

1 **Genome-wide analysis of *Schistosoma mansoni* reveals population structure and**
2 **praziquantel drug selection pressure within Ugandan hot-spot communities**

3

4 **Short title: Genome-wide analysis of *Schistosoma mansoni* in a Ugandan hot-spot**

5

6 Tushabe John Vianney^{1,2}, Duncan J. Berger¹, Stephen R. Doyle¹, Geetha Sankaranarayanan¹, Joel
7 Serubanja², Prossy Kabuubi Nakawungu², Fred Besigye², Richard E. Sanya^{2,3}, Nancy Holroyd¹,
8 Fiona Allan⁴, Emily L. Webb⁵, Alison M. Elliott^{2,6*}, Matt Berriman^{1*}, James A. Cotton^{1*}

9

10 ¹Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom

11 ²Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus
12 Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit,
13 Entebbe, Uganda

14 ³Health and Systems for Health Unit, African Population and Health Research Center, Nairobi,
15 Kenya

16 ⁴Department of Life Sciences, Natural History Museum, London, United Kingdom

17 ⁵MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical
18 Medicine, London, UK

19 ⁶Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK.

20

21 *authors for correspondence: Alison.Elliott@lshtm.ac.uk, james.cotton@sanger.ac.uk,

22 matt.berriman@glasgow.ac.uk

23 Author Contributions

24

25 TJV: Formal analysis, Investigation, Writing – Original Draft Preparation, Writing – Review &

26 Editing

27 DJB: Formal analysis, Investigation, Writing – Review & Editing

28 SRD: Formal analysis, Investigation, Writing – Review & Editing

29 GS: Investigation, Resources, Writing – Review & Editing

30 JS: Investigation, Resources, Writing – Review & Editing

31 KP: Investigation, Writing – Review & Editing

32 FB: Investigation, Writing – Review & Editing

33 RES: Conceptualisation, Investigation, Resources, Writing – Review & Editing

34 NH: Project Administration, Writing – Review & Editing

35 FA: Investigation, Methodology, Resources, Writing – Review & Editing

36 ELW: Conceptualization, Formal analysis, Methodology, Writing – Review & Editing

37 AE: Conceptualization, Project Administration, Supervision, Funding Acquisition, Writing –

38 Review & Editing

39 MB: Conceptualization, Project Administration, Supervision, Funding Acquisition, Writing –

40 Review & Editing

41 JAC: Formal analysis, Supervision, Writing – Original Draft Preparation, Writing – Review &

42 Editing

43

44

45 **Abstract**

46

47 Populations within schistosomiasis control areas, especially those in Africa, are recommended to
48 receive regular mass drug administration (MDA) with praziquantel (PZQ) as the main strategy for
49 controlling the disease. The impact of PZQ treatment on schistosome genetics remains poorly
50 understood, and is limited by a lack of high-resolution genetic data on the population structure
51 of parasites within these control areas. We generated whole-genome sequence data from 174
52 individual miracidia collected from both children and adults from fishing communities on islands
53 in Lake Victoria in Uganda that had received either annual or quarterly MDA with PZQ over four
54 years, including samples collected immediately before and four weeks after treatment. Genome
55 variation within and between samples was characterised and we investigated genomic signatures
56 of natural selection acting on these populations that could be due to PZQ treatment. The parasite
57 population on these islands was more diverse than found in nearby villages on the lake shore.
58 We saw little or no genetic differentiation between villages, or between the groups of villages
59 with different treatment intensity, but slightly higher genetic diversity within the pre-treatment
60 compared to post-treatment parasite populations. We identified classes of genes significantly
61 enriched within regions of the genome with evidence of recent positive selection among post-
62 treatment and intensively treated parasite populations. The differential selection observed in
63 post-treatment and pre-treatment parasite populations could be linked to any reduced
64 susceptibility of parasites to praziquantel treatment.

65

66 **Keywords:** *Schistosoma mansoni*, praziquantel, resistance, genetics, population structure,

67 Uganda

68 Author summary

69 Schistosomiasis is caused by parasitic helminths of the genus *Schistosoma*. *Schistosoma mansoni*
70 is the primary cause of intestinal schistosomiasis, a devastating and widespread parasitic
71 infection that causes morbidity, death and socio-economic impact on endemic communities
72 across the world and especially sub-Saharan Africa. Using whole-genome sequencing, we were
73 able to elucidate the parasite population within Lake Victoria island fishing communities in
74 Uganda which are among the major hotspots for schistosomiasis. We further assessed genetic
75 markers that might be linked to recent observations concerning reduced susceptibility to
76 praziquantel, the major drug used in the treatment of this disease. Whole-genome data on the
77 population genetics of *S. mansoni* in an African setting will provide a strong basis for future
78 functional genomics or transcriptomic studies that will be key to identifying drug targets,
79 improving existing drugs or developing new therapeutic interventions.

80 **Introduction**

81 Schistosomiasis – also known as Bilharzia after its discoverer Theodor Bilharz [1] – is a neglected
82 tropical disease that affects about 250 million people worldwide, most of whom live in low and
83 middle-income countries (LMICs) [2]. To treat schistosomiasis, praziquantel (PZQ) is used for
84 preventative chemotherapy by mass drug administration (MDA)[3] and has been used globally to
85 treat schistosome infections since 1979 [4]. In Uganda, the ongoing use of PZQ in MDA started
86 between 2002 and 2003 [3, 5]. The objective of MDA in these settings has historically been to
87 reduce the prevalence and intensity of infection and hence pathology; cure and elimination are
88 not expected in the absence of additional interventions such as improving sanitation and snail
89 control [6, 7]. In the World Health Organisation 2021-2030 the goal has been set of reducing the
90 proportion of people with high-intensity infections to < 1% and thereby to eliminate
91 schistosomiasis as a public health problem in all countries in sub-Saharan Africa by 2030 [8]. The
92 expectation is that this will be achieved primarily by increasing the frequency and coverage of
93 treatment with PZQ – the sole drug commonly used for schistosomiasis MDA –which could
94 inadvertently increase drug selection pressure on parasite populations.

95

96 There is a growing body of evidence that MDA programmes may affect how parasite populations
97 respond to treatment, for example, through reduced efficacy of PZQ in lowering egg output in
98 communities that have received multiple rounds of PZQ MDA [9, 10], but there is little evidence
99 that this is a widespread phenomenon [11, 12]. Reduced genetic diversity of parasite populations
100 has also been associated with reduced susceptibility of the parasites to PZQ [13], with reports

101 from Senegal having earlier linked such outcomes to potential drug resistance [14]. The
102 development of drug resistance in natural populations would be a major health concern.
103 Furthermore, *in vitro* studies have shown that resistance to PZQ can be selected for in *S. mansoni*
104 [13, 15-17]. There is growing interest in understanding the impact of continued PZQ
105 monotherapy on the parasite genome in order to detect the potential development of resistance
106 to this drug as early as possible [18, 19], and understand the mechanism(s) of resistance. One
107 clue to resistance can come through understanding the mode of action of a drug. The activity of
108 PZQ has not been clearly understood, but recent findings suggest that the drug activates
109 schistosome Ca^{2+} -permeable transient receptor potential (TRP) channel (Sm.TRPM.PZQ) [20],
110 hence making it the primary target for PZQ action on schistosomes. Recently, a genetic cross
111 involving a schistosome line experimentally selected for PZQ resistance identified this TRP
112 channel as likely responsible [21], but it is not yet clear that this locus is involved in variation in
113 PZQ efficacy in the field. Other candidate genes have been proposed, for example the *S. mansoni*
114 P-glycoprotein (smdr2), which shows increased protein expression in male worms following
115 exposure to sub-lethal doses of PZQ [16]. Susceptibility of the parasites to PZQ might involve
116 multiple interactions between the drug, the parasite, and the respective host.

117
118 Collecting high-resolution genetic data from parasite populations under drug selection pressure
119 may lead to new insights into the mode of action of PZQ or the mechanism of potential resistance
120 to the drug. Furthermore, population genetic data from parasite populations will also give
121 insights into the population biology of the parasite. This is vital for understanding schistosomiasis
122 epidemiology, transmission, disease severity and why certain communities might respond better

123 to treatment than others, especially within regions where drug selection pressure is being
124 applied[22]. While lower-resolution markers have been extensively used (e.g.[23, 24]), much of
125 our detailed understanding of schistosome population genetics has come from studies using
126 microsatellite markers to describe the genetic structure of populations of *S. mansoni* [25-27] and
127 other schistosome species [28, 29]. This work has revealed genetic differentiation between
128 parasite populations that are geographically separated (e.g [30-33]), but panmictic populations
129 and very high within-host diversity within disease foci (e.g. [34, 35]). The population genetics of
130 African schistosomes has recently been reviewed [36]. Microsatellite markers have also been
131 employed to investigate both basic questions about parasite biology (e.g. [37]) as well as more
132 applied, operational questions about schistosome control [22]. In particular, a few studies have
133 shown changes in genetic diversity of schistosomes with praziquantel MDA [4, 38, 39], but other
134 studies have failed to find this effect [40] particularly with longer-term follow-up [41] suggesting
135 any genetic response to treatment may be only temporary [42].

136
137 With their high levels of polymorphism, microsatellite loci are powerful molecular markers, but
138 inevitably represent only a small proportion of the parasite genome. There is an increasing
139 amount of genome-scale data available for schistosome populations. A number of studies have
140 used exome capture [43] to describe introgression between *Schistosoma* species [44] and to
141 study the historical demography of schistosomiasis in the Americas [45]. Restriction site-
142 associated sequencing (ddRAD-seq) has been used to demonstrate strong genetic structure in
143 remaining endemic hot-spots of *S. japonicum* transmission [46, 47]. While providing high-
144 resolution data in a cost-effective way, these reduced-representation sequencing approaches

145 have some drawbacks, for example in identifying small haplotype blocks from ancient
146 introgression [44]. Whole-genome data gives a more comprehensive picture of genetic variation,
147 including non-coding variation, and so has the potential to provide more insights into
148 understanding the population genetics of this species. While reference genome assemblies are
149 available for a number of schistosome species [48-54], large-scale genome-wide variation data is
150 only available from one *S. mansoni* population [55], with a number of other populations and
151 other species most being represented by relatively few specimens [53, 56-58]. Efforts in
152 elucidating the parasite population genetic structure have proven very helpful in understanding
153 drug resistance or transmission mechanisms in other parasite species: most notably in the
154 malaria parasite *Plasmodium falciparum* [59, 60] for which very extensive genome data is
155 available [61].

156
157 Within Uganda, the Lake Victoria Island Intervention Study on Worms and Allergy-related
158 diseases (LaVIISWA) was a cluster-randomised clinical trial [62] examining the impact of intensive
159 (quarterly) versus standard (annual) PZQ treatment. While the study was primarily designed to
160 assess the impact of anthelmintic treatments on allergy-related outcomes, prevalence and
161 intensity of *S. mansoni* was a secondary outcome with results suggesting a plateauing of
162 infection, after an initial decline in intensively treated villages [63]. To assess this outcome, a pilot
163 study in the fourth year of the LaVIISWA trial investigated cure rate and Egg Reduction Rate (ERR)
164 [10]. A lower cure rate and ERR was seen among people receiving quarterly (intensive) treatment
165 (n=61; cure rate 50.8%, 95% confidence interval (CI): 37.7% to 63.9%; ERR 80.6%, 95% CI: 43.8%
166 to 93.7%) than in those receiving a single annual standard dose (n=49, cure rate 65.3%, 95% CI:

167 50.4% to 78.3%; ERR 93.7%, 95% CI: 84.9% to 97.7%) [10]. The WHO recommends an ERR of 90%
168 for effective PZQ treatment [9, 64]. While the sample size available precluded finding compelling
169 statistical evidence, these results are suggestive of the first signs of reduced efficacy of PZQ
170 treatment in the more intensively treated population, and that the plateau in reduction of
171 infection during the intervention study could be due to PZQ resistance. These islands thus
172 represent a 'hot spot' in which high baseline prevalence [62] of schistosomiasis has persisted
173 despite multiple years of treatment [10, 65].

174

175 Here, we sought to establish genome-wide data on the population genetics of parasites present
176 in this study population, with the ultimate goal of assessing the effects of MDA on parasite
177 genome evolution. We take advantage of the opportunity to investigate these in the context of
178 a randomised intervention trial within a defined geographical area, allowing us to compare the
179 effects of geographical isolation and treatment intensity on genetic variation in this population.
180 By comparing samples taken immediately before and after a treatment round at the end of the
181 LaVIIISWA study in the two treatment arms and for multiple villages (the level of randomisation
182 in the study), we can investigate whether the genetic impact of a single treatment dose varies
183 with history of drug exposure. Building on the evidence that there may be differences in
184 treatment efficacy between treatment arms, we investigated whether the signatures of natural
185 selection across the genome differ with previous drug exposure. We also compare these data
186 with recently published genomic data from other Ugandan *S. mansoni* populations.

187

188

189 **Methods**

190 **Ethical considerations**

191

192 This work was not expected to result in any harm to participants. Ethical approval was given by
193 the Uganda Virus Research Institute (reference number GC127), the Uganda National Council for
194 Science and Technology (reference number HS 1183) and the London School of Hygiene &
195 Tropical Medicine (reference number 6187). As previously detailed [62], written informed
196 consent was received from all adults and emancipated minors and from parents or guardians for
197 children; additional assent was obtained from children aged ≥ 8 years.

198

199 **Sample selection and study site**

200 Participants were selected from four villages each from the standard and intensive treatment
201 arms from among the 27 study villages of Lake Victoria Island Intervention Study on Worms and
202 Allergy-related diseases (LaVIISWA) trial [62, 63] at the end of its fourth year. The participants
203 involved children and adults as previously described [62]. The villages in the standard arm
204 received PZQ once a year while those in the intensive arm received PZQ four times a year during
205 the LaVIISWA trial period. The standard villages sampled were Kakeeka, Kachanga, Zingoola and
206 Lugumba. The intensive villages were Busi, Kitosi, Kisu and Katooke (Fig. 1).

207

208

209 **Fig 1. Location of sample sites within Uganda.** Villages with white dots received standard
210 (annual) intervention, those with red dots received intensive (quarterly) intervention. Outgroup
211 samples were obtained from locations marked as inland and shoreline. Map data copyright 2019
212 Google.

213

214

215 Sample selection and collection was carried out as previously described in the parasitological
216 survey [10]. The stool samples (collected from participants who tested positive for urine CCA)
217 were processed for two Kato Katz slides as previously described [10] and miracidia hatching
218 provided suitable material for DNA extraction. Participants were then treated, under
219 observation, with a single dose of PZQ at 40 mg/kg (estimated by height pole), in accordance with
220 the trial MDA procedures. Individuals whose pre-treatment sample tested positive for

221 schistosome eggs by Kato Katz were followed up after four weeks and both Kato Katz and
222 miracidia hatching were repeated. Miracidia hatching was carried out from each of these
223 participants and the resultant miracidia were stored on Whatman FTA cards until DNA was
224 extracted.

225

226 **Miracidia hatching**

227 Miracidia hatching was carried out following previously described protocols [31]. In brief, the
228 stool sample was homogenised through a metal sieve, then further washed and filtered using a
229 Pitchford funnel assembly [66] consisting of a 40 µm sieve placed inside a 200 µm outer sieve.
230 Stool samples were washed using deionised water (Rwenzori Bottling Company, Uganda). The
231 concentrated *S. mansoni* eggs were transferred to a Petri dish in clean water and exposed to
232 indirect sunlight to induce the hatching of miracidia. Hatching was performed in natural light
233 (environmental conditions) with intervals of exposure to sunlight and cover depending on
234 weather conditions. The time taken for miracidia to emerge varied between samples, so the Petri
235 dishes were intermittently checked for the presence of miracidia for a maximum of 48 hours.
236 Miracidia were picked in 1.5 – 5µl of water and then transferred to a second dish of deionised
237 water to dilute bacterial contamination before being placed on Whatman indicating FTA cards
238 (Qiagen) and left to dry. The FTA cards were wrapped in aluminium foil to keep them away from
239 continued direct light and placed in ziplock bags with silica gel in a cardboard drawer.

