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Abstract

Transposable elements (TEs) are parasite DNA sequences that  are able to move and multiply along the

chromosomes of all genomes. They are controlled by the host through the targeting of silencing epigenetic

marks, which may affect the chromatin structure of neighboring sequences, including genes. In this study, we

used  transcriptomic  and  epigenomic  high-throughput  data  produced  from  ovarian  samples  of  several

Drosophila melanogaster and Drosophila simulans wild-type strains, in order to finely quantify the influence

of TE insertions on gene RNA levels and histone marks (H3K9me3 and H3K4me3). Our results reveal a

stronger epigenetic effect of TEs on ortholog genes in D. simulans  compared to D. melanogaster. At the

same  time,  we  uncover  a  larger  contribution  of  TEs  to  gene  H3K9me3  variance  within  genomes  in

D. melanogaster, which is evidenced by a stronger correlation of TE numbers around genes with the levels

of this chromatin mark in D. melanogaster.  Overall, this work contributes to the understanding of species-

specific influence of TEs within genomes. It provides a new light on the considerable natural variability

provided by TEs, which may be associated with contrasted adaptive and evolutionary potentials.

Introduction

Transposable elements (TEs) are parasite DNA sequences that  are able to move and multiply along the

chromosomes  of  all  genomes  (Wells  and  Feschotte,  2020).  They  are  source  of  mutations  and  genome

instability  if  uncontrolled  (Biémont  and  Vieira,  2006;  Malone  and  Hannon,  2009;  Senti  and

Brennecke, 2010). Control of TEs generally consists in the targeting of particular chromatin marks to TE

copies, which induce transcriptional gene silencing and may spread to neighboring sequences and impact

gene expression. In this regard, few attempts were made to finely analyze and quantify TEs’ influence at the

whole genome scale (Cridland et al., 2015; Hollister and Gaut, 2009; Huang et al., 2016; Lee and Karpen,

2017; Uzunović et al., 2019; Wei et al., 2022). In addition, since the very beginning of TE studies, species-

specific  differences  in  TE  contents,  activities  and  control  pathways  have  been  reported  in  nature,  and

particularly between D. melanogaster and D. simulans  (Akkouche et al., 2013, 2012; Fablet et al., 2014;

Kofler  et  al.,  2015b; Lee and Karpen, 2017; Mérel et al.,  2020; Vieira et al.,  2012, 1999).  Previous

research  described  the  effects  of  TE  insertions  on  gene  expression  using  collections  of  strains  of

D. melanogaster (Cridland et al., 2015; Everett et al., 2020; Osada et al., 2017; Zhang et al., 2020), and other

studies focusing on a few TE families in wild-type strains of  D. simulans and D. melanogaster uncovered

between-species differences in histone mark landscapes  (Rebollo et al., 2012a). Lee and Karpen (Lee and

Karpen,  2017) provided  an  analysis  on  the  repressive  histone  mark  H3K9me2  (Histone  3  Lysine  9

dimethylation)  around  TEs  from  two  Drosophila Genetic  Reference  Panel  (DGRP)  strains

(D. melanogaster), and concluded to pervasive epigenetic effects of TEs. However, rather than H3K9me2, it

is H3K9me3 (Histone 3 Lysine 9 trimethylation) that is known to be associated with the activity of dual-
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stranded piRNA clusters and the production of TE-derived silencing piRNAs (Le Thomas et al., 2013; Mohn

et al., 2014; Sienski et al., 2012). H3K9me3 differs from H3K9me2 in that it is more strongly bound by

Rhino,  which  is  abundant  in  ovaries  and  leads  to  piRNA production  through  alteration  of  the  local

transcription program (Mohn et al., 2014). 

Several limitations remained from the previous studies, which we propose to address in the present work.

First, we connect TE insertion polymorphism, RNA-seq, ChIP-seq on two histone marks, and small RNA-

seq data on the same strains. We use eight previously characterized, wild-type strains of D. melanogaster and

D. simulans (Mohamed et al., 2020) that are derived from samples collected in France and Brazil, two strains

per location and per species. Using the Oxford Nanopore long read sequencing technology, we previously

produced high quality genome assemblies at the chromosome resolution for each strain, which provides us

with the various TE insertion sites in each genome (Mohamed et al., 2020). Second, all data are produced

from ovaries, i.e. the exact same tissue and not mix of tissues. As previously stated, Rhino is known to bind

to H3K9me3 and promote the non-canonical transcription of dual-stranded piRNA clusters, in ovaries only

(Mohn et al., 2014). Therefore, we expect the strongest control of TEs in this tissue and thus potentially the

strongest  impact  on  neighboring  genes.  In  particular,  we  can  speculate  that  genes  located  nearby  TE

insertions  may be affected by the local  production of  piRNAs and hence we searched for gene-derived

piRNAs, in association with increased levels of H3K9me3 deposition on gene sequences. We also studied

H3K4me3 (Histone 3 Lysine 4 trimethylation),  which is  known to be associated with active,  canonical

transcription. Third, the production of genome-wide data from four wild-type strains of D. melanogaster and

four  wild-type  strains  of  D. simulans brings  the  opportunity  to  statistically  test  for  species-specific

differences  and  provide  a  quantitative  assessment  of  the  contribution  of  TEs  to  gene  expression,  in  a

comparative genomics perspective (Fig. 1). In addition, the use of linear models allows to finely quantify and

compare the contributions at different levels.

The original approach and subsequent analyses reveal a stronger epigenetic influence of TEs on orthologous

genes in D. simulans compared to D. melanogaster, and are in agreement with the recent work published by

Lee’s  lab  (Huang et  al.,  2022).  At  the same time,  we uncover  a  larger  contribution of  TEs to  genome

architecture  in  D. melanogaster:  in  particular,  TE  insertions  contribute  more  to  gene  H3K9me3  level

variance in D. melanogaster compared to D. simulans, which is evidenced by a stronger association of TEs

around genes with the levels of this chromatin mark in D. melanogaster. Overall, this work contributes to the

understanding of species-specific influence of TEs within genomes. As a whole, these results participate in

the accurate,  quantitative understanding of  TEs’ impacts  on genomes,  and highlight  the species-specific

differences  in  the  interaction  between  TEs  and  the  host  genome.  This  provides  a  new  light  on  the

considerable natural variability resulting from TEs, which may be associated with contrasted adaptive and

evolutionary potentials, all the more sensible in a rapidly changing environment (Baduel et al., 2021; Fablet

and Vieira, 2011; Mérel et al., 2021).
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Figure 1. Graphic summary of the study.

Eight  wild-type strains  from  D. melanogaster and  D. simulans were  included in  the  study.  The  present

datasets are RNA-seq and ChIP-seq for H3K4me3 and H3K9me3 marks, and were prepared from ovarian

samples. They were analyzed in parallel with already published data produced from the same  Drosophila

strains:  ovarian  small  RNA repertoires  and  genome  assemblies  based  on  Oxford  Nanopore  long  read

sequencing (Mohamed et al., 2020). For RNA-seq and ChIP-seq, TE-derived reads were analyzed at the TE

family  level,  and  gene-derived  reads  were  analyzed  in  relation  to  TE  insertions  inside  or  near  genes

(therefore restricted to the TE insertions included within the gray bubbles).

