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Abstract:

Recent advances in single-cell technologies enable scientists to measure molecular data at
high-resolutions and hold the promise to substantially improve clinical outcomes through
personalised medicine. However, due to a lack of tools specifically designed to represent each
sample (e.g. patient) from the collection of cells sequenced, disease outcome prediction on the
sample level remains a challenging task. Here, we present scFeatures, a tool that creates
interpretable molecular representation of single-cell and spatial data using 17 types of features
motivated by current literature. The feature types span across six distinct categories including
cell type proportions, cell type specific gene expressions, cell type specific pathway scores, cell
type specific cell-cell interaction scores, overall aggregated gene expressions and spatial
metrics. By generating molecular representation using scFeatures for single-cell RNA-seq,
spatial proteomic and spatial transcriptomic data, we demonstrate that different types of
features are important for predicting different disease outcomes in different datasets and the
downstream analysis of features uncover novel biological discoveries.

Introduction:

Recent single-cell or near single-cell resolution omics technologies such as spatial
transcriptomics enable the discovery of cell- and cell type-specific knowledge and have
transformed our understanding of biological systems, including diseases *. Key to the
exploration of such data is the ability to untangle and extract useful information from their high
feature dimensions ? and uncover hidden insights. A plethora of computational methods has
been developed on this front, with the main focus on individual cell analysis ®, such as cell type
identity * ® and pseudotime ordering within a lineage °. While these tools enable characterisation
of individual cells, there is a lack of tools that allow for the representation of individual samples
based on their cellular characteristics and the investigation of how these cellular properties are
driving disease outcomes. With the recent surge of multi-condition and multi-sample single-cell
studies on large sample cohort ’, the next frontier of research is on representing and
characterising cellular properties at the sample (e.g. individual patient) level for linking such
information with the disease outcome.

Creating a representation of each sample from the collection of sequenced cells is a crucial step
for subsequent analysis as successful modelling and interpretation of disease outcome requires
biologically relevant learning features from the data. While using the original expression matrix
as the input to various models could inform the change in transcriptomics level across disease
conditions, the ability to represent the data with other layers of information is critical for
uncovering additional insights given the complex and nonlinear relationships among the feature
dimensions (e.g. interaction of genes, gene networks and pathways). The single-cell field has a
wealth of tools for data exploration ® which enables exploration of biology underlying the
individuals. Most current tools are not specifically designed to derive a set of features that can
be used to represent an individual. Yet, with careful adaptation, a number of approaches can be
used to construct novel molecular representations of individual samples. Cell-cell interactions
tools ?, for example, calculate cell type-specific signalling scores between pairs of ligand and


https://doi.org/10.1101/2022.01.20.476845
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.20.476845; this version posted January 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

receptor molecules. The interaction scores can be used to represent the intercellular
communications of cells and cell types in a sample. Another example is gene set enrichment
analysis *° which infers the pathway enrichment score of individual cells. By summarising the
scores across cell types, a cell type-specific representation of the pathway enrichment of each
sample can be constructed.

To this end, we develop scFeatures, a tool that generates a large collection of interpretable
molecular representations for individual samples in single-cell omics data, which can be readily
used by any machine learning algorithms to perform disease outcome prediction and drive
biological discovery. Together, scFeatures generates features across six categories
representing different molecular views of cellular characteristics. These include i) cell type
proportions, ii) cell type specific gene expressions, iii) cell type specific pathway expressions, iv)
cell type specific cell-cell interaction (CCI) scores, v) overall aggregated gene expressions and
vi) spatial metrics. The different types of features constructed thereby enables a multi-view of
our data and enables a more comprehensive representation of the expression data. In a
collection of 17 published single-cell RNA-seq, single-cell spatial proteomics and spatial
transcriptomics datasets, scFeatures reveal different feature classes are useful for predicting
the disease outcomes in different datasets. Furthermore, through examining the selected
features in two case studies, scFeatures uncovers cell types important to ulcerative colitis and
stratified patients with distinct survival outcomes in triple negative breast cancer patients.
Together, these results demonstrate that scFeature enables a data-driven generation (or feature
engineering)and facilitate unbiased identification of feature classes most perturbed by the
disease conditions.

Results

scFeatures performs multi-view feature engineering for single-cell and spot-
based data

We propose scFeatures, a new multi-view feature engineering framework that creates an
interpretable representation of cellular level features for each individual sample from a given
single-cell or spot-based expression dataset (Fig. 1a). To capture the wide range of cellular
information for sample classification (e.g., patients versus healthy individuals) using single-cell
data, we implemented an extensive collection of algorithms to extract over 50,000 interpretable
features from a given dataset. These features, spanning a total of 17 types, are motivated by
established analytical approaches in a broad range single-cell literature and can be broadly
grouped into six distinct categories including i) cell type proportions, ii) cell type specific gene
expressions, iii) cell type specific pathway expressions, iv) cell type specific CCI scores, V)
overall aggregated gene expressions and vi) spatial metrics (Fig. 1b). These collections of
constructed features can then be used for various downstream analysis such as disease
outcome prediction, biomarker selection, survival analysis and enable the identification of
interpretable features and feature types associated with disease conditions.
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The six feature categories represent different “views” of the single-cell information. Specifically,
category | captures cell type proportion information in which the proportion of cell types for each
sample and the ratio of proportions between two cell types are measured. Category Il
represents cell type specific gene expression, and examines the expression of sets of genes or
proteins in each cell type. We implemented different approaches for representing genes or
proteins measurement, including average expression, proportion of expression and correlation
of expressions. In category Ill, which calculates cell type specific pathway scores, by default the
50 hallmark pathways in the Molecular Signatures Database (MSigDB) ** ** were used to
generate various features such as the average expression of each pathway in each cell type.
Category IV contains the CCI scores, measuring the probability of ligand-receptor interaction
based on the expression values of each sample. Category V is designed to recreate the bulk
expression through aggregating the expression across cells or spots depending on the data
types. Category VI is designed specifically for spatial data type for capturing spatial information
and includes classical metrics for identifying spatial patterns.

