

1 **Brain-wide continuous functional ultrasound imaging for real-time monitoring of**
2 **hemodynamics during ischemic stroke**

4 Clément Brunner^{1,2,3,4}, Nielsen Lagumersindez Denis^{5,6,7}, Karen Gertz^{5,6,7}, Micheline Grillet^{1,2,3,4}, Gabriel
5 Montaldo^{1,2,3,4}, Matthias Endres^{5,6,7} and Alan Urban^{1,2,3,4,+}

7 ¹ Neuro-Electronics Research Flanders, Leuven, Belgium.

8 ² Vlaams Instituut voor Biotechnologie, Leuven, Belgium.

9 ³ Interuniversity microelectronics centre, Leuven, Belgium.

10 ⁴ Department of neurosciences, KU Leuven, Leuven, Belgium.

11 ⁵ Department of Neurology and Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin,
12 Germany.

13 ⁶ German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.

14 ⁷ German Centre for Cardiovascular Research (DZHK), Berlin, Germany.

16 ⁺Corresponding author: Alan Urban, alan-urban@nerf.be

18 **Abstract**

19 Ischemic stroke occurs with no warning, and therefore, very little is known about hemodynamic
20 perturbations in the brain immediately after stroke onset. Here, functional ultrasound imaging was used
21 to monitor variations in relative cerebral blood volume (rCBV) compared to baseline. rCBV levels were
22 analyzed brain-wide and continuously at high spatiotemporal resolution (100µm, 2Hz) until 70mins after
23 stroke onset in rats. We compared two stroke models, with either a permanent occlusion of the middle
24 cerebral artery (MCAo) or a tandem occlusion of both the common carotid and middle cerebral arteries
25 (CCAo+MCAo). We observed a typical hemodynamic pattern, including a quick drop of the rCBV after
26 MCAo, followed by spontaneous reperfusion of several brain regions located in the vicinity of the
27 ischemic core. The severity and location of the ischemia were highly variable between animals. Still,
28 both parameters were, on average, in good agreement with the final ischemic lesion volume measured
29 24hrs after stroke onset for the MCAo but not the CCAo+MCAo model. For the latter, we observed that
30 the infarct was extended to regions that were initially not ischemic and located rostrally of the ischemic
31 core. These regions strongly colocalize with the origin of transient hemodynamic events associated with
32 spreading depolarizations.

33 **Keywords**

35 Ischemic stroke, functional ultrasound imaging, spreading depolarization, ischemic lesion prediction

36 **Introduction**

37 Acute ischemic stroke is most often caused by thrombotic or embolic occlusion of a cerebral artery. It is
38 characterized by a sudden loss of blood circulation to an area of the brain, resulting in a corresponding
39 loss of neurologic function. Ischemic stroke triggers a variable decrease of blood flow in the affected
40 parenchyma that depends on the degree of collateral circulation. In brain regions with poor collaterals,
41 lack of oxygen and glucose may disrupt neuronal activity and ultimately cause a drop in energy
42 metabolism leading to tissue infarction^{1,2}. Although both the ischemic core and penumbra are
43 dysfunctional, the penumbra remains viable during a given time window upon restoring blood flow³. The
44 penumbra will eventually grow into the ischemic core in the absence of reperfusion. The rate of infarct
45 growth is highly variable between individuals and strongly depends on, e.g., the extensiveness of
46 collateral circulation⁴, the ischemic lesion location, and metabolic factors.

47 A large number of ischemic stroke models have been developed in rodents to recapitulate the
48 pathophysiology in patients. A particular challenge is the heterogeneity of individual strokes in patients
49 that make it difficult to be modeled in rodents⁵. A significant difference between humans and animal
50 models is the presence of different penumbral and infarct flow thresholds, leading to varying rates and
51 dynamics in infarct evolution^{6,7}. The middle cerebral artery (MCA) is commonly affected in ischemic
52 stroke, and hence, occluding this major vessel downstream of the internal carotid artery in rodents may
53 replicate cerebral ischemia in stroke patients. The MCA can be accessed via an approach through either
54 the internal or the external carotid artery and be occluded temporarily or permanently^{8,9}. Infarcts induced
55 by this approach often comprise both striatal and cortical damage. Alternatively, blocking the artery distal
56 to the lenticulostriate branches (i.e., distal MCAo) with various strategies (vascular clip¹⁰, suture¹¹,
57 electrocoagulation¹², phot thrombosis¹³, endothelin-1¹⁴, ferric-chloride¹⁵, or magnetic nanoparticles¹⁶)
58 results in a permanent occlusion with mainly cortical infarcts. The pros and cons of stroke models are
59 extensively discussed in the literature by Macrae¹⁷ and Flury et al.¹⁸. In short, most models of ischemic
60 stroke involving only the occlusion of the MCA have a large variability^{19,20}. Still, it has been shown that
61 a tandem permanent occlusion of the distal MCA and ipsilateral common carotid artery (CCA) can
62 alternatively be used as a surgically simple method for causing large neocortical infarcts with
63 reproducible topography and volume in rat²¹.

64
65 Hemodynamics and characteristics of lesion growth following immediately after vessel occlusion are
66 essential issues and represent a new target area for promising therapeutic interventions. Spreading
67 depolarization (SD) describes a slowly propagating wave of intense depolarization that travels across
68 the cortical tissue and is typically coupled with local changes in cerebral blood flow (CBF). SD is
69 associated with a functional hyperemic response when the neurovascular coupling is intact and
70 hypoperfusion when the neurovascular coupling is compromised²²⁻²⁴. Moreover, SD may exacerbate
71 ischemic injury²⁵⁻²⁹. The features of SDs induced by ischemia have been widely examined, but studies
72 generally failed to identify their site of elicitation, where they are triggered. Therefore, developing new
73 strategies for monitoring brain perfusion at a large scale and in-depth is crucial to better understand the
74 mechanisms linking perfusion defects and tissue infarction; and improve preclinical drug development³⁰.
75 Precise tracking of the hemodynamic responses associated with SDs could help understand their impact
76 on pathophysiology.

77
78 The current consensus relies on a multi-modal neuroimaging strategy to provide sufficient information
79 to identify ischemic tissue, biomarkers of changes in tissue metabolism, potentially salvageable tissue,
80 or monitor its reorganization^{31,32}. Traditional imaging modalities such as magnetic resonance imaging
81 (MRI), specifically perfusion- and diffusion-weighted imaging (PWI-DWI, pCASL, DSC)³³⁻³⁵, positron
82 emission tomography (PET)³² and single-photon emission computed tomography (SPECT)³⁶ have
83 limited spatial and temporal resolution to resolve vascular responses dynamically. Optical imaging
84 techniques have a high resolution and are well suited to image changes in CBF and blood oxygenation.
85 Laser Doppler flowmetry (LDF)^{37,38} can measure blood flow at a low spatiotemporal resolution. Laser
86 speckle contrast imaging (LSCI)³⁹ and optical intrinsic signal imaging (OIS)⁴⁰ are full-field imaging
87 techniques. They can rapidly measure CBF and blood oxygenation, respectively, but only at the surface
88 of the brain. Two-photon microscopy (2PM)⁴¹ provides vascular morphology and flow information, but it
89 requires exogenous contrast agents. Photoacoustic microscopy (PAM)⁴²⁻⁴⁴ can measure these
90 parameters but with a limited depth of field. Moreover, the latter two techniques are laser-scanning
91 based, limiting their respective field-of-view and achievable frame-rate, making real-time observation of
92 a larger area challenging.

93
94

95 As an alternative, functional ultrasound imaging used high-frame-rate plane-wave imaging to measure
96 cerebral blood volume (CBV) changes in response to neuronal activity⁴⁵⁻⁴⁹. Briefly, functional ultrasound
97 imaging is based on a power Doppler estimator, proportional to the energy of the signals coming from
98 moving scatterers⁴⁶. This technology has a spatial resolution of ~100×300×100 μm^3 , a temporal
99 resolution of ~0.1s, and a depth of field of ~1.5cm and is, therefore, ideal for preclinical stroke
100 research^{10,45,50,51}. Moreover, it does not require contrast agents and can be adapted to freely moving
101 animals⁵²⁻⁵⁴.

102
103 In this study, we used functional ultrasound imaging to monitor hemodynamic changes during stroke,
104 including perfusion and SDs at the brain-wide scale. We compared two rat stroke models, i.e., a model
105 consisting of permanent occlusion of the distal branch of the middle cerebral artery (MCAo) resulting in
106 small ischemic lesions and a model with a tandem occlusion of the common carotid and middle cerebral
107 arteries (CCAo+MCAo) resulting in larger ischemic lesions typically both comprising large parts of the
108 MCA territory. Hemodynamic changes before were monitored continuously until 70mins after stroke.
109 Data were then registered, segmented, and clustered^{55,56} into 115 anatomical regions, including cortical,
110 thalamic, striatal, and hippocampal areas from a custom rat brain atlas based on Paxinos⁵⁷. Comparing
111 the ischemic territory and the infarcted tissue at 24hrs revealed a mismatch in both its size and location
112 for both stroke models. Notably, we observed that brain regions located rostrally of the ischemic core
113 are not affected by the ischemia up to 70mins after stroke but became part of the ischemic lesion within
114 the 24hrs post-stroke. These regions are also from where SDs emerge quickly after the stroke onset.
115

116 **Material and Methods**

117 **Animals**

118 Experimental procedures were approved by the Committee on Animal Care of the Catholic University of
119 Leuven, in accordance with the national guidelines on the use of laboratory animals and the European
120 Union Directive for animal experiments (2010/63/EU). The manuscript was written according to the
121 ARRIVE Essential 10 checklist for reporting animal experiments⁵⁸. Adult male Sprague-Dawley rats
122 (n=24; Janvier Labs, France) with an initial weight between 200-300g were housed in standard
123 ventilated cages and kept in a 12:12hrs reverse dark/light cycle environment at a temperature of 22°C
124 with *ad libitum* access to food and water. To avoid selection bias, animals were randomly distributed in
125 three experimental groups: (i) MCAo, in which the distal branch of the left MCA was permanently
126 occluded (n=10), (ii) CCAo+MCAo, in which the left CCA was permanently occluded shortly before the
127 MCAo (n=10), (iii) a sham group where four rats were imaged as in any other group, but the
128 microvascular clip was inserted next to the MCA without occluding it.
129

