we 

report the classifier results for both hippocampus and V1. As expected, the classifier results for 

V1 mirror what was already reported based on the BOLD activity above, namely a preferential 

representation of the likely sequence in the probabilistic context, i.e., representation sequence 

A > B during cue A trials and representation sequence A < B during cue B trials (Figure 3A; 

t(27) = 2.270, p = 0.031) and no preferential representation in the random context (t(26) = 0.135, 

p = 0.894). 

Importantly, results for the hippocampus revealed a similar pattern to what was 

observed in V1. Specifically, sequence representation in hippocampus was greater for the likely 

sequence compared to the less likely sequence in the probabilistic context, i.e., representation 

sequence A > B during cue A trials and representation sequence A < B during cue B trials 

(Figure 3A; t(27) = 3.464, p = 0.002). In contrast, no biased sequence representation was 

found in hippocampus when the two sequences were equally likely (t(26) = -0.749, p = 0.460). 

The Cue [A, B] x Context [Probabilistic, Random] interaction was found to be significant in V1 

(F(1,26) = 5.43, p = 0.01, h2 = 0.003) and hippocampus (F(1,26) = 10.242, p = 0.004, h2 = 

0.093). 

We also examined whether the reported forward replay was present outside the 

predetermined V1 and hippocampus regions using a whole-brain searchlight analysis. Results 

of the whole-brain analysis indicate that, within our restricted field of view, the observed forward 

replay effects were selectively located in the anterior, bilateral hippocampus and early visual 

cortex (Figure 3B). 

Given the simultaneous forward replay in V1 and hippocampus, the question arises 

whether the two regions coordinate their respective representations. To answer this question, 

we performed an across subject correlation analysis testing whether the biased sequence 

representation toward the likely sequence in hippocampus was related to the biased sequence 
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representation in V1. We reasoned that correlated representations between V1 and 

hippocampus might indicate that representations were shared between the areas (Clarke et al., 

2021). Our results revealed a significant V1-hippocampus correlation in the probabilistic context 

(Spearman r = .49, p = 0.008), but not in the random context (r = -.23, p = 0.25). The difference 

in correlation between the probabilistic and random context was found to be significant (p = 

0.004). 

 

Figure 3 | Probabilistic forward replay in V1 and hippocampus. (a). A classifier was trained to distinguish 

between full sequence A and sequence B presentations and then applied to replay trials. In the probabilistic context, 

classifier evidence (e.g., probability of sequence A) showed a biased representation toward the more likely 

sequence (e.g., evidence sequence A > B when cue A was presented) in both V1 (top) and hippocampus (HP, 

bottom). In the random context, when both sequences were equally likely, classifier evidence showed no biased 

representation toward either sequence. (b). Group averaged searchlight decoding analysis revealed that the 

decoding results are localized primarily in the early visual cortex and the anterior hippocampus (threshold at z=2.58 

uncorrected, to visualize the extent of the spatial localization). The black dashed lines denote the approximate MRI 

coverage. Error bars denote ± s.e.m.; **P<0.01; *P<0.05. 

Anterior Hippocampus represents prediction also during invalid trials 

Thus far we have shown that both V1 and hippocampus preferentially represent the presented 

(and expected) sequence over the not presented (and less expected) sequence during cue-

valid full sequence trials.  

Next, we investigated how representations changed when predictions were violated 

during cue-invalid trials (20% of the trials, e.g. cue A à sequence B; Figure 3A). One could 

expect that representations keep tracking the predicted sequence, or alternatively, 

representations could switch from the predicted to the physically presented sequence. While it 

has been well documented that V1 is modulated by prior expectations (Ekman et al., 2017; Kok 

et al., 2012; Summerfield & De Lange, 2014), V1 is more strongly driven by bottom-up 
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stimulation. Therefore, we hypothesized that overall, V1 representations should be dominated 

by the physical stimulus and should therefore preferentially represent the shown (but less 

expected) sequence during cue-invalid trials. For hippocampus our hypothesis was less clear. 

