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Abstract 

Background 
Single-cell RNA-seq has emerged as an innovative technology used to study complex tissues and 
characterize cell types, states, and lineages at a single-cell level. Classification of bulk tumors by their 
individual cellular constituents has also created new opportunities to generate single-cell atlases for many 
organs, cancers, and developmental models. Despite the tremendous promise of this technology, recent 
evidence studying epithelial tissues and diverse carcinomas suggests the methods used for tissue 
processing, cell disaggregation, and preservation can significantly bias gene expression and alter the 
observed cell types. To determine whether sarcomas 3 tumors of mesenchymal origin 3 are subject to 
the same technical artifacts, we profiled patient-derived tumor explants (PDXs) propagated from three 
aggressive subtypes: osteosarcoma, Ewing sarcoma (ES), desmoplastic small round cell tumor 
(DSRCT). Given the rarity of these sarcoma subtypes, we explored whether single-nuclei RNA-seq from 
more widely available archival frozen specimens could accurately be identified by gene expression 
signatures linked to tissue phenotype or pathognomonic fusion proteins.  

Results 
We systematically assessed dissociation methods across different sarcoma subtypes. We compared 
gene expression from single-cell and single-nucleus RNA-sequencing of 125,831 whole-cells and nuclei 
from ES, DSRCT, and osteosarcoma PDXs. We detected warm dissociation artifacts in single-cell 
samples and gene length bias in single-nucleus samples. Classic sarcoma gene signatures were 
observed regardless of dissociation method. In addition, we showed that dissociation method biases can 
be computationally corrected.  

Conclusions 
We highlighted transcriptional biases, including warm dissociation and gene-length biases, introduced by 
the dissociation method for various sarcoma subtypes. This work is the first to characterize how the 
dissociation methods used for sc/snRNA-seq may affect the interpretation of the molecular features in 
sarcoma PDXs. 
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Background 

Tumors are composed of a diverse multicellular microenvironment that dictate cancer progression and 
response to therapy. While cells share an identical genome, their phenotype and behavior are driven by 
their transcriptome and proteome1. Cellular heterogeneity within the tumor ecosystem has precluded the 
ability to fully understand the cell biology and interactions that drive cancer progression1. Recently, single-
cell RNA-seq (scRNA-seq) has emerged as an innovative technology to characterize individual cells from 
heterogeneous tissues in order to understand  cell types, states, and lineages2. Rapid adoption of this 
technology has led to a flurry of research generating single-cell atlases for many organs, cancers, and 
developmental models enriching our understanding of cell biology3. 

Despite the tremendous success of this technology when applied to different cancer types, sarcomas, 
which are cancers of mesenchymal origin, have not yet widely benefited from the adoption of scRNA-
seq. Differences in tissue origin may require optimized dissociation to capture accurate in vivo gene 
expression and cellular composition. Further, the enzymatic and mechanical methods used to dissociate 
cells are known to bias cellular composition and reduce cellular quality. Many gold standard dissociation 
protocols require extended incubation at 37°C, where cellular transcription is still active and may 
introduce gene expression artifacts4.  Cold-active protease is a recent alternative to dissociation at 37°C, 
which may limit and minimize transcriptional activity and environmental stresses on cells4,5.  

Challenges in obtaining fresh clinical specimens and the logistical issues to immediately process 
specimens have also hindered workflows6. While cancer models for sarcoma, including cell lines, 
xenografts, and PDXs, are readily accessible for scRNA-seq, the extent that these models represent the 
original cancer specimen have not yet been adequately evaluated. Single-nucleus RNA-seq (snRNA-
seq) of accessible frozen tissue has demonstrated concordance with scRNA-seq6-10. SnRNA-seq can 
remove the limitations for obtaining fresh tissue and immediate processing by enabling access to archival 
tissue and ease the coordination of tissue acquisition by allowing sequencing of snap-frozen tissue. 
Furthermore, difficulties with cell fragility or size when considering scRNA-seq can be circumvented using 
snRNA-seq.  

The biases introduced by different methods have been studied between single-cell and single-
nucleus as well as dissociation using cold-active proteases and standard digestion at 37°C4. However, 
these studies did not include sarcoma specimens, which differ significantly from epithelial tissues and 
carcinomas in their expression not only by lineage but also integrins and cell-cell adhesions11,12. To fully 
realize the potential of scRNA-seq and snRNA-seq in three of the fifty or more unique sarcoma subtypes, 
we systematically assessed the effect temperature has upon enzymatic dissociation of fresh tissue and, 
secondarily, studied whether snRNA-seq maintains key transcriptomic profiles determined using scRNA-
seq. We focused our analysis on well-controlled PDX specimens of different and rare sarcomas to enable 
sample accessibility since fresh sarcoma specimens are difficult to acquire. This further enabled our 
group to explore multiple dissociation methods on the same sample.  