240

241 **Whatman FTA DNA Extraction**

242 DNA was extracted using a modified CGP buffer protocol as previously described [67, 68]. The

243 individual spots containing miracidia were punched from the FTA cards using a 2 mm Harris
244 micro-punch and placed in 96-well plates. Protease buffer was prepared using Tris-HCl pH 8.0 (30
245 mM), Tween 20 (0.5%), IGEPAL CA-630 (0.5%), protease (1.25 µg/ml; Qiagen cat #19155) and
246 water. Digestion was done by adding 32 µl of the protease buffer to each of the wells on the 96-
247 well plate containing the punched spots from the FTA cards. The plate was vortexed to mix and
248 spun down before incubation at 50°C for 60 min, 75°C for 30 min. Miracidia lysates containing
249 DNA were transferred to a new labelled plate and stored at 4°C until used.

250

251 **Library preparation and sequencing**

252 DNA sequencing libraries were prepared using a protocol designed for library preparation of
253 Laser Capture Microdissected Biopsy (LCMB) samples using the Ultra II FS enzyme (New England
254 Biolabs) for DNA fragmentation as previously described [68]. The LCMB library preparation
255 method is optimised for uniform, low-input samples. A total of 12 cycles of PCR were used to
256 amplify libraries and to add a unique 8-base index sequence for sample multiplexing. The LCMB
257 library preparation protocol is optimised for uniform, low input samples. A total of 174 samples
258 were sequenced on two NovaSeq lanes, 108 on one lane and 66 on another lane. These 174
259 samples were chosen as having more than 10% of reads mapping to *S. mansoni* based on
260 preliminary low-coverage genome sequencing of all 214 samples collected in the field.

261

262 **Mapping and SNP calling**

263 The reads were mapped to the *S. mansoni* reference genome v7 (GCA_000237925.3) [54] using
264 the BWA-MEM algorithm in Burrows-Wheel Aligner software (BWA) (VN:0.7.15-r1140) to

265 produce SAM files which were then converted to BAM format using Samtools v1.14 . This version
266 of the reference genome was modified to remove haplotypes in order to improve mapping
267 accuracy, as previously described [55]. PCR duplicate reads were identified using Picard v1.92
268 [69] and flagged as duplicates in the BAM file.

269 SNP variants were called using the GATK Haplotype Caller (v4.1.4.1) to find sites that differ
270 from the *S. mansoni* reference genome followed by variant QC to remove low confidence SNPs
271 and regions of consistently poor calls. The SNPs were hard-filtered in GATK to remove SNP calls
272 with the following parameters: QD < 2.0; MQ < 40; FS > 60.0; SOR > 3.0; MQRankSum < -12.5;
273 ReadPosRankSum < -8.0. The variants were further filtered using vcftools_0.1.15 [70] to remove
274 sites with high missingness (--max-missing 0.95), low minor allele frequency (--maf 0.01) and to
275 retain only biallelic SNPs (--min-alleles 2 --max-alleles 2).

276

277 **Identification of population structure**

278 The three islands on which the population structure was assessed were Koome, Damba and
279 Lugumba in the Mukono district of Uganda. An outgroup made up of inland and shoreline
280 samples was also included, consisting of 27 samples collected in a previous study [9] and for
281 which whole-genome sequence data were recently published [55] from Tororo and Mayuge
282 districts in Eastern Uganda. Tororo and Mayuge are approximately 120 km apart. Mayuge district
283 is a shoreline district located about 100 km from Mukono district. Both districts are located in
284 south eastern Uganda, with Tororo being the inland district (Fig. 1).

285

286 **Test for genetic differentiation**

287 The fixation index (F_{ST}) statistic was calculated between each of the villages across the different
288 islands and treatment groups (standard, intensive, pre-treatment and post-treatment) to
289 measure population differentiation due to genetic structure. The F_{ST} was calculated using vcftools
290 (version 0.1.15) [55] on the vcf file containing biallelic filtered SNPs. Mean F_{ST} was calculated from
291 genome-wide weighted F_{ST} values with 99% symmetric bootstrap confidence intervals calculated
292 using R version 3.5.1 (2018-07-02). We fitted a gravity model as

293
$$\log(N_m) = \log(G) + a \cdot \log(P_i \cdot P_j) - Y \cdot \log(D_{ij}) + \epsilon,$$

294 where N_m is an estimated number of migrants per generation, calculated from the F_{ST} between
295 villages as:

296
$$N_m = 0.25((1/F_{ST}) - 1)$$

297 And G is the linear distance between the villages. In $(P_i \cdot P_j)$, P_i and P_j represent the population
298 sizes of the two villages compared. Models were fitted using R version 4.02, with the MuMIn
299 package v1.43 to assess model importance. Code for these analyses is available at
300 https://github.com/jacotton/LaVIISWA_genomes.

301

302 **Nucleotide diversity**

303 Nucleotide diversity (π) was computed from high-confidence bi-allelic filtered SNPs using
304 vcftools 0.1.15 [70]. The genome-wide nucleotide diversity was calculated from a list of positions
305 for each of the time points (pre- and post) and treatment groups (standard and intensive) using
306 the option in vcftools '--site-pi' respectively. The average nucleotide diversity within each of the
307 groups was calculated individually and the symmetric 99% bootstrap confidence intervals of the
308 averages were estimated using R version 3.5.1. Statistical significance of differences between

309 group means was assessed by whether the confidence interval for one mean was disjoint from
310 the mean of other groups. Effective population size (N_e) was estimated from nucleotide diversity
311 using the relationship $\pi = 4.N_e.\mu$ [71] with the mutation rate 8.1×10^{-9} [57].

312

313 **Determination of rare allele sharing and kinship analysis**

314 To identify the pairwise rare allele sharing we used a Perl script from Shortt et al. [47] available
315 at <https://github.com/PollockLaboratory/Schisto>. We filtered for minor allele frequency ≤ 0.1
316 and sampled 500 SNP sites in 30 different generations. We then computed the mean value from
317 the 30 generations for each pair. Allele-sharing scores were visualised in R version 4.0.2 using
318 igraph v1.2.6 [72]. Significance of differences in mean allele sharing between groups were
319 calculated against a non-parametric null distribution for each comparison generated by randomly
320 permuting group labels 1000 times and calculating differences in mean allele sharing for each
321 permutation.

322

323 **Test for selection**

324 To test for recent positive selection within the treatment arms and between pre-treatment and
325 post-treatment, the cross-population extended haplotype homozygosity (XP-EHH) test [73] was
326 performed. XP-EHH is designed to detect whether either an ancestral or derived allele is
327 undergoing selection within a given population. The XP-EHH test has the power to detect weaker
328 signals of selection as it compares two closely related populations giving a directional score. The
329 XP-EHH detects selective sweeps in which the selected allele has approached fixation in one
330 population but remained polymorphic in another population. A VCF file containing only bi-allelic

331 SNPs was subset into respective chromosomes. A genomic linkage map for each of the
332 chromosomes was computed for each individual chromosome using the adjusted map length in
333 centimorgan (cM) for the respective chromosomes [74]. The haplotypes from each of the
334 chromosomes were then phased separately with their respective genomic map using Beagle v5.0
335 [75]. The XP-EHH test was performed using Selscan v1.2.0a [76] and the output XP-EHH scores
336 were normalised for subsequent analysis using the norm program distributed with v1.2.0a of
337 Selscan. Functional enrichment was assessed using g:Profiler version (e99_eg46_p14_f929183)
338 [77] at a g:SCS threshold of 0.05 against a background of all annotated genes in *S. mansoni*,
339 revealing genes showing significant purifying selection among the intensive and post-treatment
340 parasite populations.

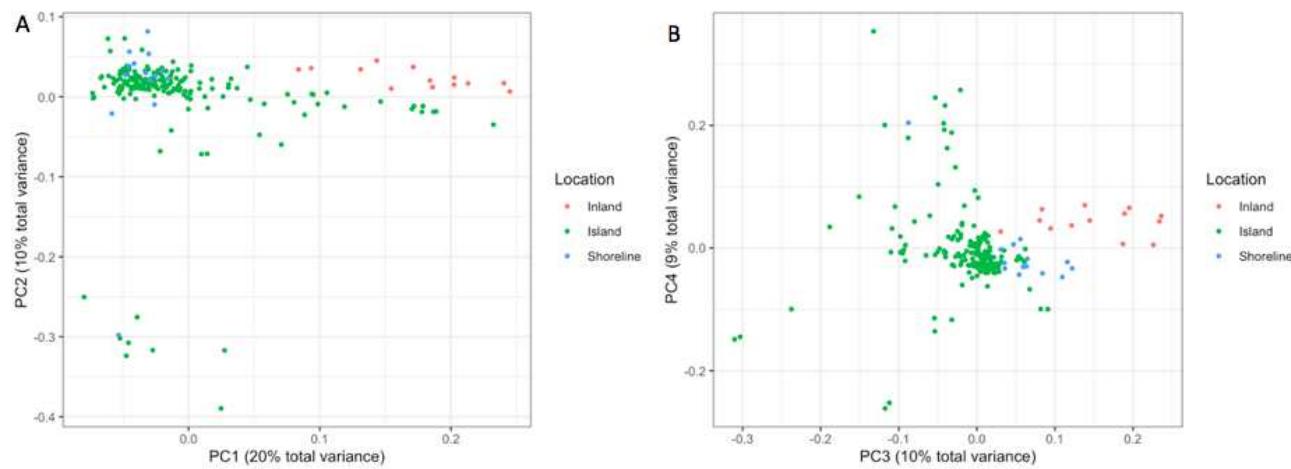
341

342 **Estimate of per-individual egg reduction rate (ERR) and association test**

343 The posterior distribution for the ERR based on data from each individual for whom both pre-
344 and post-treatment egg count data were available was estimated using a generalised linear
345 mixed-effect model [78], incorporating nested random effects for treatment arm, village and
346 individual. Means of the marginal posterior distribution per individual were used as quantitative
347 phenotypes for an association study, testing all 6,967,554 called SNP variants. The model used was a
348 linear regression of each SNP genotype against mean ERR, using 20 principal components as covariates
349 to control for population structure, calculated using the '--linear' and '--pca' flags in plink v1.9
350 [79]. Code for these analyses is available at https://github.com/jacotton/LaVIISWA_genomes.

351

352


353 **Results**

354 **Population stratification**

355 After filtering, 6,967,554 high-confidence SNPs were retained (out of 18,716,072 unfiltered SNPs)
356 from 174 individual miracidia. Principal components analysis of these high confidence SNPs
357 showed little genetic structure within the island parasite populations on the first four principal
358 components, which together represent 49% of the genetic variation. In particular, we found no
359 evidence of population stratification between the standard (annual treatment) and intensive
360 arms (quarterly treatment) or between pre- and post-treatment samples from these fishing
361 communities (S2 Figure). The shoreline samples (from Mayuge district) clustered more closely
362 with the island (Mukono district) parasite populations as compared to the inland samples (from
363 Tororo district) (Fig. 2), but inland parasites were distinct from most island samples on principal
364 component 3. The large-scale geographical pattern reflects the known genetic differentiation
365 between inland and shoreline populations [55]. We also found that the island population is
366 strikingly more diverse than either of the other populations (Fig. 2). While this is partly due to
367 the larger number of samples included here, a larger sample of the shoreline and inland
368 populations studied elsewhere also did not appear as diverse as the island population [55]. A
369 number of miracidia appeared quite distinct from the main cluster of individuals on principal
370 component 2. These divergent parasites were mostly (8 out of 9) from the islands and came from
371 four different villages (Busi, Kakeeka, Zingoola, Katooke), with one from a shoreline village
372 (Bwondha; S4 figure). Although participants were all resident in the villages throughout the
373 LaVIIISWA trial for at least 3 years before this study, there is a great deal of migration to the islands
374 from other parts of the shoreline of Lake Victoria, including Kenya and Tanzania; therefore, we

375 suspect these miracidia represent parasites imported from other populations that we have not
376 sampled here.

377

378

379

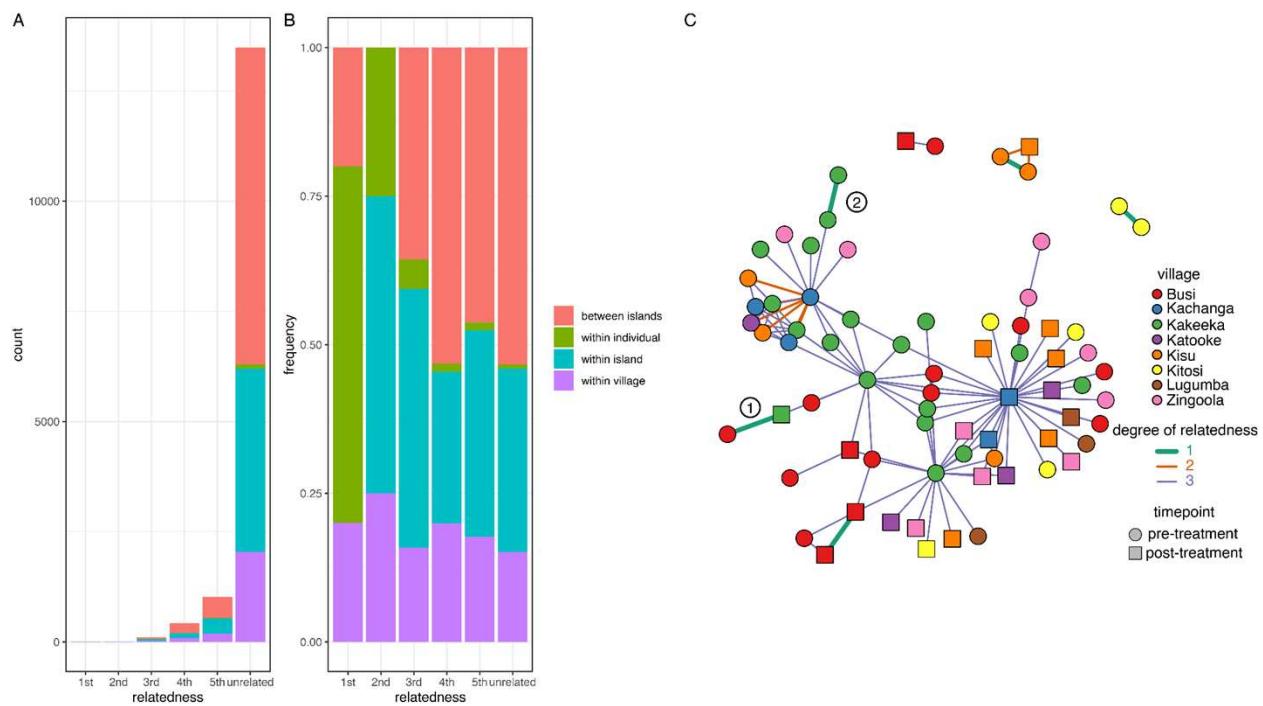
380

381 **Fig 2. Principal components analysis of genetic variation within study samples and comparator**
382 **Ugandan populations.** (A) Shows the first two principal components and (B) the third and fourth
383 principal components. Each point represents a single miracidium, coloured by the population
384 from which they are sampled, with 'Shoreline' samples from Mayuge district and 'Inland' from
385 Tororo district.

386

387 **Rare allele sharing and kinship analysis**

388 To investigate direct relatedness between individual parasites, we adopted an approach based
389 on determining the level of sharing of rare alleles (defined by their population frequency being
390 less than or equal to 10%) between samples [47]. This approach has recently been used to study


391 *S. japonicum* populations in China with whole-genome data [58]. By definition, most unrelated
392 individuals share very few rare alleles; here we found slightly higher average proportion of rare-
393 allele shared between pairs of miracidia isolated from the same individuals (0.1028) than in other
394 comparisons (from the same village 0.0874, between villages on the same island 0.0862, between
395 islands 0.0856). Differences between average allele sharing proportions were significant for
396 comparing infrapopulation and within village groups (observed difference 0.0154, p-value from
397 permutation test $p<0.001$) and within-village to within-island groups (observed difference
398 0.0012, $p\sim 0.002$) but only marginally so for within-island and between-island comparisons
399 (observed difference 0.0006, $p\sim 0.011$). These data suggest an increase in relatedness within
400 populations and possibly some geographical signature of increased relatedness.

