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Abstract

Background

Single-cell RNA-seq has emerged as an innovative technology used to study complex tissues and
characterize cell types, states, and lineages at a single-cell level. Classification of bulk tumors by their
individual cellular constituents has also created new opportunities to generate single-cell atlases for many
organs, cancers, and developmental models. Despite the tremendous promise of this technology, recent
evidence studying epithelial tissues and diverse carcinomas suggests the methods used for tissue
processing, cell disaggregation, and preservation can significantly bias gene expression and alter the
observed cell types. To determine whether sarcomas — tumors of mesenchymal origin — are subject to
the same technical artifacts, we profiled patient-derived tumor explants (PDXs) propagated from three
aggressive subtypes: osteosarcoma, Ewing sarcoma (ES), desmoplastic small round cell tumor
(DSRCT). Given the rarity of these sarcoma subtypes, we explored whether single-nuclei RNA-seq from
more widely available archival frozen specimens could accurately be identified by gene expression
signatures linked to tissue phenotype or pathognomonic fusion proteins.

Results

We systematically assessed dissociation methods across different sarcoma subtypes. We compared
gene expression from single-cell and single-nucleus RNA-sequencing of 125,831 whole-cells and nuclei
from ES, DSRCT, and osteosarcoma PDXs. We detected warm dissociation artifacts in single-cell
samples and gene length bias in single-nucleus samples. Classic sarcoma gene signatures were
observed regardless of dissociation method. In addition, we showed that dissociation method biases can
be computationally corrected.

Conclusions

We highlighted transcriptional biases, including warm dissociation and gene-length biases, introduced by
the dissociation method for various sarcoma subtypes. This work is the first to characterize how the
dissociation methods used for sc/snRNA-seq may affect the interpretation of the molecular features in
sarcoma PDXs.
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Background

Tumors are composed of a diverse multicellular microenvironment that dictate cancer progression and
response to therapy. While cells share an identical genome, their phenotype and behavior are driven by
their transcriptome and proteome’. Cellular heterogeneity within the tumor ecosystem has precluded the
ability to fully understand the cell biology and interactions that drive cancer progression’. Recently, single-
cell RNA-seq (scRNA-seq) has emerged as an innovative technology to characterize individual cells from
heterogeneous tissues in order to understand cell types, states, and lineages®. Rapid adoption of this
technology has led to a flurry of research generating single-cell atlases for many organs, cancers, and
developmental models enriching our understanding of cell biology?®.

Despite the tremendous success of this technology when applied to different cancer types, sarcomas,
which are cancers of mesenchymal origin, have not yet widely benefited from the adoption of scRNA-
seq. Differences in tissue origin may require optimized dissociation to capture accurate in vivo gene
expression and cellular composition. Further, the enzymatic and mechanical methods used to dissociate
cells are known to bias cellular composition and reduce cellular quality. Many gold standard dissociation
protocols require extended incubation at 37°C, where cellular transcription is still active and may
introduce gene expression artifacts*. Cold-active protease is a recent alternative to dissociation at 37°C,
which may limit and minimize transcriptional activity and environmental stresses on cells*®.

Challenges in obtaining fresh clinical specimens and the logistical issues to immediately process
specimens have also hindered workflows®. While cancer models for sarcoma, including cell lines,
xenografts, and PDXs, are readily accessible for scRNA-seq, the extent that these models represent the
original cancer specimen have not yet been adequately evaluated. Single-nucleus RNA-seq (snRNA-
seq) of accessible frozen tissue has demonstrated concordance with scRNA-seq®'°. SnRNA-seq can
remove the limitations for obtaining fresh tissue and immediate processing by enabling access to archival
tissue and ease the coordination of tissue acquisition by allowing sequencing of snap-frozen tissue.
Furthermore, difficulties with cell fragility or size when considering scRNA-seq can be circumvented using
snRNA-seq.

The biases introduced by different methods have been studied between single-cell and single-
nucleus as well as dissociation using cold-active proteases and standard digestion at 37°C*. However,
these studies did not include sarcoma specimens, which differ significantly from epithelial tissues and
carcinomas in their expression not only by lineage but also integrins and cell-cell adhesions'"'2. To fully
realize the potential of sScRNA-seq and snRNA-seq in three of the fifty or more unique sarcoma subtypes,
we systematically assessed the effect temperature has upon enzymatic dissociation of fresh tissue and,
secondarily, studied whether snRNA-seq maintains key transcriptomic profiles determined using scRNA-
seq. We focused our analysis on well-controlled PDX specimens of different and rare sarcomas to enable
sample accessibility since fresh sarcoma specimens are difficult to acquire. This further enabled our
group to explore multiple dissociation methods on the same sample.

Though more than fifty distinct sarcoma subtypes exist, our work takes an important step to layout
the technical and analytical framework needed for scRNA-seq and snRNA-seq analysis of osteosarcoma,
ES, and DSRCT, three highly aggressive sarcoma samples that affect adolescents and young adults.
Our work highlights notable method-dependent biases, as well as computational tools used to remove
them when rare archival frozen samples are assessed by snRNA-seq.