130 **Cranial window for brain-wide imaging**

131 A cranial window was performed in all rats under isoflurane anesthesia (Iso-Vet, Dechra, Belgium)
132 continuously delivered at 0.6l/min through a nose mask. A mixture of 5% isoflurane in compressed dry
133 air was used to induce anesthesia, subsequently reduced to 2.0-2.5% during surgery and to 1.5% for
134 imaging. Body temperature was monitored using a rectal probe and maintained at 36.5±0.5°C using a
135 digitally controlled heating blanket (CODA, Kent Scientific Corp., USA). Intraperitoneal injection of 5%
136 glucose solution was provided every 2hrs to prevent dehydration. As pre-operative analgesia, Xylocaine
137 (0.5%, AstraZeneca, England) was injected subcutaneously into the head skin. The scalp was shaved
138 and cleaned with iso-betadine before removing the entire dorsal skull. The cranial window extended
139 from bregma (β) +4.0 to -7.0mm anterior to posterior, laterally 6.0mm to the right side, until the parietal-
140 squamosal suture on the left side to expose the distal branch of the MCA was performed as previously
141 described^{10,48,50}. Sterile saline was regularly added during drilling sessions to avoid overheating the
142 tissue. The skull was carefully removed without damaging the dura. Finally, the brain was covered with
143 a low-melting 2% agarose (Sigma-Aldrich, USA) and ultrasound gel (Aquasonic Clear, Parker
144 Laboratories Inc, USA) to ensure a proper acoustic coupling with the ultrasound probe. At the end of the
145 imaging session, Metacam (0.2mg/kg, Boehringer Ingelheim, Canada) was injected subcutaneously for
146 postoperative analgesia, and rats were placed in a warm cage and monitored until waking up.
147

148 **MCAo and CCAo+MCAo procedures**

149 Rats from the CCAo+MCAo group underwent CCA dissection before cranial window surgery. Briefly,
150 the rat was placed in a supine position to shave and clean neck hairs. A vertical incision was made on
151 the neck, and the left CCA was carefully dissected from the surrounding tissue and exposed, avoiding
152 damaging the vagus nerve^{21,59}. A 3-0 surgical silk thread (Ethicon, France) was placed around the CCA
153 and remained untightened until occlusion during the imaging session. After the imaging section, the
154 neck skin was sutured with a 2-0 surgical silk thread (Ethicon, France). Rats from MCAo and

155 CCAo+MCAo groups were subjected to a permanent MCA occlusion directly during the imaging session
156 using a microvascular clip (#18055-03, micro-serrefine, FST GmbH, Germany) that was manually
157 refined by grinding for optimal serration of the MCAo in adults rats.

158

159 **Functional ultrasound imaging**

160 The data acquisition was performed using a functional ultrasound imaging scanner equipped with
161 custom acquisition and processing software described by Brunner et al.⁵⁶. In short, the scanner is
162 composed of a linear ultrasonic transducer (15MHz, 128 elements, Xtech15, Vermon, France)
163 connected to 128-channel emission-reception electronics (Vantage, Verasonics, USA) that are both
164 controlled by a high-performance computing workstation (fUSI-2, AUTC, Estonia). The transducer was
165 motorized (T-LSM200A, Zaber Technologies Inc., Canada) to allow anteroposterior scanning of the
166 brain. Imaging is performed on an anti-vibration table to minimize external sources of vibration. Each
167 coronal Doppler image is 12.8-mm width and 9-mm depth and comprises 300 compound images
168 acquired at 500Hz. Each compound image is computed by adding nine plane-wave (4.5kHz) angles
169 from -12° to 12° with a 3° step. The blood signal was extracted from 300 compound images using a
170 single value decomposition filter and removing the 30 first singular vectors⁶⁰. The Doppler image is
171 computed as the mean intensity of the blood signal in these 300 frames that is an estimator of the
172 cerebral blood volume (CBV)^{45,46}. This sequence enables a temporal resolution of 0.6s, an in-plane
173 resolution of 100×110µm, and an off-plane (thickness of the image) of 300µm⁵⁶.

174

175 **2D scan of brain vasculature**

176 Before occlusion, we performed a high-resolution 2D scan of the brain vasculature consisting of 89
177 coronal planes from bregma (β) +4.0 to -7.0mm spaced by 125µm. This scan was used for data
178 registration. During the 90-min imaging session, the same brain area was scanned at lower resolution
179 with only 23 planes with a step of 500µm that took approximately 23s to complete. The number of
180 imaging planes was chosen to maximize the number of brain volumes scanned per min while preserving
181 a good resolution in the anteroposterior axis. For the MCAo group, a 20-min baseline was recorded
182 before occluding the MCA, whereas the CCAo+MCAo group has a 10-min baseline before CCAo,
183 followed by the MCAo 10mins later. Notably, the procedures were performed live with a real-time display
184 of the Doppler images, allowing for monitoring the brain perfusion and the direct confirmation of the CCA
185 and/or MCA occlusions (Movies 1 to 3). The imaging session was stopped after 90mins of recording.

186

187 **Registration and segmentation**

188 We developed a custom digital rat brain atlas for registration of the data based on the one stereotaxic
189 atlas of Paxinos⁵⁷. In short, the spatial transformation matrix was computed on the high-resolution 2D
190 scan that was manually aligned on the atlas by affine transformation (i.e., translation, rotation, and
191 scaling). This matrix was then applied to the low-resolution 2D scan. The dataset was segmented into
192 115 anatomical regions/hemispheres that were subsampled from the 332 brain regions of the original
193 atlas (see Supplementary Table 1). The hemodynamic signals were averaged in each area. The
194 software for data registration and segmentation is open-access here⁶¹. The unrolled-cortex
195 representation corresponds to the maximum intensity projection of the signal located 250µm under the
196 cortical surface (see Supplementary Figure 1).

197

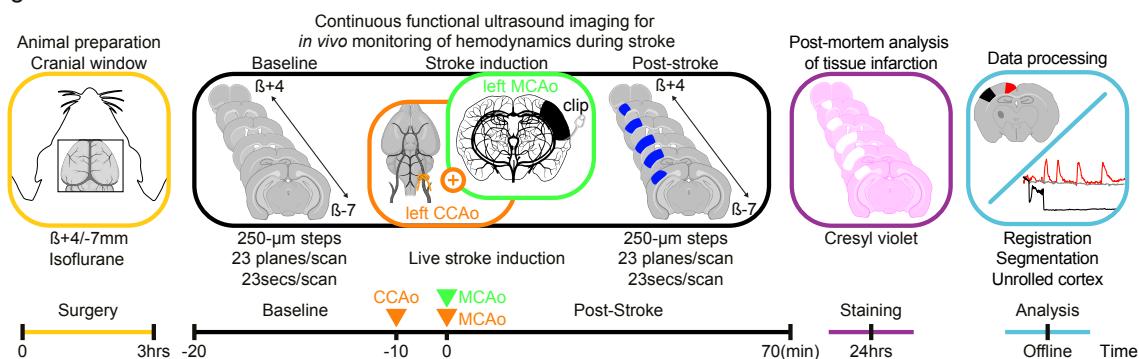
198 **Relative cerebral blood volume (rCBV)**

199 We used the relative cerebral blood volume (rCBV; expressed in % compared to baseline) to analyze
200 ischemia defined as the signal in each voxel compared to its average level during the baseline period
201 (Figure 1). After registration and segmentation, the rCBV signal was averaged in each individual region.

202

203 **Clustering of the rCBV loss**

204 Once registered and segmented, the brain regions were clustered based on the average rCBV loss after
205 the MCA occlusion and sorted from the most significant loss of rCBV signal to the smallest (from 1 to
206 115) as compared to baseline level. The list of the brain regions clustered can be found in
207 Supplementary Table 1.


208

209 **Analysis of spreading depolarizations**

210 The detection of spreading depolarizations (SDs) was performed based on the temporal analysis of the
211 rCBV signal. The rCBV signal was averaged in an area of interest (10×10 voxels) located in the left side
212 cortex, laterally to the ischemic territory. An SD is defined as a transient increase of rCBV signal above
213 50% compared to baseline. This procedure allowed to measure the occurrence of SDs over the
214 recording period and their propagation pattern in the field of view. The velocity of each SDs was

215 calculated as the time spent to propagate between two areas of interest located in the left side cortex,
216 along with the ischemic territory. The origin of each SDs was located by tracking back the trajectory to
217 the region of the first detection of the transient increase of rCBV. The occurrence, the propagation
218 pattern, and the velocity of SDs could be efficiently visualized using the unrolled-cortex projection as
219 presented in Movie 3.
220

Figure 1

Figure 1. Experimental workflow and timeline. From left to right. An 11×13-mm cranial window was performed to access the whole brain by functional ultrasound imaging before occluding the middle cerebral artery occlusion (MCAo) or MCAo combined with the common carotid artery (CCAo+MCAo). Image acquisition has been performed continuously for 70mins by scanning the brain repeatedly in the anteroposterior direction (23secs/scan) before, during, and after stroke onset. After the experiments, rats returned to their home cage and were euthanized 24hrs after occlusion to quantify the infarct size using cresyl violet staining. We developed a digital version of the rat Paxinos atlas⁵⁷ for the registration, segmentation, and temporal analysis of ischemia using a dedicated software solution⁶¹.