Results

TE expression and epigenetic targeting in Drosophila ovaries

We first considered TE-derived RNA-seq reads from all samples, which we analyzed at the TE-family level

(Fig. 1). As performed by other research studies (Chakraborty et al., 2021; Kofler et al., 2015b), we removed

the non-autonomous  DNAREP1 helentron (also known as  INE-1) from our analyses because it is a highly

abundant element displaying mainly fixed insertions in the melanogaster complex of species (Thomas et al.,

2014). However, a recent study revealed an expansion of this family in the Drosophila nasuta species group

(Wei  et  al.,  2022),  indicating  its  activity  and  potential  genomic  impacts.  We  therefore  performed  a

DNAREP1-dedicated analysis, apart from the other families. TEs account for  0.6% to 1.2%, and 0.5% to

0.7%,  of  read  counts  corresponding  to  annotated  sequences  (genes  and  TEs)  within  the  ovarian

transcriptomes of D. melanogaster and D. simulans strains, respectively (Fig. 2A), and DNAREP1 accounts

for 6% to 13%, and for 5% to 9% of the total number of TE read counts in D. melanogaster and D. simulans,

respectively. This contribution is very weak with regard to the ~4,000 copies of DNAREP1 identified by our

procedure within each genome. We removed DNAREP1 and found significant positive correlations between

per TE family RNA counts and family sequence occupancy (quantified as the total number of bp spanned by
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each  TE  family  along  the  genome)  (Spearman  correlations,  rho  =  0.33  to  0.37,  and  0.39  to  0.44,  in

D. melanogaster and D. simulans,  respectively;  Supplemental  Fig.  S2A).  Regarding  TE-derived  piRNA

production, it was previously described in control conditions in wild-type strains that the amounts of piRNAs

were positively correlated with the amounts  of  RNAs,  at  the TE family level  (Lerat  et  al.,  2017).  This

remains true in the present dataset: we find significant positive correlations between per TE family RNA

counts and piRNA counts (Spearman correlations, rho = 0.39 to 0.48, and 0.48 to 0.56, in  D. melanogaster

and D. simulans, respectively; Supplemental Fig. S2B). In both cases, correlations are significantly stronger

in  D. simulans,  compared to  D. melanogaster (Wilcoxon rank tests  for D. melanogaster  vs  D. simulans

comparisons; correlation coefficients between TE RNA counts and TE sequence occupancy: p-value = 0.029;

correlation coefficients between TE RNA counts and TE piRNA counts: p-value = 0.029), suggesting a more

efficient production of TE-derived piRNAs.

We assessed the contribution of histone mark enrichment to TE RNA amounts considering the following

linear model on log-transformed normalized read counts: RNA ~ H3K4me3 + H3K9me3 + input. These

models led to adjusted r2 as high as 0.48 to 0.64 depending on the strains in  D. melanogaster and 0.45 to

0.60 in D. simulans, suggesting that these models capture significant portions of TE RNA amount variation.

We find that  TE RNA amounts are positively correlated with H3K4me3 and negatively correlated with

H3K9me3 amounts (Fig. 2B), as expected considering that H3K4me3 is an activating mark while H3K9me3

is a silencing one. We used a similar approach to analyze piRNA amounts, and considered the following

linear model on log-transformed read counts: piRNA ~ H3K4me3 + H3K9me3 + input. We obtained even

higher adjusted r2 values, from 0.70 to 0.75, and 0.64 to 0.68, depending on the strains in D. melanogaster

and D. simulans, respectively.  We find that TE-derived piRNA amounts are positively correlated both with

permissive H3K4me3 and repressive H3K9me9 levels (Fig. 2C). The tighter correlations may be due to the

strong dependency of piRNA production mechanisms on chromatin marks and H3K9me3 in particular, while

RNA transcription also involves other factors, such as transcription factors, which binding sites vary a lot

across TE sequences.

TE insertions within or nearby genes

In the following sections, we focus on gene-derived reads from all samples, which we analyzed with regard

to the presence of TE insertions within or nearby genes (Fig. 1). Based on gene annotations, we distinguished

the different functional regions of genes: exons, introns, upstream, or downstream sequences (5 kb flanking

regions). Exons are both UnTranslated Regions (UTRs) and Coding Sequences (CDSs). Sequences that may

both behave as exons or introns depending on alternative splicing are included in “exons”. In this first step,

we  considered  a  set  of  17,417  annotated  genes  for D. melanogaster,  and  15,251  for D. simulans  (see

Material and Methods). We quantified the number of TE insertions within genes (Fig. 2D), and found that
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they account for ~16% and ~25% of the total number of TE insertions per genome in D. melanogaster and

D. simulans, respectively. The lower proportion observed in  D. simulans for TE insertions retained within

genes suggests a stronger selection against TE insertions in this species compared to  D. melanogaster. In

both species, the majority of genes (93%) are devoid of TE insertions within gene bodies, and very few

display more than one TE insertion (Fig. 2E, Supplemental Fig. S1). Among the copies of DNAREP1 that we

identified along the genomes, our analysis revealed that 1,343 to 1,374 insertions from this family are found

within genes in D. melanogaster, and 1,075 to 1,089 insertions in D. simulans (Supplemental Fig. S3).
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Figure 2. (A) Proportions of TE read counts in RNA-seq data relative to read counts corresponding to genes

and TEs. For each strain, two biological replicates are shown. (B) Contributions of H3K4me3 and H3K9me3

enrichment to TE-derived RNA read counts (according to the model RNA ~ H3K4me3 + H3K9me3 + input

calculated on log10 transformed read count numbers, at the TE family level). Colored bars: p-values <  0.05,

empty bars: p-values > 0.05. Error bars are standard errors. (C) Contributions of H3K4me3 and H3K9me3

enrichment to TE-derived piRNA read counts (according to the model piRNA ~ H3K4me3 + H3K9me3 +

7

160

161

162

163

164

165

166

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 3, 2023. ; https://doi.org/10.1101/2022.01.20.477049doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477049
http://creativecommons.org/licenses/by-nc-nd/4.0/


input calculated on log10 transformed read count numbers, at the TE family level). Colored bars: p-values

< 0.05,  empty  bars:  p-values  > 0.05.  Error  bars  are  standard  errors.  (D) Number  of  TE  insertions  per

functional  region  per  strain.  Upstream  and  downstream  regions  are  5 kb  sequences  directly  flanking

transcription units 5’ and 3’, respectively.  (E) Number of genes for each value of TE insertion numbers.

dmgoth101 and dsgoth31 are shown as examples; all strains can be found in Supplemental Fig. S1. 

TE insertions are associated with variability in expression and 

histone enrichment between ortholog genes

We used our experimental dataset to infer the contribution of TE insertions at the inter-genomic level, i.e. we

compared expression levels of the same genes across genomes. We focused on the subset of genes that we

found expressed in the ovaries (see Material and Methods), i.e. 7,883 to 8,135 genes depending on the strains

of  D. melanogaster,  and 7,653 to 8,121 genes in D. simulans.  We first  considered  D. melanogaster and

D. simulans separately. For each gene that displays variation in TE insertion numbers across strains, we

computed the mean difference of gene expression (TPM, scaled by gene average) between the strain that had

the highest TE insertion numbers and the strain that had the lowest.  When several strains had the same

numbers  of  TE  insertions,  we  computed  their  average  gene  expression  level.  We  performed  the  same

approach on histone enrichment. Our assumption was that a general effect of TE insertions would shift the

distribution of the mean difference away from 0. This is not  what we observed for RNA levels  nor for

H3K4me3 enrichment (0 departure t tests, all p-values > 0.05) (Fig. 3). However, we find an increase in

H3K9me3 enrichment  associated  with  high  TE insertion  numbers,  but  only  in D. simulans and  for  TE

insertions within introns and upstream genes (0 departure t test; within introns: mean difference = 0.003, p-

value = 0.0005; upstream: mean difference = 0.003, p-value = 0.0019). These results are congruent with

recent  studies,  which  observed  a  clear  association  between  TE  insertions  and  heterochromatin  but  no

predominant negative impact on the expression of neighboring genes (Huang et al., 2022; Wei et al., 2022). 