401
402 We found three miracidia collected from the same infected individual at the same time with rare
403 allele sharing of at least 0.3, and used these to calculate the average allele sharing for first-degree
404 relatives (full siblings or parent-offspring) of 0.403 (actual values 0.4, 0.4014 and 0.409). This
405 value is slightly lower than the theoretically expected level of identity-by-descent of 0.5, but with
406 only three observations it is not possible to exclude that this difference is due to chance. Similarly,
407 the average rare allele sharing for pairs of miracidia from different islands was 0.086, which
408 represents our best estimate for the level of sharing in unrelated individuals. The small number
409 of miracidia available for putative first-degree relatives means the observed variance from our
410 data is very small, and so our final classification is thus deterministic. We classified miracidia pairs
411 sharing more than 0.3105 of these rare alleles as first-degree relatives, 0.1981-0.3104 as second-
412 degree relatives, 0.1419-0.1980 as third-degree relatives, 0.1138-0.1418 as fourth-degree

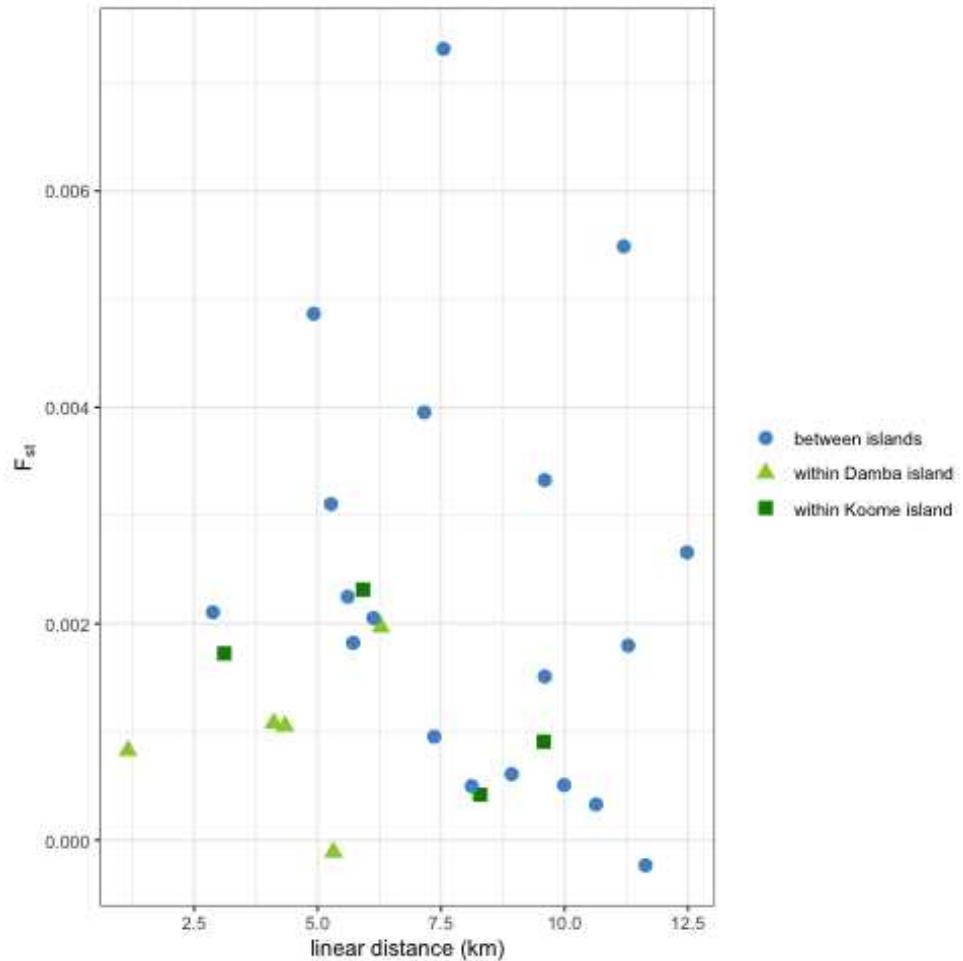
413 relatives and 0.0956-0.1138 as fifth-degree relative, while those with less than 0.0956 sharing
414 were classified as unrelated.

415
416 While 24% of pairs of samples from the same individual were classified as being related, only 10%
417 of other comparisons appeared related (Fig. 3 A,B; $\chi^2 = 21.785$, 1 df, $p = 3.05 \times 10^{-6}$), and a similar
418 pattern held for close relatives (Fig. 3 A,B; first and second degree relatives represented 4% of
419 within-infrapopulation comparisons, but 0.05% of all comparisons; $\chi^2 = 183.37$, 1 df, $p < 2.2 \times 10^{-6}$).
420 There was no significant enrichment in related pairs of miracidia with either treatment
421 intensity or for samples collected pre- and post-treatment. We found five pairs of first-degree
422 relatives in total (Fig. 3C); but one pair were from different islands (marked 1 on Fig. 3C) and a
423 second pair were from different individuals sampled on consecutive days in Kakeeka village
424 (marked 2 on Fig. 3C). On the face of it, this would imply that the same combination of clonal
425 cercariae infected these people, which seems very unlikely – particularly for the geographically
426 separated cases. We cannot exclude the possibility that either the high level of rare allele sharing
427 is misleading in these cases, or errors in sample identification. The remaining three pairs of first-
428 degree relatives were pairs of miracidia sampled from single individuals in Busi, Kitosi and Kisumu
429 villages on consecutive days. Interestingly, a miracidium sampled from the same individual in Kisumu
430 was a second-degree relative of the first-degree pair, but this was collected post-treatment 37
431 days later. This is one of only 8 pairs of second-degree relatives. This suggested that either an
432 adult worm survived treatment but changed 'partners' (to produce a half-sibling or avuncular
433 relationship) during this period, or two clonal worms with genetically distinct partners were
434 present in this host at the two timepoints and produced these miracidia.

435

436

437 **Fig 3. Patterns of relatedness inferred from pairwise rare allele sharing.** (A) Number and (B)
438 proportion of pairs of miracidia showing each degree of relatedness for miracidia sampled from
439 the same individuals, villages or islands and for those on different islands. (C) Network
440 representation of 1st, 2nd and 3rd degree relatedness. Vertices represent individual miracidia
441 sampled, coloured by village and with a circle for samples taken pre-treatment and square for
442 post-treatment samples. Edges join vertices inferred to share 1st, 2nd or 3rd degree relatedness,
443 as indicated by both the width and colour of each edge. Numerical labels indicate two 1st degree
444 relationships discussed in the text.


445

446 **Analysis of genetic differentiation between villages**

447 To further investigate genetic structure within the island population, we calculated F_{ST} (the
448 proportion of genetic variation explained by population structure) for each pair of villages. As we

449 expected, F_{ST} between villages was very low (maximum 0.0067), indicating little or no geographic
450 structure to our data. We observed higher genetic differentiation between villages on different
451 islands compared to those within the same island, but the small number of pairwise comparisons
452 ($N = 8$ villages, 28 pairwise comparisons) meant that we did not have sufficient statistical power
453 to detect any difference ($p = 0.082$, 1-way ANOVA of between/within village vs F_{ST}). The villages
454 were between 1 and 13 km apart, but there was no significant relationship between the distance
455 between villages and F_{ST} (Fig. 4). To explore the geographical structure in these data more fully,
456 we also fitted a gravity model attempting to explain F_{ST} between each pair of villages by the
457 distance between villages, the population of each village and a factor capturing the effect of being
458 on the same island. In this model, none of the explanatory variables had a significant influence
459 on F_{ST} , but the location of villages on the same island vs different islands was the most important
460 variable with a likelihood weight in the best-fitting models of 0.48, while 0.31 for linear distance
461 between villages and 0.23 for the product of village populations.

462

463

464

465 **Fig 4. Pairwise F_{ST} estimates do not vary with linear distances between villages.** Weir and
466 Cockerham F_{ST} estimates used and distance measured in kilometres. Points show results of
467 pairwise comparison between samples from different villages found on different islands or from
468 different villages with Damba or Koome islands.

469

470 **Within-population genetic diversity**

471 When comparing all pre- and post-treatment samples, we observed a very small but significant
472 difference ($p < 0.01$) in genetic diversity between samples taken before and after treatment, with

473 the 99% confidence interval for the mean nucleotide diversity in pre-treatment samples not
474 overlapping with the mean post-treatment nucleotide diversity. This is consistent with a small
475 effect of a single PZQ treatment round on the parasite population (Table 1). There was also lower
476 diversity in parasites collected from villages in the intensive arm of the study than in the standard
477 arm (Table 1), possibly reflecting a longer-term effect of more frequent PZQ treatment in these
478 locations, despite the high levels of gene flow apparent between these locations implied by the
479 very small levels of genetic differentiation we report. While this trend was consistent in both pre-
480 and post-treatment samples, the difference between trial arms was most pronounced in post-
481 treatment populations (Table 1). These diversity values are very similar to those observed in a
482 recent study of the parasite populations on the lake shore and inland sites [55]. Using the
483 mutation rate estimated previously [57], this implies an effective population size of around 10^5
484 individuals from this sample collection, just outside the upper confidence limit of the estimate
485 for the East Africa population in the previous study ($3.67\text{-}9.35 \times 10^4$) [57], and much higher than
486 estimates from individual schools on the Lake Victoria shoreline ($3.30\text{-}3.69 \times 10^4$) [55],
487 highlighting the diversity of *S. mansoni* parasites present on the islands.

488 **Table 1. Genome-wide average nucleotide diversity (pi)**

489

Group	Average pi	99% confidence interval	
Pre-treatment	3.25×10^{-3}	3.22×10^{-3}	3.29×10^{-3}
Post-treatment	3.20×10^{-3}	3.16×10^{-3}	3.23×10^{-3}
Pre-treatment standard	3.27×10^{-3}	3.23×10^{-3}	3.32×10^{-3}
Pre-treatment intensive	3.23×10^{-3}	3.20×10^{-3}	3.26×10^{-3}
Post-treatment standard	3.24×10^{-3}	3.21×10^{-3}	3.27×10^{-3}
Post-treatment intensive	3.16×10^{-3}	3.12×10^{-3}	3.19×10^{-3}

490

491

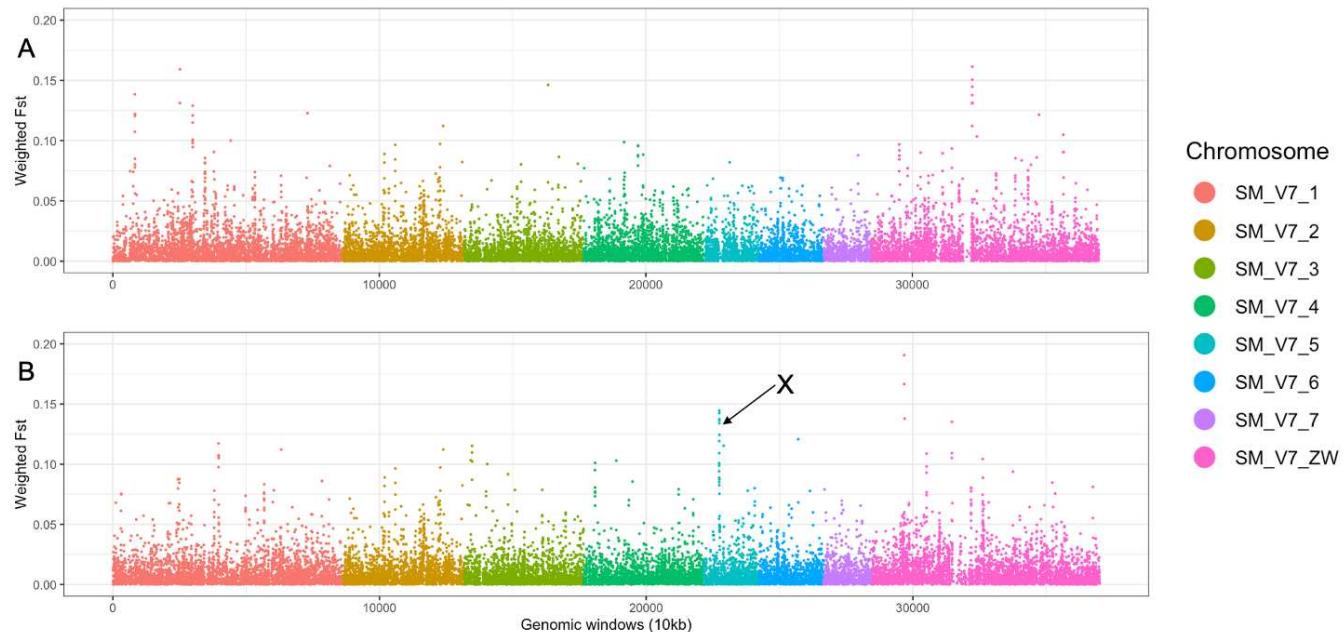
492 **Genetic differentiation with treatment between standard and intensive arms**

493 Genome-wide average genetic differentiation was slightly higher (mean F_{ST} 3.9×10^{-4} ; bootstrap

494 99% CI: 2.5×10^{-4} - 5.3×10^{-4}) between standard and intensive treatment populations post-

495 treatment than before treatment (mean F_{ST} = 3.4×10^{-4} ; 99% CI = 1.8×10^{-4} – 5.0×10^{-4}), but these

496 values did not differ significantly. We also find very low genetic differentiation between standard

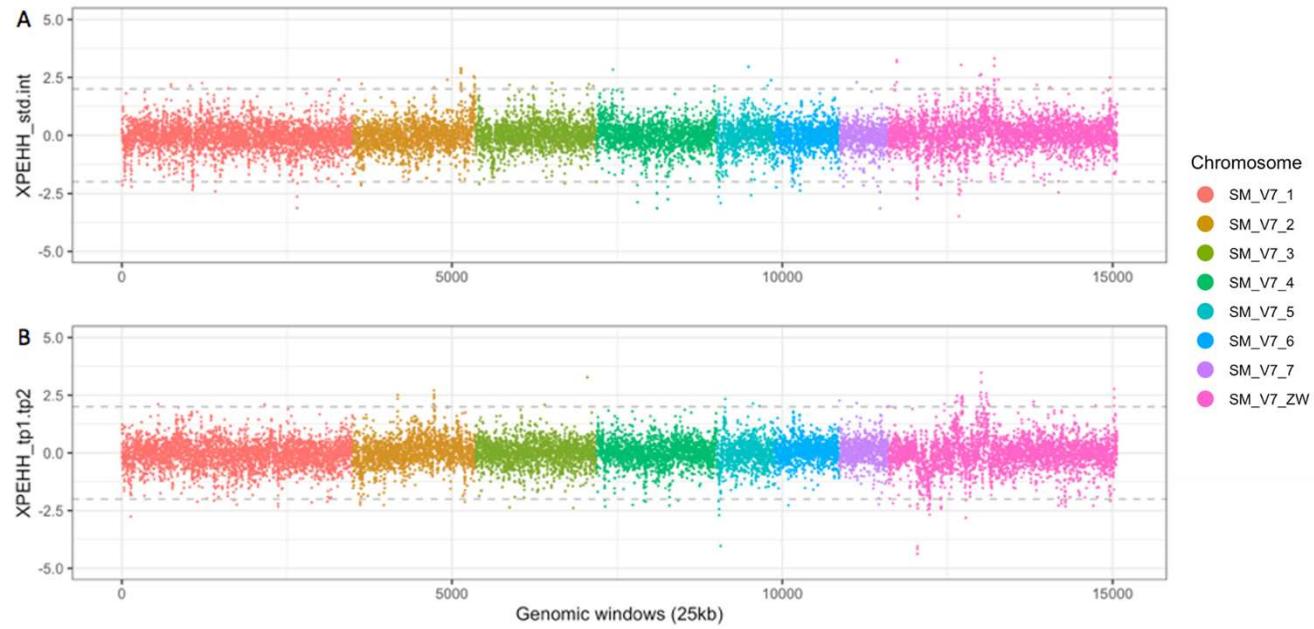

497 and intensive trial arms (mean F_{ST} 5.6×10^{-4} ; 99% CI = 5.2×10^{-4} - 6.0×10^{-4}). There was also variation

498 in these F_{ST} values across the genome. While much of this likely reflects sampling variation (Fig.

499 5A), particularly striking was a region identified on chromosome 5 (Fig. 5B) with a distinct peak

500 of divergence among post-treatment parasite populations. This window spanned 1.21 Mb of

501 genomic sequence (from SM_V7_5: 7.78-8.99 Mb) and contained 25 annotated protein-coding
502 genes (S2 table).



503
504
505 **Fig 5. Genome-wide genetic differentiation between standard and intensive populations. F_{ST}**
506 **calculated using pre-treatment (A) and post-treatment (B) samples.** X marks the region of high
507 post-treatment genetic differentiation discussed in the text. Each point represents the mean F_{ST}
508 between genomic windows of 10 kb for all the called SNPs, with different coloured points
509 representing SNPs on each chromosome.