Results

Single-cell and single-nucleus RNA sequencing of sarcoma subtypes

In this work, we studied sarcomas from varying tissue origins, including osteosarcoma (OS), Ewing’s
sarcoma (ES), and desmoplastic small round cell tumor (DSRCT) (Fig. 1). We used different dissociation
protocols: Miltenyi Tumor Dissociation Kit, cold-active protease derived from Bacillus licheniformis, and
Nuclei EZ Prep. These three protocols are described herein as Warm, Cold, and Nuclei protocols. For
the OS specimens, we used the same Nuclei protocol and a different Warm protocol optimized for OS.
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For DSRCT and ES specimens, we performed the additional Cold protocol, using the cold-active
protease, as we had more specimens available. Each sarcoma subtype included three PDX specimens
derived from different patients. In total, we analyzed 125,831 whole-cells and nuclei across the three
sarcoma subtypes and three dissociation protocols.

Evaluation of quality control metrics for tissue dissociation protocols

Previous work has shown that dying and dead cells can influence the transcriptome and introduce
artifacts that preclude useful biological insight*. To evaluate this effect in sarcoma, we evaluated and
compared several protocols based on cell/nucleus quality and transcriptomic signatures. For cell/nucleus
quality, we measured the percent of reads mapping to the transcriptome, number of genes, unique
molecular identifiers (UMIs), and percent of mitochondrial genes for each cell or nucleus. We optimized
our strategy to enrich for live single cells and single nucleus, respectively, by incorporating fluorescently
activated cell sorting (FACS) or fluorescently activated nuclei sorting (FANS) prior to sequencing (Fig.
S$1).

Next, we evaluated common quality control (QC) metrics across all samples to assess the effect of
each dissociation protocol (Fig. 2A). We observed some variations in QC metrics for the number of genes
and UMIs when comparing between protocols while limiting the comparisons to between PDXs of each
sarcoma subtype. However, some of the variations could be explained by number of cells sequenced
and sequencing depth since there is an inverse relationship between these two metrics when total reads
are kept constant (Fig. 2B). Expectedly, nucleus samples demonstrated little to no percentage of
mitochondrial genes since purified nuclei do not contain mitochondrial transcripts. With respect to each
protocol, we did not discern a positive or negative influence on the QC metrics.

Dissociation protocol biases the transcriptome

To determine whether protocol-specific differences in gene expression exist, we visualized the UMAP
embeddings of all whole-cells and nuclei without batch or technical corrections. When colored by
sarcoma subtype, the same sarcoma subtype cluster together but with two distinct clusters for each
sarcoma subtype except for OS (Fig. 3A). We suspect that this may be due to biases from the different
dissociation protocols. When labeled by fresh specimens (whole cells) or frozen specimens (nuclei), we
identified a distinct delineation between fresh and frozen tissues in the UMAP. The observed differences
within the UMAP, we hypothesized, stem from biological artifacts linked to fresh tissue dissociation or
technical artifacts that reflect a core set of mMRNA transcripts preferentially retained within the nucleus.
By coloring the UMAP embedding by dissociation type, cells processed using the Warm and Cold
methods partially overlapped for each PDX, whereas Nuclei clusters remained segregated.

Previous reports using normal epithelial tissues and carcinomas revealed that warm enzymatic
dissociation (i.e., at 37°C) invoked a distinct ‘Warm Dissociation Signature’ enriched in FOS, FOSB, and
JUN’. To investigate if similar dissociation-specific biases occur in sarcomas exposed to collagenase at
37°C, we selected a partial list of the top genes within the Warm Dissociation signature and compared
their expression. Averaged gene expression from each sarcoma subtype showed that these genes are,
indeed, elevated in the Warm protocol (Fig. 3B). Furthermore, since prior literature have stated that long
non-coding RNAs (IncRNAs) are localized to the nucleus, we also explored their gene expression in these
specimens'®. Consistent with previous results, we observed that I\cRNAs were elevated in the Nuclei
protocol. Together, these results indicate the method chosen dissociation has a profound effect on gene
expression.

To further characterize how scRNA-seq and snRNA-seq affect transcript abundance, we performed
an analysis of differentially expressed genes (DEGs). Warm and Nuclei protocols demonstrated a
consistent trend for each sarcoma type. Genes with the largest fold-change in the Warm method included
mitochondrial and ribosomal protein genes (Fig. 4, Table S1-3). This was expected since the
mitochondria (and their innate transcripts) are removed entirely during the Nuclei dissociation method.
Similarly, enrichment of ribosomal protein genes was also noted in a comparison between scRNA-seq
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and snRNA-seq for kidney tissue'*. On the other hand, genes enriched in the Nuclei protocol did not have
a clear consensus or overlap between sarcoma types. Analyzing the DEGs in the Warm protocol, we
found a common set of 325 genes enriched after filtering for log2 fold change over 1.5. Similarly, we
found 117 genes enriched in the Nuclei protocol (Fig. S2A, B). Next, we performed a pathway enrichment
of the MSigDB hallmark gene set using Enrichr. We observed stress-associated pathways in each
sarcoma type that was enriched in the Warm protocol including Hypoxia, Apoptosis, DNA repair, and
TNF-alpha Signaling via NF-kB, which is consistent with prior work*. On the other hand, for the Nuclei
protocol, we observed enrichment in Mitotic Spindle. When comparing the Warm and Cold protocols for
only ES and DSRCT, we again observed an increase in several of the commonly identified stress-related
pathways like previous results (Fig. 83, Table S4, 5). The UMAP embedding suggested that the
differences in Warm and Cold are minimal due to the two data sets overlapping when accounting for each
PDX (Fig. 3A). Furthermore, we found in total 24 commonly enriched pathways suggesting a core set of
conserved genes enriched in the Warm protocol for sarcoma samples (Fig. S2C). Interestingly, we did
not observe any common pathways enriched between sarcomas for the Nuclei protocol.