We also took the opportunity to consider 1:1 ortholog genes (6,417 genes) so as to include all eight strains

(D. melanogaster and D. simulans) in the same analysis. Computation strategies were the same as above and

revealed significant decreases in RNA levels for strains with the highest TE insertion numbers in exons

(mean difference = -0.129, p-value = 1e-10) and introns (mean difference = -0.077, p-value = 9e-5). We also

found significant increase in H3K4me3 levels as well as H3K9me3 levels for strains with the highest TE

insertion numbers in exons and introns (H3K4me3, TEs within exons: mean difference = 0.012, p-value =

0.0201;  within  introns:  mean  difference  =  0.019,  p-value  =  1e-5;  H3K9me3,  TEs  within  exons:  mean

difference = 0.037, p-value = 0.0092; within introns: mean difference = 0.028, p-value = 2e-5). However,

such an analysis including all strains from both species at once has to be considered with caution because
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gene sequences differ across species (GC content, length, etc.), which may interfere with mapping and read

counting, and was not accounted for in this work.
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Figure 3. Variability in gene expression and histone enrichment according to TE insertion numbers

across strains. (A) Mean expression difference (in TPM, scaled by gene average) between strains with the

highest  and  the  lowest  TE insertion  numbers  for  each  region  of  each  gene;  mean  histone  enrichment

difference (log-transformed, scaled by gene average) between strains with the highest and the lowest TE

insertion  numbers.  Analyses  are  performed  separately  for  both  species  (blue:  D. melanogaster,  orange:

D. simulans), only considering genes that show different TE insertion numbers across strains. Significance

levels  correspond to  t  tests  comparing  observed mean to  0.  (B)  Same analyses  across  all  eight  strains

considering 1:1 ortholog genes. Significance levels correspond to t tests comparing observed mean to 0 : p-

value 0 *** 0.001 ** 0.01 * 0.05. 

TE insertions are associated with RNA level variability across 

genes within genomes

One of the novelties of the present work is  to quantify the contribution of TE insertions to the variance in

gene expression levels within distinct genomes. Again, we focused on the subset of genes that we found

expressed in the ovaries. We quantified TE insertion contribution to gene RNA levels using the following

linear models built on log-transformed TPM (Transcript Per Million): TPM ~ exon + intron + upstream +

downstream, where these variables correspond to the number of TE insertions within exons, introns, 5 kb

upstream, and 5 kb downstream regions, respectively. We find that TE insertions contribute significantly,

albeit weakly, to gene expression variance (Fig. 4A): 1.6% to 1.9% of total variance in  D. melanogaster;

1.2% to 1.9% in D. simulans. These values may look low at first sight; however, gene expression levels are

known to  be  primarily  regulated  by  many other  factors,  such  as  transcription  factor  binding,  sequence

composition and polymorphism, etc. This reveals that our approach is powerful enough to capture low levels

of  variation  and  that  TEs  are  significant  actors  of  this  variability.  Although  total  contribution  to  gene

expression  variance  does  not  differ  between  species  (Wilcoxon  rank  test,  p-value  =  0.685),  we  found

significant  differences  when  considering  specific  gene  regions.  For  instance,  the  contribution  of  TE

insertions within introns was higher in  D. simulans compared to  D. melanogaster (mean values: 0.03% vs

0.14%; Wilcoxon rank test, p-value = 0.029), while the contribution of TE insertions downstream genes was

higher in D. melanogaster compared to D. simulans (mean values: 0.06% vs 0.21%; Wilcoxon rank test, p-

value = 0.029). 

When we computed the corresponding size effects, we observed significant, negative associations between

gene expression levels and TE insertions within exons and introns, and significant, positive associations for

TE  insertions  around  genes  (Fig.  4B).  The  association  with  gene  expression  was  stronger  for

D. melanogaster compared to D. simulans for downstream TE insertions (Fold-change = 1.6; Wilcoxon rank

test, p-value = 0.029), and it was stronger in D. simulans compared to D. melanogaster for TE insertions
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within introns (Fold-change = 6.2; Wilcoxon rank test, p-value = 0.029) and upstream TE insertions (Fold-

change = 1.9; Wilcoxon rank test, p-value = 0.029).

Nevertheless, one could argue that the species-specific differences that we observe here are due to gene sets

not being exactly the same across species. In order to correct for this bias, we focused on the subset of 6,417

genes that have 1:1 ortholog in the other species and that are expressed in ovaries. The results were very

similar regarding size effects, reinforcing our conclusions (Supplemental Fig. S3). However, we noticed that

TE contribution to  gene expression variance was increased in  this  subset  of  genes:  3.2% and 2.9% on

average in D. melanogaster and D. simulans, respectively (Supplemental Fig. S3).

Collectively, our data show a weak but significant contribution of TEs to the variance in gene expression

within genomes, which varies across species and is due to negative correlations between gene RNA levels

and TE numbers in exons and introns, and positive correlations with TE numbers upstream and downstream

genes.
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Figure 4. (A) Contribution of TE insertion numbers to gene expression total variance estimated using the

linear model gene TPM (log) ~ exon + intron + upstream + downstream, and (B) corresponding size effects.

(C) Contribution of TE insertion numbers to gene H3K4me3 total variance estimated using the linear model

gene H3K4me3 level (log) ~ exon + intron + upstream + downstream, and (D) corresponding size effects.
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(E) Contribution of TE insertion numbers to gene H3K9me3 total variance estimated using the linear model

gene H3K9me3 level (log) ~ exon + intron + upstream + downstream, and (F) corresponding size effects.

Significance indications above graphs in  (B, D, E) are D. melanogaster vs D. simulans comparisons using

Wilcoxon rank tests. Colored bars: p-values < 0.05, empty bars: p-values > 0.05. Error bars are standard

errors.

TE insertions are associated with histone enrichment 

variability across genes within genomes

We used a similar approach to analyze H3K4me3 and H3K9me3 enrichment (i.e. we aligned ChIP-seq reads

against  whole  gene  sequences  and  computed  corresponding  read  counts).  We  found  that  TE insertions

contributed  significantly  (except  in  dsgoth613),  albeit  very  weakly,  to  gene  H3K4me3  levels  variance

(0.07% to 0.10% total variance in D. melanogaster; 0.04% to 0.09% in D. simulans; Wilcoxon rank test for

D. melanogaster vs D. simulans comparison, p-value = 0.200) (Fig. 4C). When computing size effects, the

only significant  and consistent  result  is  a  negative association of  TE insertions within exons with gene

H3K4me3 levels, in D. melanogaster only (Fig. 4D). 

The  contribution  of  TE insertions  to  total  variance  is  higher  for  H3K9me3 levels:  0.29% to  0.65% in

D. melanogaster, and 0.07% to 0.14% in D. simulans (Fig. 3E; Wilcoxon rank test for D. melanogaster vs

D. simulans comparison, p-value = 0.029). The largest contribution comes from TE insertions around genes

and within introns, while TE insertions within exons virtually do not contribute to H3K9me3 variance. The

computation  of  size  effects  reveals  a  consistent,  positive  association  of  TE  insertions  within  introns,

upstream and downstream genes with H3K9me3 levels, in both species. These results are in agreement with

TEs being the preferential targets for H3K9me3 deposition, which then spreads to neighboring regions (Le

Thomas  et  al.,  2013;  Rebollo  et  al.,  2011).  Alternatively,  we  cannot  exclude  that  they  may also  lie  in

particular  chromatin  environments  where  there  is  retention  bias  (Sultana  et  al.,  2017),  and  that  the

associations  detected  here  are  due  to  these  particular  chromatin  features.  The  effects  are  stronger  in

D. melanogaster compared to D. simulans for TE insertions around genes (Fig. 4F; Upstream: fold-change =

1.8, Wilcoxon rank test, p-value = 0.029; Downstream: fold-change = 1.7, Wilcoxon rank test, p-value =

0.029).