scFeatures extracts interpretable features from data generated by scRNA-seq, spatial
proteomics, and spatial transcriptomics (Table 1). In particular, spatial transcriptomics data, is a
spot-based technique in which the expression value of each spot is based on a small population
of cells often containing cells from multiple cell types. We developed several novel ways to
adapt the 13 feature types to spot-based data whenever possible; this collection of spatial
metrics takes into consideration the properties of spot-based technology and reveals cell type-
specific features in spot-based data. For example, spot-based data precludes direct application
of cell type proportion computation since each spot includes an unknown number of cells while
cell type percentage estimation requires individual cell counts for each cell type. To overcome
this issue, we estimated the number of cells in each spot using the library size of that location,
based on the association between the two values. Supplementary Table 1 provides more
documentation on the implementation details on the adaptation of feature types from single cell
RNA-sequencing to spot-based technologies.

scFeatures generates large collection of diverse features and is scalable to
large datasets

To demonstrate the characteristics of the feature representation, we applied scFeatures to 17
datasets measured using scRNA-seq, spatial proteomics and spatial transcriptomics data
(Table 2). For a typical scRNA-seq data, scFeatures generated over 50,000 features (Fig. 2a).
As expected, the number of features generated were mostly associated with the number of cell
types in the dataset and not other data characteristics such as number of genes, number of
cells and number of patients (Supplementary Figure 1).

To explore the complementarity among the features generated from scFeatures, we examined
the correlation between the features across 17 datasets. We observed a mosaic pattern, where
feature types from the same feature category tended to have higher correlations with each other
but very low correlation with feature types from other categories (Fig. 2b and Supplementary
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Figure 2). By summarising the correlation values between every pairwise combination of feature
types (Supplementary Figure 3), we found that, overall, the feature types were poorly correlated
(Fig. 2c¢) with the median correlation between feature types ranges between 0.1 to 0.25 (Fig.
2c). The relatively low correlations indicate that the features constructed by scFeatures were
diverse and potentially complementary for exploring disease outcomes. The top three correlated
pairs were observed amongst feature types related to overall aggregated gene expression. This
is consistent with our expectation of some degree of co-expression linked with various
conditions (e.g., healthy or disease outcome), and it is important to emphasise that these top
correlated features remain poorly correlated.

We next benchmarked the runtime and memory requirement of the feature types on single-cell
scRNA-seq (Supplementary Figure 4a), spatial proteomics (Supplementary Figure 4b), as well
as on spot-based spatial transcriptomics datasets (Supplementary Figure 4c) for evaluating both
the single-cell RNA-sequencing implementation and the spot-based implementation. All
datasets contain 1,000 to 100,000 cells. On the largest datasets with 100,000 cells, the majority
of feature types took less than a minute to compute when executed on eight cores,
demonstrating that scFeatures is highly scalable to large datasets. As expected, there was
some trade-off between processing time and memory. As a result of parallel computation over
eight cores, some feature types required more than 10GB of RAM in total; however, users can
run on a single core to decrease the memory required.

The most informative features classes differ between different datasets.

We hypothesised that distinct feature classes would be informative for different datasets since
each dataset comprises samples with varying characteristics and disease outcomes. Several
datasets were used where each feature type was evaluated on their ability to predict disease
outcomes and the observations are in alignment with our hypothesis. First, we used a lung
disease dataset collection where the cells were split into the epithelial, immune and fibroblast
subset and the outcome of interest was to classify the patients into healthy or idiopathic
pulmonary fibrosis (IPF). In Fig. 3a, we visualised the performance classification of the feature
types on the three subsets and ordered the feature types according to their performance in the
epithelial subsets. This reveals that feature types that achieved the highest accuracy in the
epithelial subset are related to cell type proportions (i.e., “proportion ratio”, “proportion logit” and
“proportion raw”) (Fig. 3a). In contrast, the performance of feature types on the immune and
fibroblast subset clearly does not follow the same trend as on the epithelial subset,
demonstrating that different feature types are useful to the three datasets