510
511 **Analysis of signatures of selection**
512 We used the XP-EHH test to identify genomic regions under differing selection pressures in
513 separate comparisons between standard and intensive treatment arms (Fig. 6A) and between
514 pre- and post-treatment samples (Fig. 6B). Taking extreme XP-EHH scores of < -2 or > 2 as a cutoff,

515 we identified 510 windows as outliers including 12.75 Mb or 3.1% of the genome in total and
516 representing 123 contiguous regions. None of the windows from either comparison overlap the
517 peak of differentiation between standard and intensive treatment populations on chromosome
518 5. We note that the Z chromosome was particularly enriched for windows with extreme XP-EHH
519 scores, containing almost half of those found genome-wide (5.325 Mb). This could be a technical
520 artefact caused by difficulty in mapping to a highly repetitive chromosome [54], or due to the
521 smaller average population size or a stronger effect of selection on recessive alleles when
522 hemizygous. There are also a number of reasons to expect sex-linked genes to frequently be
523 under selection [80]. An increased variance in XP-EHH scores is apparent specifically in the Z-
524 specific region (Fig. 6) of the assembly scaffold representing the Z chromosome [54]. This region
525 is not more repetitive than the autosomes or the pseudo-autosomal region shared by Z and W
526 [see table S12 of 54], but is at lower copy number in the population as it is present in a single
527 copy in female worms, so we suspect this enrichment of extreme XP-EHH scores represents a
528 population genetic effect rather than a technical artefact.

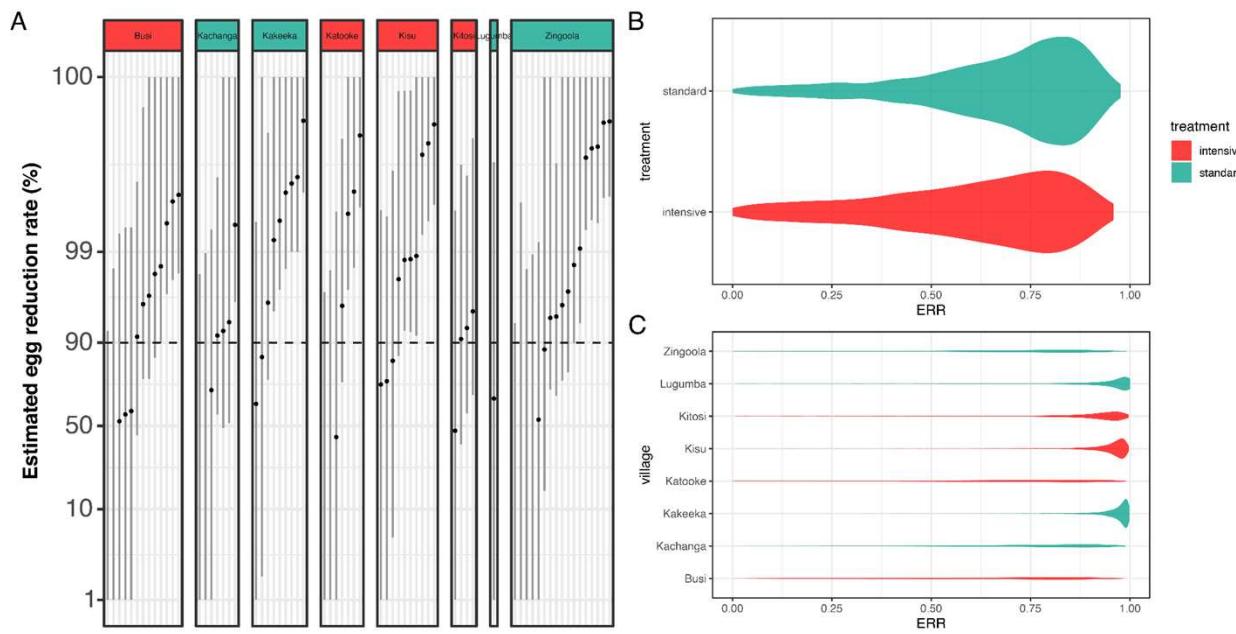
529

530

531 **Fig 6. XP-EHH coloured by chromosome among treatment groups.** A. Comparison between standard and
532 intensive treatment groups. B. Comparison between pre-treatment and post-treatment groups. Positive
533 values in panel A represent windows under stronger selective pressure in annual vs quarterly treatment
534 arms. In panel B, positive values represent windows under stronger selection in pre-treatment than post-
535 treatment samples.

536

537 There were 107 genes overlapping the outlier windows in the post-treatment samples, which
538 were enriched for genes associated with seventeen GO terms for molecular function and
539 biological processes (S3 table; <https://biit.cs.ut.ee/gplink/l/wWE3Rp-ASq>)⁵⁵. Only 53 of these
540 genes were on autosomes (leaving 54 on the Z and/or W chromosomes), and no GO terms were
541 enriched when considering just the autosomal gene subset. No statistically significant
542 enrichment for any functional category was observed among the genes undergoing stronger
543 selection in pre-treatment individuals. Functional profiling showed that the 132 genes (78
544 autosomal) under stronger selection in the intensive arm were significantly enriched for


545 association with 10 GO terms (S3 table; <https://biit.cs.ut.ee/gplink/l/1VaAMWpxQK>)⁵⁵, which
546 remained enriched in the autosomal subset. 88 genes were found in 46 autosomal windows with
547 extreme XP-EHH values suggestive of stronger selection in the standard treatment arm include a
548 pair of adjacent closely related genes likely to be a recent tandem duplication and possessing
549 nucleoside deaminase activity on chromosome 4; these genes represent the only significantly
550 enriched GO terms in this comparison (S3 table; <https://biit.cs.ut.ee/gplink/l/4Fz7ZA3hTC>).

551

552 **Individual egg reduction rate phenotypes**

553 In an attempt to identify a phenotype for drug efficacy, we estimated the egg reduction rate
554 (ERR) for 88 individuals for which genomic data was available and that had Kato-Katz egg counts
555 taken both before and after treatment using a Bayesian linear mixed-effect model [78] that has
556 previously been used to assess praziquantel efficacy [9, 81]. Previous analysis revealed a lower
557 but not significant ERR in the intensive arm than the standard arm [10]. Similarly, we observe
558 lower marginal ERR in samples collected in intensive than standard treatment villages, but with
559 largely overlapping posterior distributions (Fig. 7B), and while villages vary in ERR (Fig. 7C), there
560 were similar numbers of high- and low-clearance villages in the two arms. These differences were
561 largely driven by a small number of individuals in some villages with very low (even negative -
562 implying a higher egg count after treatment than before) ERR values (Fig. 7A). Unlike in a previous
563 study [9], no ERRs were significantly below the 90% threshold, probably because only duplicate
564 counts were available before and after treatment here, so there was significantly less information
565 to estimate ERR on a per-individual basis.

566

567

568 **Fig 7. Egg reduction rate (ERR) estimates.** (A) Posterior distributions of ERR for each individual for which
569 pre- and post- egg count data were available. Lines indicate the 95% credible intervals (highest posterior
570 density intervals) for each estimate, dots are the mean of the posterior distribution. Individuals are shown
571 on an individual panel for each village, with panel headers coloured by treatment arm. Posterior
572 distribution of average ERRs stratified by (B) treatment arm and (C) school were constructed by
573 marginalizing over the fixed- and random-effects coefficients of the generalised linear mixed model.

574

575 Despite the small sample size, we attempted to identify genetic variants associated with
576 differences in ERR, testing the 6.95 million high-quality SNPs found on the 7 autosomes or on the
577 shared ZW scaffold. The smallest p-value for any SNP was 2.7×10^{-9} , which after adjustment for
578 multiple testing represents an adjusted p-value of 0.01841 (S3a Fig). There was some evidence
579 that p-values are systematically biased in this analysis (S3b Fig). Correcting for population
580 structure based on PCA coordinates removed the significance of hits (lowest p-value = 2.7×10^{-8} ;
581 adjusted p-value = 0.179). The most significant hit (SM_V7_5:18325957) is intergenic, 886 bp

582 upstream of an annotated protein-coding gene (Smp_314670) about which has no annotated
583 domains or functional information are available. We thus conclude that there is no strong
584 evidence linking any individual genetic variant in these data to variation in estimated ERR.

585

586 **Discussion**

587 Schistosomiasis is second only to malaria in socio-economic impact among parasitic causes of
588 morbidity and mortality [82-84]. MDA is the main method for schistosomiasis control, and there
589 is currently an effort to expand the coverage of community-wide drug treatment to improve
590 morbidity control [85] and address the persistence of schistosomiasis in some areas despite many
591 years of PZQ distribution [86]. Understanding whether intensive treatment for individuals living
592 in high transmission communities has an impact on parasite populations, potentially leading to
593 drug resistance is of high importance for public health among schistosomiasis endemic
594 communities in Africa. Determining the genetic basis of any drug resistance that does emerge is
595 also crucial for tracking the spread of resistance through schistosome populations and for future
596 drug or vaccine development designed to circumvent resistance as has been demonstrated for
597 oxamniquine resistance [87].

598

599 Here, we have taken advantage of a large-scale trial in which the entire communities of 26 fishing
600 villages were regularly treated with PZQ. A number of features of the study made this an ideal
601 place to detect an effect of PZQ treatment on parasite populations. Villages were assigned
602 randomly to treatment arms, so treatment frequency was independent of morbidity, parasite
603 prevalence or intensity. Treatment was given under direct observation, avoiding issues with drug

604 compliance reported in other studies [5]. The four week follow-up interval post-treatment would
605 minimise the possibility of diagnosing newly acquired infection after treatment based on the
606 development time of *S. mansoni* [88], as a new infection would take longer than four weeks to
607 result in egg production that could be detected by Kato Katz and microscopy [89]. The exception
608 would be if, during the time of treatment, a patient had juvenile worms as these would not have
609 been cleared by treatment [90]. We expected that as the study was based on a group of islands
610 it might help isolate the parasite population and so allow us to detect drug-induced selection in
611 this population without the confounding effect of high levels of gene flow from untreated
612 populations. Only individuals who had lived in these villages for at least three years were included
613 in the study to control for absenteeism and MDA compliance although it was still not possible to
614 control for movement between villages and islands given that fishing is the main economic
615 activity within these communities.

616
617 The population of parasites present on the islands is closely related to that recently described
618 from communities on the shoreline of Lake Victoria, and as expected rather divergent from that
619 inland from the lake (Figs 2A & B) [55]. This presumably reflects greater movement of people
620 between the shoreline and island than with the inland populations, as well as that the inland
621 population included here is further (approximately 160 km) from the shoreline than are the
622 islands (approximately 80 km). We see little genetic differentiation between villages on the same
623 island, as fishing villages are close to one another (1-13 km apart) and movement may be
624 frequent among fishermen and village communities. Less expected was that we see little or no
625 genetic differentiation between islands, with only a weak trend for greater genetic differentiation

626 between villages on different islands than villages on the same island, albeit this is a larger effect
627 than either the distance between villages or the size of village populations, perhaps suggesting
628 that snail vector movement around the coasts of islands may play a role in parasite movement.
629 The islands are separated by water that is deep enough [91] (primary data at
630 <http://dataVERSE.harvard.edu/dataVERSE/LakeVicFish>) to prevent snails moving actively from one
631 island to the next, but parasites could travel through movement of infected people or through
632 infected snails being carried on fishermen's or conceivably by rafting on floating plants such as
633 water hyacinth. Geographical conditions on these islands are similar except for Lugumba Island
634 which has more rocky/stony shores compared to Koome and Damba which have more sandy
635 shores and more vegetation, so we would expect snails to be able to establish similarly at most
636 locations.

637
638 Despite seeing little or no genetic structure in the island parasite population, we see some
639 evidence that PZQ treatment has had a small effect on the genetic diversity of the parasite
640 population in this area. While we do not have baseline samples from before any PZQ treatment
641 was administered as part of the LaVIISWA trial, we see very slightly higher genome-wide genetic
642 diversity in the standard treatment arm than in the intensive arm, as would be expected if
643 intensive treatment has been more effective at reducing the parasite population than the
644 standard treatment regimen [10], although the effect we observe is very small and so maybe of
645 limited biological relevance. Differences in the same direction were present when comparing
646 subsets of samples taken before and after treatment separately, and was more pronounced in
647 the post-treatment populations. As we see only very few closely related parasites, and no

648 significant enrichment in relatedness based on treatment arm or sampling time with respect to
649 treatment, it seems that this effect is unlikely to be due to differences in the number of directly
650 related miracidia. We observe little or no genetic differentiation between villages in the two
651 study arms, and only very slightly higher differentiation between the arms in post-treatment than
652 in pre-treatment samples.

653
654 Evidence that PZQ treatment has some effect on the parasite population led us to investigate
655 whether particular variants might be related to exposure to PZQ and so potentially responsible
656 for any reduced susceptibility of parasites to PZQ within MDA programs [9]. We identify several
657 regions within the genome that were highly differentiated between samples from the standard
658 and intensive arms of the study, including a particularly striking region on chromosome 5 that
659 showed high differentiation between post-treatment samples from the two arms of the study.
660 This region contained a number of genes with functions that could be potentially linked to PZQ
661 drug action. These include an ATP-binding cassette (ABC) transporter-associated gene
662 (Smp_136310) that has previously been linked to helminth detoxification and drug resistance
663 processes [92]. A gene with calcium dependent/modulatory functions (Smp_347070) was also
664 found in the enriched region on chromosome 5, which is of interest given that the mode of action
665 of PZQ has long been linked to increased permeability of the cell membrane to calcium ions into
666 the cells which then causes contraction, paralysis and eventual death of the worms [93]. We also
667 investigated regions of the genome under different selective regimes either with treatment
668 intensity or when comparing pre- and post-treatment samples. Among the genes under varying
669 selection were purine-nucleoside phosphorylase activity associated genes (Smp_197110 and

670 Smp_171620) which are involved in the nucleotide salvage pathway of *S. mansoni*. Given that *S.*
671 *mansoni* depends entirely on the salvage pathway for its purine metabolism [94], there is a
672 possibility that ongoing non-random selection within this gene might affect parasite metabolic
673 processes and a potential future drug target. However, we note that many biological processes
674 could be contributing to genetic variation between samples from natural populations apart from
675 variation in drug susceptibility [95]. While this study has shed some light on possible drug
676 resistance genetic markers, other approaches, such as genetic crosses between parasites [96, 97]
677 from natural populations that vary in drug efficacy or from lines selected for resistance [21, 87],
678 are likely to have more power to reveal the genetics of drug resistance and so enable more
679 focused studies of the effect on treatment on parasite populations.

680

681 A limitation in this study was that we did not have parasite populations sampled several years
682 apart since it has been observed in similar studies that differentiation occurs over time in a given
683 community [38], so sampling over a longer time-span could provide stronger evidence of genetic
684 change in the population. In particular, we would ideally have access to baseline samples from
685 the same population taken prior to any large-scale PZQ treatment being administered. Despite
686 the falling cost and rising throughput of nucleic acid sequencing, we were limited in the number
687 of miracidia that we could sequence in this study. An additional limitation is the labour-intensive
688 process of hatching and washing miracidia necessary to obtain high-quality data due to the non-
689 selective nature of the whole-genome sequencing approach [67].

690

691 As control programmes expand and reduce pathogen populations, we would expect the genetic

692 diversity of these populations to fall to reflect the reduced population size [13, 41, 98], and drug
693 resistance to be reflected in particular genotypes being over-represented in samples collected
694 after large-scale treatment has been applied. As in other recent studies [42, 55], we find evidence
695 of at best a very limited effect of PZQ treatment on schistosome populations either post-
696 treatment or over a longer time frame of intensive treatment. In most previous studies, extensive
697 refugia from treatment have been present in the community, as only school-age children are
698 routinely treated in most areas, so it is instructive that we find similar results in this study despite
699 community-wide treatment. While there is some evidence for reduced efficacy of PZQ in Uganda
700 [9], most studies do not find a significant effect [11], including one study based on the same
701 population as studied here [10]. Even in the absence of drug resistance emerging in natural
702 populations, high-resolution genetic surveillance of African schistosome populations is ideally
703 suited to detect changes in parasite population structure related to the impact of control
704 measures [30], and could ultimately inform approaches to eliminate schistosome morbidity in
705 remaining 'hot-spots' by helping us understand parasite transmission between hosts and
706 between foci [86].