Though more than fifty distinct sarcoma subtypes exist, our work takes an important step to layout 
the technical and analytical framework needed for scRNA-seq and snRNA-seq analysis of osteosarcoma, 
ES, and DSRCT, three highly aggressive sarcoma samples that affect adolescents and young adults. 
Our work highlights notable method-dependent biases, as well as computational tools used to remove 
them when rare archival frozen samples are assessed by snRNA-seq.  

 

Results 

Single-cell and single-nucleus RNA sequencing of sarcoma subtypes 
In this work, we studied sarcomas from varying tissue origins, including osteosarcoma (OS), Ewing9s 
sarcoma (ES), and desmoplastic small round cell tumor (DSRCT) (Fig. 1). We used different dissociation 
protocols: Miltenyi Tumor Dissociation Kit, cold-active protease derived from Bacillus licheniformis, and 
Nuclei EZ Prep. These three protocols are described herein as Warm, Cold, and Nuclei protocols. For 
the OS specimens, we used the same Nuclei protocol and a different Warm protocol optimized for OS. 
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For DSRCT and ES specimens, we performed the additional Cold protocol, using the cold-active 
protease, as we had more specimens available. Each sarcoma subtype included three PDX specimens 
derived from different patients. In total, we analyzed 125,831 whole-cells and nuclei across the three 
sarcoma subtypes and three dissociation protocols.  
 

Evaluation of quality control metrics for tissue dissociation protocols 
Previous work has shown that dying and dead cells can influence the transcriptome and introduce 
artifacts that preclude useful biological insight4. To evaluate this effect in sarcoma, we evaluated and 
compared several protocols based on cell/nucleus quality and transcriptomic signatures. For cell/nucleus 
quality, we measured the percent of reads mapping to the transcriptome, number of genes, unique 
molecular identifiers (UMIs), and percent of mitochondrial genes for each cell or nucleus. We optimized 
our strategy to enrich for live single cells and single nucleus, respectively, by incorporating fluorescently 
activated cell sorting (FACS) or fluorescently activated nuclei sorting (FANS) prior to sequencing (Fig. 
S1).  

Next, we evaluated common quality control (QC) metrics across all samples to assess the effect of 
each dissociation protocol (Fig. 2A). We observed some variations in QC metrics for the number of genes 
and UMIs when comparing between protocols while limiting the comparisons to between PDXs of each 
sarcoma subtype. However, some of the variations could be explained by number of cells sequenced 
and sequencing depth since there is an inverse relationship between these two metrics when total reads 
are kept constant (Fig. 2B). Expectedly, nucleus samples demonstrated little to no percentage of 
mitochondrial genes since purified nuclei do not contain mitochondrial transcripts. With respect to each 
protocol, we did not discern a positive or negative influence on the QC metrics. 

 

Dissociation protocol biases the transcriptome 
To determine whether protocol-specific differences in gene expression exist, we visualized the UMAP 
embeddings of all whole-cells and nuclei without batch or technical corrections. When colored by 
sarcoma subtype, the same sarcoma subtype cluster together but with two distinct clusters for each 
sarcoma subtype except for OS (Fig. 3A). We suspect that this may be due to biases from the different 
dissociation protocols. When labeled by fresh specimens (whole cells) or frozen specimens (nuclei), we 
identified a distinct delineation between fresh and frozen tissues in the UMAP. The observed differences 
within the UMAP, we hypothesized, stem from biological artifacts linked to fresh tissue dissociation or 
technical artifacts that reflect a core set of mRNA transcripts preferentially retained within the nucleus. 
By coloring the UMAP embedding by dissociation type, cells processed using the Warm and Cold 
methods partially overlapped for each PDX, whereas Nuclei clusters remained segregated.  

Previous reports using normal epithelial tissues and carcinomas revealed that warm enzymatic 
dissociation (i.e., at 37°C) invoked a distinct 8Warm Dissociation Signature9 enriched in FOS, FOSB, and 
JUN7. To investigate if similar dissociation-specific biases occur in sarcomas exposed to collagenase at 
37°C, we selected a partial list of the top genes within the Warm Dissociation signature and compared 
their expression. Averaged gene expression from each sarcoma subtype showed that these genes are, 
indeed, elevated in the Warm protocol (Fig. 3B). Furthermore, since prior literature have stated that long 
non-coding RNAs (lncRNAs) are localized to the nucleus, we also explored their gene expression in these 
specimens13. Consistent with previous results, we observed that lncRNAs were elevated in the Nuclei 
protocol. Together, these results indicate the method chosen dissociation has a profound effect on gene 
expression.  