When considering only the set of 1:1 orthologous genes, patterns are highly similar for size effects, except

that the association between TE insertions within introns and H3K9me3 levels is now significantly stronger

in  D. melanogaster compared to  D. simulans. In addition, the contribution to H3K4me3 total variance is

higher for this subset of  genes compared to the total  set,  although it  remains very low, up to 0.73% in

D. melanogaster and 0.37% in D. simulans. (Supplemental Fig. S3). 
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While the observation of concomitant negative correlations with RNA levels and positive correlations with

H3K9me3 for TE insertions within introns is in agreement with a negative impact of a heterochromatic mark

on gene  expression,  the results  for  TE insertions  around genes  appears  a  little  bit  at  odds.  Indeed,  TE

insertions upstream and downstream of genes are at the same time positively correlated with RNA levels and

H3K9me3 enrichment. One hypothesis for these TE insertions could be that their positive association with

RNA levels is due to the multiple transcription factor binding sites that they bring  —some transcription

factors such as CTCF are known to be insensitive to chromatin  (Isbel  et  al.,  2022)—, and this ends up

counteracting the negative impact of H3K9me3 targeting. 

Patterns are globally conserved across TE classes and ages

We next analyzed TE insertions according to TE class,  i.e. LTR (Long Terminal Repeat) elements, LINEs

(Long Interspersed Nuclear Elements), DNA transposons, and DNAREP1. We used the same linear models

on the same sets of genes, but considering only TE insertions belonging to each particular class. TE insertion

numbers vary across classes (Supplemental Fig. S4), which leads to differences in statistical  power (the

higher power associated with the higher number of TE insertions). Despite this,  the computation of size

effects on gene RNA levels, H3K4me3, and H3K9me3 levels revealed highly consistent patterns across TE

classes  (Supplemental  Fig.  S4). DNAREP1 patterns  are  similar  to  other  DNA transposons. The  major

difference  with  global  patterns  (Fig.  4)  is  a  trend  for  a  positive  association  of  DNA transposons  and

DNAREP1 insertions  in  exons  with  gene  expression  in D. melanogaster  only.  Differences  between

transposons (DNA transposons and DNAREP1) and retrotransposons (LTR elements and LINEs) might be

related to different waves of transposition: Kofler  et al. described that LTR insertions are mostly of recent

origin in both species, while DNA and non-LTR insertions are older, and that DNA transposons showed

higher activity levels in D. simulans (Kofler et al., 2015b). The positive association between TE insertions in

exons and gene  expression would  be  characteristics  of  the  families  with  the  most  ancient  transposition

activity, and potentially domestication events.

Irrespective of TE classes, it has already been described that TEs’ impacts on genes differ across young ( i.e.

polymorphic) and old (i.e. fixed) TE copies; this is due to the pool of old TE insertions having been purged

from  deleterious  insertions  by  natural  selection  (Hollister  and  Gaut,  2009).  Indeed,  Uzunovic  et  al.

(Uzunović et al., 2019) showed in the plant Capsella that young TE insertions had a negative effect on gene

expression while old insertions were more likely to increase gene expression.  In this view, we distinguished

insertions that are unique to one genome (“private”) —and therefore correspond to the most recent insertions

—,  and those that are shared by all  four strains of the species (“common”)  —thus the oldest ones. The

majority of the TE insertions that are considered here (71% to 78%) fall in the “common” category. This may

seem at odds regarding previous knowledge and the work of Kofler et al. in particular, who found that >80%
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TE insertions had low frequency in pool seq data  (Kofler et al., 2015b). However, the majority of these

insertions are intergenic while we only focus on TEs within or around genes in the present study, which

explains the differences  in  proportions  between the two studies.  The difference in  subset  sizes  between

“common” and “private” categories also leads to a reduced statistical power for the set of private insertions.

Despite this difference, the observed patterns are rather consistent between both sets of TEs, and very similar

to the global patterns including all TEs regardless of insertion polymorphism (Fig. 4, Supplemental Fig. S5).

In the “common” pool, we do not observe the positive association between TE insertions in exons and gene

expression reported by (Uzunović et al., 2019), maybe because the majority of these insertions are not old

enough, or at least not as old as the above-described DNA transposon pool in  D. melanogaster. Since our

approach is gene-centered (Fig. 1), it is very likely that our complete set of TE insertions is already biased:

when deleterious, insertions within or near genes have such a negative impact that we are not able to catch

them from natural samples. Therefore, our complete set of TE insertions may already correspond to copies

that  have  passed  the  filter  of  natural  selection,  and  thus  does  not  show  critical  differences  between

“common” and “private” patterns. However, some species-specific difference appears in the private set of

insertions  within  introns:  they  display  stronger  negative  association  with  gene  expression  levels  in

D. simulans  only,  and stronger  positive association with  H3K9me3 levels  in D. melanogaster only. We

speculate that this reveals species-specific differences in the efficiency of TE control at the first stages of TE

invasion.

Gene-derived small RNAs and epigenetic effects

It has been demonstrated that TEs are sources of piRNA biogenesis in the ovary through the action of Rhino

that promotes non-canonical transcription (Mohn et al., 2014). We took advantage of our extensive dataset

made of RNA-seq, ChIP-seq and small RNA-seq produced from the ovaries of the exact same strains to test

for the impact of piRNA cluster activity on neighbouring genes. In addition, siRNAs were previously shown

to  be  produced  from  piRNA clusters  and  participated  in  TE  silencing  in  ovaries  (Shpiz  et  al.,  2014).

Therefore, we searched for gene-derived piRNAs and siRNAs, which could result from the spreading of

small RNA production machinery from TE insertions. We filtered small RNAs based on read length, which

does not allow us to distinguish siRNAs from miRNAs in the pool of 21 nt reads. We will therefore refer to

them as “21 nt RNAs”. In agreement with this scenario, we found a significant positive correlation between

gene-derived piRNAs and gene-derived 21 nt RNAs (Spearman correlation coefficients;  D. melanogaster:

0.517 to 0.536; D. simulans: 0.526 to 0.661; all p-values < 1e-10). In addition, we found that gene-derived

piRNA production was significantly positively correlated with gene H3K9me3 levels (Supplemental Fig.

S6), as expected in case of spreading of the piRNA cluster transcription to nearby gene sequences (Spearman

correlation coefficients; D. melanogaster: 0.561 to 0.586; D. simulans: 0.475 to 0.525; all p-values < 1e-10).

Remarkably, correlations were stronger for D. melanogaster compared to D. simulans (Wilcoxon rank test,
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p-value = 0.029). Gene-derived 21 nt RNA production was also significantly positively correlated with gene

H3K9me3  (Spearman  correlation  coefficients;  D. melanogaster:  0.470  to  0.517;  D. simulans:  0.437  to

0.504;  all  p-values  <  1e-10)  but  the  strength of  the correlation  was  not  significantly  different  between

species.