707
708 In summary, we demonstrate a small but significant effect of both short-term PZQ treatment
709 intensity and a recent treatment episode on genome wide-diversity in a schistosome. This
710 reduction in diversity does not appear to be associated with enrichment of closely related
711 parasites, but rather could reflect ongoing non-random recent selection within these fishing
712 communities in Uganda that might be under the influence of continued mass drug
713 administration. We identify genomic windows that are either particularly differentiated following

714 treatment or appear to be under differing selective regimes with different treatment intensity.

715 These regions could include genes involved in drug response, but additional data is needed to

716 prioritise candidates for further investigation.

717

718

719 **Acknowledgements**

720 We thank the Cure Rates study team and participants, the Wellcome Sanger Institute sequencing
721 team, and members of the Parasite Genomics group and Pathogen Informatics team in the
722 Parasites and Microbes Programme at the Sanger Institute. For the purpose of Open Access, the
723 authors have applied a CC BY public copyright licence to any Author Accepted Manuscript version
724 arising from this submission.

725 **Funding:** This work was funded by the Wellcome Trust [grants 206194 and 095778].

726

727 **Conflict of interest:** The authors declare that there are no conflicts of interest.

728

729

730 **References**

731 1. Sandbach FR. The history of schistosomiasis research and policy for its control. *Med Hist.*
732 1976;20(3):259-75.

733 2. Hotez PJ, Alvarado M, Basanez MG, Bolliger I, Bourne R, Boussinesq M, et al. The global
734 burden of disease study 2010: interpretation and implications for the neglected tropical
735 diseases. *PLoS Negl Trop Dis.* 2014;8(7):e2865.

736 3. Kabatereine NB, Brooker S, Koukounari A, Kazibwe F, Tukahebwa EM, Fleming FM, et al.
737 Impact of a national helminth control programme on infection and morbidity in Ugandan
738 schoolchildren. *Bull World Health Organ.* 2007;85(2):91-9.

739 4. Blanton RE, Blank WA, Costa JM, Carmo TM, Reis EA, Silva LK, et al. Schistosoma
740 mansoni population structure and persistence after praziquantel treatment in two villages of
741 Bahia, Brazil. *Int J Parasitol.* 2011;41(10):1093-9.

742 5. Adriko M, Faust CL, Carruthers LV, Moses A, Tukahebwa EM, Lamberton PHL. Low
743 Praziquantel Treatment Coverage for Schistosoma mansoni in Mayuge District, Uganda, Due to
744 the Absence of Treatment Opportunities, Rather Than Systematic Non-Compliance. *Trop Med*
745 *Infect Dis.* 2018;3(4).

746 6. Krauth SJ, Balen J, Gobert GN, Lamberton PHL. A Call for Systems Epidemiology to Tackle
747 the Complexity of Schistosomiasis, Its Control, and Its Elimination. *Trop Med Infect Dis.*
748 2019;4(1).

749 7. Sanya RE, Tumwesige E, Elliott AM, Seeley J. Perceptions about interventions to control

750 schistosomiasis among the Lake Victoria island communities of Koome, Uganda. *PLoS Negl Trop*
751 *Dis.* 2017;11(10):e0005982.

752 8. Ending the neglect to attain the Sustainable Development Goals: a road map for
753 neglected tropical diseases 2021–20302020.

754 9. Crellin T, Walker M, Lamberton PH, Kabatereine NB, Tukahebwa EM, Cotton JA, et al.
755 Reduced Efficacy of Praziquantel Against *Schistosoma mansoni* Is Associated With Multiple
756 Rounds of Mass Drug Administration. *Clin Infect Dis.* 2016;63(9):1151-9.

757 10. Tushabe JV, Lubyayi L, Sserubanja J, Kabuubi P, Abayo E, Kiwanuka S, et al. Does
758 Intensive Treatment Select for Praziquantel Resistance in High-Transmission Settings?
759 Parasitological Trends and Treatment Efficacy Within a Cluster-Randomized Trial. *Open Forum*
760 *Infect Dis.* 2020;7(4):ofaa091.

761 11. Fukushige M, Chase-Topping M, Woolhouse MEJ, Mutapi F. Efficacy of praziquantel has
762 been maintained over four decades (from 1977 to 2018): A systematic review and meta-
763 analysis of factors influence its efficacy. *PLoS Negl Trop Dis.* 2021;15(3):e0009189.

764 12. Mutapi F, Maizels R, Fenwick A, Woolhouse M. Human schistosomiasis in the post mass
765 drug administration era. *Lancet Infect Dis.* 2017;17(2):e42-e8.

766 13. Coeli R, Baba EH, Araujo N, Coelho PM, Oliveira G. Praziquantel treatment decreases
767 *Schistosoma mansoni* genetic diversity in experimental infections. *PLoS Negl Trop Dis.*
768 2013;7(12):e2596.

769 14. Fallon PG, Sturrock RF, Niang AC, Doenhoff MJ. Short report: diminished susceptibility to
770 praziquantel in a Senegal isolate of *Schistosoma mansoni*. *Am J Trop Med Hyg.* 1995;53(1):61-2.

771 15. Lotfy WM, Hishmat MG, El Nashar AS, Abu El Einin HM. Evaluation of a method for

772 induction of praziquantel resistance in *Schistosoma mansoni*. *Pharm Biol.* 2015;53(8):1214-9.

773 16. Messerli SM, Kasinathan RS, Morgan W, Spranger S, Greenberg RM. *Schistosoma*

774 *mansoni* P-glycoprotein levels increase in response to praziquantel exposure and correlate with

775 reduced praziquantel susceptibility. *Mol Biochem Parasitol.* 2009;167(1):54-9.

776 17. Pinto-Almeida A, Mendes T, de Oliveira RN, Correa Sde A, Allegretti SM, Belo S, et al.

777 Morphological Characteristics of *Schistosoma mansoni* PZQ-Resistant and -Susceptible Strains

778 Are Different in Presence of Praziquantel. *Front Microbiol.* 2016;7:594.

779 18. Blanton RE. Population Structure and Dynamics of Helminthic Infection: Schistosomiasis.

780 *Microbiol Spectr.* 2019;7(4).

781 19. Vale N, Gouveia MJ, Rinaldi G, Brindley PJ, Gartner F, Correia da Costa JM. Praziquantel

782 for Schistosomiasis: Single-Drug Metabolism Revisited, Mode of Action, and Resistance.

783 *Antimicrob Agents Chemother.* 2017;61(5).

784 20. Park SK, Gunaratne GS, Chulkov EG, Moehring F, McCusker P, Dosa PI, et al. The

785 anthelmintic drug praziquantel activates a schistosome transient receptor potential channel. *J*

786 *Biol Chem.* 2019;294(49):18873-80.

787 21. Le Clec'h W, Chevalier FD, Mattos ACA, Strickland A, Diaz R, McDew-White M, et al.

788 Genetic analysis of praziquantel response in schistosome parasites implicates a transient

789 receptor potential channel. *Sci Transl Med.* 2021;13(625):eabj9114.

790 22. Webster JP, Neves MI, Webster BL, Pennance T, Rabone M, Gouvras AN, et al. Parasite

791 Population Genetic Contributions to the Schistosomiasis Consortium for Operational Research

792 and Evaluation within Sub-Saharan Africa. *Am J Trop Med Hyg.* 2020;103(1_Suppl):80-91.

793 23. Betson M, Sousa-Figueiredo JC, Kabatereine NB, Stothard JR. New insights into the

794 molecular epidemiology and population genetics of *Schistosoma mansoni* in Ugandan pre-
795 school children and mothers. *PLoS Negl Trop Dis.* 2013;7(12):e2561.

796 24. Webster BL, Webster JP, Gouvras AN, Garba A, Lamine MS, Diaw OT, et al. DNA
797 'barcoding' of *Schistosoma mansoni* across sub-Saharan Africa supports substantial within
798 locality diversity and geographical separation of genotypes. *Acta Trop.* 2013;128(2):250-60.

799 25. Blair L, Webster JP, Barker GC. Isolation and characterization of polymorphic
800 microsatellite markers in *Schistosoma mansoni* from Africa. *Mol Ecol Notes.* 2001;1:93-5.

801 26. Curtis J, Sorensen RE, Page LK, Minchella DJ. Microsatellite loci in the human blood fluke
802 *Schistosoma mansoni* and their utility for other schistosome species. *Mol Ecol Notes.*
803 2001;1:143-5.

804 27. Durand P, Sire C, Theron A. Isolation of microsatellite markers in the digenetic
805 trematode *Schistosoma mansoni* from Guadeloupe island. *Mol Ecol.* 2000;9(7):997-8.

806 28. Golan R, Gower CM, Emery AM, Rollinson D, Webster JP. Isolation and characterization
807 of the first polymorphic microsatellite markers for *Schistosoma haematobium* and their
808 application in multiplex reactions of larval stages. *Mol Ecol Resour.* 2008;8:647-9.

809 29. Rudge JW, Carabin H, Balolong E, Tallo V, Shrivastava J, Lu DB, et al. Population genetics
810 of *Schistosoma japonicum* within the Philippines suggest high levels of transmission between
811 humans and dogs. *PLoS Negl Trop Dis.* 2008;2(11):e340.

812 30. Gower CM, Gouvras AN, Lamberton PH, Deol A, Shrivastava J, Mutombo PN, et al.
813 Population genetic structure of *Schistosoma mansoni* and *Schistosoma haematobium* from
814 across six sub-Saharan African countries: implications for epidemiology, evolution and control.
815 *Acta Trop.* 2013;128(2):261-74.

816 31. Gower CM, Shrivastava J, Lamberton PH, Rollinson D, Webster BL, Emery A, et al.

817 Development and application of an ethically and epidemiologically advantageous assay for the

818 multi-locus microsatellite analysis of *Schistosoma mansoni*. *Parasitology*. 2007;134(Pt 4):523-

819 36.

820 32. Lawton SP, Hirai H, Ironside JE, Johnston DA, Rollinson D. Genomes and geography:

821 genomic insights into the evolution and phylogeography of the genus *Schistosoma*. *Parasit*

822 *Vectors*. 2011;4:131.

823 33. Blank WA, Reis EA, Thiong'o FW, Braghioli JF, Santos JM, Melo PR, et al. Analysis of

824 *Schistosoma mansoni* population structure using total fecal egg sampling. *J Parasitol*.

825 2009;95(4):881-9.

826 34. Thiele EA, Sorensen RE, Gazzinelli A, Minchella DJ. Genetic diversity and population

827 structuring of *Schistosoma mansoni* in a Brazilian village. *Int J Parasitol*. 2008;38(3-4):389-99.

828 35. Van den Broeck F, Maes GE, Larmuseau MH, Rollinson D, Sy I, Faye D, et al.

829 Reconstructing Colonization Dynamics of the Human Parasite *Schistosoma mansoni* following

830 Anthropogenic Environmental Changes in Northwest Senegal. *PLoS Negl Trop Dis*.

831 2015;9(8):e0003998.

832 36. Rey O, Webster BL, Huyse T, Rollinson D, Van den Broeck F, Kincaid-Smith J, et al.

833 Population genetics of African *Schistosoma* species. *Infect Genet Evol*. 2021;89:104727.

834 37. Neves MI, Gower CM, Webster JP, Walker M. Revisiting density-dependent fecundity in

835 schistosomes using sibship reconstruction. *PLoS Negl Trop Dis*. 2021;15(5):e0009396.

836 38. Norton AJ, Gower CM, Lamberton PH, Webster BL, Lwambo NJ, Blair L, et al. Genetic

837 consequences of mass human chemotherapy for *Schistosoma mansoni*: population structure

838 pre- and post-praziquantel treatment in Tanzania. *Am J Trop Med Hyg.* 2010;83(4):951-7.

839 39. French MD, Churcher TS, Gambhir M, Fenwick A, Webster JP, Kabatereine NB, et al.

840 Observed reductions in *Schistosoma mansoni* transmission from large-scale administration of

841 praziquantel in Uganda: a mathematical modelling study. *PLoS Negl Trop Dis.* 2010;4(11):e897.

842 40. Lelo AE, Mburu DN, Magoma GN, Mungai BN, Kihara JH, Mwangi IN, et al. No apparent

843 reduction in schistosome burden or genetic diversity following four years of school-based mass

844 drug administration in mwea, central kenya, a heavy transmission area. *PLoS Negl Trop Dis.*

845 2014;8(10):e3221.

846 41. Gower CM, Gehre F, Marques SR, Lamberton PHL, Lwambo NJ, Webster JP. Phenotypic

847 and genotypic monitoring of *Schistosoma mansoni* in Tanzanian schoolchildren five years into a

848 preventative chemotherapy national control programme. *Parasit Vectors.* 2017;10(1):593.

849 42. Faust CL, Crotti M, Moses A, Oguttu D, Wamboko A, Adriko M, et al. Two-year

850 longitudinal survey reveals high genetic diversity of *Schistosoma mansoni* with adult worms

851 surviving praziquantel treatment at the start of mass drug administration in Uganda. *Parasit*

852 *Vectors.* 2019;12(1):607.

853 43. Le Clec'h W, Chevalier FD, McDew-White M, Allan F, Webster BL, Gouvras AN, et al.

854 Whole genome amplification and exome sequencing of archived schistosome miracidia.

855 *Parasitology.* 2018;145(13):1739-47.

856 44. Platt RN, McDew-White M, Le Clec'h W, Chevalier FD, Allan F, Emery AM, et al. Ancient

857 Hybridization and Adaptive Introgression of an Invadolysin Gene in Schistosome Parasites. *Mol*

858 *Biol Evol.* 2019;36(10):2127-42.

859 45. Platt RN, Le Clec'h W, Chevalier FD, McDew-White M, LoVerde P, de Assis RR, et al.

860 Genomic analysis of a parasite invasion: colonization of the Americas by the blood fluke,
861 *Schistosoma mansoni*. bioRxiv. 2021:465783.

862 46. Shortt JA, Card DC, Schield DR, Liu Y, Zhong B, Castoe TA, et al. Whole Genome
863 Amplification and Reduced-Representation Genome Sequencing of *Schistosoma japonicum*
864 Miracidia. PLoS Negl Trop Dis. 2017;11(1):e0005292.

865 47. Shortt JA, Timm LE, Hales NR, Nikolakis ZL, Schield DR, Perry BW, et al. Population
866 genomic analyses of schistosome parasites highlight critical challenges facing endgame
867 elimination efforts. Sci Rep. 2021;11(1):6884.

868 48. Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M, Aslett MA, et al. A systematically
869 improved high quality genome and transcriptome of the human blood fluke *Schistosoma*
870 *mansi*. PLoS Negl Trop Dis. 2012;6(1):e1455.

871 49. Oey H, Zakrzewski M, Gravermann K, Young ND, Korhonen PK, Gobert GN, et al. Whole-
872 genome sequence of the bovine blood fluke *Schistosoma bovis* supports interspecific
873 hybridization with *S. haematobium*. PLoS Pathog. 2019;15(1):e1007513.

874 50. Stroehlein AJ, Korhonen PK, Chong TM, Lim YL, Chan KG, Webster B, et al. High-quality
875 *Schistosoma haematobium* genome achieved by single-molecule and long-range sequencing.
876 Gigascience. 2019;8(9).

877 51. Luo F, Yin M, Mo X, Sun C, Wu Q, Zhu B, et al. An improved genome assembly of the
878 fluke *Schistosoma japonicum*. PLoS Negl Trop Dis. 2019;13(8):e0007612.

879 52. International Helminth Genomes C. Comparative genomics of the major parasitic
880 worms. Nat Genet. 2019;51(1):163-74.

881 53. Kincaid-Smith J, Tracey A, de Carvalho Augusto R, Bulla I, Holroyd N, Rognon A, et al.

882 Morphological and genomic characterisation of the *Schistosoma* hybrid infecting humans in
883 Europe reveals admixture between *Schistosoma haematobium* and *Schistosoma bovis*. PLoS
884 Negl Trop Dis. 2021;15(12):e0010062.

885 54. Buddenborg SK, Tracey A, Berger DJ, Lu Z, Doyle SR, Fu B, et al. Assembled
886 chromosomes of the blood fluke *Schistosoma mansoni* provide insight into the evolution of its
887 ZW sex-determination system. bioRxiv. 2021:456314.

888 55. Berger DJ, Crellin T, Lamberton PHL, Allan F, Tracey A, Noonan JD, et al. Whole-genome
889 sequencing of *Schistosoma mansoni* reveals extensive diversity with limited selection despite
890 mass drug administration. Nat Commun. 2021;12(1):4776.

891 56. Young ND, Chan KG, Korhonen PK, Min Chong T, Ee R, Mohandas N, et al. Exploring
892 molecular variation in *Schistosoma japonicum* in China. Sci Rep. 2015;5:17345.