To further characterize how scRNA-seq and snRNA-seq affect transcript abundance, we performed 
an analysis of differentially expressed genes (DEGs). Warm and Nuclei protocols demonstrated a 
consistent trend for each sarcoma type. Genes with the largest fold-change in the Warm method included 
mitochondrial and ribosomal protein genes (Fig. 4, Table S1-3). This was expected since the 
mitochondria (and their innate transcripts) are removed entirely during the Nuclei dissociation method. 
Similarly, enrichment of ribosomal protein genes was also noted in a comparison between scRNA-seq 
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and snRNA-seq for kidney tissue14. On the other hand, genes enriched in the Nuclei protocol did not have 
a clear consensus or overlap between sarcoma types. Analyzing the DEGs in the Warm protocol, we 
found a common set of 325 genes enriched after filtering for log2 fold change over 1.5. Similarly, we 
found 117 genes enriched in the Nuclei protocol (Fig. S2A, B). Next, we performed a pathway enrichment 
of the MSigDB hallmark gene set using Enrichr. We observed stress-associated pathways in each 
sarcoma type that was enriched in the Warm protocol including Hypoxia, Apoptosis, DNA repair, and 
TNF-alpha Signaling via NF-kB, which is consistent with prior work4. On the other hand, for the Nuclei 
protocol, we observed enrichment in Mitotic Spindle. When comparing the Warm and Cold protocols for 
only ES and DSRCT, we again observed an increase in several of the commonly identified stress-related 
pathways like previous results (Fig. S3, Table S4, 5). The UMAP embedding suggested that the 
differences in Warm and Cold are minimal due to the two data sets overlapping when accounting for each 
PDX (Fig. 3A). Furthermore, we found in total 24 commonly enriched pathways suggesting a core set of 
conserved genes enriched in the Warm protocol for sarcoma samples (Fig. S2C). Interestingly, we did 
not observe any common pathways enriched between sarcomas for the Nuclei protocol. 
 

Sarcoma signatures are preserved irrespective of the method used for dissociation  
Next, to evaluate if any of the protocols influenced signatures associated with a particular sarcoma type, 
we analyzed expression of gene sets curated from literature (Table S6). For ES, we used a set of genes 
that are direct targets of the EWS-FLI1 fusion protein, which included KDSR, CAV1 and FCGRT15. 
Likewise, a gene set for EWS-WT1 targets, generated from cell lines, was used to evaluate the effect of 
each protocol in DSRCT16. Since OS lacks a clearly defined gene set, and often contains cells of partial 
fibroblastic, chondroblastic, or osteoblastic lineage commitment, we utilized curated genes associated 
with osteoblastic and chondroblastic signatures classically associated with the putative tissue origin of 
OS. Strikingly, the unique sarcoma subtype-specific gene signatures were preserved across all 
dissociation protocols. (Fig. 5). This suggests that regardless of dissociation protocol biases, the cells 
still exhibit the classic signatures for each sarcoma studied. For instance, the EWS-WT1 gene targets 
are upregulated in only the DSRCT PDX specimens. Likewise, the EWS-FLI1 target genes are only 
enriched in ES, irrespective of protocol used. However, when comparing between protocols for ES, we 
observed overexpression of the EWS-FLI1 gene set in the Nuclei protocol. While we did not observe this 
phenomenon in the other gene sets, we explored the idea of a Nuclei protocol bias. 

 

Single-nucleus RNA sequencing enriches for genes with long transcripts 
Subsequent analysis revealed that several enriched genes in the Nuclei protocol are coded by transcripts 
longer in length compared to those enriched in the Warm protocol. To further investigate this interesting 
finding, we compared the gene lengths of commonly enriched genes in Warm versus Nuclei protocol for 
all sarcomas. We found that genes enriched in the Nuclei protocol had significantly longer genes 
(Wilcoxon test, p-value < 2.2e-16) (Fig. S4A).  

This suggests that there is a possible gene length-associated bias in snRNA-seq. Recent work 
indicated that hybridization of the polyT RT-primer to intronic polyA stretches of nascent transcripts 
results in the gene length bias17. In fact, our analysis showed that 52% of reads for Nuclei mapped to 
intronic regions whereas 23% of reads were mapped for Warm protocol (Fig. 6A). We binned the genes 
into quartiles based on the gene length termed as Short (0 3 8077 nt), Short Med. (8077 3 24399 nt), 
Long. Med. (24399 3 66502 nt), and Long (> 66502 nt). On average, 55.6% of total genes greater than 
66,502 nt (Long) were enriched in the Nuclei protocol compared to 28.2% and 26.6% in the Warm and 
Cold protocols, respectively (Fig. 6B). Interestingly, we also observed an opposite effect in the short 
genes (0 3 8077 nt) with 20.7% and 21.4% of the total genes in Warm and Cold protocols respectively 
as opposed to 4.1 % in the Nuclei protocol (Fig. 6B).  

To answer if there were indeed a bias due to polyA stretches, we counted the number of polyA 
regions, defined as greater than 15 A repeats, within the full-length cDNA including both intronic and 
exonic regions for every gene. We observed a significant correlation between increasing gene length and 
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polyA regions (R = 0.7, p-value < 2.2e16, (Fig. 6C). While we saw a positive correlation between scRNA 
and snRNA expression for each sarcoma type, there is a skew toward higher expression of genes that 
are longer and containing many polyA regions for snRNA data (Fig. S4B-D). 