Sarcoma signatures are preserved irrespective of the method used for dissociation

Next, to evaluate if any of the protocols influenced signatures associated with a particular sarcoma type,
we analyzed expression of gene sets curated from literature (Table S6). For ES, we used a set of genes
that are direct targets of the EWS-FLI1 fusion protein, which included KDSR, CAV1 and FCGRT',
Likewise, a gene set for EWS-WT1 targets, generated from cell lines, was used to evaluate the effect of
each protocol in DSRCT'®. Since OS lacks a clearly defined gene set, and often contains cells of partial
fibroblastic, chondroblastic, or osteoblastic lineage commitment, we utilized curated genes associated
with osteoblastic and chondroblastic signatures classically associated with the putative tissue origin of
OS. Strikingly, the unique sarcoma subtype-specific gene signatures were preserved across all
dissociation protocols. (Fig. 5). This suggests that regardless of dissociation protocol biases, the cells
still exhibit the classic signatures for each sarcoma studied. For instance, the EWS-WT1 gene targets
are upregulated in only the DSRCT PDX specimens. Likewise, the EWS-FLI1 target genes are only
enriched in ES, irrespective of protocol used. However, when comparing between protocols for ES, we
observed overexpression of the EWS-FLI1 gene set in the Nuclei protocol. While we did not observe this
phenomenon in the other gene sets, we explored the idea of a Nuclei protocol bias.

Single-nucleus RNA sequencing enriches for genes with long transcripts

Subsequent analysis revealed that several enriched genes in the Nuclei protocol are coded by transcripts
longer in length compared to those enriched in the Warm protocol. To further investigate this interesting
finding, we compared the gene lengths of commonly enriched genes in Warm versus Nuclei protocol for
all sarcomas. We found that genes enriched in the Nuclei protocol had significantly longer genes
(Wilcoxon test, p-value < 2.2e-16) (Fig. S4A).

This suggests that there is a possible gene length-associated bias in snRNA-seq. Recent work
indicated that hybridization of the polyT RT-primer to intronic polyA stretches of nascent transcripts
results in the gene length bias'’. In fact, our analysis showed that 52% of reads for Nuclei mapped to
intronic regions whereas 23% of reads were mapped for Warm protocol (Fig. 6A). We binned the genes
into quartiles based on the gene length termed as Short (0 — 8077 nt), Short Med. (8077 — 24399 nt),
Long. Med. (24399 — 66502 nt), and Long (> 66502 nt). On average, 55.6% of total genes greater than
66,502 nt (Long) were enriched in the Nuclei protocol compared to 28.2% and 26.6% in the Warm and
Cold protocols, respectively (Fig. 6B). Interestingly, we also observed an opposite effect in the short
genes (0 — 8077 nt) with 20.7% and 21.4% of the total genes in Warm and Cold protocols respectively
as opposed to 4.1 % in the Nuclei protocol (Fig. 6B).

To answer if there were indeed a bias due to polyA stretches, we counted the number of polyA
regions, defined as greater than 15 A repeats, within the full-length cDNA including both intronic and
exonic regions for every gene. We observed a significant correlation between increasing gene length and
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polyA regions (R = 0.7, p-value < 2.2e16, (Fig. 6C). While we saw a positive correlation between scRNA
and snRNA expression for each sarcoma type, there is a skew toward higher expression of genes that
are longer and containing many polyA regions for snRNA data (Fig. S4B-D).

A gene length bias score accurately identified cells profiled by snRNA-seq

To evaluate the enrichment of long transcripts, we generated a length bias score by taking the top 200
genes with the highest number of polyA regions and combining them into a signature gene set (Table
S7). Note that these genes were chosen purely by length and is agnostic to the underlying biology. In
addition, we evaluated the expression of a previously generated warm dissociation signature from
O’Flanagan et al.* Our results demonstrated that the warm dissociation signature is clearly associated
with the Warm protocol (Fig. 5D). On the other hand, expression of the length bias score is only observed
in samples profiled using snRNA-seq. Together, these signatures robustly delineated the biases imparted
by scRNA- and snRNA-seq for the different sarcoma subtypes.

To further illustrate this, we evaluated logistic regression models using the length bias and warm
dissociation signatures to classify affected cells. We randomly split the ES data set into training and test
groups. Using the logistic regression model, we could accurately predict samples that underwent the
Nuclei protocol (AUC = 1.00) and whole-cells that displayed stress from the Warm protocol (AUC = 0.92)
(Fig. S5). We applied the same model to the OS and DSRCT data set and observed the same findings
(Fig. S6). To test if we could extrapolate this classifier to single-cell and single-nucleus libraries
processed outside our lab, we used data from a recent paper®. In this work, the authors used collagenase
type 4 at 37°C to dissociate a neuroblastoma PDX (O-PDX) into single cells and Tween with salts and
Tris to dissociate O-PDX into single nuclei®. The authors demonstrated that the same dissociation
signature we evaluated was elevated in whole-cells when compared to nuclei. Like our data, we applied
the length bias and warm dissociation signatures to the O-PDX data set and were able to accurately
predict samples that were nuclei (AUC = 1). Importantly, we observed the same findings in a
neuroblastoma resection from a patient specimen to rule out if this was limited to only PDX specimens.
Our results suggest that single nuclei could readily be classified just by the length bias score and that
this may not be limited to just PDX samples (Fig. S7). This implies that snRNA-seq enriches for longer
transcript when compared to scRNA-seq from paired samples.