In addition, our expectation is that the epigenetic spreading from piRNA clusters should be stronger for more

recent TE insertions, which are expected to be potentially more harmful because recently active. Therefore,

in order to focus on these recent TE insertions, we studied genes which polymorphic TE insertions were only

“private”. We found that piRNA production from these genes were more frequently higher than the third

quartile than expected (except in dsgoth613) (Supplemental Table S1). These results demonstrate that the

control of TE sequences by the piRNA pathway impacts neighboring genes through the production of gene-

derived small RNAs and the increased deposition of H3K9me3 marks.

Discussion

The common-held view is that,  as parasites that are fought against by the genomes, TEs have a general

negative impact on gene expression (Cridland et al., 2015; Lee, 2015; Lee and Karpen, 2017). Our present

findings are in agreement with this idea. However, the originality of this research work is to provide an

unprecedented quantitative view, which allows to precisely decipher TE impacts, integrating data gathered

from  wild-type  strains  of  two  closely  related  Drosophila species.  This  study  combines  genomic,

transcriptomic,  and epigenetic high-throughput sequence data, all  produced from ovaries,  where TEs are

tightly controlled by epigenetic mechanisms through the piRNA pathway (Malone and Hannon, 2009; Senti

and Brennecke, 2010) and therefore where we are to expect the strongest impacts of TEs on genes.

Expression and epigenetic marks of TE sequences

Our  results  uncover  a  lower  contribution  of  TEs  to  the D. simulans transcriptome  as  compared  to

D. melanogaster (0.6% vs 1.1% on average, Fig. 2A). This is in agreement with the previously described

lowest contribution of TEs in the genomes of D. simulans in terms of sequence occupancy and copy numbers

(Mohamed et al., 2020; Vieira et al., 1999). However, these figures are not proportional to TE abundances in

the genomes of both species (12.2% vs 19.3% (Mérel et al., 2020)) and indicate a stronger inhibition of TE

expression in D. simulans compared to D. melanogaster. In both species, we found that H3K9me3 marks on

TE sequences are associated with a decrease in TE-derived RNA amounts, and the opposite for H3K4me3

marks.  On the contrary,  we observed that  both histone marks are positively correlated with TE-derived
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piRNA  amounts,  which  is  congruent  with  the  piRNA-targeted  deposition  of  H3K9me3  marks  at

transcriptionally active TE copies (Czech et al., 2018; Sienski et al., 2012). However, one should note that

these results reflect average behaviors at the TE family level, and TE copies may differ from one another

within TE families.

What emerges from the different  analyses that  we performed is  a remarkable  variability across  TEs,  as

illustrated by the width of dot distributions in Fig. 3 for instance. This highlights the huge variability across

TE sequences on many aspects: class, family, length, insertion site preference, chromosome distribution,

activity, transposition rate, etc. For instance, in their pool-seq analysis of D. melanogaster and D. simulans,

Kofler  et al. found that half of the TE families showed evidence of variation of activity through time and

were not the same depending on the species (Kofler et al., 2015b). It is congruent with the conclusions of

Wei et al., working on the Drosophila nasuta complex of species, who emphasize that TE insertions can have

multiple effects on gene expression, from no effect to silencing or over-expression (Wei et al., 2022). This

also echoes the work of Malone et al. and Sienski et al., who described different groups of TEs depending on

their sensitivity to different piRNA pathways and thus different effects on neighboring genes (Malone et al.,

2009; Sienski et al., 2012). In addition, it has already been suggested and demonstrated that TEs’ influence

on gene expression is only manifested in case of stress  (Naito et al., 2009), which adds another layer of

variability and difficulty to disentangle biological impacts.

Intra- and inter-genomic analyses tell distinct, although complementary

stories

In the intra-genomic analysis, we gather all expressed genes from a given genome, which we compare for

their  TE  insertions,  expression  level,  chromatin  marks,  and  piRNA production.  These  are  therefore

heterogeneous sets  of  genes,  which work coordinately in  living cells.  In  the inter-genomic analysis,  we

compare the same ortholog genes in different genomes. We assume that these genes differ mainly based on

their TE insertions.

When TE insertions are associated with differences in gene expression or chromatin state, it is very difficult

to tell apart whether these TE insertions are causative or not. Nevertheless, the inter-genomic analysis is a

way  to  demonstrate  causality  because  it  compares  versions  of  the  same genes  but  displaying  different

numbers  of  TE  insertions  —however  with  the  limitation  of  neglecting  nucleotide  polymorphism.  This

approach has already successfully been followed by others and led to the conclusion of the causative role of

the TE insertions (Lee and Karpen, 2017; Rebollo et al., 2011). On the contrary, in the intra-genomic study,

we draw general patterns from the analysis of the complete set of genes at once, which differ from TE

insertion numbers but also from many other aspects (sequence, length, expression level, tissue-specificity,

local  recombination  rate,  etc.).  The  intra-genomic  analysis  allows  to  identify  associations  between  TE
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insertions, gene expression and chromatin environment, and therefore brings us to draw species-specific gene

landscapes.

Here, the inter-genomic analysis on the complete dataset (orthologous genes from both species, Fig. 3B)

reveals that TE insertions within, but not around genes, have a negative impact on gene RNA levels, and a

positive impact on both histone marks, H3K4me3 and H3K9me3. This H3K4me3 result may be related to

TEs  donating  promoters  or cis  regulatory  sequences,  as  was  already  described  on  several  instances

(Moschetti  et  al.,  2020; Sundaram et  al.,  2014;  Villanueva-Cañas et  al.,  2019) or  disrupting inhibitory

sequences. The impact on H3K9me3, however, appears to be stronger since the net result is negative on gene

RNA levels. This result corresponds to TEs being a preferential target for H3K9me3 deposition (Le Thomas

et al., 2013), which then spreads to neighboring sequences.

In addition, the inter-genomic analysis reveals stronger epigenetic impacts of TE insertions in D. simulans

compared to  D. melanogaster (Fig. 3A).  These results support the previous findings from Lee & Karpen,

which found higher enrichment and spread of H3K9me2 from TE insertions in  D. simulans compared to

D. melanogaster  (Lee and Karpen, 2017). These results were recently confirmed in a larger set of species

(Huang et al., 2022). They proposed that this leads to stronger selection against TE insertions close to genes

in D. simulans compared to  D. melanogaster, which explains the lower total number of TE insertions and

the lower proportion of TE insertions within or nearby genes in D. simulans. However, even if we were able

to detect mean effects of TE insertions, our results also reveal a large variety of impacts of individual TE

insertions  —as  illustrated  by  the  width  of  dot  distributions  in  Fig.  3  for  instance—,  either  positive  or

negative, which suggests that TE effects may not be as pervasive as previously claimed (Lee and Karpen,

2017).

On the other hand, the intra-genomic analysis confirms the already described trend of TE insertions within

genes to  be  associated with a  reduction  in  gene RNA levels.  However,  our  results  also  reveal  that  TE

insertions around genes are associated with increased gene expression on average. Overall, TE insertions are

virtually  not  associated  with  particular  H3K4me3  patterns,  except  for  TE  insertions  in  exons  in

D. melanogaster, which are associated with a decrease in H3K4me3. As previously known and confirmed by

the inter-genomic analysis,  TE insertions are associated with increased levels of H3K9me3. The novelty

brought by the intra-genomic analysis is that the association is particularly strong for TE insertions around

genes and not within genes, particularly in D. melanogaster compared to D. simulans. D. melanogaster TEs

contribute more to gene H3K9me3 level variance compared to  D. simulans. This suggests that there is a

stronger structuration or stratification of genes according to TE insertion numbers and histone marks in this

species compared to D. simulans. TE insertions are more frequently found with higher H3K9me3 (and even

H3K4me3 to a lesser extent) enrichment in D. melanogaster.