A recent study has shown that hippocampus preferentially represents the predicted content, 

irrespective of the bottom-up visual input (Kok & Turk-Browne, 2018). However, hippocampus 

has also been involved in novelty detection (Kafkas & Montaldi, 2018) and representation of 

surprise (Bein et al., 2020) in case of violated predictions. In our decoding analysis such a 

prediction error-like response during invalid trials would manifest as a biased representation 

toward the presented sequence. Because our previous results for valid trials located the 

predictive relationship mainly in the anterior part of the hippocampus and given that recent 

studies point to a differential representations along the long axis of the hippocampus (Aitken & 

Kok, 2021; Collin et al., 2015; Silson et al., 2020), we carried out an additional exploratory 

analysis, dividing the hippocampus region into two separate subparts: an anterior and a 

posterior hippocampus region. Further, to dissociate predictive and stimulus related 

representations that should occur earlier in time from surprise and prediction error-like 

representations that one would expect to occur later in time, we used a time-resolved decoding 

analysis from 0 to 10.35 sec in steps of the TR (450 ms). Thus, instead of assuming a fixed 

temporal profile, decoding time courses were fitted with a single-gamma response function to 

determine amplitude and temporal delay (see Materials and Methods). For comparison, the 

same analysis was also performed for V1. 

Our results reveal a dissociation between V1 representations on the one hand and 

anterior and posterior hippocampal representations on the other hand. As expected, V1 

representations during invalid trials were dominated by the bottom-up visual input. Specifically, 

V1 representations were biased toward the presented (less expected) sequence compared to 

the expected (but not presented) sequence (Figure 4B). Note however, that while V1 

representations generally appear to be biased toward the presented sequence, analysis of RFs 

covering the non-stimulated sequence RFs showed that V1 additionally represents the 

predicted sequence. Namely, BOLD activity at the expected (and not presented) RFs during 

invalid trials was found to be greater compared to BOLD activity at the not expected (and not 

presented) RFs during valid trials (t(27) = -2.22, p = 0.035), suggesting that V1 also represents 

the expected sequence in addition to the presented sequence in the probabilistic context. In 

contrast, in the random context the difference between valid and invalid trials was not significant 

t(27) = 1.18, p = 0.248), resulting in a significant Validity [Valid, Invalid] x Context [Probabilistic, 

Random] interaction (F(1,27) = 5.42, p = 0.028, h2 = 0.059). 

The anterior hippocampus activity patterns preferably represented the predicted 

sequence, irrespective of the presented sequence (Figure 4B middle), while representations 

in the posterior hippocampus were biased toward the presented sequence. Importantly, the 

posterior hippocampus evidence was only present during invalid trials, but not during valid trials 

(Figure 4B right). The Validity x hippocampal subpart [anterior, posterior] interaction was found 
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to be significant (F(1,27) = 9.685, p = 0.004, h2 = 0.061) confirming the differential involvement 

of anterior and posterior hippocampus for representing predictions. 

 

Figure 4 | Distinct representation of stimulus and prediction. (a). Comparing cue valid (V) and cue invalid (IV) 

full sequence trials enabled us to disentangle the influence of sequence presentation and prediction. During valid 

trials, the presented sequence (grey) is also strongly expected (purple), while during cue invalid trials the presented 

sequence is less expected (orange). (b) Classifier evidence shows that V1 representations are biased toward the 

sequence presentation during both valid and invalid trials. Representations in the anterior hippocampus (HP) 

represent the predicted sequence during valid and invalid trials, irrespective of the presented sequence. The 

posterior hippocampus showed a biased representation of the presented (and less expected) sequence during 

invalid trials (c). Group averaged (N=28) decoding time courses for V1 (top), anterior hippocampus (middle) and 

posterior hippocampus (bottom). Dashed line denotes single-gamma fit to determine decoding amplitude and delay. 