We suspected that when comparing sarcoma signatures between protocols for ES, the elevated
expression of the EWS-FLI1 gene set in the Nuclei protocol may be due to the gene length-associated
bias in snRNA-seq (Fig. 4). For each sarcoma signature, we divided the genes into four bins based on
quartiles of gene length (Fig. S8A). As we expected, for the EWS-FLI1 target gene set, over 40% of
genes in this specific set were considered long (> 66502 nt). This enrichment was not observed in the
other gene sets. To further explore the effect of longer genes, we split the EWS-FLI1 target gene set into
two groups — short (< 65502 nt) and long (> 65502 nt) genes. Next, we evaluated the resulting expression
in ES and indeed observed a gene length-associated bias but only in the group that included long genes
(Fig. S8B).

Data integration recovers conserved markers and matching cell-states

As demonstrated by our UMAP embedding for OS (Fig. 7), the same samples processed simultaneously
by scRNA-seq and snRNA-seq exhibit large batch effects and vastly different transcriptomic signatures.
This complicates downstream analyses — even within the same cancer type — and will present unique
challenges when investigators try to apply lessons learned from a dataset assessed by scRNA-seq to
another generated in parallel using shnRNA-seq.

One could theoretically solve the dilemma using a brute-force approach that runs each sample twice,
first by scRNA-seq then again using snRNA-seq, assuming of course that sufficient tissue exists,
However, this method is likely to be impractical given tissue scarcity, frequent lack of paired fresh/frozen
tissues, and the redundant costs associated with creating and sequencing the cDNA library twice per
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sample. Prospective collection of fresh tissues for rare cancers like sarcoma, or even rarer sarcoma
subtypes like OS, ES, or DSRCT, presents additional hurdles.

To counter batch effects induced by sample handling, inter-operator variation, and differing
technologies (e.g., CEL-Seq, Fluidigm, 10x Chromium), several bioinformatic tools exist to remove
covariates. Utilizing the integration workflow for Seurat v3, we corrected for protocol biases and
integrated each dataset of matched PDX specimens'®. Each sarcoma subtype dataset was split by
dissociation method and then integrated.

As can be seen after applying integration, technical biases from dissociation protocols are mitigated,
and PDX specimens with similar cell states now cluster together (Fig. 7A). As an example, the Warm
dissociation signature that was previously enriched in fresh tissues analyzed by scRNA-seq, is now
homogeneously distributed and not affecting the clustering of samples (Fig. 7B). Similarly, the length
bias score, which was previously causing the samples profiled by snRNA-seq to separate is now
mitigated (Fig. 7B).

When observing conserved markers for OS PDXs, we predicted that both fresh and frozen from the
same PDX would exhibit the same DEGs when compared to other PDXs. Based on the Figure 6C, we
observed that the DEGs are conserved between fresh and frozen specimens. As we expected, the
unintegrated UMAP does not neatly align the conserved markers, which is most likely due to the technical
biases that we have shown influencing the algorithm (Fig. 7D, left column). Upon integration of the
samples, we can clearly observe the conserved DEGs localizing to each PDX (Fig. 7D, right column).
We extended this same analysis to both ES and DSRCT, and we observed the same effects (Fig. S9,
10). Like batch corrections, this illustrates the need for properly integrating diverse datasets, where in
this work paired specimens underwent different dissociation protocols, to reliably perform downstream
analyses.

Discussion

The advent of single-cell transcriptomic profiling has revolutionized the ability to decipher gene
expression in a way that would have been otherwise unimaginable just a decade ago. Of major value for
cancer research is the opportunity to measure cellular composition of each tumor, as well as the individual
states and phenotypes of individual cancer cells that would have otherwise been obscured with whole-
tumor RNA-seq approaches. Accurate interpretation of the results, however, requires a keen appreciation
for the technical and computational biases introduced by the chosen methods for tissue handling, cell
dissociation, and cell or nuclei preservation.

In this work, we sought to elucidate the inherent biases of different dissociation protocols on the
transcriptome of sarcomas, focusing initially on three subtypes that predominantly affect children and
young adults. To avoid consuming scarce clinical research specimens, we limited our research scope to
early-generation sarcoma PDXs, which maintain close fidelity to the OS, ES, or DSRCT patients from
whom they were derived. The choice to use PDXs, rather than human tumors, also stemmed from our
ability to tightly regulate how tumors were collected, stored, and processed. Further, the PDX tissues
afforded an opportunity to receive fresh and snap frozen tissue simultaneously from the same tumor to
avoid temporal biases. In contrast, the human tumors as they exist in our institution, were collected
months or years apart, often at different points in each patient’s treatment course, and typically snap
frozen or formalin-fixed and paraffin-embedded without gathering a fresh tissue comparator.