 

A gene length bias score accurately identified cells profiled by snRNA-seq 
To evaluate the enrichment of long transcripts, we generated a length bias score by taking the top 200 
genes with the highest number of polyA regions and combining them into a signature gene set (Table 
S7). Note that these genes were chosen purely by length and is agnostic to the underlying biology. In 
addition, we evaluated the expression of a previously generated warm dissociation signature from 
O9Flanagan et al.4 Our results demonstrated that the warm dissociation signature is clearly associated 
with the Warm protocol (Fig. 5D). On the other hand, expression of the length bias score is only observed 
in samples profiled using snRNA-seq. Together, these signatures robustly delineated the biases imparted 
by scRNA- and snRNA-seq for the different sarcoma subtypes.  

To further illustrate this, we evaluated logistic regression models using the length bias and warm 
dissociation signatures to classify affected cells. We randomly split the ES data set into training and test 
groups. Using the logistic regression model, we could accurately predict samples that underwent the 
Nuclei protocol (AUC = 1.00) and whole-cells that displayed stress from the Warm protocol (AUC = 0.92) 
(Fig. S5). We applied the same model to the OS and DSRCT data set and observed the same findings 
(Fig. S6).  To test if we could extrapolate this classifier to single-cell and single-nucleus libraries 
processed outside our lab, we used data from a recent paper6. In this work, the authors used collagenase 
type 4 at 37°C to dissociate a neuroblastoma PDX (O-PDX) into single cells and Tween with salts and 
Tris to dissociate O-PDX into single nuclei6. The authors demonstrated that the same dissociation 
signature we evaluated was elevated in whole-cells when compared to nuclei. Like our data, we applied 
the length bias and warm dissociation signatures to the O-PDX data set and were able to accurately 
predict samples that were nuclei (AUC = 1). Importantly, we observed the same findings in a 
neuroblastoma resection from a patient specimen to rule out if this was limited to only PDX specimens. 
Our results suggest that single nuclei could readily be classified just by the length bias score and that 
this may not be limited to just PDX samples (Fig. S7). This implies that snRNA-seq enriches for longer 
transcript when compared to scRNA-seq from paired samples.  

We suspected that when comparing sarcoma signatures between protocols for ES, the elevated 
expression of the EWS-FLI1 gene set in the Nuclei protocol may be due to the gene length-associated 
bias in snRNA-seq (Fig. 4). For each sarcoma signature, we divided the genes into four bins based on 
quartiles of gene length (Fig. S8A). As we expected, for the EWS-FLI1 target gene set, over 40% of 
genes in this specific set were considered long (> 66502 nt). This enrichment was not observed in the 
other gene sets. To further explore the effect of longer genes, we split the EWS-FLI1 target gene set into 
two groups 3 short (< 65502 nt) and long (> 65502 nt) genes. Next, we evaluated the resulting expression 
in ES and indeed observed a gene length-associated bias but only in the group that included long genes 
(Fig. S8B).   

 

Data integration recovers conserved markers and matching cell-states  
As demonstrated by our UMAP embedding for OS (Fig. 7), the same samples processed simultaneously 
by scRNA-seq and snRNA-seq exhibit large batch effects and vastly different transcriptomic signatures. 
This complicates downstream analyses 3 even within the same cancer type 3 and will present unique 
challenges when investigators try to apply lessons learned from a dataset assessed by scRNA-seq to 
another generated in parallel using snRNA-seq.  

One could theoretically solve the dilemma using a brute-force approach that runs each sample twice, 
first by scRNA-seq then again using snRNA-seq, assuming of course that sufficient tissue exists, 
However, this method is likely to be impractical given tissue scarcity, frequent lack of paired fresh/frozen 
tissues, and the redundant costs associated with creating and sequencing the cDNA library twice per 
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sample. Prospective collection of fresh tissues for rare cancers like sarcoma, or even rarer sarcoma 
subtypes like OS, ES, or DSRCT, presents additional hurdles. 

 To counter batch effects induced by sample handling, inter-operator variation, and differing 
technologies (e.g., CEL-Seq, Fluidigm, 10x Chromium), several bioinformatic tools exist to remove 
covariates. Utilizing the integration workflow for Seurat v3, we corrected for protocol biases and 
integrated each dataset of matched PDX specimens18. Each sarcoma subtype dataset was split by 
dissociation method and then integrated.  

As can be seen after applying integration, technical biases from dissociation protocols are mitigated, 
and PDX specimens with similar cell states now cluster together (Fig. 7A). As an example, the Warm 
dissociation signature that was previously enriched in fresh tissues analyzed by scRNA-seq, is now 
homogeneously distributed and not affecting the clustering of samples (Fig. 7B). Similarly, the length 
bias score, which was previously causing the samples profiled by snRNA-seq to separate is now 
mitigated (Fig. 7B).  

When observing conserved markers for OS PDXs, we predicted that both fresh and frozen from the 
same PDX would exhibit the same DEGs when compared to other PDXs. Based on the Figure 6C, we 
observed that the DEGs are conserved between fresh and frozen specimens. As we expected, the 
unintegrated UMAP does not neatly align the conserved markers, which is most likely due to the technical 
biases that we have shown influencing the algorithm (Fig. 7D, left column). Upon integration of the 
samples, we can clearly observe the conserved DEGs localizing to each PDX (Fig. 7D, right column). 
We extended this same analysis to both ES and DSRCT, and we observed the same effects (Fig. S9, 
10). Like batch corrections, this illustrates the need for properly integrating diverse datasets, where in 
this work paired specimens underwent different dissociation protocols, to reliably perform downstream 
analyses.  

