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Abstract

Diffusion weighted imaging (DWI) with multiple, high b-values is critical for extracting tissue
microstructure measurements; however, high b-value DWI images contain high noise levels that can
overwhelm the signal of interest and bias microstructural measurements. Here, we propose a simple
denoising method that can be applied to any dataset, provided a low-noise, single-subject dataset is
acquired using the same DWI sequence. The denoising method uses a one-dimensional convolutional
neural network (ID-CNN) and deep learning to learn from a low-noise dataset, voxel-by-voxel. The
trained model can then be applied to high-noise datasets from other subjects. We validated the 1D-CNN
denoising method by first demonstrating that 1D-CNN denoising resulted in DWI images that were more
similar to the noise-free ground truth than comparable denoising methods, e.g., MP-PCA, using simulated
DWI data. Using the same DWI acquisition but reconstructed with two common reconstruction methods,
i.e. SENSEl and sum-of-square, to generate a pair of low-noise and high-noise datasets, we then
demonstrated that 1D-CNN denoising of high-noise DWI data collected from human subjects showed
promising results in three domains: DWI images, diffusion metrics, and tractography. In particular, the
denoised images were very similar to a low-noise reference image of that subject, more than the similarity
between repeated low-noise images (i.e. computational reproducibility). Finally, we demonstrated the use
of the 1D-CNN method in two practical examples to reduce noise from parallel imaging and simultaneous
multi-slice acquisition. We conclude that the 1D-CNN denoising method is a simple, effective denoising
method for DWI images that overcomes some of the limitations of current state-of-the-art denoising
methods, such as the need for a large number of subjects for training and accounting for the rectified noise

floor.


https://doi.org/10.1101/2022.01.17.476708
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.17.476708; this version posted January 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1. Introduction

Neuroanatomical studies rely heavily on diffusion weighted imaging (DWI) sequences because
they can provide researchers with estimates of myelinated brain tissue properties in vivo. The general
approach is to model the diffusion signal and to use parameters of the model fit to infer characteristics
about the biological properties of the underlying brain tissue. The earliest and most widely used model is
the six-parameter tensor model (i.e. DTI) [1, 2]. A growing body of work is introducing increasingly
complex diffusion models with additional parameters that allow researchers to obtain estimates of more
nuanced biological properties (e.g., [3-6]). These higher order diffusion models show much promise for

advancing our knowledge of the biological properties of brain tissue in living subjects.

Higher order diffusion models are more susceptible to the influence of noise than the standard
tensor-based diffusion model because they incorporate DWI images that contain a weak signal. DWI
images are collected at a specific diffusion gradient strengths, or b-value. The larger the b-value, the higher
diffusion weighting, the weaker the signal available in the DWI image. The standard tensor-based
diffusion model can be fitted using DWI images collected at a b-value equal to 1000 s/mm? where the
signal is sufficiently strong to overcome several sources of noise. However, the more recently developed
higher order diffusion models, such as the models used in Diffusion Kurtosis Imaging (DKI) [7], Mean
Apparent Propagator (MAP) MRI [8], and Neurite Orientation Dispersion and Density Index (NODDI)
[6], incorporate additional DWT images collected at a higher b-value, such as 2500 s/mm?. The additional
higher b-value images contain a weak signal that leads to a more prominent rectified noise floor [9] that,
together with the noise present in the image, cause adverse effects on the diffusion metrics derived from
these higher order models [10]. Therefore, care must be taken to reduce the effect of noise and the rectified

noise floor in DWI images.

Modifications to the diffusion sequence have been proposed to reduce the effects of noise to more
effectively capture the weak signal observed at higher b-values. One approach is to modify the
reconstruction method by adjusting the coil combination scheme. In the case of the multi-channel phased
array head coils that are often used in DWI-based neuroanatomical studies, the standard coil combination
method is the sum-of-squares (SoS) method [11]. The SoS method weights each channel of the head coil
by the pixel value in the channel and can have the unwanted effect of a rectified noise floor when the

signal-to-noise ratio (SNR) is small, which becomes especially problematic at high »-values when the
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signal is relatively low. Replacing the SoS coil combination method with a method that incorporates phase
information from the coils, such as the adaptive combine (AC) [12] or sensitivity encoding-based
(SENSE1) [13] methods, lowers the rectified noise floor, effectively increasing the signal-to-noise ratio
(SNR) and facilitating the detection of weak signals. Such modifications are important for recovering the

diffusion signal and are particularly important for recovering the diffusion signal at high b-values.