Our work builds upon prior studies in normal tissues and carcinomas that have analyzed the protocol
dependent biases used for scRNA-seq and snRNA-seq*®'82°_ Consistent with prior studies, enzymatic
digestion at 37°C invoked a marked stress-response, manifest by upregulation of immediate early genes
(IEGs), such as FOS, JUN, MYC*. As expected, this stress-response was minimized in the Cold protocol
and almost absent in the Nuclei dissociation.

Interestingly, because many sarcoma subtypes are caused by chromosomal translocations that
produce pathognomonic fusion proteins, we had the opportunity to determine if protocol-specific technical
biases interfered with the downstream target gene signatures induced by EWS-FLI1 or EWS-WT1 in ES
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and DSRCT, respectively. Though we hypothesized a stress-response could affect the expression of
EWS-FLI1 target genes, we observed in fact that shnRNA-seq had a significantly greater impact, possibly
due to enrichment for genes with longer transcripts. This unexpected bias towards longer transcripts
resulted in an EWS-FLI1 target gene set that was overexpressed in samples assessed by snRNA-seq,
as opposed to scRNA-seq.

As to why the EWS-FLI1 target genes contain an overabundance of long genes, we explored a few
possibilities. The EWS-FLI1 transcription factor is known to bind to GGAA microsatellite repeats of 9 or
more®"?2. This may be influenced with transcription length like the increase of polyA region with increasing
length. However, many of the microsatellite repeats that enable EWS-FLI1 binding were found within the
first intron or the promoter region, which could be located as far as 1 Mb upstream of the transcription
start sites®. A more likely explanation may be found in the broader analysis of long genes. A review of
the effect of gene length found positive correlations with intron number, protein size, and SNPs®,
Remarkably, gene length is also associated with cancer, heart diseases, and neuronal development?>2,
Given that a portion of EWS-FLI1 targets are known to be neural genes, we can speculate that some of
the long genes in the EWS-FLI1 gene set are neural related®.

Overall, special care must be considered when comparing data between whole-cells and nucleus. To
remove the technical bias introduced by snRNA-seq, we generated a length bias signature using genes
with long transcripts. Others have shown that technical biases or batch-to-batch effects can be regressed
from snRNA- or scRNA-seq data'®. Regression of the length bias from the snRNA-seq can produce
comparable results to scRNA-seq'’. However, comparing whole-cell and nucleus transcriptomes
between specimens of different tissue origin or disease should be interpreted with caution. As noted
already, gene length is associated with cancer, heart diseases, and neuronal development and correlated
with SNPs?*24. On the other hand, our data and others have demonstrated that snRNA-seq data is
enriched with INcRNA as compared to scRNA-seq'®. While this may seem like a confounding variable
when trying to compare the two different modalities (i.e., sScCRNA- and snRNA-seq), it may be beneficial
to utilize snRNA-seq if the intent is to enrich and study IncRNA that regulate cell biology.

Computational methods play an important role normalizing data for known technical biases. After
applying Seurat v3 integration, matched PDX specimens with similar cell states clustered together on the
UMAP embedding. This is to be expected since Seurat v3 jointly reduces the dimensionality of datasets
using a diagonalized CCA to identify shared biological markers and conserved gene expression
signatures'®. The algorithm then finds mutual nearest neighbors in this low-dimensional representation
to recover matching cell states between datasets®. Since feature selection for integration is limited to
variable features within each dissociation protocol, subtle differences between protocols (such as the
warm dissociation signature) will play a smaller role.

Not performed in this study but an important concept to highlight when using different dissociation
protocols is the effect on cellular composition bias. While scRNA-seq and snRNA-seq adequately
represent the original cell populations, others have noted some differences, especially forimmune cells®’.
An unavoidable limitation of our study was the placement of PDXs within immunocompromised murine
models that lack a full immune cell repertoire. Thus, we did not have the opportunity to assess whether
snRNA-seq underestimates the prevalence of T-cells, B-cells, and NK cells, as has been reported
previously in carcinomas?’. Others have shown the methanol fixation was superior to cryopreservation
with respect to epithelial cell preservation, and it remains to be explored whether one preservation method
is superior to another in retaining the native cell distribution or sarcomas or normal mesenchymal tissue.
As spatial image omics (SI10) gains traction, one could envision using this technology as a ‘gold-standard’
to meticulously catalog a cancer's true cell composition without suffering the aforementioned
technological artifacts?.

Our work is the first to rigorously compare the protocols used for sc/snRNA-seq to assess their effect
on gene expression in sarcoma tissues. Consistent with prior reports in epithelial malignancies, we
demonstrate that Warm dissociation introduced a similar cell stress signatures in three pediatric sarcoma
subtypes. Among other key findings, the gene signatures associated with ES’s and DSRCT’s fusion
proteins were more readily observed using snRNA-seq. This result has immediate relevance, since it
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suggests that pre-existing frozen specimens can be used to advance sarcoma research. Last, we
demonstrate that computational algorithms can be used to remove some of the biases linked to the
experimental methods.