Discussion 

The advent of single-cell transcriptomic profiling has revolutionized the ability to decipher gene 
expression in a way that would have been otherwise unimaginable just a decade ago. Of major value for 
cancer research is the opportunity to measure cellular composition of each tumor, as well as the individual 
states and phenotypes of individual cancer cells that would have otherwise been obscured with whole-
tumor RNA-seq approaches. Accurate interpretation of the results, however, requires a keen appreciation 
for the technical and computational biases introduced by the chosen methods for tissue handling, cell 
dissociation, and cell or nuclei preservation.  

In this work, we sought to elucidate the inherent biases of different dissociation protocols on the 
transcriptome of sarcomas, focusing initially on three subtypes that predominantly affect children and 
young adults. To avoid consuming scarce clinical research specimens, we limited our research scope to 
early-generation sarcoma PDXs, which maintain close fidelity to the OS, ES, or DSRCT patients from 
whom they were derived. The choice to use PDXs, rather than human tumors, also stemmed from our 
ability to tightly regulate how tumors were collected, stored, and processed. Further, the PDX tissues 
afforded an opportunity to receive fresh and snap frozen tissue simultaneously from the same tumor to 
avoid temporal biases. In contrast, the human tumors as they exist in our institution, were collected 
months or years apart, often at different points in each patient9s treatment course, and typically snap 
frozen or formalin-fixed and paraffin-embedded without gathering a fresh tissue comparator.  

Our work builds upon prior studies in normal tissues and carcinomas that have analyzed the protocol 
dependent biases used for scRNA-seq and snRNA-seq4-6,18-20. Consistent with prior studies, enzymatic 
digestion at 37°C invoked a marked stress-response, manifest by upregulation of immediate early genes 
(IEGs), such as FOS, JUN, MYC4. As expected, this stress-response was minimized in the Cold protocol 
and almost absent in the Nuclei dissociation.  

Interestingly, because many sarcoma subtypes are caused by chromosomal translocations that 
produce pathognomonic fusion proteins, we had the opportunity to determine if protocol-specific technical 
biases interfered with the downstream target gene signatures induced by EWS-FLI1 or EWS-WT1 in ES 
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and DSRCT, respectively. Though we hypothesized a stress-response could affect the expression of 
EWS-FLI1 target genes, we observed in fact that snRNA-seq had a significantly greater impact, possibly 
due to enrichment for genes with longer transcripts. This unexpected bias towards longer transcripts 
resulted in an EWS-FLI1 target gene set that was overexpressed in samples assessed by snRNA-seq, 
as opposed to scRNA-seq.  

As to why the EWS-FLI1 target genes contain an overabundance of long genes, we explored a few 
possibilities. The EWS-FLI1 transcription factor is known to bind to GGAA microsatellite repeats of 9 or 
more21,22. This may be influenced with transcription length like the increase of polyA region with increasing 
length.  However, many of the microsatellite repeats that enable EWS-FLI1 binding were found within the 
first intron or the promoter region, which could be located as far as 1 Mb upstream of the transcription 
start sites22. A more likely explanation may be found in the broader analysis of long genes. A review of 
the effect of gene length found positive correlations with intron number, protein size, and SNPs23. 
Remarkably, gene length is also associated with cancer, heart diseases, and neuronal development23,24. 
Given that a portion of EWS-FLI1 targets are known to be neural genes, we can speculate that some of 
the long genes in the EWS-FLI1 gene set are neural related25.  

Overall, special care must be considered when comparing data between whole-cells and nucleus. To 
remove the technical bias introduced by snRNA-seq, we generated a length bias signature using genes 
with long transcripts. Others have shown that technical biases or batch-to-batch effects can be regressed 
from snRNA- or scRNA-seq data19. Regression of the length bias from the snRNA-seq can produce 
comparable results to scRNA-seq17. However, comparing whole-cell and nucleus transcriptomes 
between specimens of different tissue origin or disease should be interpreted with caution. As noted 
already, gene length is associated with cancer, heart diseases, and neuronal development and correlated 
with SNPs23,24. On the other hand, our data and others have demonstrated that snRNA-seq data is 
enriched with lncRNA as compared to scRNA-seq13. While this may seem like a confounding variable 
when trying to compare the two different modalities (i.e., scRNA- and snRNA-seq), it may be beneficial 
to utilize snRNA-seq if the intent is to enrich and study lncRNA that regulate cell biology.  

Computational methods play an important role normalizing data for known technical biases. After 
applying Seurat v3 integration, matched PDX specimens with similar cell states clustered together on the 
UMAP embedding. This is to be expected since Seurat v3 jointly reduces the dimensionality of datasets 
using a diagonalized CCA to identify shared biological markers and conserved gene expression 
signatures18. The algorithm then finds mutual nearest neighbors in this low-dimensional representation 
to recover matching cell states between datasets26. Since feature selection for integration is limited to 
variable features within each dissociation protocol, subtle differences between protocols (such as the 
warm dissociation signature) will play a smaller role.  