Similar observation is also found in the melanoma pre-treatment dataset and melanoma post-
treatment dataset where the question of interest is classifying non-responder and responders.
Fig. 3b illustrate that proportion features (i.e., “proportion raw” and “proportion logit”) more
accurately classified patients in the post-treatment dataset than patients in the pre-treatment
dataset and pathway features (i.e, “pathway gsva” and “pathway proportion”) provides more
accurately classified pre-treated patients.
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We then examined across 17 datasets (Supplementary Figure 5) and highlighted the five
informative feature types for each dataset (Fig. 3c) for a more comprehensive assessment of
the performance of the feature types. Across the 17 datasets tested, “gene mean celltype”,
which examines expression in cell type specific manner, occurred in 10 datasets as the top five
informative feature types. This is perhaps not surprising, as it elucidates the power of single-cell
technology and the ability of cell type specific gene expression to uncover changes in response
to diseases. Across the spatial datasets, we saw feature types in the spatial feature category
appearing as the top five informative feature types, indicating the usefulness of this category for
capturing spatial information and the potential of spatial data modality offering complementary
information. All together, these findings highlight that different feature types are useful for
exploring disease mechanisms in different datasets and even in different subsets of the same
dataset, as seen by the pre- and post-treatment melanoma patients and the lung disease
dataset subset by cell types, and argue for the need for a diverse compendium of feature types
for such analyses.

scFeatures provides interpretable insight into disease outcome from
scRNA-seq data

To illustrate that scFeatures provides interpretable features for disease understanding, we
applied scFeatures on the “UC healthy vs non - inflamed (Fib)” dataset *3. This sScRNA-seq
dataset compares fibroblast cells of non-inflamed biopsies from ulcerative colitis (UC) patients
and biopsies from healthy patients. We focused on the two top performing feature types based
on the classification model performance from the previous section of “gene mean celltype” and
“cell type proportion raw” (Fig. 3c) and discovered different sets of cell types were important to
the two feature types. For the feature type based on cell type specific gene expression (denoted
by “gene mean celltype™), the top four cell types according to feature importance score (see
Methods) are all sub-cell types from WNT2B+ and WNT5B+ cells (Fig. 4a). This indicates that
selected features, i.e., genes, from these cell types were considered more important at
predicting disease outcomes than genes of other cell types. In contrast, the WNT2B+ and
WNT5B+ cell types were ranked as the bottom four cell types in terms of the differences in cell
type proportion (in “cell type proportion raw”), indicating that while the gene expression is
different between disease outcome, the proportion of cell types are similar. Instead, pericytes,
glia, microvascular, and inflammatory fibroblasts were found to be the top four cell types that
exhibit differential proportion between healthy and non-inflamed biopsies (Supplementary Figure
6). These two feature types offer different perspectives from the same data and reveal distinct
collections of cell types where one group is more concerned with changes in expression and the
other collection is more concerned with changes in proportion. It would have been challenging
or impossible to accurately disentangle the contributions of cell type percentage and cell specific
gene expression in classical bulk gene expression data. These observations not only highlights
the necessity of single-cell research, but it also emphasises the significance of evaluating
various feature types, as generated by scFeatures.
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scFeatures uncovers data features associated with survival outcome from
Spatial proteomics

To demonstrate the utility of scFeatures at extracting spatial information, we applied scFeatures
to a spatial proteomics dataset of tumors from triple negative breast cancer patients. The
guestion of interest is classifying tumors based on cellular organisation into distinct types that
are associated with patient survival. The original study defined three tumor groups based on
mixing scores, where a “cold group” is identified by low immune infilture, a “compartmentalised
group” is identified by compartments formed by almost entirely of either tumour or immune cells,
and a “mixed group” is when there is no clear boundary separating the tumor and immune cells.

The nearest neighbour correlation is a feature type in scFeatures that was created primarily to
capture spatial co-expression patterns. It computes the correlation of a cell's protein expression
with that of its nearest neighbour. Therefore, spatial organisation of cells, such as whether
tumor cells are next to immune cells would affect the correlation of protein expression of cells
with neighbouring cells. To construct this feature type, we used scFeatures on selected "triple
negative breast cancer" samples from the dataset and clustered the resulting features (Fig. 4b).
Survival analysis using the Kaplan-Meier Curve revealed differences between survival
outcomes of individuals from the two clusters (P-value of 0.07, Fig. 4c), compared to the patient
group defined in the original study with P-value of 0.22. This suggests that the new patient
subgroup found by scFeatures has greater association with the survival outcomes and
demonstrates the ability of the spatial feature category at representing spatial organisations and
uncovering novel patterns in the data.

Discussion and Conclusion

In summary, scFeatures creates a multi-view molecular representation of individuals by
generating over tens of thousands of interpretable features based on single-cell and spot-based
spatial data. The innovation and motivation scFeatures lies in the generation of various literature
motivated and biologically relevant feature vectors for phenotype disease modelling and disease
prediction. We have designed 17 feature types across six categories based on a broad range of
analytical approaches in literature from cell type specific gene expression to measures of cell-
cell (ligand-receptor co-expression) interaction and demonstrated that the feature types are
diverse with low correlation amongst them. We demonstrated scFeatures on scRNA-seq data
from ulcerative colitis and discovered a number of features linked with disease characteristics
and extracting spatial features from a triple negative breast cancer proteomics data resulted in
the stratification of tumours that are more strongly related with survival outcomes than the
original study's subgroups.