Materials and Methods

Collection of fresh tissue for scRNA-seq

All experiments were conducted per protocols and conditions approved by the University of Texas MD
Anderson Cancer Center (MDACC; Houston, TX) Institutional Animal Care and Use Committee (eACUF
Protocols #00000712-RN02). Male NOD (SCID)-IL-2Rg™" mice (The Jackson Laboratory; Farmington,
CT) were subcutaneously injected with PDX explants (2 mm) to generate xenografts. All mice were
maintained under barrier conditions and treated using protocols approved by The University of Texas MD
Anderson Cancer Center’s Institutional Animal Care and Use Committee. MDA-SA98-TIS02, OS1, and
0S31, are PDX lines maintained by the Pediatric Solid Tumors Comprehensive Data Resource Core®.
Once their tumors reached a volume of 150 mm?, tumors were explanted and a portion was flash-frozen
for snRNA-seq, while the remainder underwent dissociation.

Dissociation workflow from fresh solid tumor samples

Samples were collected and immediately placed into MACS® Tissue Storage Solution (Miltenyi Biotec)
and kept on ice during transport. On arrival to the laboratory, samples were minced using a scalpel into
fragments under ~ 0.5 mm under aseptic conditions. Next, samples were evenly split for either warm or
cold enzymatic dissociation.

For warm dissociation of ES and DSRCT PDX specimens, the human Tumor Dissociation Kit (Miltenyi
Biotec) was used. The dissociation was performed under manufacturer's protocol using the
gentleMACS™ Dissociator (Miltenyi Biotec), a benchtop instrument for the semi-automated dissociation
of tissues into single-cell suspensions. The gentleMACS Program sequenced followed the suggestion for
‘Soft’ Tumor type. Following completion of the program, 2x volume of media was added to the samples.
This was followed by filtration through a MACS SmartStrainer (70 um, Miltenyi Biotec) and centrifugation
at 300g for 5 min. Cells were resuspended in 90% FBS and 10% DMSO at a concentration of 1 million
cells per mL and placed in a Thermo Scientific™ Mr. Frosty™ Freezing Container in a -80 °C freezer.

For warm dissociation of OS PDX specimens, tissue was minced into 3 — 4 mm pieces with sterile a
scalpel or scissor. The tissues were washed several times with Hank’s Balanced Salt Solution (HBSS).
HBSS was next aspirated and dissociation buffer (HBSS, 1 mg/mL collagenase, 3mM CaCl,, 1 yg/mL
DNase) was added to submerge the tissue. Tissue is then incubated at 37 °C for up to 12 hours. The cell
suspension was then filtered using a 40 um cell strainer. The filtrate is pelleted using a cenfriifugation at
400g for 5 min. Cells were resuspended freezing meddium and placed in a Thermo Scientific™ Mr.
Frosty™ Freezing Container in a -80 °C freezer.

For cold dissociation, protocol was adapted from Adam et al. Cold protease solution was prepared
from 5 mM CaClz, 10 mg/mL B. Licheniformis protease, and 125 U/mL DNase | in 1x PBS. Tissue was
minced using a scalpel into fragments under 0.5 mm. Fragments were placed in a MACS C-tube and 5
mL of ice-cold cold protease solution was added. The samples were incubated for 10 min at 4 °C with
rocking. This was followed by placing the samples in a gentleMACS™ Dissociator (Miltenyi Biotec) and
running the m_brain_03 program twice in succession. Afterwards, the samples were centrifuged at 300g
for 5 min and resuspended in 3 mL of trypsin-EDTA for 1 min at room temperature. The trypsin-EDTA
was then neutralized using ice-cold 10% FBS in 1x PBS and triturated. This was followed by filtration
through a MACS SmartStrainer (70 um, Miltenyi Biotec) and centrifugation at 300g for 5 min. Cells were
resuspended freezing medium at a concentration of 1 million cells per mL and placed in a Thermo
Scientific™ Mr. Frosty™ Freezing Container in a -80 °C freezer. Cryovials were moved to LN2 storage
for long-term.
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Thawing cryopreserved cells

The cells were removed from LN; or -80 °C freezer, if they were reccently cryopreserved, and placed into
a 37 °C water bath for 3 min. The contents were then transferred to a 15 mL centrifuge tube. 1 mL of
complete medium was used to wash the cryovial and added drop-wise into the centrifuge tube. Next, 8
mL of complete medium was added drop-wise to reduce osmotic shock. Cells were then centrifuged at
300g for 5 min and resupsneded in 1x PBS supplemented with 0.04% BSA. This was followed by live cell
enrichment using FACS. Single-cell suspensions were stained with Caclein AM live cell stain and
SYTOX™ Red dead cell stain.