221
222 **Histopathology**
223 Rats were killed 24hrs after the occlusion for histological analysis of the infarcted tissue. Rats received
224 a lethal injection of pentobarbital (100mg/kg i.p. Dolethal, Vetoquinol, France). Using a peristaltic pump,
225 they were transcardially perfused with phosphate-buffered saline followed by 4% paraformaldehyde
226 (Sigma-Aldrich, USA). Brains were collected and post-fixed overnight. 50-μm thick coronal brain
227 sections across the MCA territory were sliced on a vibratome (VT1000S, Leica Microsystems, Germany)
228 and analyzed using the cresyl violet (Electron Microscopy Sciences, USA) staining procedure. Slices
229 were mounted with DPX mounting medium (Sigma-Aldrich, USA) and scanned using a brightfield
230 microscope. Ischemic lesion areas were manually delineated and measured by two researchers
231 independently in double-blind conditions using the Fiji software⁶². Brain slices were then registered on
232 the rat atlas utilizing a set of landmarks, including the overall size of the slice, the cortical thickness, the
233 positions of ventricles, and the position/size of the hippocampus. The ischemic lesion was projected in
234 the unroll-cortex using the same approach as defined previously (see above and Supplementary Figure
235 1).
236

237 **Statistical analysis**
238 The dataset successfully passed Shapiro-Wilk and Kolmogorov-Smirnov tests (significance level
239 $\alpha=0.05$) for normal distribution before being subjected to statistical analysis, see details in results and
240 figure captions. All data are shown as mean±standard deviation (sd). Statistical analysis were performed
241 using Prism9.3.1 (GraphPad Software).
242

243 **Results**

244 **Animals**

245 Three rats from the MCAo group were excluded from the analysis because we observed an extensive
246 *postmortem* hemorrhage extending in the cortex and subcortical regions. It was probably caused by a
247 displacement of the microvascular clip during the 24hrs recovery period. Therefore, the number of rats
248 in this group was reduced to n=7 for the analysis.
249

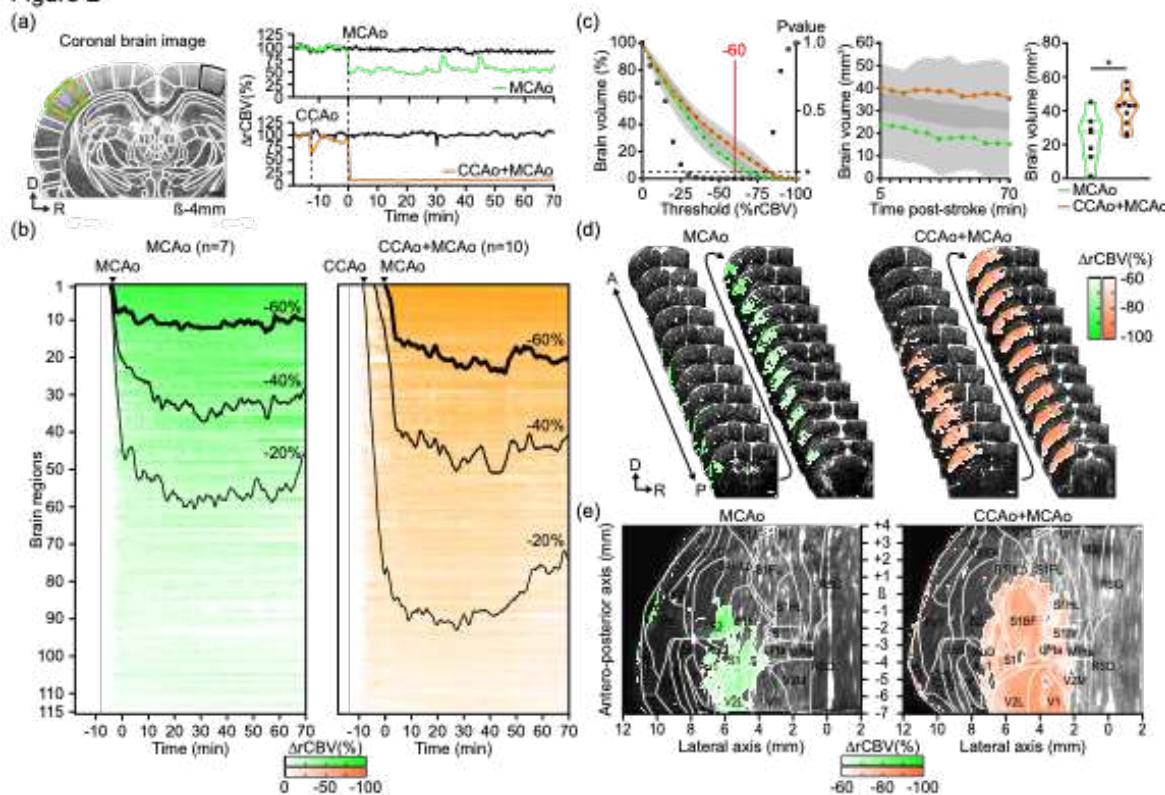
250 **Brain-wide continuous monitoring of hemodynamics**

251 The functional ultrasound imaging scanner allows repeated 2D scans in the anteroposterior direction.
252 For the first time, we demonstrate the applicability of this technology for large-scale and continuous
253 monitoring of hemodynamics in deep brain tissue before, during, and after stroke onset. After data
254 acquisition, every 23 cross-sections spaced of 500μm were registered and segmented on a custom-

255 developed digital rat atlas (see Materials and Methods) to provide a volumetric and dynamic view of the
256 changes in perfusion at high spatiotemporal resolution.
257

258 Typical plots of the temporal evolution of the hemodynamic signal are shown in Figure 2(a) for both the
259 MCAo (green plot) and CCAo+MCAo (orange plot) stroke models. In this example, the variations in the
260 cerebral perfusion were measured as rCBV compared to the baseline level in two regions of interest
261 located either in the ischemic core in the left hemisphere (S1BF) or in the opposite control hemisphere
262 (black ROI and plots). As shown, for the MCAo stroke model (Figure 2(a), green plot), the rCBV signal
263 dropped immediately by ~ -50% after MCAo and remained around this value during the entire duration
264 of the experiment. On the contrary, we observed a two-step and a more profound decrease of the rCBV
265 signal (Figure 2(a), orange line) in the CCAo+MCAo stroke model. First, we observed a transient drop
266 of the rCBV to approximately -60% of the baseline level caused by the CCA occlusion that quickly
267 recovered but not up to the initial values. Then, the MCAo triggers a massive reduction of ~ -95% of the
268 rCBV that remains at this level during the entire recording. Interestingly, in the CCAo+MCAo stroke
269 model, the contralateral hemisphere also shows a transient drop of ~ -15-20% of the rCBV signal after
270 CCAo that is not exacerbated after MCAo (Figure 2(a), black line). Note that the rCBV in the control ROI
271 located in the opposite hemisphere remains stable all along with the experiment in both stroke models
272 (Figure 2(a), dark line).
273

274 Figure 2(b) provides a detailed view of hemodynamic changes in 115 brain regions in the affected
275 hemisphere (See Supplementary Table 1) averaged for all animals in each group (MCAo group, n=7;
276 CCAo+MCAo group, n=10). Each region is sorted from the most significant loss of rCBV signal to the
277 smallest (from 1 to 115).
278


279 Three rCBV levels (-60, -40, and -20%) were defined to better compare the MCAo and CCAo+MCAo
280 stroke models. At the level above -60% rCBV, we noticed that more regions were affected in the
281 CCAo+MCAo than in the MCAo stroke model (~20 vs. ~10, respectively), confirming the cumulative
282 effect of MCAo+CCAo on the reduction of the perfusion. Note that all these regions were exclusively
283 located in the cortex. Between -40 and -60%, approximately the same number of regions (~30) were
284 affected in the two models, but we observed that those regions tend to be slightly reperfused naturally
285 over time (Figure 2(b)). Furthermore, we identified 50-60 regions located in the cortex with a drop of
286 rCBV signal below 20% of the baseline level in the MCAo group, whereas 80-90 regions were affected
287 for the same levels in the MCAo+CCAo group also including subcortical structures (Figure 2(b) and
288 Supplementary Table 1).
289

290 To evaluate the relevance of the rCBV signal to precisely assess the perfusion status and differentiate
291 each stroke model, we quantified the affected brain volume (in mm³) for various levels of rCBV decrease
292 (Figure 2(c)). We observed that ischemic volume differs significantly between the MCAo and the
293 CCAo+MCAo groups for values ranging from -30 to -75% (Figure 2(c)), left panel; mean±sd, Unpaired
294 t-test, *p<0.05). The most significant difference between the two groups was observed for the value -
295 60% that was chosen for further analysis (Figure 2(c) to (e)).
296

297 The total volume of brain tissue showing an rCBV reduction of -60% was then analyzed during the entire
298 imaging session. We observed that the volume of ischemic tissue for the CCAo+MCAo group was
299 41±10mm³ and did not show a significant change between the MCA occlusion and the end of the
300 imaging period (35±14mm³; Figure 2(c), middle panel; mean±sd; p>0.44, GLM-based repeated
301 measures one-way ANOVA). On the contrary, the volume of tissue affected for the MCAo group tends
302 to shrink over time from 24±14mm³ quickly after MCAo to 15±14mm³ after 70mins afterward (Figure
303 2(c), middle panel; mean±sd; p<0.0001, GLM-based repeated measures one-way ANOVA).
304 Interestingly, the differences between the two groups for an rCBV level of -60% were already statistically
305 significantly different at 5mins after stroke onset. It became even more pronounced during the 70mins
306 imaging period (Figure 2(c), right panel; p=0.013; Unpaired t-test).
307

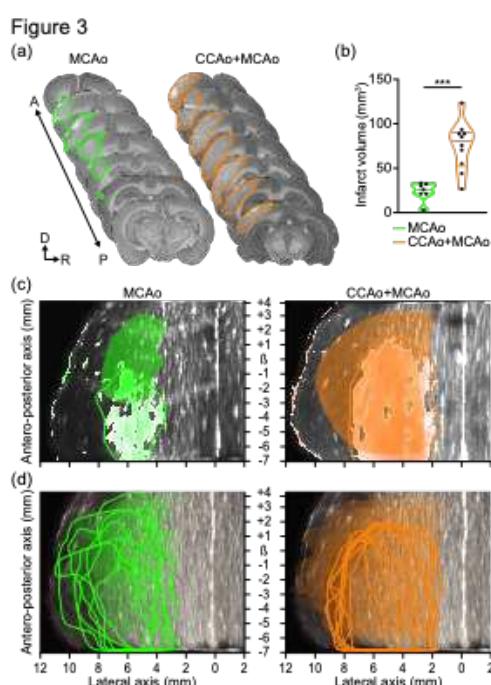
308 Figure 2(d) presents a typical case for each model in which we overlaid the ischemic territory on top of
309 each microvascular image collected during brain scans for each stroke model. We projected and
310 unrolled the cortical regions into a flat surface overlaid with the anatomical landmarks from the reference
311 rat brain atlas to appreciate the differences better. Such a view is advantageous for accurately
312 visualizing the regions with reduced rCBV, their spatial extent (Figure 2(e) and Supplementary Figure
313 1), and comparing animals and models.
314