Error bars denote ± s.e.m.; **P<0.001; **P<0.01; *P<0.05. 

Decoding time courses revealed a V1 peak at around 4.1 s (Figure 4C), in line with 

known V1 BOLD hemodynamics (Boynton et al., 1996). Representational time-courses in the 

anterior hippocampus peaked at around 4.5 s, while the decoding time course of the posterior 

hippocampus peaked notably later at 7.1 s.  

 

Discussion 

In this study, we sought to answer the question whether human early visual cortex (V1) and 

hippocampus represent multiple future expected states, with activity proportional to the 

probability of occurrence in the environment. Our results revealed that V1 and hippocampus 

showed coordinated cue-triggered forward replay that reactivates stimulus representation of 

expected future events. Importantly, both regions accurately represent the underlying 

probabilistic cue-sequence relationship of the environment by more strongly encoding the more 
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like sequence trajectory over the less likely sequence trajectory. Further, a context manipulation 

in which we changed the probabilistic cue-sequence relationship, highlights the flexibility of 

memory-guided replay to dynamically adapt to structural changes in the environment. 

 Participants learned the probabilistic association of an auditory tone with a moving dot 

stimulus sequence that followed either an upward or downward trajectory. We studied 

expectations of future states by occasionally only flashing the sequence starting point together 

with the tone that indicated the probability of which sequence was most likely to appear. This 

created a situation in which the next part of the sequence was expected, but not physically 

shown to the participant. A multivariate pattern analysis revealed that the partial presentation 

was sufficient to trigger reactivation of full sequence representations in both V1 and 

hippocampus even in the absence of visual input (i.e., only the starting point). Importantly, 

correlation of anticipatory sequence representations in V1 and hippocampus revealed that 

forward replay between these two regions was coordinated. 

 

Mnemonic representations guide predictions of future events 

Our results support the notion that predictions are guided by mnemonic representations of 

previous experiences. The hippocampus has been suggested to play a pivotal role in acquiring 

these regularities. One research line that is often used to probe hippocampal representations 

of the environmental regularities is statistical learning, where participants are presented with a 

constant stream of stimuli. These studies have shown that the hippocampus formation enables 

us to represent the structure of the environment (Kourtzi & Welchman, 2019; Schapiro et al., 

2012; Sherman et al., 2020; Turk-Browne, 2019), that hippocampus can learn arbitrary 

relationships across different stimuli (Cohen & Eichenbaum, 1993; Davachi, 2006; Hsieh et al., 

2014; Kok & Turk-Browne, 2018), and that representations of such relationships are heavily 

impaired after hippocampal damage (Chun & Phelps, 1999; Finnie et al., 2021; Jadhav et al., 

2012; Schapiro et al., 2014; Sutherland et al., 1989).  

Especially relevant in the context of the present study is that hippocampus has also 

been involved in exploiting learned regularities after learning is complete (Stachenfeld et al., 

2017). Specifically, one of the prominent hippocampus functions is the ability to retrieve 

associated item information based on partial information, a function called pattern completion 

(Deuker et al., 2013; Leutgeb & Leutgeb, 2007; Treves & Rolls, 1994). Pattern completion has 

been mostly studied during episodic memory recall, but is also suited for perceptual predictions 

based on contextual cues (Barron et al., 2020; Bosch et al., 2014; Eichenbaum & Fortin, 2009; 

Hindy et al., 2016; Kok & Turk-Browne, 2018). In fact we recently argued that this hippocampal 

mechanism might drive the reinstatement of full stimulus sequences that we observed 

previously in V1 (Ekman et al., 2017). Computationally, pattern completion is thought to be 

implemented via recurrent, auto-associative fibers in the CA3 hippocampal subfield (Carr et al., 

2011; Treves & Rolls, 1994), from where the retrieved information is output to CA1 and further 
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downstream via bidirectional connections to sensory cortex (Eichenbaum et al., 2007; Lavenex 

& Amaral, 2000). 