The features vector generated by scFeatures can be used for a broader set of downstream
applications and not limited to the ones illustrated in the case studies. For example, given the
features vectors are generated at the sample level, this opens the opportunity for the exploration
of differential patient response to diseases due to heterogeneity between individuals. Even for
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patients recorded as responders to a treatment, the extent of response and the change at omics
level varies between individuals. The feature vector can be subjected to latent class analysis,
which has typically been applied on single-cell level for exploring cellular diversity ** *°, to
enable detection of sub-populations in the cohort, as well as the biology driving patient
heterogeneity.

The multiple feature representations generated by scFeatures can be considered as multiple
views of the data and as such leads naturally to multi-view learning. This is one of the many
collections of methods that perform integration across multiple features classes to enhance
model performance. There exists a number of approaches for performing data integration *’,
from the simple concatenation of features from all feature types into a single vector as the input,
to incorporating and optimising the data integration procedure within the model training process.
While current multi-view learning in bioinformatics typically refers to the use of multiple omics
obtained from the same sample *® , we envisage the generation of multiple features types by
scFeatures opens new opportunities for multi-view learning from single omic type.

scFeatures is currently designed to perform feature engineering for single-cell RNA-seq, spatial
proteomics and spatial transcriptomics data, but the framework is not limited to these platforms.
Taking chromatin accessibility as an example, a commonly used analysis strategy is assigning
genes based on nearby peaks, thereby converting the peak matrix to a matrix of gene activity
scores similar to gene expressions *°. Using this approach, all feature classes designed for
scRNA-seq are then applicable to chromatin accessibility data. In future, we plan to extend
scFeatures to other single-cell omics such as single-cell DNA methylation, single-cell chromatin
accessibility and single-cell genomics, leveraging the common analytical approach in these
areas and construct specific feature classes. For chromatin accessibility, the co-accessibility
between pairs of peaks, which is used to predict cis-regulatory interactions, can be constructed
and stored as a vector for each sample. The correlation values between transcription factors
(TF) motifs can be readily constructed as another class of feature representation vector, and
can be used to identify the modules of TF motifs affected in disease state.

With the recent surge of cohort based single-cell studies and the number of tools for
characterising individual cells, there is an increased demand for defining samples in a study
based on their cellular characterization to guide better understanding of disease and health.
Here, we presented scFeatures, a tool that provides a multi-view extraction of molecular
features from single-cell and spot-based spatial data to characterize cellular features of each
individual. scFeatures efficiently extracts collections of interpretable features from large-scale
data and we demonstrated its ability to derive biological insights in scRNA-seq and spatial data.
We envision that scFeatures, a public R package available at
https://github.com/SydneyBioX/scFeatures, will facilitate better understanding of single-cell data
from a sample (i.e. patient) perspective and the signatures underlying disease conditions from
different angles.
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Methods:

Data collection and processing

SCRNA-seq

To demonstrate scFeatures on scRNA-seq data, we collected data from four published studies
and curated a total of 15 datasets from the studies. The data are described in detail below:

Six Ulcerative Colitis datasets: The UC data ** sequenced healthy control, inflamed and non-
inflamed colon biopsies from multiple patients. The data was retrieved from Single Cell Portal
with accession ID SCP259. We subset the data into epithelial, stromal cells and immune subset
according to the original publication, resulting in the following 6 datasets:
UC healthy vs non-inflamed (Epi)
UC healthy vs non-inflamed (Fib)
UC healthy vs non-inflamed (Imm)
UC inflamed vs non-inflamed (Epi)
UC inflamed vs non-inflamed (Fib)

e UC inflamed vs non-inflamed (Imm)
where Epi stands for epithelial, Fib stands for stromal and Imm stands for immune subsets.
Inflamed, non-inflamed and healthy are patients’ conditions of interest.

Six Lung datasets: The lung data®® sequenced healthy control, idiopathic pulmonary fibrosis
(IPF), and chronic obstructive pulmonary disease (COPD) biopsies from multiple patients. The
data was retrieved from Gene Expression Omnibus (GEO) with accession ID GSE136831. We
subset the data into epithelial, stromal cells and immune subset according to the original
publication, resulting in the following datasets:
Lung healthy vs IPF (Epi)
Lung healthy vs IPF (Fib)
Lung healthy vs IPF (Imm)
Lung healthy vs COPD (Epi)
Lung healthy vs COPD (Fib)

e Lung healthy vs COPD (Imm)
where healthy, IPF and COPD are patients’ conditions of interest.

Two melanoma data #* sequenced immune cells from tumor biopsies of melanoma patients prior
to and after treatment with immune checkpoint therapy. The data was retrieved from GEO with
accession ID GSE120575. We subset the data into pre-treatment and post-treatment datasets.
The patients' conditions of interest in both datasets are non-responding and responding.

The COVID dataset *? sequenced peripheral blood mononuclear cells (PBMC) from COVID-19
patients. The data was retrieved from European Genome-phenome Archive (EGA) with
accession ID EGAS00001004571. We subset the original data into mild and severe patients and
consider the mild and severe disease stage as the patients’ conditions of interest.
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Spatial proteomics

The triple negative breast cancer dataset ** measured the patient’s protein expression using
MIBI-TOF (multiplexed ion beam imaging by time of flight) technology. Data was obtained from
https://mibi-share.ionpath.com.