Figure 2

Figure 2. Brain-wide continuous and real-time monitoring of hemodynamics during ischemic stroke. (a) A typical image of the brain microvasculature for one coronal cross-section from the 2D scan before the stroke. Only the left hemisphere is imaged entirely here because of the too-small size of the ultrasound transducer used for this study. All images were registered and segmented based on a digital version of the rat Paxinos atlas⁵⁷ (white outlines). Time series plots of the average signal in the primary somatosensory barrel-field cortex (S1BF; green and orange region) in the affected hemisphere and the control ROI located in the opposite hemisphere (black region) for each stroke model (MCAo in green; CCAo+MCAo in orange). (b) Global hemodynamic changes (rCBV) in 115 regions located in the ischemic hemisphere for both the MCAo (left and green panel) and CCAo+MCAo groups (right and orange panel). Regions were clustered according to the extent of rCBV signal loss (from more to less pronounced) (see Supplementary Table 1). (c) Left to right. Plot showing the total volume of brain region corresponding to a given rCBV decrease (%; mean±sd, multiple unpaired t-test, *p<0.05; left panel). Evolution of brain volume with a 60% rCBV reduction during the 70-min post-stroke period (mean±sd; middle panel). Brain volume with a rCBV reduction of -60% at 5mins after stroke onset at a signal threshold of 60% (Unpaired t-test, *p=0.013; right panel) between MCAo (green, n=7) and CCAo+MCAo groups (orange, n=10). (d) Typical 2D brain scan of hemodynamics showing the loss in rCBV induced by either MCAo (left panel) or CCAo+MCAo (right panel). 22 cross-sections out of 23 are represented here. (e) Unrolled-cortex projection (see Supplementary Figure 1) showing the loss in rCBV induced by either MCAo (left panel) or CCAo+MCAo (right panel). D: dorsal, R: right, A: anterior, P: posterior, B: Bregma reference point. Scale bars: 100μm.

315
316

A large part of the infarct is located in regions not ischemic at 70mins after stroke onset.


317 Cresyl violet staining of coronal brain slices was performed 24hrs after the experiments. A typical
318 example is presented in Figure 3(a). It shows that the infarcted area is localized only in the cortex in
319 both stroke models, but MCAo caused a much smaller and less extensive lesion (Figure 3(a), left panel;
320 green area) than CCAo+MCAo (Figure 3(a), right panel; orange area).

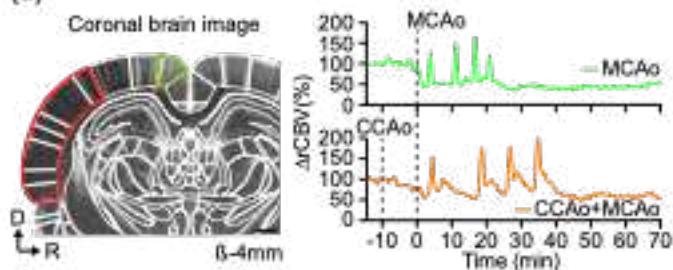
321
322 The statistical analysis of all rats confirmed that the infarct volume is significantly larger for the
323 CCAo+MCAo group ($75\pm28\text{mm}^3$, n=10, mean±sd; Figure 3(b), in orange) when compared to the MCAo
324 group ($24\pm10\text{mm}^3$, n=7, mean±sd; Figure 3(b), in green; ***p=0.0003, unpaired t-test). Note that these
325 results are in agreement with rCBV data, also showing a larger ischemic territory in the CCAo+MCAo
326 group. Taken together, this demonstrates that functional ultrasound images acquired at early time points
327 after stroke onset (from 5 to 70mins) have an excellent predictive value to predict brain infarction. To
328 confirm this hypothesis, we compared the results obtained by histopathology with those from functional
329 ultrasound imaging in each stroke model that were both presented using the same unrolled-cortex
330 projection as described previously (see Supplementary Figure 1). Figure 3(c) shows a typical case for
331 each group. We observed in the MCAo model (Figure 3(c), left panel) that the infarcted region (green
332 circle) only partially coincides with regions showing reduced rCBV (green halo). Interestingly, much of
333 the infarcted tissue is located rostrally to the region with low rCBV at 70mins, in an area that was not
334 initially ischemic. On the contrary, we observed a considerable overlap between the infarct region and
335

336 the initially ischemic region at 70mins in the CCAo+MCAo model (Figure 3(c), right panel) even though,
337 here again, non-overlapping regions were observed in the anterior part of the brain. Nevertheless, when
338 total infarct size was compared with the initial ischemic territory, it was preserved in the MCAo but not
339 in the CCAo+MCAo model, in which the infarct volume was much smaller than the initial ischemic region.
340

341 Although we observed large variability in terms of the location and size of the infarct at 24hrs after stroke
342 compared with the ischemic areas at 70mins after stroke onset for each animal (Figure 3), these results
343 were confirmed at the group level, showing that the infarcted territory extends rostrally to the ischemic
344 region by 1.53 ± 1.68 and 1.37 ± 0.66 mm, respectively in MCAo and CCAo+MCAo groups ($p=0.49$,
345 Unpaired t-test). This mismatch is consistent for the two groups (6/7 for MCAo and 7/7 for CCAo+MCAo
346 rats). Additionally, we noticed that the MCAo group also shows, on average, a mismatch between the
347 position of the infarct and the areas of low rCBV in the posterior part of the brain, where we previously
348 observed good reperfusion during the 70-min period of the functional ultrasound imaging recording
349 (Figure 2(b) and (c)). In both groups, these results indicate that the lack of blood supply may not be the
350 only factor contributing to the infarction of the brain.
351

352 These findings prompted us to evaluate other important factors, such as SDs that have been shown to
353 exacerbate focal ischemic injury by converting zones of the viable but non-functional ischemic penumbra
354 to the core region beyond rescue⁶³.
355

Figure 3. Size and location of the region with a low rCBV signal at 70mins do partially overlap with the infarct at 24hrs. (a) Typical rat brain cross-section stained by cresyl violet to evaluate the infarct size at 24hrs after MCAo (left) or CCAo+MCAo (right). The infarcted territory is highlighted for each stroke model (green and orange, respectively). (b) Comparison of the infarct volume (mm³) between the two models, showing the CCAo+MCAo (orange) display a statistically more extensive infarct than the MCAo group (green; Unpaired t-test, ***p=0.0003). (c) The infarct (colored halos) and the region with low rCBV levels (colored circles) are overlaid on the unrolled-cortex projection for one typical rat. (d) Same as in (c) but for all rats used in the study. D: dorsal, R: right, A: anterior, P: posterior, B: Bregma reference point.


356
357
358 **Spreading depolarizations start quickly after MCAo.**
359 As shown in previous studies, functional ultrasound imaging is suitable for whole-brain tracking of
360 transient hyperemic events associated with SDs^{45,64}. The imaging protocol that we developed for this
361 study allows for detection, monitoring, and quantification of SDs in real-time before, during, and after
362 stroke onset. The spatiotemporal profile of SDs was extracted by averaging the rCBV signal in all voxels
363 from the retrosplenial granular cortex (RSG) that is located in the vicinity of the region with the low level
364 of rCBV (Figure 4(a), left panel). As already observed in previous studies, SDs were triggering transient
365 hyperemia characterized by a rapid and massive increase of the rCBV signal (>+150% rCBV), followed
366 by a sustained reduction of the baseline level (Figure 4(a), right panel, and Movies 2 and 3). We did not
367 observe a significant difference in the number (4.3 ± 2.3 and 4.7 ± 2.9 , mean \pm sd, $p=0.7557$, Unpaired t-
368 test) and the frequency (1 SD each 17.5mins and 15.2mins, central frequency) of SDs between the
369 MCAo and CCAo+MCAo groups (Figure 4(b)). A detailed analysis of one individual animal revealed that
370 all SDs are generated within the same brain region (Movie 3). The sham controls had a maximum of 1
371 SD occurring in the first 5mins but did not show any infarcted tissue in the *postmortem* analysis ($n=4$,
372 data not shown). It has been reported that the initial SD could be due to the mechanical pressure during
373 the mechanical clipping to occlude the MCA as previously reported⁶⁵. If we exclude this initial SD from

374 our analysis, we observed that the second SD appears rapidly within ~10mins for both models (MCAo: 6±11mins, CCAo+MCAo: 11±9mins). The group analysis of functional ultrasound imaging data for all 375 animals revealed that most SDs were originating from the primary somatosensory cortex (72.2% for 376 MCAo versus 83.3% for CCAo+MCAo) between S1ULp and S1FL (centroid coordinates: $\beta+1.5/2$ mm, 377 Lateral 4.5/5mm) in the close vicinity of the area with low rCBV signal (Figure 4(c)). SDs are propagating 378 at a constant velocity. We did not observe differences in the velocity of SDs between MCAo and 379 CCAo+MCAo groups (respectively 5.8±1.0 and 6.4±2.4mm/min, mean±sd; $p=0.5683$, Unpaired t-test; 380 Figure 4(d)), but the values are in agreement with others studies⁶⁶. Figure 4(e) presents a typical color-coded 381 map overlaid on the unroll cortex projection showing the trajectory and progression of a standard 382 SD from the anterior to the posterior part of the brain by contouring the ischemic territory (Figure 4(e) 383 and Movie 3). 384