 

Reinstated sensory details encode the probability of future events 

In the context of a theoretical framework whereby hippocampus represents a generative model 

of the environment (Stachenfeld et al., 2017) and feeds that information to V1, it appears 

striking that V1 encodes representations of both the strongly and weakly predicted sequence 

concurrently, instead of reinstating only a single prediction of the most likely sequence. This 

result is in line with Bayesian theories of neural coding that propose that populations of neurons 

represent stimuli as probability distribution (Pouget et al., 2013) to deal with ambiguous and 

uncertain information. Previous studies have shown that human observers employ knowledge 

of uncertainty when making perceptual decisions and that probability distributions reflecting 

sensory uncertainty can be extracted from human visual cortex (van Bergen et al., 2015). Our 

results show that the probability of the respective sequence was proportional to the BOLD 

amplitude at receptive field locations corresponding to the expected stimulus. It is however 

noticeable that anticipated BOLD amplitude did not scale with probability across different 

scanning sessions. If that were the case, one would expect that anticipated activity for the less 

likely sequence in the probabilistic session (20% likely) should be lower compared to the 

anticipated activity for the equally likely sequence in the random session (50% likely). Our 

results show that this was however not the case, potentially indicating that sequence probability 

is not encoded in absolute terms, but rather scaled by the relative context. 

An advantage of our paradigm using non-overlapping moving dot sequences is that it 

allowed us to precisely quantify reactivated stimulus representations by characterizing activity 

at the receptive field level. In contrast, studies looking at sensory reinstatement through the 

window of representational pattern analysis cannot directly quantify the perceptual detail with 

which perceptual representations are reinstated for centrally presented stimulus sequences. 

Our analysis showed that the same receptive fields that respond to the visual sequence, are 

also reactivated during reinstatement, confirming the low-level, perception-like properties of 

replay.  

Given that hippocampal representations have predominantly been studied in the 

context of spatial navigation, it might be surprising to find that hippocampus also represents 

visual sequences in the context of our paradigm. However, based on recent reports a picture 

emerges in which hippocampal representations constitute a more general mechanism for 

encoding also non-spatial continuous variables (Stachenfeld et al., 2017) including tone 

frequency (Aronov et al., 2017) or abstract knowledge (Constantinescu et al., 2016). Our 

findings add to a growing body of literature that indicates that the hippocampus can provide 

predictive representations beyond navigation. 
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Spatiotemporal dissociation of hippocampal representations 

Our results reveal an interesting distinction between the anterior and posterior hippocampus. 

In line with earlier work (Hindy et al., 2016; Zeidman & Maguire, 2016), the anterior part of the 

hippocampus represented the prediction of the upcoming sequence, while the posterior part of 

the hippocampus showed a strong prediction error-like response in case expectations were 

violated. It is possible that the prediction error response reflects the ongoing mechanism by 

which the hippocampus learns regularities. In fact, Bein et al. 2020 have recently shown that 

prediction errors put the hippocampus in an encoding mode and shift the balance from 

mnemonic retrieval to sensory processing, effectively updating the model of the world. 

In absence of a fine-grained retinotopic organization like in V1, probing hippocampal 

representations is challenging. Similar to other studies (Hindy et al., 2016; Kok & Turk-Browne, 

2018), we used a multivariate pattern analysis approach that does not assume a specific 

hippocampus encoding schema. However, given that the underlying mechanisms for 

hippocampal representations of visual space remain unknown, it is possible that instead of 

forming a perceptual representation, hippocampus might rather encode a more abstract, 

temporally structured representation by simply indexing discrete stimulus features stored in V1 

(Teyler & DiScenna, 1986). It remains therefore an interesting avenue for future studies to 

reveal how hippocampus encodes visual representations. For instance, Knapen (2021) and 

Silson et al. (2021) have recently used receptive field mapping to show that the anterior 

hippocampus features a basic visual field representation. It is therefore possible that such 

subtle receptive field biases might contribute to the encoding of visual sequences that were 

used in the present study. 