Interpretations from inter- and intra-genomic analyses seem contradictory at first sight. However, they may

illustrate the two facets of RNA interference, i.e. defense vs regulation (Torri et al., 2022). We may speculate
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that in  D. simulans, the defense facet appears prominent while the regulation prevails in  D. melanogaster.

Such differences in closely related species are not unexpected in the piRNA pathway, which is known to be

evolving at a particularly elevated rate  (Fablet et al., 2014; Obbard et al., 2009). Again, we may speculate

that this is related  —whether as a cause or a consequence cannot be told— to the different tempo of TE

activity and genome colonization between both species.

In the intra-genomic analysis, many parameters other than the numbers of TE insertions differ across the

genes (the family and length of the TEs, gene sequence composition, presence of transcription factor binding

sites, etc.  (Hill et al., 2021; Wittkopp and Kalay, 2011)) and yet we were able to capture statistical signal

from the numbers of TE insertions. This suggests a widespread influence of TEs on gene expression. The

underlying mechanisms may be chromatin mark spreading, but not only. TEs may also disrupt functional

elements, especially for those inside genes, or add transcription factor binding sites ((Horváth et al., 2017;

Rebollo  et  al.,  2012b;  Ullastres  et  al.,  2021)).  Moreover,  we  have  to  note  that  TE insertions  may

accumulate in specific chromatin environments due to insertional preference or different levels of selection

in these environments (Sultana et al., 2017).

TEs’ influence on genomes is contrasted between D. melanogaster and

D. simulans

The intra- and inter-genomic analyses performed here both reveal species-specific differences, however not

at  the  same  scale  (Fig.  5).  The  inter-genomic  analysis  reveals  a  stronger  epigenetic  inhibition  of  TE

sequences in D. simulans compared to D. melanogaster,  indicative of a stronger counter-selection of TE

insertions.  In  parallel,  the  intra-genomic  analysis  uncovers  stronger  associations  between  epigenetic

landscape and TE insertions in D. melanogaster, and a positive association between gene expression and TE

insertions  located  in  the  flanking  regions  (Fig.  4).   It  means  that  genes  that  have  many  TEs  in

D. melanogaster on average have higher H3K9me3 levels than genes that have many TEs in  D. simulans.

This may be due to differences in TE insertion landscapes or to differential retention in particular chromatin

regions. This analysis therefore reveals how TE sequences may participate in the structure of the genome and

how this differs between species. This reflects more long-term and intimate interactions between the host

genome and its TEs.

The species-specific differences that we observe for TE influence on genes may be due to variability in the

efficiency  of  epigenetic  machinery,  as  suggested  by  (Lee  and  Karpen,  2017;  Rebollo  et  al.,  2012a).

Alternatively, it may also reveal different tempo of TE dynamics between these species. A recent peak of

activity of TEs can be seen in D. melanogaster, which is much smaller in D. simulans (Mérel et al., 2020),

indicating that the colonization of the D. simulans genome by TEs started more recently (as suggested by our
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previous results (Mohamed et al., 2020) and others (Kofler et al., 2015a)). Such ongoing colonization would

also lead to the selection of more efficient TE control mechanisms.

These contrasted impacts of TE insertions on genes through epigenetic marks across the species provide an

additional demonstration of the considerable natural variability due to TEs. We predict that this leads to

contrasted adaptive and evolutionary potentials,  all  the more sensible in a rapidly changing environment

(Baduel et al., 2021; Fablet and Vieira, 2011; Mérel et al., 2021).

Figure 5. (A)  The defense function of  the piRNA pathway is  prominent  in  D. simulans:  TE epigenetic

effects are stronger in this species (orange) compared to D. melanogaster (blue). (B) The regulation function

of the piRNA pathway is prominent in D. melanogaster: Genome architecture is more tightly associated with

TE insertions in D. melanogaster, as suggested by the stronger positive correlation between the numbers of

TE insertions and gene H3K9me3 levels in this species.
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Material and Methods

Drosophila strains

The strains under study in the present work were previously described in Mohamed et al. (Mohamed et al.,

2020). The eight samples of  D. melanogaster and  D. simulans wild-type strains were collected using fruit

baits  in  France  (Gotheron,  44°56’0”N 04°53’30”E -  “goth” strains)  and Brazil  (Saõ  Jose  do Rio Preto

20°41’04.3”S 49°21’26.1”W – “sj” strains) in June 2014. Two isofemale lines per species and geographical

origin were established directly from gravid females from the field (French  D. melanogaster: dmgoth63,

dmgoth101; Brazilian D. melanogaster: dmsj23, dmsj7; French D. simulans: dsgoth613, dsgoth31; Brazilian

D. simulans: dssj27, dssj9). Brothers and sisters were then mated for 30 generations to obtain inbred strains

with very low intra-line genetic variability. Strains were kept at 24°C in standard laboratory conditions on

cornmeal–sugar–yeast–agar medium. 

Genome annotation

Genome assemblies were produced in  (Mohamed et al.,  2020) and have been deposited in the European

Nucleotide  Archive  (ENA)  at  EMBL-EBI  under  accession  number  PRJEB50024

(https://www.ebi.ac.uk/ena/browser/view/PRJEB50024). Throughout the present analysis, we kept scaffolds

corresponding to complete chromosomes 2L, 2R, 3L, 3R, 4, and X.

TE  annotation:  We  used  RepeatMasker  4.1.0  (http://repeatmasker.org/)  -species  Drosophila  in  order  to

identify TE sequences in the assemblies, followed by OneCodeToFindThemAll (Bailly-Bechet et al., 2014)

with  default  parameters,  in  order  to  parse  RepeatMasker  results.  We  include  all  TE  sequences  in  the

subsequent analyses, whether they are full length or truncated.

Gene  annotation:   We  retrieved  gtf  files  from  FlyBase  :

ftp.flybase.net/genomes/D  rosophila_melanogaster/dmel_r6,46_FB2022_03/gft/dmel-all-r6.46.gtf.gz   and

ftp.flybase.net/genomes/Drosophila_simulans/dsim_r2,02_FB2017_04/gtf/dsim-all-  r2,02.gtf.gz  .  The

corresponding  fasta  files  were  also  downloaded  from  FlyBase:

ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r6,46_FB2022_03/  fasta  /dmel-all-  chromosome-  

r6.46.  fasta  .gz   and  ftp.flybase.net/genomes/Drosophila_simulans/dsim_r2,02_FB2017_04/  fasta  /dsim-all-  

chromosome-  r2,02.  fasta  .gz  . We used Liftoff (Shumate and Salzberg, 2020) to lift over gene annotations from

the references to our genome assemblies. We used -flank 0.2 and only kept the “gene” and “exon” terms.

Then,  we used  the  GenomicRanges  R  package  (version  1.38.0)  (Lawrence  et  al.,  2013) and  the

subsetByOverlaps function to cross gene and TE annotations.
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1:1  orthologs:  We  retrieved  ortholog  information  from  FlyBase

(ftp://ftp.flybase.net/releases/current/precomputed_files/orthologs/

dmel_orthologs_in_drosophila_species_fb_2022_01.tsv.gz) and kept only those genes for which there

was a 1 to 1 correspondence between D. melanogaster and D. simulans.

TE genomic sequence occupancy (bp) was computed using OneCodeToFindThemAll (Bailly-Bechet et al.,

2014). 

In order to determine which TE insertions were common (shared) to the four strains of a species or unique

(private) to one strain, we performed all pairwise comparisons of TE gff using Liftoff -flank 0.2 (Shumate

and Salzberg, 2020). In the output, we filtered insertions with coverage >0.80 and sequence identity >0.80.