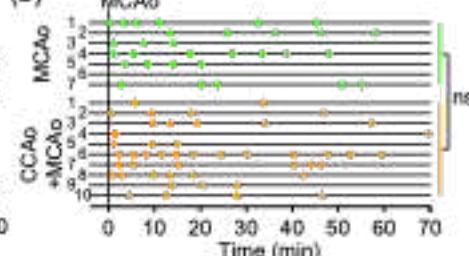
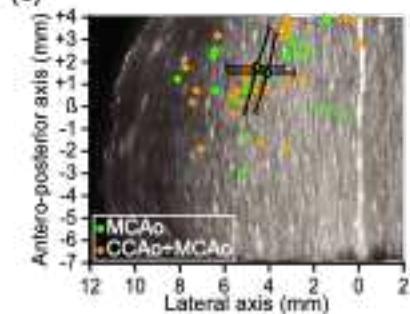
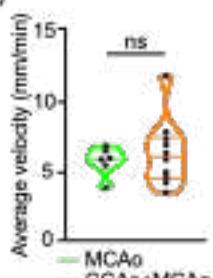
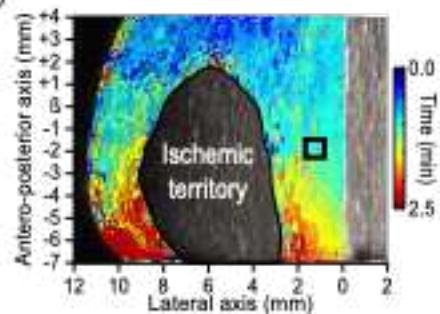

385

Figure 4


(a)


(b)


(c)

(d)

(e)

Figure 4. Real-time monitoring of spreading depolarizations using functional ultrasound imaging. (a) A coronal cross-section extracted from the 2D functional ultrasound imaging scan after stroke onset shows the substantial reduction of the rCBV signal in the cortex (red area). The time series plot of the average hemodynamic signal (rCBV) in the retrosplenial granular cortex (green and orange dotted line) from the ischemic hemisphere for each stroke model (MCAo in green; CCAo+MCAo in orange). (b) Monitoring of SDs. Each horizontal line represents one animal; each dot corresponds to the transient hemodynamic increase associated with an SD. The average SDs are not statistically different between the two groups (Unpaired t-test, ns=0.7557). (c) Location of the epicenter of SDs for the MCAo (green dots) and CCAo+MCAo (orange dots) models with respective centroids (mean±sd). (d) A plot of the distribution of the average velocity of SDs for MCAo (green) and CCAo+MCAo models (orange). Each point represents one rat. The average SD velocity is not statistically different between the two groups (Unpaired t-test, ns=0.5683). (e) Color-coded map showing the propagation of an SD in a concentric manner around the ischemic core from its epicenter located in the anterior part of the brain to the posterior part. D: dorsal, R: right, β : Bregma reference point. Scale bar: 100 μ m.

386

387

Discussion

388

389

390

391

392

393

394

395

396

397

398

399

400

401

To recapitulate the diversity of stroke observed in patients, various experimental models and surgical procedures are employed in rodents, including transient or permanent occlusion of MCA and/or CCA with a filament, photo- or chemo-thrombosis¹⁵⁻¹⁸. However, each strategy is often associated with complex and multifaceted stroke mechanisms, limiting their comparability^{17,18}.

In this work, we used two stroke models, in nearly identical conditions, using permanent occlusion (with a vascular micro-clip) of the MCAo combined with or without CCAo (ligature) to reduce collateral reperfusion, causing either small or large tissue infarction, respectively. This procedure was chosen to allow a fair comparison of brain-wide hemodynamic monitoring with functional ultrasound imaging between the two models, from early time point after stroke onset and during 70mins afterward.

Several imaging technologies such as magnetic resonance angiography (MRA), computed tomography perfusion, contrast-enhanced CT angiography, and transcranial Doppler sonography (TCD) are used to seek evidence of plausible stroke mechanisms and assess the efficiency of recanalization strategies⁶⁷.

402 However, hemodynamic patterns are highly variable since either improvements or deterioration related
403 to dynamic changes in brain perfusion may occur early during the clinical course of ischemic stroke.
404 These changes are often associated with spontaneous thrombolysis, re-occlusion, micro-embolism,
405 thrombus propagation, and collateralization⁶⁸. CT perfusion can be performed within 30mins after
406 hospital admission, but most often information on brain hemodynamics is available only after several
407 hours to days after the stroke onset, which may be too late for significantly improving the diagnosis,
408 care, and prognosis of stroke patients⁶⁹. Early, continuous and repeatable monitoring of cerebral
409 hemodynamics may offer new insights into acute ischemic stroke pathogenesis. In theory, precise
410 recording of brain perfusion may even guide therapeutic interventions to prevent neurological
411 deterioration or plan conservative treatment in response to particular hemodynamic patterns.
412

413 This study demonstrated that functional ultrasound imaging is a suitable technology for continuous
414 monitoring of brain-wide hemodynamics during stroke, allowing for real-time assessment of the ischemic
415 insult^{10,50,51}. For the first time, we analyzed the changes in rCBV at high spatiotemporal resolution in
416 both MCAo and CCAo+MCAo stroke rat models, which are used mainly for preclinical stroke research⁷⁰.
417 Technically, we performed repeated 2D scans in the anteroposterior direction (23 positions, 11×12.8×9-
418 mm³ total brain volume) to continuously monitor the rCBV signal from stroke onset to 70mins afterward.
419 Functional ultrasound imaging data were then registered and segmented across 115 regions based on
420 a digital version of the rat Paxinos atlas⁵⁷ using a custom software solution previously developed for
421 mice^{55,56,71}. This analytics pipeline is open-access and available for research purposes⁶¹. It is a powerful
422 tool for efficiently comparing hemodynamic changes in the entire brain between animals of the same
423 group and between groups. Volumetric (Figure 2(d)) and cortical projection (Figure 2(e)) maps of the
424 ischemic territory for each rat were reconstructed from the stack of the 2D slices to analyze the variability
425 between animals and to compare it with histopathological data on the infarct (Figure 3(d)).
426

427 As expected, we observed that the rCBV loss and its spatial extend are more pronounced in the
428 CCAo+MCAo than in the MCAo model, probably due to a reduction of the collateral flow in MCA territory
429 after CCAo⁷²⁻⁷⁴. We defined four thresholds (above -60%, -40%, -20%, and below as compared to the
430 baseline) to compare the two models and showed that the identity and number of regions in each
431 category strongly differ between the two models. Moreover, we observed complex hemodynamic
432 patterns throughout the entire imaging period, including pre-occlusion, early before and after
433 CCAo+MCAo, to 70mins afterward. Thanks to the high spatiotemporal resolution of functional
434 ultrasound imaging and its ability to image hemodynamics in deep brain regions, we measured
435 decreasing rCBV levels in the ischemic territory from the cortical surface to deep subcortical regions
436 with typical rCBV values ranging from -100 to 60% in the cortex, ~ -40% in the hippocampus and ~ -
437 20% in the striatum (Figure 2(b)).
438

439 Even if we observed considerable variability in the size and location of the ischemic regions between
440 animals (Figure 3(d)), we demonstrated that the MCAo and CCAo+MCAo stroke models are statistically
441 significantly different when comparing the number of regions with an rCBV level below -60% (Figure
442 2(c) to (e)). For this threshold, we observed that all ischemic regions were located in the cortex (Figure
443 2(b)) and that the volume of tissue with an rCBV value below -60% progressively decreases from 24mm³
444 5mins after stroke onset to 15mm³, 70mins post-stroke in the MCAo model (pvalue=0.0117, Paired t-
445 test; Figure 2(c); middle panel). Such an effect was not observed for the CCAo+MCAo model
446 (pvalue=0.1022, Paired t-test; Figure 2(c), middle panel). When comparing only the regions with an
447 rCBV level above -60%, we showed a slow but continuous perfusion increase following the MCAo in
448 both stroke models (Figure 2(b)).
449

450 We quantified the infarct size and found it statistically significantly smaller for the MCAo than for the
451 CCAo+MCAo model (25 vs. 75mm³) despite considerable inter animal variability in both models, as
452 previously reported for various preclinical stroke models⁷⁵ and patients⁷⁶. Notably, we observed a
453 significant dispersion of infarct sizes in the CCAo+MCAo than in the MCAo model, possibly because of
454 spontaneous reperfusion that may occur outside the imaging period (Figure 2(b)), even though this
455 model has been shown to provide more reproducible stroke lesions^{21,77,78}. Notably, the infarct volume
456 measured at 24hrs *postmortem* did match those of low rCBV measured *in vivo* using functional
457 ultrasound imaging for the MCAo but not the CCAo+MCAo model. For the latter, the infarct size was
458 approximately twice as large (80 vs. 40mm³, respectively) as expected from the rCBV data. Hence, brain
459 regions with a significant reduction of rCBV as measured by functional ultrasound imaging did not fully
460 overlap with infarct size and location, especially for the CCAo+MCAo stroke model, in contrast to what
461 was previously observed in a thromboembolic mice model⁵¹.

462

463 Nevertheless, we hypothesize that functional ultrasound imaging may predict more accurately the size
464 and location of the constituted infarct at 24hrs by merging information on the level of rCBV with analysis
465 of hemodynamic changes associated with SDs^{45,64}. Indeed, we showed that the final brain infarct was
466 located more rostrally as compared to the initial ischemic territory measured 70mins after stroke in both
467 models (Figure 3(c) and (d)). Additionally, we demonstrate that the SDs propagate from one point of
468 origin in a rostrocaudal direction with a median velocity of ~6mm/min, which agrees with the literature^{79–}
469 ⁸³. Interestingly, all SDs originated within brain regions that are part of the infarct but are not ischemic in
470 the first 70mins. It is important to note that SDs may occur up to 6hrs after stroke onset, which has been
471 shown to cause an expansion of core-infarcted tissue^{66,84}. We did not observe differences in the number
472 of the SDs between the MCAo and CCAo+MCAo stroke during the 70mins imaging period confirming
473 previous results, which demonstrated that the number of SDs was not directly associated with the
474 expansion of the ischemic insult⁸¹. In short, our work shows the relevance of functional ultrasound
475 imaging to better understand early hemodynamic changes in preclinical stroke research. It enlightens
476 their high complexity, which may make stroke a heterogeneous disorder. Moreover, our results suggest
477 that the primary somatosensory cortex in rats is highly sensitive during a stroke and becomes a hot spot
478 for generating spreading depolarization, which may contribute to delayed infarction of this region.
479

480

481 We used two rat stroke models to evaluate the relevance of functional ultrasound imaging in two
482 ischemic conditions that may recapitulate the variability of infarct size and location observed in the clinic.
483 However, functional ultrasound imaging requires a craniotomy, especially for imaging deep brain
484 regions, since the skull is strongly attenuating high-frequency ultrasound signals⁸⁵. Importantly, it has
485 been demonstrated that both neurological behavior and infarction size were significantly better in rats
486 treated very early by decompressive craniectomy (4hrs) after endovascular MCAo⁸⁶. Therefore, it is
487 likely that our results may underestimate those in close skull since acute ischemia in the MCA territory
488 may lead to cerebral edema with raised intracranial pressure and reduce collateral blood flow, which is
489 associated with larger infarct size⁸⁷.