Nuclei Isolation workflow
The protocol was adapted from Habib et al’. We isolated nuclei from fresh-frozen tissue using the Nuclei
EZ Prep Kit (Sigma-Aldrich). Fresh-frozen tissue specimen were cut into piecces < 5 mm over dry ice
and then placed in 0.5 mL ice-cold EZ lysis buffer. This was followed by homogenizing using a Chemglass
Life SciencesSupplier BioVortexer Mixer (Fisher Scientific) attached with a plastic microcentrifuge pestle
on ice. Then 1 mL of ice-cold EZ lysis buffer was added and samples were incubated on ice for 5 min.
Debris was filtered out using a pluriStrainer Mini 70 ym into a new tube. This was followed by
centrifugation at 500g for 5 min. Samples were then incubated with 1 mL of ice-cold EZ lysis buffer on
ice for 5 min followed by centrifugation. Afterwards, the supernatant was aspirated and 0.5 mL of Nuclei
Wash and Resuspension Buffer (NWRB, 1X PBS supplemented with 1.0 % BSA and 0.2U/ul RNase
Inhibitor) was carefully added without disrupting the pellet, which was followed by 5 min of incubation.
Next, we added 0.5 mL of NWRB and centrifuged at 500g for 5 min. We repeated the wash and incubation
once more, followed by centrifugation. The supernatant was aspirated and the nuclei were resuspended
in NWRB. A portion was visualized with Trypan blue under the microscope to inspect for debris and nuclei
integrity.

To sort nuclei, single-nucleus suspensions were stained with 7-AAD in NWRB for 5 min on ice. Then
a BD cell sorter was used to sort up to 100,000 7-AAD positive events. Quality control of post-sort nuclei
concentration was evaluated under a microscope to ensure adequate count. This was followed by loading
nuclei onto a 10X chip.

Library preparation and sequencing

We followed the standard protocol set by 10x Genomics for single-cell/single-nucleus capture. A targeted
capture of 5000 single cell or single nucleus were loaded onto each channel of a Chromium single-cell
3’ Chip. The single cells and single nuclei were partitioned using the gel beads within the Chromium
Controller. Afterwards, we performed cDNA amplification and fragmentation. This was followed by index
and adapter attachment. Samples were pooled and sequenced on a NovaSeq 6000 with targeted
sequence depth at 100,000 reads/cell or nucleus.

sc/snRNA-seq data preprocessing

We used Cell Ranger mkfastq to generate demultiplexed FASTQ files. Reads were aligned to human
GRCh38 genome and reads were then quantified as UMIs buy Cell Ranger count. For snRNA-seq, reads
were mapped with both introns and exons in Cell Ranger 5.0 using the include-introns option for counting
intronic reads™.

We performed QC and normalization separately for each sarcoma PDX. We followed the guidelines
for QC from OSCA and others?®. We inspected UMIs, gene counts, and percentage of mitochondrial
genes and identified outliers based on median absolute deviation (MAD). We used a strict value of 2 or
more MADs from the median while also using generic cut offs. Cells that did not meet the criteria were
removed from analysis. Scrublet was used to predict and detect doublets within the data®. While doublets
were flagged, there was not a single cluster of doublets, which would be evident as an artifact, so no cells
were removed.

Data normalization, dimensional reduction, and comparisons
Seurat v3 was used for sample normalization, dimensional reduction, scaling, and differential expression
analysis'®. We used Wilcoxon test to compare gene expression between protocols. Enrichr was used for
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pathway enrichment. We set a log2 fold change threshold of log2(1.5) or greater. This will result in genes
that are 50% greater than the baseline. The AddModuleScore function in Seurat v3 was used to observe
the averaged gene expression of different gene set. We used curated gene sets of a warm dissociation
signature from O’Flanagan et al.*, EWS-FLI1 gene targets's, EWS-WT1 gene targets'® and osteoblastic
and chondroblastic signatures classically associated with the tissue origin of OS (Table S6). The
osteoblastic and chondroblastic signatures were found on Harmonizome
(https://maayanlab.cloud/Harmonizome/). The osteoblastic signature was specifically found in the
GeneRIF Biological Term Annotations under ‘Osteoblastic’. The chondroblastic signature was specifically
found in the TISSUES Text-mining Tissue Protein Expression Evidence Scores under ‘Chondroblasts’.
To find conserved markers between dissociation methods, we used the function FindConservedMarkers
in Seurat v3. We performed integration using the integration functions within Seurat v3. The datasets
were integrated by dissociation protocol.

Predicting sample type by bias scores

To classify nuclei and cell using the length bias and warm dissociation scores, data sets were randomly
split into a training and test set. To prevent data leakage, scaled data was not used. We then calculated
the gene set scores separately on the training and test sets. A logistic regression model was fit to the
training set on either the warm dissociation or length bias score to predict for cells and nuclei respectively.
We calculated the probabilities and the area under the curve using the pROC v1.18.0 package. This was
compared to a random gene signature equal in number of genes of either length bias or warm dissociation
gene sets.


https://doi.org/10.1101/2022.01.21.476982
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.21.476982; this version posted April 12, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Declarations

Ethics Approval

All experiments were conducted per protocols and conditions approved by the University of Texas MD
Anderson Cancer Center (MDACC; Houston, TX) Institutional Animal Care and Use Committee (eACUF
Protocols #00000712-RN02).

Consent for Publication
N/A

Availability of data and materials

The datasets generated analyzed in this study are available at the Gene Expression Omnibus (GEO,
https://www.ncbi.nIm.nih.gov/geo/) repository accession no. GSE200529. Additional datasets analyzed
in this study can be found at GSE140819.

Competing interests
The authors declare that they have no competing interests.