Spatial transcriptomics

The amyotrophic lateral sclerosis dataset ** sequenced lumbar spinal cord tissue of ALS and
control mouse at varying time points using the spatial transcriptomics technology. The data was
retrieved from GEO with accession ID GSE120374. We used the subset of data sequenced at
the disease onset time point.

Implementation of feature types

We generated 17 feature types that can be broadly categorised into six categories: i) cell type
proportions, ii) cell type specific gene expressions, iii) cell type specific pathway expressions, iv)
cell type specific CCl scores, v) overall aggregated gene expressions and vi) spatial metrics.

All feature types except for the overall aggregated gene expressions category have different
implementations for sScRNA-seq and spatial data to better leverage the characteristics of
different data types and the implementation details are described in Supplementary Table 1.

For spot-based spatial transcriptomics, we performed the following additional processing in
order to allow certain feature classes to be applicable. First, since the cell type specific feature
categories require cell type information while the spot in spot-based data contains a mixed
population of multiple cells, we used Seurat’s TransferData function to predict the cell type
probability of each spot. A published scRNA-seq data on mouse spinal cord with cell type labels
was used as the reference *°. Then, given that each spot contains an unknown number of cells
which vary across each spot, we weighted the contribution of each spot to the generated
features by the relative number of cells it contains. We used library size as an estimate of the
relative number of cells, motivated by a study that found a high correlation between the number
of cells and library size of spots ?°. To calculate the relative number of cells, we binned the log2
transformed total library size of cells into 100 bins, and assigned each spot a relative number of
cells ranging between 1 to 100 according to its bin.

Correlation between features and feature classes

Given scFeatures constructs a standard matrix of samples by features, we can readily compute
the Pearson’s correlation between individual features. In detail, we first computed the correlation
between individual features. The median correlation between pairs of feature classes was
calculated by taking the absolute values of the individual correlation values of the features in the
given pair of feature classes and then computing the median. For the correlation plot shown in
Fig. 2b, we subsampled 100 features from feature classes that have more than 100 features to
avoid the correlation plot being dominated by feature classes with more features.


https://doi.org/10.1101/2022.01.20.476845
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.20.476845; this version posted January 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Classification and survival analysis using generated features

In scFeatures, we provide functionality to perform classification and survival analysis for the
convenience of users. The classification function is a wrapper around a classification package
classifyR*’ that was published by our group earlier. By default, we use a random forest model,
set the number of folds to three, perform 20 cross-validation and calculate F1-score. These
were also the settings used to report the classification performance in this study and can be
specified by the user. The only exception being that 100 cross-validation was performed to
obtain a more stable feature importance score for the case study on the “UC healthy vs non-
inflamed (Fib)” dataset.

For survival analysis, we use a cox proportional-hazards model provided in the rms R package.
By default, we set the number of folds to three, perform 20 cross-validation and calculate C-
index. Note that as the cox model is not designed to take in a large number of features at once,
unlike a typical classification model, we input one feature from the generated feature class at a
time for building the cox model. The best C-index is reported as the performance for the feature
class.

Feature importance score

The runTests function in ClassifyR outputs the features selected by the classification model.
Since repeated cross-validation was performed, this generated one set of included features for
each cross-validation process. Based on all the derived sets, the frequency of inclusion was
considered as the feature importance score of each feature.

For the cell type specific feature category, given that each feature is associated with a cell type,
it is also of interest to aggregate the feature importance score associated with each cell type.
We approached by summing the feature importance score of all features associated with a cell
type, then dividing by the number of features constructed for that particular cell type to adjust for
the difference in the number of features per cell type. The final score was considered as the
feature importance score of each cell type.

Speed and memory usage

To benchmark the scalability of the 17 features classes, we used the UC inflamed vs non-
inflamed (Imm) dataset and took random samples to construct datasets with 1000, 2000, 3000,
5000, 10000, 20000, 30000, 50000, 70000 and 100000 cells. Each dataset contains the same
15 patients and the same 15 cell types.

For the purpose of evaluating the features classes designed for spot-based data which require
each spot to be associated with a cell type probability vector, we treated each cell as a “spot”
and randomly created a cell type probability vector for each cell. Similarly, for the purpose of
evaluating the feature classes under the category spatial metrics which require spatial
coordinates of each cell, we randomly assigned a pair of x and y-coordinates to each cell. In
addition, the cell type probability and number of cells in each spot was randomly generated to
represent such data.
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Runtime was measured using the built-in Sys.time function in R. Memory was measured by
recording the peak resident set size, which measures the peak amount of memory that a
process consumes across all cores. All code was run in parallel using 8 cores for three times
and the average measurements were taken. All processes were carried out using a research
server with dual Intel(R) Xeon(R) Gold 6148 Processor with 40 cores and 768 GB of memory.
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Figure 1. Overview of scFeatures

a The input for scFeatures is an omics dataset containing multiple samples such as patients.
scFeatures extracts different views of the data, thereby transforming the gene by cell matrix into
a vector of features for each sample. b scFeatures constructs 17 feature types that can be
broadly classified into six categories. Each feature type consists of multiple individual features.
For example, for “gene mean cell type”, 100 features are generated by default per cell type (nc)
per sample (ns) (see Methods).
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Figure 2. Characteristics of the features generated by scFeatures
a Compositional barchart showing the number of features generated by scFeatures for each
dataset. Datasets are first ordered by data types, and then by the number of cell types. b
Correlation plot showing Pearson's correlation of features on the “Lung healthy vs IPF (Epi)”
dataset as a representative example. The features are colour labelled by feature types for ease
of interpretation. ¢ Boxplots summarising the correlation between pairs of features across all
datasets (see Methods). Texts highlight the 10 most and 10 least correlated feature types pairs.
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Figure 3. Performance of feature types on patient outcomes