Not performed in this study but an important concept to highlight when using different dissociation 
protocols is the effect on cellular composition bias. While scRNA-seq and snRNA-seq adequately 
represent the original cell populations, others have noted some differences, especially for immune cells6,7. 
An unavoidable limitation of our study was the placement of PDXs within immunocompromised murine 
models that lack a full immune cell repertoire. Thus, we did not have the opportunity to assess whether 
snRNA-seq underestimates the prevalence of T-cells, B-cells, and NK cells, as has been reported 
previously in carcinomas27. Others have shown the methanol fixation was superior to cryopreservation 
with respect to epithelial cell preservation, and it remains to be explored whether one preservation method 
is superior to another in retaining the native cell distribution or sarcomas or normal mesenchymal tissue. 
As spatial image omics (SIO) gains traction, one could envision using this technology as a 8gold-standard9 
to meticulously catalog a cancer9s true cell composition without suffering the aforementioned 
technological artifacts28.  

Our work is the first to rigorously compare the protocols used for sc/snRNA-seq to assess their effect 
on gene expression in sarcoma tissues. Consistent with prior reports in epithelial malignancies, we 
demonstrate that Warm dissociation introduced a similar cell stress signatures in three pediatric sarcoma 
subtypes. Among other key findings, the gene signatures associated with ES9s and DSRCT9s fusion 
proteins were more readily observed using snRNA-seq. This result has immediate relevance, since it 
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suggests that pre-existing frozen specimens can be used to advance sarcoma research. Last, we 
demonstrate that computational algorithms can be used to remove some of the biases linked to the 
experimental methods.  

Materials and Methods 

Collection of fresh tissue for scRNA-seq  
All experiments were conducted per protocols and conditions approved by the University of Texas MD 
Anderson Cancer Center (MDACC; Houston, TX) Institutional Animal Care and Use Committee (eACUF 
Protocols #00000712-RN02). Male NOD (SCID)-IL-2Rgnull mice (The Jackson Laboratory; Farmington, 
CT) were subcutaneously injected with PDX explants (2 mm) to generate xenografts. All mice were 
maintained under barrier conditions and treated using protocols approved by The University of Texas MD 
Anderson Cancer Center9s Institutional Animal Care and Use Committee. MDA-SA98-TIS02, OS1, and 
OS31, are PDX lines maintained by the Pediatric Solid Tumors Comprehensive Data Resource Core29. 
Once their tumors reached a volume of 150 mm3, tumors were explanted and a portion was flash-frozen 
for snRNA-seq, while the remainder underwent dissociation. 

Dissociation workflow from fresh solid tumor samples 
Samples were collected and immediately placed into MACS® Tissue Storage Solution (Miltenyi Biotec) 
and kept on ice during transport. On arrival to the laboratory, samples were minced using a scalpel into 
fragments under ~ 0.5 mm under aseptic conditions. Next, samples were evenly split for either warm or 
cold enzymatic dissociation. 

For warm dissociation of ES and DSRCT PDX specimens, the human Tumor Dissociation Kit (Miltenyi 
Biotec) was used. The dissociation was performed under manufacturer9s protocol using the 
gentleMACS# Dissociator (Miltenyi Biotec), a benchtop instrument for the semi-automated dissociation 
of tissues into single-cell suspensions. The gentleMACS Program sequenced followed the suggestion for 
8Soft9 Tumor type. Following completion of the program, 2x volume of media was added to the samples. 
This was followed by filtration through a MACS SmartStrainer (70 ¿m, Miltenyi Biotec) and centrifugation 
at 300g for 5 min. Cells were resuspended in 90% FBS and 10% DMSO at a concentration of 1 million 
cells per mL and placed in a Thermo Scientific# Mr. Frosty# Freezing Container in a -80 °C freezer. 

For warm dissociation of OS PDX specimens, tissue was minced into 3 3 4 mm pieces with sterile a 
scalpel or scissor. The tissues were washed several times with Hank9s Balanced Salt Solution (HBSS). 
HBSS was next aspirated and dissociation buffer (HBSS, 1 mg/mL collagenase, 3mM CaCl2, 1 ¿g/mL 
DNase) was added to submerge the tissue. Tissue is then incubated at 37 °C for up to 12 hours. The cell 
suspension was then filtered using a 40 ¿m cell strainer. The filtrate is pelleted using a cenfriifugation at 
400g for 5 min. Cells were resuspended freezing meddium and placed in a Thermo Scientific# Mr. 
Frosty# Freezing Container in a -80 °C freezer. 