One limitation of our study is that due to the low temporal resolution of BOLD fMRI we 

cannot exclude the possibility that the simultaneous prediction of both sequences actually 

appears sequentially, potentially starting with the more likely sequence, and not in parallel. 

Such sequential hippocampal replay has been observed in the context of spatial navigation in 

rodents (Gupta et al., 2010; Johnson & Redish, 2007). We think that the novelty of the current 

study is to show the presence of probabilistic replay in humans, while questions pertaining to 

the temporal order of events might be better suited for future studies using other modalities like 

magnetoencephalography (Kurth-Nelson et al., 2016; Liu et al., 2019). 

Perception depends on both the current sensory input and on previous experience. The current 

study provides novel insights into how the probability of future events is encoded in predictive 

representations. Our results highlight the tight link between sensory manifestation of predictions 

in early visual cortex and associative representations in the hippocampus.  
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Material and Methods 

Data and code availability. All data and code used for stimulus presentation and analysis is 

available on the Donders Repository https://data.donders.ru.nl/[direct link to dataset]. [Note that 

during the review process, reviewers have anonymous access using the following link 

[retracted]. After publication this link will be made publicly available.] 

 

Participants. Twenty-eight right-handed participants (16 female, mean age = 25 years) were 

recruited from the student population at the Radboud University in Nijmegen and invited for two 

separate fMRI sessions. Sample size was decided on prior to the collection of data and was 

aimed at being able to detect experimental effects that had at least moderate effect size 

(Cohen9s d>0.6). Participants gave written informed consent in accordance with the institutional 

guidelines of the local ethical committee (CMO region Arnhem-Nijmegen, The Netherlands) 

and received monetary compensation for their participation. One participant completed only 

one session. All participants had normal or corrected-to-normal visual acuity. 

 

MRI acquisition. Functional and anatomical images were acquired using a 3T Prisma MRI 

system (Siemens, Erlangen, Germany) equipped with a 32-channel head coil. Each of two MRI 

sessions lasted approximately 2 h, during which we acquired (i) a T1-weighted anatomical scan, 

(ii) functional scans to measure BOLD activity during the experimental paradigm (iii) whole-

brain functional scans to improve co-registration of the functional sequence, and (iv) functional 

scans to perform retinotopic mapping. 

The retinotopic mapping was only performed once, either during the first or during the 

second session. BOLD activity for the retinotopic mapping was measured using a T2*-weighted 

gradient-echo EPI sequence (TR/TE = 1800/30 ms, 26 transversal slices, voxel size 2x2x2 mm, 

60° flip angle). BOLD activity for the experimental runs was measured using a T2*-weighted 

multiband sequence (acceleration factor (MB) = 3; TR/TE = 450/39 ms, 15 transversal slices, 

voxel size 2.4x2.4x2.4 mm, 45° flip angle; slice gap = 10 %). Slices were carefully positioned 

to cover the relevant parts of primary visual cortex and hippocampus (Figure 3B). Anatomical 

images were acquired with a T1-weighted MP-RAGE sequence (TR/TE = 2300/3.03 ms, voxel 

size 0.8x0.8x0.8 mm, 8° flip angle). 