490

491 Two other limitations of our study relate to i) the lack of monitoring of physiological parameters (i.e.,
492 blood pressure, blood gas analysis,...) and ii) the anesthesia. It has been demonstrated that several
493 anesthetics have dose-specific effects on cerebral blood flow^{88–91} but also affects neurovascular
494 coupling, autoregulation, ischemic depolarizations^{91–94}, excitotoxicity, inflammation, neural networks,
495 and numerous molecular pathways relevant for stroke outcome^{91,95}. Additionally, we did not analyze the
496 behavioral outcome, which the STAIR committee recommends for improving the translation value of
497 preclinical stroke research⁷⁰. These limitations could be further addressed using volumetric functional
498 ultrasound imaging (vfUSI) that has been recently developed and based on a 2D-array transducer to
499 acquire 3D images of brain activity in awake conditions⁵⁵.

500

501 The versatility, ease-of-use, contrast-free, low cost, portability, and recent success in the clinic^{60,96,97}
502 makes functional ultrasound imaging a promising tool to monitor and map large-scale and in-depth
hemodynamics for a better diagnosis and prognosis of various brain vascular disorders.

503 **Author contributions**

	Brunner	Lagumersindez Denis	Gertz	Grillet	Montaldo	Endres	Urban
Concept	X	X	X			X	X
Methodology	X	X	X				X
Software					X		X
Imaging	X						
Histochemistry		X		X			
Data Analysis - Interpretation	X	X			X		X
Manuscript	X				X	X	X
Proofreading	X	X	X	X	X	X	X
Supervision			X		X	X	X
Funding						X	X

504

505 **Funding**

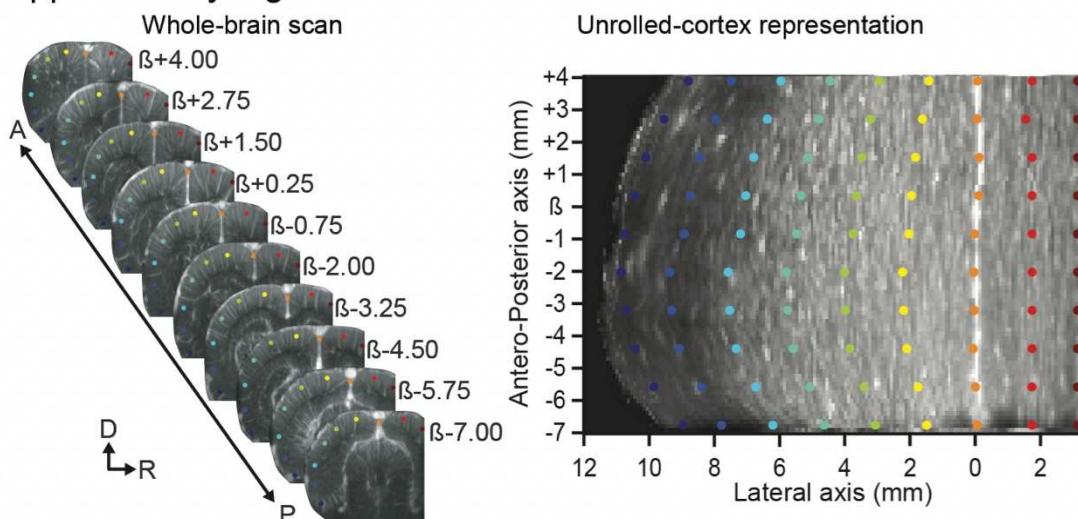
506 This work is supported by grants from the Fondation Leducq (15CVD02) and KU Leuven (C14/18/099-
507 STYMULATE-STROKE). The functional ultrasound imaging platform is supported by grants from FWO
508 (MEDI-RESCU2-AKUL/17/049, G091719N, and 1197818N), VIB Tech-Watch (fUSI-MICE), Neuro-
509 Electronics Research Flanders TechDev fund (3D-fUSI project). The Endres lab received funding from
510 DFG under Germany's Excellence Strategy – EXC-2049 – 390688087, BMBF, DZNE, DZHK, EU,
511 Corona Foundation, and Fondation Leducq

512

513 **Acknowledgements**

514 The authors thank all the members of the Fondation Leducq network #15CVD02 for helpful comments
515 and discussions. We thank all NERF animal caretakers, including I. Eyckmans, F. Ooms, and S. Luijten,
516 for their help with the management of the animals.

517


518 **Disclosure**

519 520

A.U. is the founder and a shareholder of AUTC company commercializing functional ultrasound imaging
solutions for preclinical and clinical research.

521 **Supplementary Materials**

522 **Supplementary Figure 1**

523

Supplementary Figure 1. Unrolled-cortex projection.

524 **Supplementary Table 1.** List of the 115 brain regions extracted from a digital version of the rat Paxinos
525 atlas organized by main anatomical structures (left) and clustered based on the average rCBV loss after
526 the MCAo (right).

527 **Movie 1.** Whole-brain scans before (left) and 70mins after CCA and MCA occlusions (right).

528 **Movie 2.** Movie of hemodynamic changes induced by concomitant CCA and MCA occlusions observed
529 in a single coronal plane ($\beta+3\text{mm}$) extracted from the whole-brain scan.

530 **Movie 3.** Movie of hemodynamic changes induced by concomitant CCA and MCA occlusions observed
531 with the unrolled-cortex projection.

535 **References**

536 1 Astrup J, Siesjö BK, Symon L. Thresholds in cerebral ischemia - the ischemic penumbra. *Stroke*
537 1981; **12**: 723–725.

538 2 Maas MB, Lev MH, Ay H, Singhal AB, Greer DM, Smith WS *et al.* Collateral vessels on CT
539 angiography predict outcome in acute ischemic stroke. *Stroke* 2009; **40**: 3001–3005.

540 3 Saver JL. Time is brain--quantified. *Stroke* 2006; **37**: 263–266.

541 4 Vagal A, Aviv R, Sucharew H, Reddy M, Hou Q, Michel P *et al.* Collateral clock is more important
542 than time clock for tissue fate. *Stroke* 2018; **49**: 2102–2107.

543 5 Krafft PR, Bailey EL, Lekic T, Rolland WB, Altay O, Tang J *et al.* Etiology of stroke and choice of
544 models. *Int J Stroke* 2012; **7**: 398–406.

545 6 Ginsberg MD. Adventures in the pathophysiology of brain ischemia: penumbra, gene expression,
546 neuroprotection: the 2002 Thomas Willis Lecture. *Stroke* 2003; **34**: 214–223.

547 7 Heiss W-D, Kracht LW, Thiel A, Grond M, Pawlik G. Penumbral probability thresholds of cortical
548 flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischemia. *Brain*
549 2001; **124**: 20–29.

550 8 Howells DW, Porritt MJ, Rewell SSJ, O'Collins V, Sena ES, van der Worp HB *et al.* Different strokes
551 for different folks: the rich diversity of animal models of focal cerebral ischemia. *J Cereb Blood Flow
552 Metab* 2010; **30**: 1412–1431.

553 9 Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion
554 without craniectomy in rats. *Stroke* 1989; **20**: 84–91.

555 10 Brunner C, Korostelev M, Raja S, Montaldo G, Urban A, Baron J-C. Evidence from functional
556 ultrasound imaging of enhanced contralateral microvascular response to somatosensory
557 stimulation in acute middle cerebral artery occlusion/reperfusion in rats: A marker of ultra-early
558 network reorganization? *J Cereb Blood Flow Metab* 2018; **38**: 1690–1700.

559 11 Lay CC, Jacobs N, Hancock AM, Zhou Y, Frostig RD. Early stimulation treatment provides complete
560 sensory-induced protection from ischemic stroke under isoflurane anesthesia. *Eur J Neurosci* 2013;
561 **38**: 2445–2452.

562 12 Imai H, Saito N, Macrae IM. Rat middle cerebral artery (MCA) occlusion models which involve a
563 frontotemporal craniectomy. In: *Neuromethods*. Springer New York: New York, NY, 2016, pp 55–
564 71.

565 13 Yao H, Sugimori H, Fukuda K, Takada J, Ooboshi H, Kitazono T *et al.* Photothrombotic Middle
566 Cerebral Artery Occlusion and Reperfusion Laser System in Spontaneously Hypertensive Rats.
567 *Stroke* 2003; **34**: 2716–2721.

568 14 Nikolova S, Moyanova S, Hughes S, Bellyou-Camilleri M, Lee T-Y, Bartha R. Endothelin-1 induced
569 MCAO: dose dependency of cerebral blood flow. *J Neurosci Methods* 2009; **179**: 22–28.

570 15 Karatas H, Erdener SE, Gursoy-Ozdemir Y, Gurer G, Soylemezoglu F, Dunn AK *et al.* Thrombotic
571 distal middle cerebral artery occlusion produced by topical FeCl(3) application: a novel model
572 suitable for intravital microscopy and thrombolysis studies. *J Cereb Blood Flow Metab* 2011; **31**:
573 1452–1460.

574 16 Jia J-M, Chowdary PD, Gao X, Ci B, Li W, Mulgaonkar A *et al.* Control of cerebral ischemia with
575 magnetic nanoparticles. *Nat Methods* 2017; **14**: 160–166.

576 17 MacRae I. Preclinical stroke research - Advantages and disadvantages of the most common rodent
577 models of focal ischaemia. *Br J Pharmacol* 2011; **164**: 1062–1078.