a The boxplots compare the F1 score of the feature types on two data collections. Top shows
the epithelial, fibroblast and immune subsets of healthy and IPF patients, where the outcome of
interest is classifying healthy and IPF status. The feature types are ordered by their F1 scores
on the epithelial subst. Bottom shows pre-treatment and post-treatment melanoma patients,
where the outcome of interest is classifying therapy responders and non-responders. The
feature types are ordered by the difference of the F1 scores between the two datasets. b For
each dataset, the squares denote the top five feature types with the highest F1 scores.
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Figure 4. Selected features generated on the “UC healthy vs non - inflamed (Fib)” dataset
and the “triple negative breast cancer” datasets

a Scatterplot of cell types rank for the feature type “cell type proportion” and “gene mean
celltype”. b Heatmap showing the clustering result using the nearest neighbour correlation. ¢
Kaplan-Meier plot of patients stratified by the clustering output (top) and stratified by patient
groups defined in the original study (bottom).
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Tables

Table 1. List of features generated by scFeatures

Applicati Data Featur Cell type specific Cell type specific gene Cell type specific Cell - Overall aggregated gene Spatial metrics
on character e proportions expressions pathway cell expressions

istic and catego expressions interac
represent ry tion
ative scores
technolo
gy

Featur Pro Proport Rati Mea Proport Correla Mea GS Pro CcCl Mea Proport Correla L Cell Mor Nearest
etype porti ion o n ion tion n VA porti n ion tion func type an's neighbour
on logit on tion inter | correlatio
raw acti n

on

SCRNA- Single-cell v 7 v 7 v 7 v 7 v 7 v 7 7

seq data based

Eg. 10x,
Smart-
Seq

Spatial Single-cell v v v 7 v v v v v v v v v

proteomic based
s data
Eg, MIBI-
TOF,
IMC,
CODEX

Single cell | Spot v v v s v v v v v v v v

transcript based
ome data
data Eg, ST,
Visium,
MALDI
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Table 2. Details of the datasets used in the study.

Dataset Study Outcome Number of Number of Number of Species Type of data
name reference genes/protei | cells/spots samples

referred in ns

the study

Lung healthy Adamzs0 etal. | Healthy vs 45947 17970 53 Human ScRNA-seq
vs IPF (Epi) | 2020 IPF

Lung healthy Healthy vs 45947 12753 49 Human scRNA-seq
vs IPF (Fib) IPF

Lung healthy Healthy vs 45947 208774 60 Human ScRNA-seq
vs IPF (Imm) IPF

Lung healthy Healthy vs 45947 7888 38 Human ScRNA-seq
vs COPD COPD

(Epi)

Lung healthy Healthy vs 45947 5286 36 Human ScRNA-seq
vs COPD COPD

(Fib)

Lung healthy Healthy vs 45947 149875 46 Human ScRNA-seq
vs COPD COPD

(Imm)

UC healthy Smillie etal. | Healthy vs 20028 99962 30 Human ScRNA-seq
Vs non- 2019 non-inflamed

inflamed

(Epi)

UC healthy Healthy vs 19076 21627 30 Human ScRNA-seq
VS non- non-inflamed

inflamed

(Fib)

UC healthy Healthy vs 19076 118784 30 Human ScRNA-seq
Vs non- non-inflamed

inflamed

(Imm)

UC inflamed Inflamed vs 20028 72748 35 Human scRNA-seq
VS non- non-inflamed

inflamed

(Epi)
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UC inflamed Inflamed vs 19076 23392 36 Human scRNA-seq
VS non- non-inflamed
inflamed
(Fib)
UC inflamed Inflamed vs 20529 159242 36 Human SCRNA-seq
VS non- non-inflamed
inflamed
(Imm)
Melanoma Sade- Responder 50513 5925 19 Human scRNA-seq
pre- Feldman et VS non-
treatment al. 2018 # responder
Melanoma Responder 50513 10357 29 Human ScRNA-seq
post- VS non-
treatment responder
COVID Schulte- Mild vs 24794 48069 27 Human scRNA-seq

Schrepping severe

et al. 2020 %
Amyotrophic | Maniatis et ALS vs 9129 23373 33 Mouse Spatial
lateral al. 2019 * normal transcriptomi
sclerosis cs
Triple Keren et al. Survival 38 199817 39 Human Spatial
negative 2019 % period proteomics
breast

cancer
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Supplementary Figure 1. Impact of dataset characteristics on number of features
generated by scFeatures
We generated features on 15 scRNA-seq datasets (see Methods). Linear regression model was
fitted to explore the relationship between the number of features and dataset characteristics

such as number of cells, genes, cell types and patients. The regression coefficient for each

variable is shown in the line plots, with red denoting a significant relationship and blue denoting
an insignificant relationship.
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Supplementary Figure 2. Correlation amongst feature pairs for each dataset
Plots show the Pearson’s correlation between features on each dataset. The features are colour
labelled by feature class for ease of interpretation. To avoid the correlation plot being dominated
by feature classes with more features, we subsampled 100 features from feature classes with
more than 100 features.
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Supplementary Figure 3. Schematic representation of the calculation of correlation
between feature types.