893 57. Crellin T, Allan F, David S, Durrant C, Huckvale T, Holroyd N, et al. Whole genome
894 resequencing of the human parasite *Schistosoma mansoni* reveals population history and
895 effects of selection. Sci Rep. 2016;6:20954.

896 58. Nikolakis ZL, Hales NR, Perry BW, Schield DR, Timm LE, Liu Y, et al. Patterns of
897 relatedness and genetic diversity inferred from whole genome sequencing of archival blood
898 fluke miracidia (*Schistosoma japonicum*). PLoS Negl Trop Dis. 2021;15(1):e0009020.

899 59. Shetty AC, Jacob CG, Huang F, Li Y, Agrawal S, Saunders DL, et al. Genomic structure and
900 diversity of *Plasmodium falciparum* in Southeast Asia reveal recent parasite migration patterns.
901 Nat Commun. 2019;10(1):2665.

902 60. Taylor AR, Schaffner SF, Cerqueira GC, Nkhoma SC, Anderson TJC, Sriprawat K, et al.
903 Quantifying connectivity between local *Plasmodium falciparum* malaria parasite populations

904 using identity by descent. *PLoS Genet.* 2017;13(10):e1007065.

905 61. MalariaGen, Ahoudi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, et al.

906 An open dataset of *Plasmodium falciparum* genome variation in 7,000 worldwide samples.

907 *Wellcome Open Res.* 2021;6:42.

908 62. Nampijja M, Webb EL, Kaweesa J, Kizindo R, Namutebi M, Nakazibwe E, et al. The Lake

909 Victoria Island Intervention Study on Worms and Allergy-related diseases (LaVIISWA): study

910 protocol for a randomised controlled trial. *Trials.* 2015;16:187.

911 63. Sanya RE, Nkurunungi G, Hoek Spaans R, Nampijja M, O'Hara G, Kizindo R, et al. The

912 Impact of Intensive Versus Standard Anthelminthic Treatment on Allergy-related Outcomes,

913 Helminth Infection Intensity, and Helminth-related Morbidity in Lake Victoria Fishing

914 Communities, Uganda: Results From the LaVIISWA Cluster-randomized Trial. *Clin Infect Dis.*

915 2019;68(10):1665-74.

916 64. Munisi DZ, Buza J, Mpolya EA, Angelo T, Kinung'hi SM. The Efficacy of Single-Dose versus

917 Double-Dose Praziquantel Treatments on *Schistosoma mansoni* Infections: Its Implication on

918 Undernutrition and Anaemia among Primary Schoolchildren in Two On-Shore Communities,

919 Northwestern Tanzania. *Biomed Res Int.* 2017;2017:7035025.

920 65. Kittur N, Binder S, Campbell CH, King CH, Kinung'hi S, Olsen A, et al. Defining Persistent

921 Hotspots: Areas That Fail to Decrease Meaningfully in Prevalence after Multiple Years of Mass

922 Drug Administration with Praziquantel for Control of Schistosomiasis. *Am J Trop Med Hyg.*

923 2017;97(6):1810-7.

924 66. Pitchford RJ, Visser PS. A simple and rapid technique for quantitative estimation of

925 helminth eggs in human and animal excreta with special reference to *Schistosoma* sp. *Trans R*

926 Soc Trop Med Hyg. 1975;69(3):318-22.

927 67. Doyle SR, Sankaranarayanan G, Allan F, Berger D, Jimenez Castro PD, Collins JB, et al.

928 Evaluation of DNA Extraction Methods on Individual Helminth Egg and Larval Stages for Whole-

929 Genome Sequencing. *Front Genet.* 2019;10:826.

930 68. Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA, Moore L, et al. The landscape of

931 somatic mutation in normal colorectal epithelial cells. *Nature.* 2019;574(7779):532-7.

932 69. Picard toolkit. Broad Institute; 2018.

933 70. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call

934 format and VCFtools. *Bioinformatics.* 2011;27(15):2156-8.

935 71. Kimura M. The number of heterozygous nucleotide sites maintained in a finite

936 population due to steady flux of mutations. *Genetics.* 1969;61(4):893-903.

937 72. Csardi G, Nepusz T. The igraph software package for complex network research.

938 *InterJournal.* 2006;Complex Systems:1695.

939 73. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, et al. Genome-wide

940 detection and characterization of positive selection in human populations. *Nature.*

941 2007;449(7164):913-8.

942 74. Criscione CD, Valentim CL, Hirai H, LoVerde PT, Anderson TJ. Genomic linkage map of

943 the human blood fluke *Schistosoma mansoni*. *Genome Biol.* 2009;10(6):R71.

944 75. Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data

945 inference for whole-genome association studies by use of localized haplotype clustering. *Am J*

946 *Hum Genet.* 2007;81(5):1084-97.

947 76. Szpiech ZA, Hernandez RD. selscan: an efficient multithreaded program to perform EHH-

948 based scans for positive selection. *Mol Biol Evol.* 2014;31(10):2824-7.

949 77. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web
950 server for functional enrichment analysis and conversions of gene lists (2019 update). *Nucleic
951 Acids Res.* 2019;47(W1):W191-W8.

952 78. Walker M, Churcher TS, Basanez MG. Models for measuring anthelmintic drug efficacy
953 for parasitologists. *Trends Parasitol.* 2014;30(11):528-37.

954 79. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK:
955 rising to the challenge of larger and richer datasets. *Gigascience.* 2015;4:7.

956 80. Johnson NA, Lachance J. The genetics of sex chromosomes: evolution and implications
957 for hybrid incompatibility. *Ann N Y Acad Sci.* 2012;1256:E1-22.

958 81. Walker M, Mabud TS, Olliaro PL, Coulibaly JT, King CH, Raso G, et al. New approaches to
959 measuring anthelmintic drug efficacy: parasitological responses of childhood schistosome
960 infections to treatment with praziquantel. *Parasit Vectors.* 2016;9:41.

961 82. Hotez PJ, Molyneux DH, Fenwick A, Ottesen E, Ehrlich Sachs S, Sachs JD. Incorporating a
962 rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis,
963 and malaria. *PLoS Med.* 2006;3(5):e102.

964 83. Inobaya MT, Olveda RM, Chau TN, Olveda DU, Ross AG. Prevention and control of
965 schistosomiasis: a current perspective. *Res Rep Trop Med.* 2014;2014(5):65-75.

966 84. Semenza AA, Sullivan JS, Barnwell JW, Secor WE. *Schistosoma mansoni* infection impairs
967 antimalaria treatment and immune responses of rhesus macaques infected with mosquito-
968 borne *Plasmodium coatneyi*. *Infect Immun.* 2012;80(11):3821-7.

969 85. French MD, Evans D, Fleming FM, Secor WE, Biritwum NK, Brooker SJ, et al.

970 Schistosomiasis in Africa: Improving strategies for long-term and sustainable morbidity control.

971 PLoS Negl Trop Dis. 2018;12(6):e0006484.

972 86. Mawa PA, Kincaid-Smith J, Tukahebwa EM, Webster JP, Wilson S. Schistosomiasis

973 Morbidity Hotspots: Roles of the Human Host, the Parasite and Their Interface in the

974 Development of Severe Morbidity. Front Immunol. 2021;12:635869.

975 87. Valentim CL, Cioli D, Chevalier FD, Cao X, Taylor AB, Holloway SP, et al. Genetic and

976 molecular basis of drug resistance and species-specific drug action in schistosome parasites.

977 Science. 2013;342(6164):1385-9.

978 88. Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. Lancet.

979 2014;383(9936):2253-64.

980 89. Aragon AD, Imani RA, Blackburn VR, Cupit PM, Melman SD, Goronga T, et al. Towards an

981 understanding of the mechanism of action of praziquantel. Mol Biochem Parasitol.

982 2009;164(1):57-65.

983 90. Xiao SH, Sun J, Chen MG. Pharmacological and immunological effects of praziquantel

984 against *Schistosoma japonicum*: a scoping review of experimental studies. Infect Dis Poverty.

985 2018;7(1):9.

986 91. Aura CM, Musa S, Nyamweya CS, Ogari Z, Njiru JM, Hamilton SE, et al. A GIS-based

987 approach for delineating suitable areas for cage fish culture in a lake. Lakes and Reservoirs.

988 2021;26:e12357.

989 92. Kumkate S, Chunchob S, Janvilisri T. Expression of ATP-binding cassette multidrug

990 transporters in the giant liver fluke *Fasciola gigantica* and their possible involvement in the

991 transport of bile salts and anthelmintics. Mol Cell Biochem. 2008;317(1-2):77-84.

992 93. Doenhoff MJ, Cioli D, Utzinger J. Praziquantel: mechanisms of action, resistance and new
993 derivatives for schistosomiasis. *Curr Opin Infect Dis.* 2008;21(6):659-67.

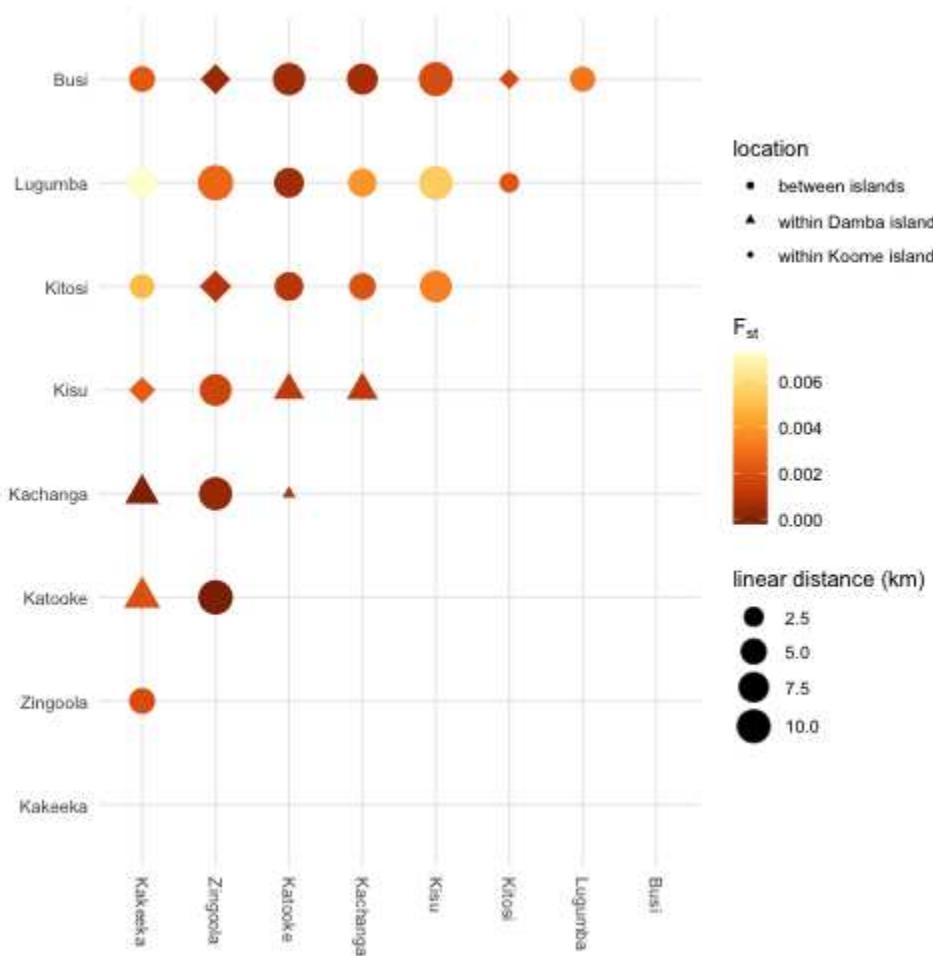
994 94. de Moraes MC, Cardoso CL, Cass QB. Immobilized purine nucleoside phosphorylase
995 from *Schistosoma mansoni* for specific inhibition studies. *Anal Bioanal Chem.*
996 2013;405(14):4871-8.

997 95. Doyle SR, Tracey A, Laing R, Holroyd N, Bartley D, Bazant W, et al. Genomic and
998 transcriptomic variation defines the chromosome-scale assembly of *Haemonchus contortus*, a
999 model gastrointestinal worm. *Commun Biol.* 2020;3(1):656.

1000 96. Doyle SR, Illingworth CJR, Laing R, Bartley DJ, Redman E, Martinelli A, et al. Population
1001 genomic and evolutionary modelling analyses reveal a single major QTL for ivermectin drug
1002 resistance in the pathogenic nematode, *Haemonchus contortus*. *BMC Genomics.*
1003 2019;20(1):218.

1004 97. Doyle SR, Laing R, Bartley D, Morrison A, Holroyd N, Maitland K, et al. Genomic
1005 landscape of drug response reveals novel mediators of anthelmintic resistance. *bioRxiv.*
1006 2021:465712.

1007 98. Cotton JA, Berriman M, Dalen L, Barnes I. Eradication genomics-lessons for parasite
1008 control. *Science.* 2018;361(6398):130-1.