 

Stimuli. Visual stimuli were rear projected on a screen (luminance-calibrated EIKI projector, 

1,024 x 768 resolution, 60 Hz refresh rate) located 86.6 cm from the participant9s eyes at the 

head of the scanner table. The screen was viewed using a mirror attached to the headcoil. We 

presented one of two moving dot sequence consisting of four white dots on a black background 

(spatial coordinates sequence up: x=[-6°, -2°, 2°, 6°]; y=[0°, 2.1°, 3.43°, 4°]; spatial coordinates 

sequence down: x=[-6°, -2°, 2°, 6°]; y=[0°, -2.1°, -3.43°, -4°]). Noticeably, the first dot location 

was identical for the two spatial sequences. Each dot had a diameter of 0.8° and was shown 

for 34 ms followed by a blank screen of 17 ms. Occasionally, on 15.6% of all trials the last dot 
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of the sequence was shown after a blank screen of 170 ms. The total duration of the moving 

dot sequence amounts to 187 ms (with 17 ms ISI), or 340 ms (with 170 ms ISI). A fixation-cross 

(0.7°) was shown at the center of the screen and participants were instructed to maintain 

fixation throughout the experiment. The auditory cue (pure tone, 700 or 1,400 Hz) was 

presented over MR-compatible earphones for a duration of 100 ms. Between the offset of the 

auditory cue and the onset of the visual sequence was a delay of 200 ms. 

 

Experimental Design. Participants were invited for two separate fMRI scanning sessions 

(probabilistic and random context) that were on average 14 days apart. The order of the 

sessions was counterbalanced across subjects. Both sessions contained the same task but 

differed in the probabilistic relationship between the auditory cue and the visual sequence. In 

the probabilistic session, the auditory cue predicted the visual sequence in ~80% (79.2%) of 

the trials. Specifically, the high-tone (cue A) was more likely to be followed by the upward 

sequence (sequence A) and the low-tone (cue B) was more likely to be followed by the 

downward sequence (sequence B). In the non-predictive session, the relationship between the 

auditory cue and the visual sequence was at chance level (50%). Participants were explicitly 

instructed about the cue validity in the respective session. 

Each session consisted of two parts, an initial learning period and a task period. During the 

learning period only full sequence trials were shown, containing the auditory cue (A, B) and 4 

dots of the respective sequence (A, B). Participants were instructed to detect irregular trials 

(occurrence 15.6%), in which the last dot in the sequence was presented after 170 ms, instead 

of 17 ms as in regular trials. Participants had to report on each trial whether a sequence was 

regular (left button press, right index finger), or irregular (right button press, right middle finger). 

Feedback was given on each trial for 200 ms in form of a color change of the fixation cross 

(green: correct; red: incorrect/miss). Additionally, a summary screen was presented at the end 

of each learning block informing participants about the percentage of correct responses. 

Learning trials were separated by a fixed ITI of 450 ms.  

The learning part consisted of three blocks. In order to facilitate learning, the first and 

second learning block (96 trials, ~4 min each) featured only one of the two auditory cues, 

respectively. For instance, one participant would start with a learning block featuring only cue 

A, followed by sequence A, or sequence B depending on the context (probabilistic vs random). 

After that, in the second learning block, the participant would be presented only with cue B, 

followed by sequence A, or sequence B. The third and final learning block contained both cue 

A and cue B trials (192 trials, ~8 min.). The order of learning block one and two was randomized 

such that half the participants started with the cue A learning block. Learning blocks were 

separated by 3 minutes of rest. Learning block one and two contained two null-events (duration 

10.8 s) during which only the fixation-cross was shown. Learning block three contained 5 null-

events. In sum, during learning participants were exposed to 384 visual sequence trials in total, 

with 304/80 valid/invalid trials in the probabilistic session and 192/192 valid/invalid trials in the 

random session. 
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During the task period, participants were also presented with auditory cues and visual 

sequences, but were instructed to perform a detection task at fixation. On every trial (duration 

13.95 s, 31 volumes), the fixation cross was dimmed once for a brief moment (minus 60% 

contrast for 17 ms) and participants had to press a button with the right index finger. The timing 

of the dimming occurred in the temporal range between 450 ms and 13950 ms, in steps of 900 

ms, randomly sampled from a uniform distribution (without replacement). A summary of 

participants performance was given at the end of each block. 