578 18 Fluri F, Schuhmann MK, Kleinschnitz C. Animal models of ischemic stroke and their application in
579 clinical research. *Drug Des Devel Ther* 2015; **9**: 3445–3454.

580 19 Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Method parameters' impact on
581 mortality and variability in mouse stroke experiments: a meta-analysis. *Sci Rep* 2016; **6**: 21086.

582 20 Ström JO, Ingberg E, Theodorsson A, Theodorsson E. Method parameters' impact on mortality and
583 variability in rat stroke experiments: a meta-analysis. *BMC Neurosci* 2013; **14**: 41.

584 21 Brint S, Jacewicz M, Kiessling M, Tanabe J, Pulsinelli W. Focal brain ischemia in the rat: methods
585 for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and
586 ipsilateral common carotid arteries. *J Cereb Blood Flow Metab* 1988; **8**: 474–485.

587 22 Hansen AJ, Quistorff B, Gjedde A. Relationship between local changes in cortical blood flow and
588 extracellular K⁺ during spreading depression. *Acta Physiol Scand* 1980; **109**: 1–6.

589 23 Dreier JP, Körner K, Ebert N, Görner A, Rubin I, Back T *et al.* Nitric oxide scavenging by hemoglobin
590 or nitric oxide synthase inhibition by N-nitro-L-arginine induces cortical spreading ischemia when
591 K⁺ is increased in the subarachnoid space. *J Cereb Blood Flow Metab* 1998; **18**: 978–990.

592 24 Shin HK, Dunn AK, Jones PB, Boas DA, Moskowitz MA, Ayata C. Vasoconstrictive neurovascular
593 coupling during focal ischemic depolarizations. *J Cereb Blood Flow Metab* 2006; **26**: 1018–1030.

594 25 Mies G, Iijima T, Hossmann KA. Correlation between peri-infarct DC shifts and ischaemic neuronal
595 damage in rat. *Neuroreport* 1993; **4**: 709–711.

596 26 Busch E, Gygell ML, Eis M, Hoehn-Berlage M, Hossmann KA. Potassium-induced cortical
597 spreading depressions during focal cerebral ischemia in rats: contribution to lesion growth assessed
598 by diffusion-weighted NMR and biochemical imaging. *J Cereb Blood Flow Metab* 1996; **16**: 1090–
599 1099.

600 27 Back T, Ginsberg MD, Dietrich WD, Watson BD. Induction of spreading depression in the ischemic
601 hemisphere following experimental middle cerebral artery occlusion: effect on infarct morphology.
602 *J Cereb Blood Flow Metab* 1996; **16**: 202–213.

603 28 Dijkhuizen RM, Beekwilder JP, van der Worp HB, Berkelbach van der Sprenkel JW, Tulleken KAF,
604 Nicolay K. Correlation between tissue depolarizations and damage in focal ischemic rat
605 brain¹Published on the World Wide Web on 12 July 1999.1. *Brain Res* 1999; **840**: 194–205.

606 29 von Bornstädt D, Houben T, Seidel JL, Zheng Y, Dilekz E, Qin T et al. Supply-demand mismatch
607 transients in susceptible peri-infarct hot zones explain the origins of spreading injury
608 depolarizations. *Neuron* 2015; **85**: 1117–1131.

609 30 Herson PS, Traystman RJ. Animal models of stroke: translational potential at present and in 2050.
610 *Future Neurol* 2014; **9**: 541–551.

611 31 Donahue MJ, Achten E, Cogswell PM, De Leeuw F-E, Derdeyn CP, Dijkhuizen RM et al. Consensus
612 statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular
613 disease. *J Cereb Blood Flow Metab* 2018; **38**: 1391–1417.

614 32 Baron J-C. Recent advances in mesoscopic-scale imaging in animal models of ischemic stroke.
615 *Curr Opin Neurol* 2016; **29**: 104–111.

616 33 Reid E, Graham D, Lopez-Gonzalez MR, Holmes WM, Macrae IM, McCabe C. Penumbra detection
617 using PWI/DWI mismatch MRI in a rat stroke model with and without comorbidity: comparison of
618 methods. *J Cereb Blood Flow Metab* 2012; **32**: 1765–1777.

619 34 Baskerville TA, McCabe C, Weir CJ, Macrae IM, Holmes WM. Noninvasive MRI measurement of
620 CBF: evaluating an arterial spin labelling sequence with 99mTc-HMPAO CBF autoradiography in a
621 rat stroke model. *J Cereb Blood Flow Metab* 2012; **32**: 973–977.

622 35 Chen F, Suzuki Y, Nagai N, Sun X, Coudyzer W, Yu J et al. Delayed perfusion phenomenon in a
623 rat stroke model at 1.5 T MR: an imaging sign parallel to spontaneous reperfusion and ischemic
624 penumbra? *Eur J Radiol* 2007; **61**: 70–78.

625 36 Szigeti K, Horváth I, Veres DS, Martinecz B, Lénárt N, Kovács N et al. A novel SPECT-based
626 approach reveals early mechanisms of central and peripheral inflammation after cerebral ischemia.
627 *J Cereb Blood Flow Metab* 2015; **35**: 1921–1929.

628 37 Morris GP, Wright AL, Tan RP, Gladbach A, Ittner LM, Vissel B. A comparative study of variables
629 influencing ischemic injury in the longa and koizumi methods of intraluminal filament middle cerebral
630 artery occlusion in mice. *PLoS One* 2016; **11**. doi:10.1371/journal.pone.0148503.

631 38 Beretta S, Versace A, Carone D, Riva M, Dell'Era V, Cuccione E et al. Cerebral collateral
632 therapeutics in acute ischemic stroke: A randomized preclinical trial of four modulation strategies.
633 *J Cereb Blood Flow Metab* 2017; **37**: 3344–3354.

634 39 Yuan L, Li Y, Li H, Lu H, Tong S. Intraoperative laser speckle contrast imaging improves the stability
635 of rodent middle cerebral artery occlusion model. *J Biomed Opt* 2015; **20**: 096012.

636 40 Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. Functional architecture of cortex revealed
637 by optical imaging of intrinsic signals. *Nature* 1986; **324**: 361–364.

638 41 Shih AY, Driscoll JD, Drew PJ, Nishimura N, Schaffer CB, Kleinfeld D. Two-photon microscopy as
639 a tool to study blood flow and neurovascular coupling in the rodent brain. *J Cereb Blood Flow Metab*
640 2013; **33**: 319–319.

641 42 Razansky D, Klohs J, Ni R. Multi-scale optoacoustic molecular imaging of brain diseases. *Eur J
642 Nucl Med Mol Imaging* 2021. doi:10.1007/s00259-021-05207-4.

643 43 Gottschalk S, Degtyaruk O, Mc Larney B, Rebling J, Hutter MA, Deán-Ben XL et al. Rapid
644 volumetric optoacoustic imaging of neural dynamics across the mouse brain. *Nat Biomed Eng* 2019;
645 **3**: 392–401.

646 44 Lv J, Li S, Zhang J, Duan F, Wu Z, Chen R et al. In vivo photoacoustic imaging dynamically monitors
647 the structural and functional changes of ischemic stroke at a very early stage. *Theranostics* 2020;
648 **10**: 816–828.

649 45 Macé E, Montaldo G, Cohen I, Baulac M, Fink M, Tanter M. Functional ultrasound imaging of the
650 brain. *Nature methods* 2011; **8**: 662–664.

651 46 Macé E, Montaldo G, Osmanski B-F, Cohen I, Fink M, Tanter M. Functional ultrasound imaging of
652 the brain: theory and basic principles. *IEEE Trans Ultrason Ferroelectr Freq Control* 2013; **60**: 492–
653 506.

654 47 Montaldo G, Tanter M, Bercoff J, Benech N, Fink M. Coherent plane-wave compounding for very
655 high frame rate ultrasonography and transient elastography. *IEEE Trans Ultrason Ferroelectr Freq
656 Control* 2009; **56**: 489–506.

657 48 Urban A, Mace E, Brunner C, Heidmann M, Rossier J, Montaldo G. Chronic assessment of cerebral
658 hemodynamics during rat forepaw electrical stimulation using functional ultrasound imaging.
659 *Neuroimage* 2014; **101**: 138–149.

660 49 Urban A, Golgher L, Brunner C, Gdalyahu A, Har-Gil H, Kain D *et al.* Understanding the
661 neurovascular unit at multiple scales: Advantages and limitations of multi-photon and functional
662 ultrasound imaging. *Adv Drug Deliv Rev* 2017; **119**: 73–100.

663 50 Brunner C, Isabel C, Martin A, Dussaux C, Savoye A, Emmrich J *et al.* Mapping the dynamics of
664 brain perfusion using functional ultrasound in a rat model of transient middle cerebral artery
665 occlusion. *J Cereb Blood Flow Metab* 2017; **37**: 263–276.

666 51 Hingot V, Brodin C, Lebrun F, Heiles B, Chagnot A, Yetim M *et al.* Early Ultrafast Ultrasound
667 Imaging of Cerebral Perfusion correlates with Ischemic Stroke outcomes and responses to
668 treatment in Mice. *Theranostics* 2020; **10**: 7480–7491.

669 52 Sieu L-A, Bergel A, Tiran E, Deffieux T, Pernot M, Gennisson J-L *et al.* EEG and functional
670 ultrasound imaging in mobile rats. *Nat Methods* 2015; **12**: 831–834.

671 53 Tiran E, Ferrier J, Deffieux T, Gennisson J-L, Pezet S, Lenkei Z *et al.* Transcranial Functional
672 Ultrasound Imaging in Freely Moving Awake Mice and Anesthetized Young Rats without Contrast
673 Agent. *Ultrasound Med Biol* 2017; **43**: 1679–1689.

674 54 Urban A, Dussaux C, Martel G, Brunner C, Mace E, Montaldo G. Real-time imaging of brain activity
675 in freely moving rats using functional ultrasound. *Nature methods* 2015; **12**: 873–878.

676 55 Brunner C, Grillet M, Sans-Dublanc A, Farrow K, Lambert T, Macé E *et al.* A Platform for Brain-
677 wide Volumetric Functional Ultrasound Imaging and Analysis of Circuit Dynamics in Awake Mice.
678 *Neuron* 2020. doi:10.1016/j.neuron.2020.09.020.