For cold dissociation, protocol was adapted from Adam et al5. Cold protease solution was prepared 
from 5 mM CaCl2, 10 mg/mL B. Licheniformis protease, and 125 U/mL DNase I in 1x PBS. Tissue was 
minced using a scalpel into fragments under 0.5 mm. Fragments were placed in a MACS C-tube and 5 
mL of ice-cold cold protease solution was added. The samples were incubated for 10 min at 4 °C with 
rocking. This was followed by placing the samples in a gentleMACS# Dissociator (Miltenyi Biotec) and 
running the m_brain_03 program twice in succession. Afterwards, the samples were centrifuged at 300g 
for 5 min and resuspended in 3 mL of trypsin-EDTA for 1 min at room temperature. The trypsin-EDTA 
was then neutralized using ice-cold 10% FBS in 1x PBS and triturated. This was followed by filtration 
through a MACS SmartStrainer (70 ¿m, Miltenyi Biotec) and centrifugation at 300g for 5 min. Cells were 
resuspended freezing medium at a concentration of 1 million cells per mL and placed in a Thermo 
Scientific# Mr. Frosty# Freezing Container in a -80 °C freezer. Cryovials were moved to LN2 storage 
for long-term. 
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Thawing cryopreserved cells 
The cells were removed from LN2 or -80 °C freezer, if they were reccently cryopreserved, and placed into 
a 37 °C water bath for 3 min. The contents were then transferred to a 15 mL centrifuge tube. 1 mL of 
complete medium was used to wash the cryovial and added drop-wise into the centrifuge tube. Next, 8 
mL of complete medium was added drop-wise to reduce osmotic shock. Cells were then centrifuged at 
300g for 5 min and resupsneded in 1x PBS supplemented with 0.04% BSA. This was followed by live cell 
enrichment using FACS. Single-cell suspensions were stained with Caclein AM live cell stain and 
SYTOX# Red dead cell stain.  

Nuclei Isolation workflow 
The protocol was adapted from Habib et al9. We isolated nuclei from fresh-frozen tissue using the Nuclei 
EZ Prep Kit (Sigma-Aldrich). Fresh-frozen tissue specimen were cut into piecces < 5 mm over dry ice 
and then placed in 0.5 mL ice-cold EZ lysis buffer. This was followed by homogenizing using a Chemglass 
Life SciencesSupplier BioVortexer Mixer (Fisher Scientific) attached with a plastic microcentrifuge pestle 
on ice. Then 1 mL of ice-cold EZ lysis buffer was added and samples were incubated on ice for 5 min. 
Debris was filtered out using a pluriStrainer Mini 70 ¿m into a new tube. This was followed by 
centrifugation at 500g for 5 min. Samples were then incubated with 1 mL of ice-cold EZ lysis buffer on 
ice for 5 min followed by centrifugation. Afterwards, the supernatant was aspirated and 0.5 mL of Nuclei 
Wash and Resuspension Buffer (NWRB, 1X PBS supplemented with 1.0 % BSA and 0.2U/¿l RNase 
Inhibitor) was carefully added without disrupting the pellet, which was followed by 5 min of incubation. 
Next, we added 0.5 mL of NWRB and centrifuged at 500g for 5 min. We repeated the wash and incubation 
once more, followed by centrifugation. The supernatant was aspirated and the nuclei were resuspended 
in NWRB. A portion was visualized with Trypan blue under the microscope to inspect for debris and nuclei 
integrity.   

To sort nuclei, single-nucleus suspensions were stained with 7-AAD in NWRB for 5 min on ice. Then 
a BD cell sorter was used to sort up to 100,000 7-AAD positive events. Quality control of post-sort nuclei 
concentration was evaluated under a microscope to ensure adequate count. This was followed by loading 
nuclei onto a 10X chip.  

Library preparation and sequencing 
We followed the standard protocol set by 10x Genomics for single-cell/single-nucleus capture. A targeted 
capture of 5000 single cell or single nucleus were loaded onto each channel of a Chromium single-cell 
39 Chip. The single cells and single nuclei were partitioned using the gel beads within the Chromium 
Controller. Afterwards, we performed cDNA amplification and fragmentation. This was followed by index 
and adapter attachment. Samples were pooled and sequenced on a NovaSeq 6000 with targeted 
sequence depth at 100,000 reads/cell or nucleus.  

sc/snRNA-seq data preprocessing  
We used Cell Ranger mkfastq to generate demultiplexed FASTQ files. Reads were aligned to human 
GRCh38 genome and reads were then quantified as UMIs buy Cell Ranger count. For snRNA-seq, reads 
were mapped with both introns and exons in Cell Ranger 5.0 using the include-introns option for counting 
intronic reads10.  

We performed QC and normalization separately for each sarcoma PDX. We followed the guidelines 
for QC from OSCA and others20. We inspected UMIs, gene counts, and percentage of mitochondrial 
genes and identified outliers based on median absolute deviation (MAD). We used a strict value of 2 or 
more MADs from the median while also using generic cut offs. Cells that did not meet the criteria were 
removed from analysis. Scrublet was used to predict and detect doublets within the data30. While doublets 
were flagged, there was not a single cluster of doublets, which would be evident as an artifact, so no cells 
were removed.  