We ran ad hoc bash scripts to retrieve private and common insertions for each strain with the following

rationale:  Private insertions to one strain are those that  appear in the unmapped outputs of all  pairwise

comparisons  with  the  three  other  strains.  Common  insertions  are  those  that  are  found  in  all  pairwise

comparisons with the three other strains. 

RNA-seq preparation

RNA was  extracted  from  ovaries  of  30 three  to  five  day-old  females.  Two  replicates  per  strain  were

produced.  RNA extraction  was  carried  out  using  RNeasy  Plus  (Qiagen)  kit  following  manufacturer’s

instructions. After DNAse treatment (Ambion), quality control was performed using an Agilent Bioanalyzer.

Libraries  were  constructed  from  mRNA using  the  Illumina  TruSeq  RNA Sample  Prep  Kit  following

manufacturer's recommendations. Libraries were sequenced on Illumina HiSeq 3000 with paired-end 150 nt

reads. 

RNA-seq analysis

TE read counts were computed at the family level using the TEcount module of TEtools (Lerat et al., 2017)

and the list of TE sequences available at ftp://pbil.univ-lyon1.fr/pub/  datasets/Roy2019/  . 

Genome  sequences  from  D. melanogaster and  D. simulans  were  downloaded  from  FlyBase  (dmel-all-

chromosome-r6.16.fasta  and  dsim-all-chromosome-r2.02.fasta)  and  then  masked  using  RepeatMasker

(http://repeatmasker.org/). For each species, we then built a multifasta file of gene sequences

using bedtools getfasta  (Quinlan and Hall, 2010) with gff files available from FlyBase (dmel-all-r6.16.gff

and dsim-all-r2.02.gff).

Raw  reads  were  processed  using  Trimmomatic  0.39  (Bolger  et  al.,  2014) ILLUMINACLIP:TruSeq3-

PE.fa:2:30:10  LEADING:3  TRAILING:3  SLIDINGWINDOW:4:20 MINLEN:36,  then  mapped  to  genes

using HiSat2 (Kim et al., 2019). Alignment files were converted to BAM and sorted using SAMtools (Li et

al., 2009), and TPM and effective counts were then computed using eXpress (Roberts et al., 2011).
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Quantification of the associations between TE insertions and gene transcript levels: considering only genes

expressed in ovaries, we computed mean TPM across replicates and used the following linear models after

log transformation: TPM ~ exon + intron + upstream + downstream, where “exon”, “intron” “upstream”, and

“downstream”  are  the  numbers  of  TE insertions  in  exons,  introns,  5 kb  upstream sequences,  and  5 kb

downstream sequences, respectively. Size effects for each of these factors were then recorded. To compute

the contribution to total variance, we divided the Sum Square of the corresponding variables by the Total

Sum Square, provided by the ANOVA of the linear model.

ChIP-seq preparation

Chromatin immunoprecipitation was performed using  50 ovary pairs dissected from three to five day old

females. Ovaries were re-suspended in A1 buffer containing 60mM KCl, 15mM NaCl, 15mM Hepes, 0,5%

Triton and 10mM Sodium butyrate. Formaldehyde (Sigma) was added to a final concentration of 1.8% for

secondary cross-linking for 10 min at room temperature. Formaldehyde was quenched using glycine (0.125

M). Cross-linked cells were washed and pelleted twice with buffer A1, once with cell lysis buffer (140mM

NaCl, 15mM Hepes, 1mM EDTA, 0.5mM EGTA, 1% Triton X100, 0.1% Sodium deoxycholate, 10mM

sodium  butyrate),  followed  by  lysis  in  buffer  containing  ,140mM  NaCl,  15mM  Hepes,  1mM  EDTA,

0.5mMEGTA, 1% Triton X100, 0.5% SDS, 0.5% N-Laurosylsarcosine, 0.1% sodium deoxycholate, 10mM

sodium butyrate for 120 min at 4ºC. Lysates were sonicated in Bioruptor sonicator to reach a fragment size

window of 200-600 bp.

Chromatin was incubated overnight  at  4ºC with the following antibodies:  for  H3K9me3 ChIP using α-

H3K9me3 (actif motif #39161, 3μg/IP) and for H3K4me3 using α-H3K4me3 (millipore #07-473, 3μg/IP)

antibodies. The Magna ChIP A/G Chromatin Immunoprecipitation Kit  (cat# 17-10085) was used following

manufacturer’s  instructions.  Final  DNA  recovery  was  perfomed  by  classic  phenol/chloroform  DNA

precipitation method using MAxtract high density tubes to maximize DNA recovery.

DNA fragments were then sequenced on an Illumina HiSeq 4000 apparatus, with paired-end 100 nt reads.

Due to technical issues, only one replicate could be used for dsgoth31 input.

ChIP-seq quality check: Validation of H3K4me3 enrichment 

around promoters and H3K9me3 on heterochromatic 

regions.

Raw reads  were  trimmed using trim_galore  (https://zenodo.org/record/5127899#.YbnMs73MLDc) with

default  parameters  along  with  --paired,  --clip_R1  9,  --clip_R2  9,  and  --max_n  0.  Mapping  was

performed  using  Bowtie2  (Langmead  and  Salzberg,  2012) with  --sensitive-local  against

the D. melanogaster r6.16  and D.  simulans r2.02  genomes.  Samtools  was  used  to  convert  SAM  to
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coordinated sorted BAM files, while sambamba  (Tarasov et al., 2015) was used to filter for uniquely

mapping reads and to  remove duplicates  (sambamba view -h -t  2 -f  bam -F “[XS] == null  and not

unmapped and not duplicate”). For D. melanogaster datasets, we filtered available blacklisted regions

(Amemiya et  al.,  2019) with bedtools.  Finally coverage files containing reads per genome coverage

(RPGC) were obtained with  DeepTools  (Ramírez et al., 2016) bamCoverage with --extendReads,  --

effectiveGenomeSize  129789873  for D. melanogaster available  from  the  Deeptools  suite,  and  --

effectiveGenomeSize  121102921  computed  with unique-kmers.py from  khmer  (https://github.com/dib-

lab/khmer).  Promoter  regions  were  obtained  with  gencode_regions

(https://github.com/saketkc/gencode_regions)  and  along  with  coverage  files  were  used  in  DeepTools

computeMatrix  and  plotProfile  to  build  the  average  coverage  of  H3K4me3  and  H3K9me3  around

transcription start sites in both species and on chromosomes for H3K9me3. The corresponding profiles

looked as expected (Supplemental Fig. S7, S8).

ChIP-seq analysis

For each of the immunoprecipitated samples (H3K4me3, H3K9me3, input), TE read counts were computed

at the family level using the TEcount module of TEtools  (Lerat et al., 2017) and the list of TE sequences

available at ftp://pbil.univ-lyon1.fr/pub/  datasets/Roy2019/  .

ChIP-seq  counts  were  normalized  across  samples  of  the  same  species  using  the  counts(normalize=T)

function  of  DESeq2  1.26.0  (Love  et  al.,  2014).  This  was  done  independently  for  each  of  the

immunoprecipitated samples (H3K4me3, H3K9me3, input). We then performed a log-transformation using

the rlogTransformation function of DESeq2, and subsequently considered mean values across replicates. We

only  kept  genes  expressed  in  ovaries.  We  chose  to  work  on  log-transformed  values  because  log-

transformation of count variables makes them fit normal assumption and thus makes them suitable for linear

models. In addition, a ratio becomes a difference when log-transformed, which ensure the strict equivalence

with  the  classical  normalization  approach  consisting  in  dividing  histone  counts  with  input  counts:  log

([H3Kime3 counts] / [input counts]) = log(H3Kime3 counts) – log(input counts).