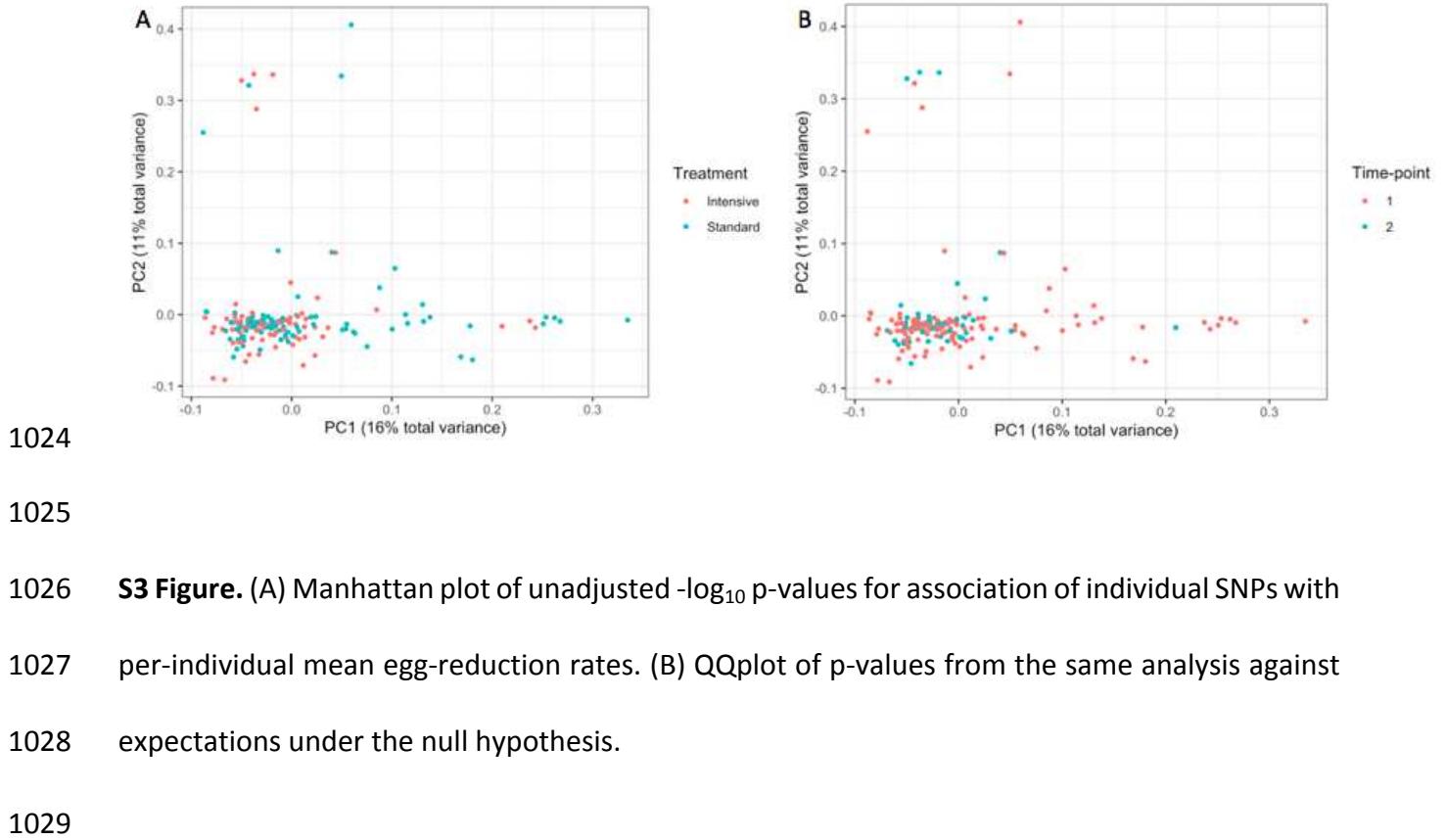

1009

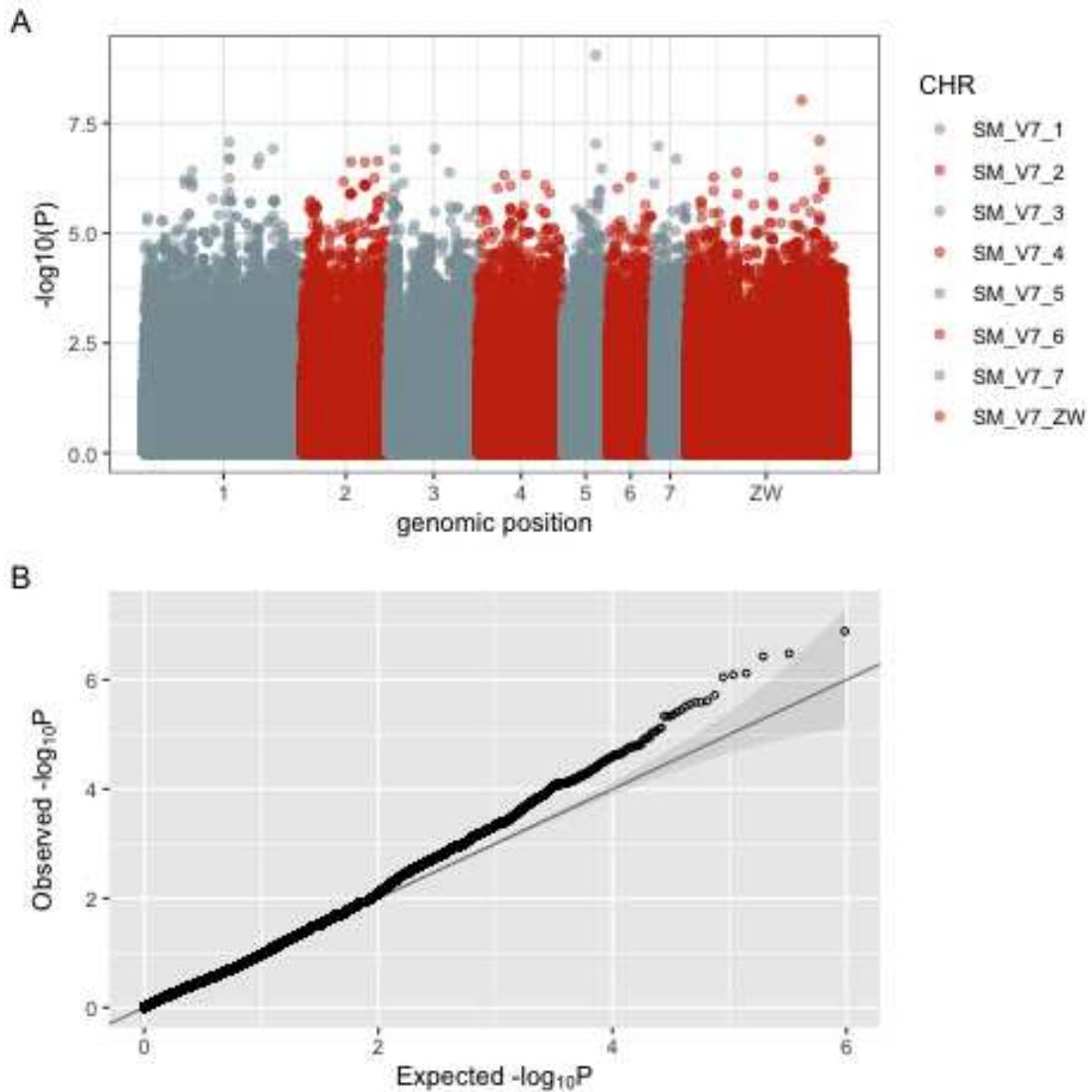
1010

1011

1012

1014 **S1 Figure.** Mean F_{ST} between all pairs of villages. Shading indicates levels of genetic
1015 differentiation between pairs of villages indicated on each row and column. Symbol shapes
1016 reflect pair-wise comparisons of differentiation of populations samples between or within
1017 islands, and the area of each symbol is proportional to the linear distance between the villages.
1018

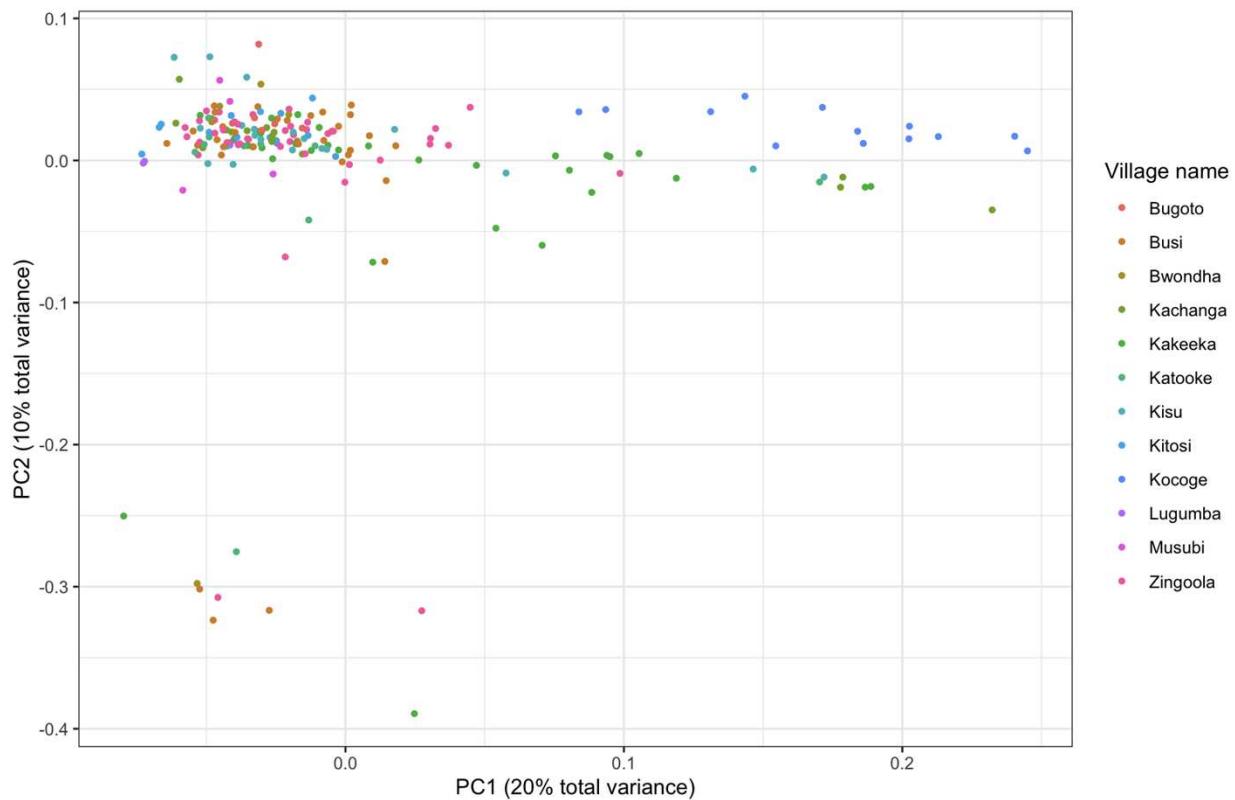

1019


1020

1021

1022 **S2 Figure.** Principal component analysis of population structure by treatment and time point.

1023



1030

1032 **S4 Figure.** Principal component analysis showing a cluster of nine distinct miracidia on principal
1033 component 2 in the lower left quadrant.

1034

1035

1036

1037

1038

1039

1040

1041

1044 **S1 Table.** Accession numbers and metadata for all samples included in analyses.

1045

sample_ID	collection_date	village	treatment_arm	island	accession_number	Pre/post
5582STDY7724293	10/08/2017	Kachanga	Standard	Damba	ERS2891555	pre_treatment
5582STDY7759949	26/09/2017	Zingoola	Standard	Koome	ERS2983612	post_treatment
5582STDY7724231	23/08/2017	Zingoola	Standard	Koome	ERS2891493	pre_treatment
5582STDY7724309	10/08/2017	Kachanga	Standard	Damba	ERS2891571	pre_treatment
5582STDY7724319	15/11/2017	Kakeeka	Standard	Damba	ERS2891581	post_treatment
5582STDY7770933	10/07/2017	Katooke	Intensive	Damba	ERS3016692	pre_treatment
5582STDY7770941	11/07/2017	Katooke	Intensive	Damba	ERS3016700	pre_treatment
5582STDY7771009	10/07/2017	Katooke	Intensive	Damba	ERS3016761	pre_treatment
5582STDY7770939	18/10/2017	Busi	Intensive	Koome	ERS3016698	pre_treatment
5582STDY7724259	18/10/2017	Busi	Intensive	Koome	ERS2891521	pre_treatment
5582STDY7724252	22/11/2017	Busi	Intensive	Koome	ERS2891514	post_treatment
5582STDY7770956	17/10/2017	Busi	Intensive	Koome	ERS3016715	pre_treatment
5582STDY7724233	18/10/2017	Busi	Intensive	Koome	ERS2891495	pre_treatment
5582STDY7724277	23/11/2017	Busi	Intensive	Koome	ERS2891539	post_treatment
5582STDY7724243	18/10/2017	Busi	Intensive	Koome	ERS2891505	pre_treatment
5582STDY7724260	22/11/2017	Busi	Intensive	Koome	ERS2891522	post_treatment
5582STDY7770991	19/10/2017	Busi	Intensive	Koome	ERS3016764	pre_treatment
5582STDY7724269	21/11/2017	Busi	Intensive	Koome	ERS2891531	post_treatment
5582STDY7770964	10/10/2017	Kakeeka	Standard	Damba	ERS3016723	pre_treatment
5582STDY7771101	11/10/2017	Kakeeka	Standard	Damba	ERS3016807	pre_treatment
5582STDY7724274	11/10/2017	Kakeeka	Standard	Damba	ERS2891536	pre_treatment
5582STDY7724320	14/11/2017	Kakeeka	Standard	Damba	ERS2891582	post_treatment
5582STDY7771003	11/10/2017	Kakeeka	Standard	Damba	ERS3016755	pre_treatment
5582STDY7724265	10/10/2017	Kakeeka	Standard	Damba	ERS2891527	pre_treatment
5582STDY7724281	09/10/2017	Kakeeka	Standard	Damba	ERS2891543	pre_treatment
5582STDY7724240	13/11/2017	Kakeeka	Standard	Damba	ERS2891502	post_treatment
5582STDY7771099	22/08/2017	Zingoola	Standard	Koome	ERS3016805	pre_treatment
5582STDY7771043	23/08/2017	Zingoola	Standard	Koome	ERS3016784	pre_treatment

5582STDY7724322	24/08/2017	Zingoola	Standard	Koome	ERS2891584	pre_treatment
5582STDY7770915	23/08/2017	Zingoola	Standard	Koome	ERS3016674	pre_treatment
5582STDY7724285	09/08/2017	Kachanga	Standard	Damba	ERS2891547	pre_treatment
5582STDY7724288	07/11/2017	Lugumba	Standard	Lugumba	ERS2891550	pre_treatment
5582STDY7724312	07/11/2017	Lugumba	Standard	Lugumba	ERS2891574	pre_treatment
5582STDY7770937	13/09/2017	Kachanga	Standard	Damba	ERS3016696	post_treatment
5582STDY7724250	09/10/2017	Kakeeka	Standard	Damba	ERS2891512	pre_treatment
5582STDY7771004	11/09/2017	Kachanga	Standard	Damba	ERS3016756	post_treatment
5582STDY7759911	24/10/2017	Kitosi	Intensive	Koome	ERS2983579	pre_treatment
5582STDY7759950	23/10/2017	Kitosi	Intensive	Koome	ERS2983613	pre_treatment
5582STDY7759951	22/11/2017	Kitosi	Intensive	Koome	ERS2983614	post_treatment
5582STDY7759895	25/10/2017	Kitosi	Intensive	Koome	ERS2983558	pre_treatment
5582STDY7759975	27/11/2017	Kitosi	Intensive	Koome	ERS2983632	post_treatment
5582STDY7770926	10/07/2017	Katooke	Intensive	Damba	ERS3016685	pre_treatment
5582STDY7759885	27/09/2017	Zingoola	Standard	Koome	ERS2983563	post_treatment
5582STDY7770928	27/09/2017	Zingoola	Standard	Koome	ERS3016687	post_treatment
5582STDY7770942	09/10/2017	Kakeeka	Standard	Damba	ERS3016701	pre_treatment
5582STDY7770948	11/10/2017	Kakeeka	Standard	Damba	ERS3016707	pre_treatment
5582STDY7771093	10/10/2017	Kakeeka	Standard	Damba	ERS3016804	pre_treatment
5582STDY7724242	09/10/2017	Kakeeka	Standard	Damba	ERS2891504	pre_treatment
5582STDY7724297	11/10/2017	Kakeeka	Standard	Damba	ERS2891559	pre_treatment
5582STDY7771022	10/10/2017	Kakeeka	Standard	Damba	ERS3016777	pre_treatment
5582STDY7770987	12/10/2017	Kakeeka	Standard	Damba	ERS3016746	pre_treatment
5582STDY7771035	23/08/2017	Zingoola	Standard	Koome	ERS3016781	pre_treatment
5582STDY7759963	31/10/2017	Kisu	Intensive	Damba	ERS2983622	pre_treatment
5582STDY7770938	06/12/2017	Kisu	Intensive	Damba	ERS3016697	post_treatment
5582STDY7759939	31/10/2017	Kisu	Intensive	Damba	ERS2983603	pre_treatment
5582STDY7759930	05/12/2017	Kisu	Intensive	Damba	ERS2983595	post_treatment
5582STDY7759954	06/12/2017	Kisu	Intensive	Damba	ERS2983615	post_treatment
5582STDY7770954	06/12/2017	Kisu	Intensive	Damba	ERS3016713	post_treatment
5582STDY7770961	05/12/2017	Kisu	Intensive	Damba	ERS3016720	post_treatment
5582STDY7759962	06/12/2017	Kisu	Intensive	Damba	ERS2983621	post_treatment
5582STDY7770943	24/08/2017	Zingoola	Standard	Koome	ERS3016702	pre_treatment

5582STDY7770986	24/08/2017	Zingoola	Standard	Koome	ERS3016745	pre_treatment
5582STDY7759964	22/08/2017	Zingoola	Standard	Koome	ERS2983623	pre_treatment
5582STDY7759965	26/09/2017	Zingoola	Standard	Koome	ERS2983624	post_treatment
5582STDY7770951	24/08/2017	Zingoola	Standard	Koome	ERS3016710	pre_treatment
5582STDY7770978	24/08/2017	Zingoola	Standard	Koome	ERS3016737	pre_treatment
5582STDY7771067	22/08/2017	Zingoola	Standard	Koome	ERS3016793	pre_treatment
5582STDY7759887	25/10/2017	Kitosi	Intensive	Koome	ERS2983565	pre_treatment
5582STDY7759966	26/10/2017	Kitosi	Intensive	Koome	ERS2983625	pre_treatment
5582STDY7759919	28/11/2017	Kitosi	Intensive	Koome	ERS2983586	post_treatment
5582STDY7771000	19/10/2017	Busi	Intensive	Koome	ERS3016752	pre_treatment
5582STDY7724238	08/08/2017	Kachanga	Standard	Damba	ERS2891500	pre_treatment
5582STDY7724230	12/09/2017	Kachanga	Standard	Damba	ERS2891492	post_treatment
5582STDY7724241	18/10/2017	Busi	Intensive	Koome	ERS2891503	pre_treatment
5582STDY7724316	17/10/2017	Busi	Intensive	Koome	ERS2891578	pre_treatment
5582STDY7771044	24/08/2017	Zingoola	Standard	Koome	ERS3016785	pre_treatment
5582STDY7771075	22/08/2017	Zingoola	Standard	Koome	ERS3016796	pre_treatment
5582STDY7724294	23/08/2017	Zingoola	Standard	Koome	ERS2891556	pre_treatment
5582STDY7771002	24/08/2017	Zingoola	Standard	Koome	ERS3016754	pre_treatment
5582STDY7759974	25/10/2017	Kitosi	Intensive	Koome	ERS2983631	pre_treatment
5582STDY7770971	11/10/2017	Kakeeka	Standard	Damba	ERS3016730	pre_treatment
5582STDY7724249	10/10/2017	Kakeeka	Standard	Damba	ERS2891511	pre_treatment
5582STDY7770924	12/10/2017	Kakeeka	Standard	Damba	ERS3016683	pre_treatment
5582STDY7724266	11/10/2017	Kakeeka	Standard	Damba	ERS2891528	pre_treatment
5582STDY7724247	12/10/2017	Kakeeka	Standard	Damba	ERS2891509	pre_treatment
5582STDY7724248	15/11/2017	Kakeeka	Standard	Damba	ERS2891510	post_treatment
5582STDY7771014	10/10/2017	Kakeeka	Standard	Damba	ERS3016773	pre_treatment
5582STDY7724301	10/08/2017	Kachanga	Standard	Damba	ERS2891563	pre_treatment
5582STDY7771076	24/10/2017	Kitosi	Intensive	Koome	ERS3016797	pre_treatment
5582STDY7770977	15/07/2017	Katooke	Intensive	Damba	ERS3016736	pre_treatment
5582STDY7771011	23/08/2017	Zingoola	Standard	Koome	ERS3016770	pre_treatment
5582STDY7770919	23/08/2017	Zingoola	Standard	Koome	ERS3016678	pre_treatment
5582STDY7771091	22/08/2017	Zingoola	Standard	Koome	ERS3016802	pre_treatment
5582STDY7724310	23/08/2017	Zingoola	Standard	Koome	ERS2891572	pre_treatment