Data normalization, dimensional reduction, and comparisons 
Seurat v3 was used for sample normalization, dimensional reduction, scaling, and differential expression 
analysis18. We used Wilcoxon test to compare gene expression between protocols. Enrichr was used for 
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pathway enrichment. We set a log2 fold change threshold of log2(1.5) or greater. This will result in genes 
that are 50% greater than the baseline. The AddModuleScore function in Seurat v3 was used to observe 
the averaged gene expression of different gene set. We used curated gene sets of a warm dissociation 
signature from O9Flanagan et al.4, EWS-FLI1 gene targets15, EWS-WT1 gene targets16 and osteoblastic 
and chondroblastic signatures classically associated with the tissue origin of OS (Table S6). The 
osteoblastic and chondroblastic signatures were found on Harmonizome 
(https://maayanlab.cloud/Harmonizome/). The osteoblastic signature was specifically found in the 
GeneRIF Biological Term Annotations under 8Osteoblastic9. The chondroblastic signature was specifically 
found in the TISSUES Text-mining Tissue Protein Expression Evidence Scores under 8Chondroblasts9. 
To find conserved markers between dissociation methods, we used the function FindConservedMarkers 
in Seurat v3. We performed integration using the integration functions within Seurat v3. The datasets 
were integrated by dissociation protocol.  

Predicting sample type by bias scores 
To classify nuclei and cell using the length bias and warm dissociation scores, data sets were randomly 
split into a training and test set. To prevent data leakage, scaled data was not used. We then calculated 
the gene set scores separately on the training and test sets. A logistic regression model was fit to the 
training set on either the warm dissociation or length bias score to predict for cells and nuclei respectively. 
We calculated the probabilities and the area under the curve using the pROC v1.18.0 package. This was 
compared to a random gene signature equal in number of genes of either length bias or warm dissociation 
gene sets.  
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Figures 

 
 

Figure 1. Overview of Workflow and Experiments in this study. Schematic depicting the sarcoma 

subtypes used in this study and the general workflow for the specific experiments. FACs: fluorescence-

activated cell sorting, FANS: fluorescence-activated nucleus sorting, DSRCT: desmoplastic small round 

cell tumor 
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Figure 2. Patient information and quality control metrics. a Overview of all sarcoma subtypes that were 

processed and evaluated.  For each sample, the number of cells or nuclei passing QC thresholds, number 

of sequencing reads per cell/nuclei, number of genes per cell/nuclei, and the median percentage of UMIs 

mapping to mitochondrial genes are displayed in the table. All samples had less than 0.01 doublet 
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fraction. b Distributions (median and first and third quartiles) for number of UMIs per cells/nuclei, 

number of genes per cell/nuclei, and percentage of UMIs mapping to mitochondrial genes vary across 

sarcoma subtypes and choice of protocol.  
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Figure 3.  Performance of each protocol on various sarcoma subtypes. a UMAP embedding of all cells 

labeled by Sarcoma subtype, Tissue state, and Dissociation type. b Enrichment of select stress-response 

genes in the Warm dissociation protocol and select lncRNA in the Nuclei isolation protocol.  
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Figure 4. DEG Biases introduced by Warm and Nuclei Protocols. Scatter plot of log transformed gene 

expression levels between warm and nuclei on the left column. Red indicates up-regulated in warm, and 

blue indicates up-regulated in nuclei with p-value < 0.05. Black is non-significant. Dot plot of enrichR 

scores of the Hallmark gene sets from MSigDB are on the right column. Plots are shown for DSRCT a, b; 

ES c, d; and OS e, f. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.01.21.476982doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.21.476982
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2022. ; https://doi.org/10.1101/2022.01.21.476982doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.21.476982
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 5. Biases associated with protocol on Sarcoma specific signatures. Sarcoma specific signatures 

were only detected in the respective sarcoma subtypes (red box). EWS-FLI1 ES signature is derived from 

a gene set of EWS-FLI1 target genes. EWS-WT1 DSRCT signature is derived from a gene set of EWS-WT1 

target genes. Both osteoblastic and chondroblastic signatures are gene sets derived from reference 

databases.  
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Figure 6. Gene-length associated bias in snRNA-seq. a Comparison of where transcriptomic reads are 

aligned. b snRNA-seq samples were enriched in genes with longer gene length. Genes were split into 

quartiles based on gene length. c Increased PolyA regions were associated with longer gene length. d 

Warm Dissociation score was significantly higher in the Warm and Cold protocol as opposed to the Nuclei 

protocol. Length Bias score was significantly higher in the Nuclei protocol (Wilcoxon test, **** denotes 

p <= 0.0001) 
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Figure 7. Integration recovers matching cell states from different dissociation methods for OS. a UMAP 

embeddings after integration (bottom row) showed alignment of matching PDX specimens. b After 

integration (bottom row), clusters on the UMAP were no longer affected by the identified biases. Darker 

blue indicates higher expression. c Dot plot of conserved markers show unique gene expression for each 
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PDX. Top marker is in red. d After integration (right column), top conserved markers correctly aligned 

with the associated PDX cluster.  
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