In order to quantify the associations between TE insertions and histone marks enrichment,  we used the

following linear models on log transformed read counts: histone mark (either H3K4me3 or H3K4me3) ~

input + exon + intron + upstream + downstream, where “exon”, “intron”, “upstream”, and “downstream” are

the numbers of TE insertions in exons, introns, 5 kb upstream sequences, and 5 kb downstream sequences,

respectively. Size effects for each of these three factors were then recorded. To compute the contribution to

total variance, we divided the Sum Square of the corresponding variables by the Total Sum Square, provided

by the ANOVA of the linear model.
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Small RNA extraction, sequencing, and analyses

Small RNA extraction, sequencing, and analyses dedicated to TEs had already been performed and described

in Mohamed  et al. (Mohamed et al.,  2020).  Sequence files had been deposited in NCBI SRA under the

accession number PRJNA644327.

Gene-derived small RNAs: Sequencing adapters were removed using cutadapt (Martin, 2011), and 23-30 nt

reads from one hand (considered as piRNAs) and 21 nt reads from the other hand (considered as siRNAs)

were extracted using PRINSEQ lite (Schmieder and Edwards, 2011), as described in (Mohamed et al., 2020).

Reads were then aligned on previously masked genomes (see above, RNA-seq section) using bowtie --best

(Langmead et al., 2009). Aligned reads were counted using eXpress (Roberts et al., 2011) and “tot_counts”

were considered.

Data access

The  RNA-seq  data  generated  in  this  study  have  been  submitted  to  the  NCBI  BioProject  database

(https://www.ncbi.nlm.nih.gov/bioproject/)  under  accession  number  PRJNA795668.  The  ChIP-seq  data

generated in  this  study have been  submitted  to  the  NCBI BioProject  database  under  accession  number

PRJNA796157. TE and gene annotations have been deposited to Zenodo doi: 10.5281/zenodo.7189887.

Count tables for TE insertions, RNA-seq and ChIP-seq data are provided as Supplemental Material.
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Supporting Information files

Supplemental_Fig_S1.  Number  of  genes  for  each  value  of  TE  insertion  numbers.  dmgoth101  and
dsgoth31 are also shown in Fig 1.

Supplemental_Fig_S2. (A) Positive correlations between per TE family RNA counts and family sequence
occupancy (in bp) (log10 transformed, Spearman correlations). (B) Positive correlations between per TE
family RNA counts and TE-derived piRNA counts (log10 transformed, Spearman correlations).

Supplemental_Fig_S3. Analysis on 1:1 ortholog genes.  (A)  Contribution of TE insertion numbers to
gene expression total  variance estimated using the linear model  gene TPM (log)  ~ exon + intron +
upstream + downstream, and (B) corresponding size e.ects. (C) Contribution of TE insertion numbers to
gene H3K4me3 total variance estimated using the linear model gene H3K4me3 level (log) ~ exon +
intron + upstream + downstream, and (D)  corresponding size e.ects.  (E)  Contribution of TE insertion
numbers to gene H3K9me3 total variance estimated using the linear model gene H3K9me3 level (log) ~
exon +  intron  +  upstream + downstream,  and (F)  corresponding size  e.ects.  Colored bars:  p-values
< 0.05, empty bars: p-values > 0.05. Error bars are standard errors.

Supplemental_Fig_S4. Separate  analyses  across  TE  classes (A)  Numbers  of  TE  insertions  per
functional region per strain. Upstream and downstream regions are 5 kb sequences directly :anking
transcription units 5’ and 3’, respectively. (B) Size e.ects to the contribution of TE insertion numbers to
gene expression using the linear model gene TPM (log) ~ exon + intron + upstream + downstream. (C)
Size e.ects to the contribution of TE insertion numbers to gene H3K4me3 using the linear model gene
H3K4me3 level (log) ~ exon + intron + upstream + downstream. (D) Size e.ects to the contribution of TE
insertion numbers to gene H3K9me3 using the linear model gene H3K9me3 level (log) ~ exon + intron +
upstream + downstream. Colored bars: p-values < 0.05, empty bars: p-values > 0.05. Error bars are
standard errors.

Supplemental_Fig_S5. Separate analyses across common and private TE insertions. (A) Numbers of
TE insertions per functional region per strain. Upstream and downstream regions are 5 kb sequences
directly  :anking  transcription  units  5’  and 3’,  respectively.  (B)  Size  e.ects  to  the contribution of  TE
insertion numbers to gene expression using the linear model gene TPM (log) ~ exon + intron + upstream
+ downstream. (C) Size e.ects to the contribution of TE insertion numbers to gene H3K4me3 using the
linear model gene H3K4me3 level (log) ~ exon + intron + upstream + downstream. (D) Size e.ects to the
contribution of TE insertion numbers to gene H3K9me3 using the linear model gene H3K9me3 level (log)
~ exon + intron + upstream + downstream. Colored bars: p-values < 0.05, empty bars: p-values > 0.05.
Error bars are standard errors.

Supplemental_Fig_S6.  Correlation  cœ?cients  between  gene-derived piRNAs  and  gene-derived  21 nt
RNAs, between gene-derived piRNAs and gene H3K9me3 levels, and between gene-derived 21 nt RNAs
and gene H3K9me3 levels.  To the bottom are signiAcance results for Wilcoxon rank tests comparing
values for D. melanogaster vs values for D. simulans.

Supplemental_Table_S1. Gene-derived piRNA production.
From leC to right :  strain;  3rd quartile of the distribution of gene-derived piRNA numbers; number of
private TE-carrying genes; number of private TE-carrying genes with piRNA production higher than 3 rd

quartile;  number of private TE-carrying genes with piRNA production lower than private TE-carrying
genes 3rd quartile.

Supplemental_Fig_S7. Validation of H3K4me3 enrichment around promoters.
Mean  read  coverage  for  H3K4me3  and  H3K9me3  around  Transcription  start  sites  (TSS)  of
D. melanogaster and D. simulans datasets.

Supplemental_Fig_S8. Validation of H3K9me3 enrichment on chromosomes.
Mean read coverage for H3K9me3 on chromosomes of D. melanogaster and D. simulans datasets.
Validation  of  H3K9me3  enrichment  in  the  heterochromatic  chromosome  4  compared  to  other
D. melanogaster and D. simulans chromosomes.
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Supplemental Files
insertion_dnarep1_<strain>.txt
These Ales contain the numbers of insertions per gene per functional regions AFTER removing DNAREP1
insertions

table_NEWTPM_rna_dmel_modif.txt
table_NEWTPM_rna_dsim_modif.txt
These Ales contain the TPM obtained on genes from RNAseq data

table_NEWCOUNTS_rna_dmel_modif.txt
table_NEWCOUNTS_rna_dsim_modif.txt
These Ales contain the e.ective counts obtained on genes from RNAseq data

counts_chip_input_dmel_fbgn.txt
counts_chip_k4_dmel_fbgn.txt
counts_chip_k9_dmel_fbgn.txt
counts_chip_input_dsim_fbgn.txt
counts_chip_k4_dsim_fbgn.txt
counts_chip_k9_dsim_fbgn.txt
These Ales contain the counts obtained on genes from ChIPseq data

rna_te_dmel.txt
rna_te_dsim.txt
These Ales contain the counts obtained on TEs from RNAseq data

chip_input_et_dmel.txt
chip_k4_et_dmel.txt
chip_k9_et_dmel.txt
chip_input_et_dsim.txt
chip_k4_et_dsim.txt
chip_k9_et_dsim.txt
These Ales contain the counts obtained on TEs from ChIPseq data
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