5582STDY7724272	07/11/2017	Lugumba	Standard	Lugumba	ERS2891534	pre_treatment
5582STDY7724264	13/12/2017	Lugumba	Standard	Lugumba	ERS2891526	post_treatment
5582STDY7770969	12/07/2017	Katooke	Intensive	Damba	ERS3016728	pre_treatment
5582STDY7770979	12/10/2017	Kakeeka	Standard	Damba	ERS3016738	pre_treatment
5582STDY7759883	06/12/2017	Kisu	Intensive	Damba	ERS2983561	post_treatment
5582STDY7759900	30/10/2017	Kisu	Intensive	Damba	ERS2983569	pre_treatment
5582STDY7759955	01/11/2017	Kisu	Intensive	Damba	ERS2983616	pre_treatment
5582STDY7770922	06/12/2017	Kisu	Intensive	Damba	ERS3016681	post_treatment
5582STDY7759904	17/08/2017	Katooke	Intensive	Damba	ERS2983573	post_treatment
5582STDY7759916	01/11/2017	Kisu	Intensive	Damba	ERS2983583	pre_treatment
5582STDY7724287	09/10/2017	Kakeeka	Standard	Damba	ERS2891549	pre_treatment
5582STDY7724273	10/10/2017	Kakeeka	Standard	Damba	ERS2891535	pre_treatment
5582STDY7724236	23/11/2017	Busi	Intensive	Koome	ERS2891498	post_treatment
5582STDY7724244	22/11/2017	Busi	Intensive	Koome	ERS2891506	post_treatment
5582STDY7724253	18/10/2017	Busi	Intensive	Koome	ERS2891515	pre_treatment
5582STDY7724291	17/10/2017	Busi	Intensive	Koome	ERS2891553	pre_treatment
5582STDY7770990	23/11/2017	Busi	Intensive	Koome	ERS3016763	post_treatment
5582STDY7724315	23/11/2017	Busi	Intensive	Koome	ERS2891577	post_treatment
5582STDY7771068	23/10/2017	Kitosi	Intensive	Koome	ERS3016794	pre_treatment
5582STDY7724278	22/08/2017	Zingoola	Standard	Koome	ERS2891540	pre_treatment
5582STDY7759941	27/09/2017	Zingoola	Standard	Koome	ERS2983605	post_treatment
5582STDY7771036	24/08/2017	Zingoola	Standard	Koome	ERS3016782	pre_treatment
5582STDY7771051	23/08/2017	Zingoola	Standard	Koome	ERS3016787	pre_treatment
5582STDY7771007	18/10/2017	Busi	Intensive	Koome	ERS3016759	pre_treatment
5582STDY7724308	18/10/2017	Busi	Intensive	Koome	ERS2891570	pre_treatment
5582STDY7724276	22/11/2017	Busi	Intensive	Koome	ERS2891538	post_treatment
5582STDY7759925	27/09/2017	Zingoola	Standard	Koome	ERS2983591	post_treatment
5582STDY7759918	23/10/2017	Kitosi	Intensive	Koome	ERS2983585	pre_treatment
5582STDY7759926	24/10/2017	Kitosi	Intensive	Koome	ERS2983592	pre_treatment
5582STDY7724229	18/10/2017	Busi	Intensive	Koome	ERS2891491	pre_treatment
5582STDY7724227	17/10/2017	Busi	Intensive	Koome	ERS2891489	pre_treatment
5582STDY7724235	19/10/2017	Busi	Intensive	Koome	ERS2891497	pre_treatment
5582STDY7724268	22/11/2017	Busi	Intensive	Koome	ERS2891530	post_treatment

5582STDY7724300	23/11/2017	Busi	Intensive	Koome	ERS2891562	post_treatment
5582STDY7770959	24/08/2017	Zingoola	Standard	Koome	ERS3016718	pre_treatment
5582STDY7771059	22/08/2017	Zingoola	Standard	Koome	ERS3016790	pre_treatment
5582STDY7771010	24/08/2017	Zingoola	Standard	Koome	ERS3016769	pre_treatment
5582STDY7770929	27/09/2017	Zingoola	Standard	Koome	ERS3016688	post_treatment
5582STDY7770935	24/08/2017	Zingoola	Standard	Koome	ERS3016694	pre_treatment
5582STDY7724302	23/08/2017	Zingoola	Standard	Koome	ERS2891564	pre_treatment
5582STDY7771028	24/08/2017	Zingoola	Standard	Koome	ERS3016779	pre_treatment
5582STDY7759888	13/07/2017	Katooke	Intensive	Damba	ERS2983566	pre_treatment
5582STDY7759928	16/08/2017	Katooke	Intensive	Damba	ERS2983594	post_treatment
5582STDY7770944	13/09/2017	Kachanga	Standard	Damba	ERS3016703	post_treatment
5582STDY7759936	15/08/2017	Katooke	Intensive	Damba	ERS2983601	pre_treatment
5582STDY7759944	13/09/2017	Kachanga	Standard	Damba	ERS2983608	post_treatment
5582STDY7770976	18/10/2017	Busi	Intensive	Koome	ERS3016735	pre_treatment
5582STDY7770953	24/08/2017	Zingoola	Standard	Koome	ERS3016712	pre_treatment
5582STDY7759894	28/09/2017	Zingoola	Standard	Koome	ERS2983557	post_treatment
5582STDY7759901	28/09/2017	Zingoola	Standard	Koome	ERS2983570	post_treatment
5582STDY7771008	17/10/2017	Busi	Intensive	Koome	ERS3016760	pre_treatment
5582STDY7770982	07/08/2017	Kachanga	Standard	Damba	ERS3016741	pre_treatment
5582STDY7770936	13/09/2017	Kachanga	Standard	Damba	ERS3016695	post_treatment
5582STDY7770927	24/08/2017	Zingoola	Standard	Koome	ERS3016686	pre_treatment
5582STDY7759933	26/09/2017	Zingoola	Standard	Koome	ERS2983598	post_treatment
5582STDY7724286	23/08/2017	Zingoola	Standard	Koome	ERS2891548	pre_treatment
5582STDY7770945	27/09/2017	Zingoola	Standard	Koome	ERS3016704	post_treatment
5582STDY7770966	22/11/2017	Busi	Intensive	Koome	ERS3016725	post_treatment
5582STDY7724245	19/10/2017	Busi	Intensive	Koome	ERS2891507	pre_treatment
5582STDY7724313	18/10/2017	Busi	Intensive	Koome	ERS2891575	pre_treatment
5582STDY7724237	18/10/2017	Busi	Intensive	Koome	ERS2891499	pre_treatment
5582STDY7724304	08/11/2017	Lugumba	Standard	Lugumba	ERS2891566	pre_treatment
5582STDY7770983	17/10/2017	Busi	Intensive	Koome	ERS3016742	pre_treatment
5582STDY7759938	05/12/2017	Kisu	Intensive	Damba	ERS2983602	post_treatment
5582STDY7771053	01/11/2017	Kisu	Intensive	Damba	ERS3016789	pre_treatment
5582STDY7771061	31/10/2017	Kisu	Intensive	Damba	ERS3016792	pre_treatment

5582STDY7759906	31/10/2017	Kisu	Intensive	Damba	ERS2983574	pre_treatment
5582STDY7759898	07/12/2017	Kisu	Intensive	Damba	ERS2983567	post_treatment
5582STDY7759882	06/12/2017	Kisu	Intensive	Damba	ERS2983560	post_treatment
5582STDY7724317	13/09/2017	Kachanga	Standard	Damba	ERS2891579	post_treatment
5582STDY7724263	11/10/2017	Kakeeka	Standard	Damba	ERS2891525	pre_treatment
5582STDY7724279	10/10/2017	Kakeeka	Standard	Damba	ERS2891541	pre_treatment
5582STDY7770916	11/10/2017	Kakeeka	Standard	Damba	ERS3016675	pre_treatment
5582STDY7724271	09/10/2017	Kakeeka	Standard	Damba	ERS2891533	pre_treatment
5582STDY7770957	07/08/2017	Kachanga	Standard	Damba	ERS3016716	pre_treatment
5582STDY7770973	09/08/2017	Kachanga	Standard	Damba	ERS3016732	pre_treatment
5582STDY7770950	10/10/2017	Kakeeka	Standard	Damba	ERS3016709	pre_treatment
5582STDY7771029	01/11/2017	Kisu	Intensive	Damba	ERS3016780	pre_treatment
5582STDY7770975	17/10/2017	Busi	Intensive	Koome	ERS3016734	pre_treatment
5582STDY7770984	19/10/2017	Busi	Intensive	Koome	ERS3016743	pre_treatment

1046

1047

1048 **S2 Table.** Protein coding genes present in the region of highest genetic differentiation on
1049 chromosome 5. (region X on Fig. 4B).

1050

1051 **Chromosome** **GenelID** **Function_name**

1052	SM_V7_5	Smp_026090	Ras-related GTP-binding protein D
1053	SM_V7_5	Smp_026160	Growth hormone-inducible transmembrane protein
1054	SM_V7_5	Smp_026190	Probable U3 small nucleolar RNA-associated protein 11
1055	SM_V7_5	Smp_101230	Phenylalanine--tRNA ligase alpha subunit
1056	SM_V7_5	Smp_102040	Guanine nucleotide-binding protein subunit beta-2-like 1
1057	SM_V7_5	Smp_129950	RNA-binding protein 12
1058	SM_V7_5	Smp_129960	Nestin
1059	SM_V7_5	Smp_129970	Hypothetical protein

1060	SM_V7_5	Smp_136240	Vesicle-associated membrane protein/synaptobrevin-binding protein
1061	SM_V7_5	Smp_136260	Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 2
1062	SM_V7_5	Smp_136280	Regulator of telomere elongation helicase 1
1063	SM_V7_5	Smp_136300	tyrosine kinase, TK group, Src family
1064	SM_V7_5	Smp_136310	Sodium/bile acid cotransporter
1065	SM_V7_5	Smp_178810	26S proteasome non-ATPase regulatory subunit 13
1066	SM_V7_5	Smp_242830	Prolyl 3-hydroxylase OGFOD1
1067	SM_V7_5	Smp_242860	Trafficking protein particle complex subunit 8
1068	SM_V7_5	Smp_247640	ATPase synthesis protein 25, mitochondrial
1069	SM_V7_5	Smp_247650	Eukaryotic translation initiation factor 3 subunit D
1070	SM_V7_5	Smp_267060	Tether containing UBX domain for GLUT4
1071	SM_V7_5	Smp_314360	Phenylalanine--tRNA ligase alpha subunit
1072	SM_V7_5	Smp_316680	Phenylalanine--tRNA ligase alpha subunit
1073	SM_V7_5	Smp_332100	40S ribosomal protein S28
1074	SM_V7_5	Smp_341690	Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1
1075	SM_V7_5	Smp_346850	Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta, chloroplastic
1076	SM_V7_5	Smp_347070	Calcium/calmodulin-dependent protein kinase type IV
1077			

1078

1079 **S3 Table.** GO terms significantly over-represented among genes overlapping regions of different
1080 natural selection. Genes are from GO hierarchies for Molecular Function (MF), Biological
1081 Processes (BP), KEGG pathways and Cellular Component (CC) within the post-treatment (Tp2).
1082 Standard (Std) and Intensive (Int) groups with respective adjusted p-values (P_{adj}). Asterisks mark
1083 terms that remain enriched in autosomal gene sets.

1084

Gro up	GO	Term_name	GO_ID	number of genes	P_{adj}
Tp2	MF	Purine-nucleoside phosphorylase activity	GO:0004731	5	1.616×10^{-8}
Tp2	MF	Transferase activity, transferring pentosyl groups	GO:0016763	6	1.352×10^{-5}
Tp2	MF	Transferase activity, transferring glycosyl groups	GO:0016757	10	8.088×10^{-4}
Tp2	MF	S-methyl-5-thioadenosine phosphorylase activity	GO:0017061	2	1.678×10^{-2}
Tp2	MF	Phosphatidylinositol-4,5-bisphosphate 4-phosphatase activity	GO:0034597	2	1.678×10^{-2}
Tp2	MF	Phosphatidylinositol-4,5-bisphosphate phosphatase activity	GO:0106019	2	1.678×10^{-2}
Tp2	MF	Phosphatidylinositol bisphosphate phosphatase activity	GO:0034593	2	4.999×10^{-2}
Tp2	MF	Phosphatidylinositol phosphate 4-phosphatase activity	GO:0034596	2	4.999×10^{-2}
Tp2	BP	Nucleoside metabolic process	GO:0009116	5	8.312×10^{-3}
Tp2	BP	Glycosyl compound metabolic process	GO:1901657	5	8.312×10^{-3}
Tp2	BP	Carbohydrate derivative metabolic process	GO:1901135	11	9.720×10^{-3}
Tp2	BP	L-methionine salvage from methylthioadenosine	GO:0019509	2	4.958×10^{-2}

Tp2	BP	Amino acid salvage	GO:0043102	2	4.958×10 ⁻²
Tp2	BP	L-methionine biosynthetic process	GO:0071265	2	4.958×10 ⁻²
Tp2	BP	L-methionine salvage	GO:0071267	2	4.958×10 ⁻²
Tp2	CC	Late endosome membrane	GO:0031902	2	4.997X10 ⁻²
Tp2	KE GG	Fatty acid Metabolism	KEGG:01212	3	1.363X10 ⁻²
Int	MF	Peroxidase activity*	GO:0004601	5	2.809×10 ⁻⁴
Int	MF	Oxidoreductase activity, acting on peroxide as acceptor*	GO:0016684	5	4.164×10 ⁻⁴
Int	MF	Antioxidant activity*	GO:0016209	5	2.627×10 ⁻³
Int	MF	Heme binding*	GO:0020037	5	4.241×10 ⁻³
Int	MF	Tetrapyrrole binding*	GO:0046906	5	4.241×10 ⁻³
Int	BP	Response to toxic substance*	GO:0009636	5	1.658X10 ⁻³
Int	BP	Cellular response to toxic substance*	GO:0097237	5	1.658X10 ⁻³
Int	BP	Detoxification*	GO:0098754	5	1.658X10 ⁻³
Int	BP	Cellular oxidant detoxification*	GO:0098869	5	1.658X10 ⁻³
Int	BP	Cellular detoxification*	GO:1990748	5	1.658X10 ⁻³
Std	MF	tRNA-specific adenosine deaminase activity*	GO:0008251	2	8.869X10 ⁻³
Std	MF	tRNA-specific adenosine-34 deaminase activity*	GO:0052717	2	8.369X10 ⁻³
Std	MF	adenosine deaminase activity*	GO:0004000	2	4.981X10 ⁻²
Std	CC	tRNA-specific adenosine-34 deaminase complex*	GO:0052718	2	5.060X10 ⁻²

1085

1086

1087