679 56 Brunner C, Grillet M, Urban A, Roska B, Montaldo G, Macé E. Whole-brain functional ultrasound
680 imaging in awake head-fixed mice. *Nat Protoc* 2021. doi:10.1038/s41596-021-00548-8.

681 57 Paxinos G. *The rat brain in stereotaxic coordinates*. 6th ed. Academic Press, 2014.

682 58 Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M *et al.* The ARRIVE guidelines
683 2.0: Updated guidelines for reporting animal research. *PLoS Biol* 2020; **18**: e3000410.

684 59 Wayman C, Duricki DA, Roy LA, Haenzi B, Tsai S-Y, Kartje G *et al.* Performing permanent distal
685 middle cerebral with common carotid artery occlusion in aged rats to study cortical ischemia with
686 sustained disability. *J Vis Exp* 2016; : 53106.

687 60 Urban A, Brunner C, Dussaux C, Chassoux F, Devaux B, Montaldo G. Functional Ultrasound
688 Imaging of Cerebral Capillaries in Rodents and Humans. *Jacobs Journal of Molecular and
689 Translational Medicine* 2015; **1**: 007.

690 61 ClemBrunner, nerf-common. *nerf-common/whole-brain-fUS: whole-brain-fUS v1.0.* 2021
691 doi:10.5281/zenodo.4585348.

692 62 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T *et al.* Fiji: an open-
693 source platform for biological-image analysis. *Nat Methods* 2012; **9**: 676–682.

694 63 Menyhárt Á, Zölei-Szénási D, Puskás T, Makra P, Orsolya MT, Szepes BÉ *et al.* Spreading
695 depolarization remarkably exacerbates ischemia-induced tissue acidosis in the young and aged rat
696 brain. *Sci Rep* 2017; **7**. doi:10.1038/s41598-017-01284-4.

697 64 Rabut C, Correia M, Finel V, Pezet S, Pernot M, Deffieux T *et al.* 4D functional ultrasound imaging
698 of whole-brain activity in rodents. *Nature methods* 2019; **16**: 994–997.

699 65 Akerman S, Holland PR, Goadsby PJ. Mechanically-induced cortical spreading depression
700 associated regional cerebral blood flow changes are blocked by Na⁺ ion channel blockade. *Brain
701 Res* 2008; **1229**: 27–36.

702 66 Ayata C, Lauritzen M. Spreading depression, spreading depolarizations, and the cerebral
703 vasculature. *Physiol Rev* 2015; **95**: 953–993.

704 67 Zhang Z, Pu Y, Mi D, Liu L. Cerebral hemodynamic evaluation after cerebral recanalization therapy
705 for acute ischemic stroke. *Front Neurol* 2019; **10**: 719.

706 68 Akopov S, Whitman GT. Hemodynamic studies in early ischemic stroke. *Stroke* 2002; **33**: 1274–
707 1279.

708 69 Tsivgoulis G, Apostolidou N, Giannopoulos S, Sharma VK. Hemodynamic causes of deterioration
709 in acute ischemic stroke. *Perspect Med* 2012; **1**: 177–184.

710 70 Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI *et al.* Update of the stroke
711 therapy academic industry roundtable preclinical recommendations. *Stroke* 2009; **40**: 2244–2250.

712 71 Macé É, Montaldo G, Trenholm S, Cowan C, Brignall A, Urban A *et al.* Whole-Brain Functional
713 Ultrasound Imaging Reveals Brain Modules for Visuomotor Integration. *Neuron* 2018; **100**: 1241-
714 1251.e7.

715 72 Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery
716 occlusion: evaluation of the model and development of a neurologic examination. *Stroke* 1986; **17**:
717 472-476.

718 73 Tanaka K, Ogawa N, Asanuma M, Kondo Y, Nomura M. Relationship between cholinergic
719 dysfunction and discrimination learning disabilities in Wistar rats following chronic cerebral
720 hypoperfusion. *Brain Res* 1996; **729**: 55-65.

721 74 Farkas E, Luiten PGM, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: a
722 model for chronic cerebral hypoperfusion-related neurodegenerative diseases. *Brain Res Rev*
723 2007; **54**: 162-180.

724 75 Durand A, Chauveau F, Cho T-H, Bolbos R, Langlois J-B, Hermitté L *et al.* Spontaneous reperfusion
725 after in situ thromboembolic stroke in mice. *PLoS One* 2012; **7**: e50083.

726 76 Barber PA, Davis SM, Infeld B, Baird AE, Donnan GA, Jolley D *et al.* Spontaneous reperfusion after
727 ischemic stroke is associated with improved outcome. *Stroke* 1998; **29**: 2522-2528.

728 77 Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD. A model of focal ischemic stroke in the rat:
729 reproducible extensive cortical infarction. *Stroke* 1986; **17**: 738-743.

730 78 Coert BA, Anderson RE, Meyer FB. Reproducibility of cerebral cortical infarction in the wistar rat
731 after middle cerebral artery occlusion. *J Stroke Cerebrovasc Dis* 1999; **8**: 380-387.

732 79 Nakamura H, Strong AJ, Dohmen C, Sakowitz OW, Vollmar S, Sué M *et al.* Spreading
733 depolarizations cycle around and enlarge focal ischaemic brain lesions. *Brain* 2010; **133**: 1994-
734 2006.

735 80 Takeda Y, Zhao L, Jacewicz M, Pulsinelli WA, Nowak TS Jr. Metabolic and perfusion responses to
736 recurrent peri-infarct depolarization during focal ischemia in the Spontaneously Hypertensive Rat:
737 dominant contribution of sporadic CBF decrements to infarct expansion. *J Cereb Blood Flow Metab*
738 2011; **31**: 1863-1873.

739 81 Bere Z, Obrenovitch TP, Kozák G, Bari F, Farkas E. Imaging reveals the focal area of spreading
740 depolarizations and a variety of hemodynamic responses in a rat microembolic stroke model. *J Cereb
741 Blood Flow Metab* 2014; **34**: 1695-1705.

742 82 Farkas E, Pratt R, Sengpiel F, Obrenovitch TP. Direct, live imaging of cortical spreading depression
743 and anoxic depolarisation using a fluorescent, voltage-sensitive dye. *J Cereb Blood Flow Metab*
744 2008; **28**: 251-262.

745 83 Bogdanov VB, Middleton NA, Theriot JJ, Parker PD, Abdullah OM, Ju YS *et al.* Susceptibility of
746 primary sensory cortex to spreading depolarizations. *J Neurosci* 2016; **36**: 4733-4743.

747 84 Risher WC, Ard D, Yuan J, Kirov SA. Recurrent spontaneous spreading depolarizations facilitate
748 acute dendritic injury in the ischemic penumbra. *J Neurosci* 2010; **30**: 9859-9868.

749 85 Tsai P-C, Gougheri HS, Kiani M. Skull impact on the ultrasound beam profile of transcranial focused
750 ultrasound stimulation. *Annu Int Conf IEEE Eng Med Biol Soc* 2019; **2019**: 5188-5191.

751 86 Doerfler A, Forsting M, Reith W, Christian Staff, Heiland S, Schäbitz W-R *et al.* Decompressive
752 craniectomy in a rat model of "malignant" cerebral hemispheric stroke: experimental support for an
753 aggressive therapeutic approach. *Neurosurg Focus* 1996; **1**: E1.

754 87 Beard DJ, Logan CL, McLeod DD, Hood RJ, Pepperall D, Murtha LA *et al.* Ischemic penumbra as
755 a trigger for intracranial pressure rise - A potential cause for collateral failure and infarct
756 progression? *J Cereb Blood Flow Metab* 2016; **36**: 917-927.

757 88 Newberg LA, Michenfelder JD, Chalon J. Cerebral protection by isoflurane during hypoxemia or
758 ischemia. *Surv Anesthesiol* 1984; **28**: 83.

759 89 Seto A, Taylor S, Trudeau D, Swan I, Leung J, Reeson P *et al.* Induction of ischemic stroke in
760 awake freely moving mice reveals that isoflurane anesthesia can mask the benefits of a
761 neuroprotection therapy. *Front Neuroenergetics* 2014; **6**. doi:10.3389/fnene.2014.00001.

762 90 Hillman TC, Matei N, Tang J, Zhang JH. Developing a standardized system of exposure and
763 intervention endpoints for isoflurane in preclinical stroke models. *Med Gas Res* 2019; **9**: 46-51.

764 91 Hoffmann U, Sheng H, Ayata C, Warner DS. Anesthesia in Experimental Stroke Research. *Transl
765 Stroke Res* 2016; **7**: 358-367.

766 92 Kudo C, Toyama M, Boku A, Hanamoto H, Morimoto Y, Sugimura M *et al.* Anesthetic effects on
767 susceptibility to cortical spreading depression. *Neuropharmacology* 2013; **67**: 32-36.

768 93 Kudo C, Nozari A, Moskowitz MA, Ayata C. The impact of anesthetics and hyperoxia on cortical
769 spreading depression. *Exp Neurol* 2008; **212**: 201-206.

770 94 Saito R, Graf R, Hübel K, Fujita T, Rosner G, Heiss WD. Reduction of infarct volume by halothane:
771 effect on cerebral blood flow or perifocal spreading depression-like depolarizations. *J Cereb Blood
772 Flow Metab* 1997; **17**: 857–864.

773 95 Masamoto K, Fukuda M, Vazquez A, Kim S-G. Dose-dependent effect of isoflurane on
774 neurovascular coupling in rat cerebral cortex. *Eur J Neurosci* 2009; **30**: 242–250.

775 96 Imbault M, Chauvet D, Gennisson J-L, Capelle L, Tanter M. Intraoperative Functional Ultrasound
776 Imaging of Human Brain Activity. *Sci Rep* 2017; **7**: 7304.

777 97 Soloukey S, Vincent AJPE, Satoer DD, Mastik F, Smits M, Dirven CMF *et al.* Functional Ultrasound
778 (fUS) During Awake Brain Surgery: The Clinical Potential of Intra-Operative Functional and
779 Vascular Brain Mapping. *Front Neurosci* 2020; **13**. doi:10.3389/fnins.2019.01384.