a First, for a given dataset, the features from all feature types are created, yielding a samples by
features matrix. Pearson’s correlation is calculated on the features matrix to result in a typical
correlation matrix comprising the correlation between the individual features, as shown in b.
Since each feature is associated with a feature type, we can zoom into a section of the
correlation matrix that contains the correlations of features from two feature types. For example,
¢ shows the section of correlation matrix, which contains the features from the feature type
“gene mean celltype” and “gene correlation aggregated”. A boxplot can then be constructed to
summarise the correlations between these two feature types. d shows another section of the
correlation matrix, which contains the correlations between all the features from the feature type
“gene correlation aggregated”. e Repeating this across each section of the correlation matrix
produces boxplots summarising the correlation between all pairwise combinations of feature

types.
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Supplementary Figure 4. Scalability analysis of feature types

The x and y axes are displayed on a log10 scale in all panels. a The runtime and memory usage
of feature types benchmarked on subsampled scRNA-seq data. b The runtime and memory
usage of feature types benchmarked on subsampled spatial proteomics data. ¢ The runtime and
memory usage of the feature types adapted for the spot-based data, evaluated using spatial
transcriptomics data.
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Supplementary Figure 5. Model performance of each feature class on all datasets

For datasets with disease outcome, random forest was used and model performance was
evaluated in terms of F1 score. For the dataset “Triple negative breast cancer” with survival
outcome, cox proportional-hazard model was used and model performance was evaluated in
terms of C-index. Each point represents the average from 50 cross-validation models.
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Supplementary Figure 6. Cell type proportion of the patients in the “UC healthy vs non -
inflamed (Fib)” dataset
Wilcoxon test was performed on each cell type to compare the cell type proportion between the

non-inflamed and healthy samples.

Supplementary Tables

Supplementary Table 1.

Feature Feature Applicable data | Implementation details

category class types

Cell type Proportion | scRNA-seq and Calculates the proportion of each cell type in each
proportions | raw spatial proteomic | sample.

spatial

transcriptomics

Each spot is represented as multiple single cells by
multiplying the relative number of cells with the cell type
probability of each spot. The proportion of each cell type
is then calculated based on this single cell
representation.
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Proportion | scRNA-seq and Performs logit transformation of the cell type proportion
logit spatial proteomics | as it is one of the most common transformations for
proportional data.
spatial Performs logit transformation of the cell type proportion
transcriptomics based on the single cell representation as described in
the implementation of “Proportion raw”.
Proportion | scRNA-seq and Computes the pairwise ratio of two cell types'
ratio spatial proteomics | proportions, i.e. cell type 1 divided by cell type 2. This is
calculated for each paired cell type combination. To
avoid dividing by zero when a cell type is not present in
a patient, we add 1 to both the numerator and
denominator. The range of value is then scaled using
log2 transformation.
spatial Computes the pairwise ratio of two cell types'
transcriptomics proportions based on the single cell representation as
described in the implementation of “Proportion raw”.
Cell type Gene scRNA-seq and Calculates the mean expression of genes within each
specific mean spatial proteomics | cell type. We restrict to the top variable genes to reduce
gene celltype the dimensions of the feature. This is particularly

expressions

important for scRNA-seq data as it generally contains
more than 20,000 genes. For each cell type, the genes
of interest are obtained by selecting the top variable
genes per sample, then taking the union of the genes
across all samples. The default number of variable
genes is set to 50 per cell type and is a parameter that
can be specified by the user. Since the variable genes
are calculated separately for each cell type, this results
in a different set of genes for each cell type. The final
output is a vector of mean expression for the cell type
specific variable genes.

spatial
transcriptomics

Given the expression values in each spot represents
multiple cells of potentially different cell types, we
devised the following approach. For each gene, we
regress the count against the probability of each cell
type across all spots in a sample to obtain the
coefficient and P-value of each cell type. Then for each
cell type identify the top genes that have smallest P-
values on average across all samples. These would be
the genes most associated with the cell type. The
regression coefficients of these genes are then the
features. The number of top genes is default to 50.
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Gene
proportion
celltype

scRNA-seq and
spatial proteomics

For each gene, we calculate the proportion that this
gene is expressed across all cells. This is calculated
separately for each cell type of each patient. We
restricted to the top variable using the same procedure
as defined in “gene mean celltype”. The final output is a
vector of proportion expressed for the subset of cell
type specific genes.

spatial
transcriptomics

N/A as the expression values in each spot represents
multiple cells of potentially different cell types

Gene
correlation
celltype

scRNA-seq and
spatial proteomics

First, we restrict to the top variable using the same
procedure as defined in “gene mean celltype”. Then, for
the selected genes, we calculate the pairwise
correlation between two genes based on their
expression values. The final output is a vector of
genewise correlation for the subset of cell type specific
genes.

spatial
transcriptomics

N/A as the expression values in each spot represents
multiple cells of potentially different cell types