The task period consisted of 2 blocks, each with 52 trials and 4 null-events (10.8 s). 16 out 

of 52 trials per block were replay trials in which only the auditory cue (high or low) and the 

starting point of the visual sequence was shown. In total, the task period contained 104 trials 

with 32 replay trials (~30%) and 72 sequence trials (~70%). No odd trials were shown during 

the task period. Trial order was pseudo-randomized to ensure no repetitions of replay trials. 

Further, task blocks never started with a replay trial. 

 

pRF estimation. The data from the moving bar runs were used to estimate the population 

receptive field (pRF) of each voxel in the functional volumes using MrVista 

(http://white.stanford.edu/software). In this analysis, a predicted BOLD signal is calculated from 

the known stimulus parameters and a model of the underlying neuronal population. The model 

of the neuronal population consisted of a two-dimensional Gaussian pRF, with parameters x0, 

y0, and Ã0, where x0 and y0 are the coordinates of the center of the receptive field, and Ã0 

indicates its spread (standard deviation), or size. All parameters were stimulus-referred, and 

their units were degrees of visual angle. These parameters were adjusted to obtain the best 

possible fit of the predicted to the actual BOLD signal. This method has been shown to produce 

pRF size estimates that agree well with electrophysiological receptive field measurements in 

monkey and human visual cortex (Klink et al., 2021). For details of this procedure, see 

(Dumoulin & Wandell, 2008; Kay et al., 2015). Once estimated, x0 and y0 were converted to 

eccentricity and polar-angle measures and co-registered with the functional images using linear 

transformation. Only voxels with a model fit of R2 ³ 5% were considered. 

 

ROI selection. V1 and hippocampus region of interests (ROIs) were determined using the 

automatic cortical parcellation provided by Freesurfer (Fischl, 2012) based on individual T1 

images. Anatomical V1 and hippocampus masks were then transformed into native space using 

linear transformation. The anatomical V1 mask was restricted to voxels with receptive fields 

size £ 2.5 dva to increase the spatial specificity of a voxels9 response. ROIs for the retinotopic 

locations corresponding to the sequence dot locations were chosen in the following way. First, 

for each of the 7 dot locations (e.g. starting dot sequence A/B), all voxel with a receptive field 

covering that respective location were selected. However, this could lead to an unequal number 

of selected voxels between dot locations. Second, in order to balance the number for voxel 

across dot locations, for each participant, we determined the number of voxels with a receptive 
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field of the starting dot location (i.e., x=-6°, y=0°). In case the other dot locations were covered 

by fewer voxel receptive fields, we reduced the number of voxels for each dot ROI by 

decreasing the number of voxels until the number was equal to the starting dot location. Voxels 

were removed based on their statistical z-value in the independent learning block (stimulation 

vs baseline contrast). Voxels with lower values were removed first. An additional, non-

stimulated control ROI was chosen that mirrors the starting dot location at x=6°, y=0° using the 

same procedure.  

In order to exclude the possibility of signal spillover from the nearby lateral geniculate 

nucleus (LGN), a subcortical thalamus mask (including the LGN; (Collins et al., 1995)) was 

removed from the hippocampus ROI. Anterior and posterior hippocampus ROIs were created 

by following the procedure outlined in Silson et al. (2021). In short, hippocampus voxel indices 

were sorted by the y-axis, which codes for cortical anterior-posterior position. These indices 

were then separated into two approximately equally sized ROIs. 

 

fMRI preprocessing. Images were preprocessed using FSL (Smith et al., 2004) including 

motion correction using six-parameter affine transform, temporal high-pass filtering (128 s), and 

spatial smoothing with a Gaussian kernel (full width at half maximum of 5 mm). All analyses 

were carried out in native subject-space. The first 10 volumes of each run were discarded to 

allow for signal stabilization.  