Funding

The University of Texas MD Anderson Cancer Center is supported by the National Institutes of Health
through Cancer Center Support Grant CA016672. The ATGC is supported by the Core grant CA016672
(ATGC) and NIH 1S100D024977-01. JAL is supported by R01-CA180279-01A1 along with the generous
philanthropic funds from the Cory Monzingo Foundation and Blake Abercrombie Foundation. DDT and
JAL are supported by the Moeller Foundation. JAL, RG, NG, VG, NCD are supported by The Cancer
Prevention Research Institute of Texas RP180819

Affiliations
Sarcoma Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston,

Texas 77030: Danh D. Truong, Salah-Eddine Lamhamedi-Cherradi, Robert W. Porter, Sandhya
Krishnan, John A. Livingston & Joseph A. Ludwig.

Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030:
Jyothishmathi Swaminathan, Amber Gibson, Vidya Gopalakrishnan, Nancy Gordon, Najat C. Daw &
Richard Gorlick

Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030:
Alexander J. Lazar

Authors’ contributions

DDT contributed to the conception, design, analysis, and interpretation of data. SC, RWP, SK, and JS
contributed to sample acquisition and dissociation. RG, SC, NG, NCD, VG, and AG contributed to
specimen database and clinical information. VG, NG, NCD contributed to interpretation and review of
data. SC, AJL, and JA Livingston contributed conception and design. DDT and JA Ludwig contributed to


https://doi.org/10.1101/2022.01.21.476982
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.21.476982; this version posted April 12, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the writing, review, and revision of the manuscript with input from all authors. JA Ludwig and SC
contributed to study supervision. All authors read and approved the final manuscript.

Corresponding author
Correspondence to Joseph A. Ludwig.

Acknowledgements

The authors acknowledge the support of the High-Performance Computing for research facility at the
University of Texas MD Anderson Cancer Center for providing computational resources that have
contributed to the research results reported in this paper. The authors acknowledge the support of the
Cancer Prevention Research Institute of Texas (CPRIT) Pediatric Solid Tumors Comprehensive Data
Resource Core (RP 180819) for providing tissue specimens and Energy Transfer Partners for the
additional support provided to collect and store tissue specimens.


https://doi.org/10.1101/2022.01.21.476982
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.21.476982; this version posted April 12, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figures
4 ) ) ) ) ) ) N\
: ! T R2 : :
e - oL @B 5 5
s 5 Vi @& 5 z
: : | Cryopreservation ' : :
. Fresh : : ] Cells or A :
d : : Nuclei
e z . _FACS z z i
e 0 % é —E» 1| —+*
~——Lhats E 5 . FANS 5 . = -
Patient-derived \ : / : : :
Xenograft - e U T : Cell or Nucleus Sequencing ! Analysis
: : - E : Capture 2 :
N= '
Frozen
Sarcoma Tissue Dissociation s " . . . .
Subtype Handling Method Purification Library Construction Sequencing Analysis

3 Ewing's Sarcoma Fresh Warm FACS 10x Chromium Nova Seq 6000 Seurat

3 DSRCT Frozen Cold FANS

3 Osteosarcoma Nuclei

. J

Figure 1. Overview of Workflow and Experiments in this study. Schematic depicting the sarcoma
subtypes used in this study and the general workflow for the specific experiments. FACs: fluorescence-
activated cell sorting, FANS: fluorescence-activated nucleus sorting, DSRCT: desmoplastic small round
cell tumor
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Figure 2. Patient information and quality control metrics. a Overview of all sarcoma subtypes that were
processed and evaluated. For each sample, the number of cells or nuclei passing QC thresholds, number
of sequencing reads per cell/nuclei, number of genes per cell/nuclei, and the median percentage of UMlIs
mapping to mitochondrial genes are displayed in the table. All samples had less than 0.01 doublet
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fraction. b Distributions (median and first and third quartiles) for number of UMls per cells/nuclei,

number of genes per cell/nuclei, and percentage of UMIs mapping to mitochondrial genes vary across
sarcoma subtypes and choice of protocol.
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Figure 4. DEG Biases introduced by Warm and Nuclei Protocols. Scatter plot of log transformed gene
expression levels between warm and nuclei on the left column. Red indicates up-regulated in warm, and
blue indicates up-regulated in nuclei with p-value < 0.05. Black is non-significant. Dot plot of enrichR
scores of the Hallmark gene sets from MSigDB are on the right column. Plots are shown for DSRCT a, b;
ESc,d; and OS e, f.
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Figure 5. Biases associated with protocol on Sarcoma specific signatures. Sarcoma specific signatures
were only detected in the respective sarcoma subtypes (red box). EWS-FLI1 ES signature is derived from
a gene set of EWS-FLI1 target genes. EWS-WT1 DSRCT signature is derived from a gene set of EWS-WT1
target genes. Both osteoblastic and chondroblastic signatures are gene sets derived from reference
databases.
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Figure 6. Gene-length associated bias in snRNA-seq. a Comparison of where transcriptomic reads are
aligned. b snRNA-seq samples were enriched in genes with longer gene length. Genes were split into
guartiles based on gene length. c Increased PolyA regions were associated with longer gene length. d
Warm Dissociation score was significantly higher in the Warm and Cold protocol as opposed to the Nuclei
protocol. Length Bias score was significantly higher in the Nuclei protocol (Wilcoxon test, **** denotes
p <=0.0001)
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PDX. Top marker is in red. d After integration (right column), top conserved markers correctly aligned
with the associated PDX cluster.
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