Cell type
specific
pathway
expressions

Pathway
GSVA

SCRNA-seq

First, we run the ssgsea function from the GSVA
package to obtain the gene set enrichment score for
each single cell of a patient. The enrichment score is
then summarised for each cell type by averaging the
scores from all the single cells within a cell type. As a
result, this approach converts the matrix of gene
expressions by single cells into pathways by cell types
for each patient. The matrix of pathways by cell types is
further converted into a single vector by concatenating
the scores from each cell type.

spatial proteomics

N/A as the number of proteins in spatial proteomics is
generally too few to calculate pathway enrichment.

spatial
transcriptomics

We obtain the regression coefficients of each gene
associated with each cell type as described in the
implementation details of “Gene mean celltype”. The
regression coefficients for all the genes involved in a
particular pathway are then summed. The summation is
done separately for each cell type.
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Pathway scRNA-seq For each pathway, we averaged the gene expression
mean values for all the genes in the pathway across all cells.
This is done separately for each cell type of each
sample.
spatial proteomics | N/A as the number of proteins is too small to calculate
pathway enrichment.
spatial N/A as the expression values in each spot represents
transcriptomics multiple cells of potentially different cell types.
Pathway scRNA-seq For each pathway, we average the gene expression
proportion values for all the genes in the pathway for each cell and
used the third quantile of this value as a threshold. We
then calculate the proportion of cells in each sample
that have a higher average expression greater than the
threshold. This is done separately for each cell type so
that the final output for a sample is a vector.
spatial proteomics | N/A as the number of proteins is too small to calculate
pathway enrichment.
spatial N/A as the expression values in each spot represents
transcriptomics multiple cells of potentially different cell types
Cell-cell CcCl scRNA-seq We use the CellChat®® package to calculate the cell -
interactions cell interaction probability between ligand and receptor
pairs. This feature class is also cell type specific, as the
interaction between ligand and receptor is quantified
separately for each cell type. The final output is a vector
of interaction probabilities for each sample.
spatial proteomics | N/A as the number of proteins is too small to query the
cell-cell interactions.
spatial N/A as calculation of cell-cell interaction relies on
transcriptomics expression of individual cells.
Overall Gene scRNA-seq, First the mean expression of genes across all cells is
aggregated | mean spatial proteomics | computed for each sample. We then restrict to the top
gene aggregated | and spatial variable genes using the same procedure as defined in

expressions

transcriptomics

“gene mean celltype”. The number of variable genes is
set to 1500 by default and can be specified by the user.
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Gene
proportion
aggregated

SCRNA-seq,
spatial proteomics
and spatial
transcriptomics

For each gene, we calculate the proportion that this
gene is expressed across all cells for each patient. We
then restrict to the top variable genes using the same
procedure as defined in “gene mean celltype”. The
number of variable genes is set to 1500 by default and
can be specified by the user.

Gene
correlation
aggregated

SCRNA-seq,
spatial proteomics
and spatial
transcriptomics

We first obtain top variable genes using the same
procedure as defined in “gene mean celltype”. The
number of variable genes is set to 100 by default and
can be specified by the user. Then, for the selected
genes, we calculate the pairwise correlation between
two genes based on their expression values. The final
output is a vector of gene-wise correlation.

Spatial
metrics

L function

scRNA-seq data

N/A as there are no spatial coordinates.

spatial proteomics

The L values between the pairs of proteins are calculated
using the L function defined in literature *° and used as the
features. L value greater than zero indicates spatial
attraction of the pair of proteins whereas L value less than
zero indicates spatial repulsion.

spatial
transcriptomics

We calculate the L function based on the single cell
representation as described in the implementation of
“Proportion raw”.

Cell type
interaction

scRNA-seq data

N/A as there are no spatial coordinates.

spatial proteomics

We find the nearest neighbours of each cell and the cell
types of these neighbours. These are considered as
spatial interaction pairs. The cell type composition of the
spatial interaction pairs is used as features.

spatial
transcriptomics

We assume that the nearest neighbours should be the
cells captured within each spot and consider them as
the spatial interaction pairs. We use single cell
representation as described in the implementation of
“Proportion raw” to calculate the following procedure: for
a spot containing n; cell type x and n, cell type y, the
spatial interaction composition of of cell type x with cell
type x is calculated as ny / (ny+ny) * ny / (ng+ny).
Similarly for the spatial interaction composition of cell
type x with cell type y. We then sum the spatial
interaction composition across all spots and use them
as the features.

Moran’s |

scRNA-seq data

N/A as there are no spatial coordinates.
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spatial proteomics | Moran’s | are calculated using the function defined in
and spatial literature *! and used as the features. It calculates the
transcriptomics spatial autocorrelation based on both the locations and
values simultaneously. A value closer to 1 indicates
clustering of similar values and a value closer to -1
indicates clustering of dissimilar values. A value of 0
indicates no particular clustering structure, ie, the
values are spatially distributed randomly.

Nearest scRNA-seq data N/A as there are no spatial coordinates.

neighbour

correlation
spatial proteomics | Pearson correlation is calculated for the protein
and spatial expression between a cell with its nearest neighbour
transcriptomics cell for spatial proteomics and for gene expression

between a spot with its nearest neighbour spot for
spatial transcriptomics.
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