 

BOLD amplitude modulation. A general linear model (GLM) was used to fit individual BOLD 

responses and obtain estimates of signal change per voxel. The GLM consisted of 6 regressors 

of interest: full sequence (cue A/B, valid, invalid), replay (cue A/B), one regressor of no interest 

modeling the task instructions and performance summary screen and 24 motion regressors 

(8standard+extended9 option in FSL FEAT, representing the 6 estimated realignment 

parameters, its 6 derivatives plus the 12 corresponding squared regressors of the former 

regressors). Parameter estimates were estimated for each run separately and averaged within 

each ROI. In order to control for stimulus unspecific BOLD modulations, we subtracted the PE 

of a non-stimulated control ROI (see ROI selection) from the PEs of the stimulus ROIs. Finally, 

PE9s were compared across participants using repeated-measures ANOVA.  

 

Decoding analysis. The decoding analysis was performed with scikit-learn (Pedregosa et al., 

2011). Individual voxel time courses were low-pass filtered using a Savitzky-Golay filter with a 

window length of 5 TRs and polynomial order of 2 (Savitzky & Golay, 1964) and normalized to 

z-scores. A logistic regression classifier (default values, L2 regularization; C=1) was trained to 

distinguish between sequences A and B during valid full sequence trials. In addition to the two 

classes of interest a third class of no interest (null event, fixation cross only) was included during 

classifier training. Similar to a covariate in a GLM, this class might capture noise contributions 

that present throughout the experiment (e.g. from respiration) and should not be used to 
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distinguish between the classes of interest. The classifier training was performed on single trials 

from one run. Classifier training and testing was always performed across runs to ensure 

independent datasets (i.e. training on run 1 and testing on run 2, then training on run 2 and 

testing on run 1). The trained classifier was then applied to replay trials (or invalid full sequence 

trials). Before applying the trained classifier, all trials of a respective condition were averaged 

to maximize signal-to-noise ratio. The classifier output consists of a probability for each class 

(i.e., sequence A, B, rest; probabilities sum up to 1), which were averaged across independent 

runs and tested across participants and conditions using a rm-ANOVA. 

For the time-resolved decoding analysis, the described steps were repeated for each 

TR from 0 to 10.35 s. For the standard decoding analysis, we chose an average of 3 volumes 

corresponding to the expected hemodynamic peak at around 4.05-4.95 s. A Searchlight 

analysis was performed repeating the same decoding analysis within a sphere of r=6 mm. 

 

V1-hippocampus correlation. Across subject correlation analysis was performed to probe 

coordinated replay in V1 and hippocampus. For each participant, classifier evidence values 

represent the probability that the cued sequence was replayed minus the probability of the non-

cued sequence (i.e. probability sequence replay A minus B during cue A trials and probability 

sequence replay B minus A during cue B trials). Classifier evidence for V1 and hippocampus 

were then tested for dependency using Spearman's rank correlation coefficient, separately for 

the probabilistic and random session. Differences in Spearman correlation coefficients between 

the probabilistic and random session were tested using a non-parametric test with 10.000 

permutations. 

 

Control for eye movements. Participants were instructed to maintain fixation throughout the 

whole experiment. Eye positions were recorded with a video camera at 50 Hz sampling rate 

under infrared illumination (Eye Track-LR camera unit, SMI, SensoMotoric Instruments). 

Eyeblink artifacts were identified by differentiating the signal to detect eye pupil changes 

occurring too rapidly (< 60 ms) to represent actual dilation. Blinks and samples in which the 

corneal reflection was not reliably detected were removed from the signal using linear 

interpolation. Eyetracking data was gathered in the scanner for 21 of the 28 participants during 

the probabilistic session and for 24 of the 27 participants for the random session. We calculated 

the mean gaze as a function of the four stimulus locations and task conditions. Mean horizontal 

gaze position did not vary with stimulus position, neither for the probabilistic session (ANOVA, 

P = 0.56) nor for the random session (ANOVA, P = 0.72). 
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