The noise floor problem can also be addressed by post-processing methods that are applied after
the MRI data have been reconstructed, such as signal transformational frameworks [10, 14, 15] or
denoising procedures [14-21]. For instance, the signal-transformational framework reduces the effects of
the noise floor by mapping the noisy non-Central Chi signals, such as the Rician distribution often
observed in DWI, to noisy Gaussian signals [22]. A critical step of the signal-transformational approach
is obtaining the first moment of the non-Central Chi distribution. However, the first moment can only be
coarsely estimated through either parametric fitting or spline smoothing of the time course of each voxel.
The necessarily coarse estimation of the first moment might introduce bias into the models [10]. An
alternative method is to account for the non-Central Chi distribution when fitting diffusion metrics;

however, this method can significantly increase the complexity of modeling [23].

The most common post-processing method used to reduce the effects of noise in DWI images is
denoising that attempts to reduce the thermal noise in the DWI images. Denoising procedures for DWI
images have evolved rapidly in the last decade. The early DWI denoising approach was based on edge-
preserved smoothing, such as adaptive smoothing [14, 15] and non-local means [16, 17]. These methods
are typically applied on each individual DWI image. Although they are effective at reducing the noise,
they tend to blur the images and introduce errors in computing diffusion metrics [19]. The current state-
of-the-art methods are based on principal components analysis (PCA) [18, 19] with the assumption of
sufficient redundancy of DWI data so that only a number of components can represent the signal-related
variations and the rest can be removed as noise. The PCA procedure is often effective in situations where
the noise is invariant in the temporal domain, i.e., across DWI volumes, yet fails to effectively address the
noise floor effect. For instance, the MP-PCA [19] method fails to reduce the influence of noise
amplification in the standard SoS reconstruction [20]. In addition, it is very tricky to set the right threshold
to remove the “noisy” component [21]. Although a recent modification of the MP-PCA method resulted
in better noise reduction than the original MP-PCA procedure, this recent modification is computationally

intensive and not readily implemented on existing data because it is applied to the complex MRI data
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before reconstruction to avoid complications with the rectified noise floor [24]. Another denoising
method, Patch2Self, was proposed to outperform MP-PCA in low-noise datasets by exploiting the
statistical independence of noise [25]. However, the simulation result reveals similar poor performance as
MP-PCA at the very low SNR (e.g., < 10) typically observed in the high b-value DWI images used for
higher-order modelling [25]. Therefore, a denoising procedure that can address the rectified noise floor
problem in DWI images is needed — one that can be readily implemented on existing data for both high,

low, and very low SNR images.

Deep Learning (DL) denoising methods have the potential to overcome some of the limitations of
the common denoising technique. DL models have achieved huge success in image denoising [26], as well
as other applications, such as speech recognition, object detection, and genomics [27]. Several DL-based
methods have been proposed for denoising MRI data, such as convolutional neural networks (CNN) or
generative adversarial networks (GAN) [28-32]. One advantage of the DL approach over the PCA
approach is that the DL denoising procedure can deal with complex noise behavior [26]. This is
particularly important for DWI because DWI datasets contain many images with different image

intensities that can have different noise characteristics.

Current DL denoising methods in MRI are mainly applied in the image domain and are aimed at
denoising a single image, such as an anatomical image, and, consequently, have been developed in ways
that make their application to DWI data impractical. Applying a DL model to DWI data would require a
model to be trained for each image in a DWI dataset. Thus, applying the current DL denoising methods
to multi-shell DWI data would require a large amount of training data and the training process can be very
time consuming. To overcome this problem, recently a method based on a deep image prior was proposed
to denoise multiple DWI images simultaneously [33]. While this recently proposed method does reduce
the computation time for training, it remains very computationally intensive if the number of DWI images
is large (e.g., greater than 30). Given that the multi-shell DWI data often acquired for higher-order models

routinely have 60 or more images, this method remains computationally intractable for most researchers.

In this work, we adapted a current DL denoising method for use with DWI data by applying the
method to DWI data in the temporal domain, i.e., the time series of the voxels. This approach has two
advantages over the more common approach of denoising in the image domain. First, denoising in the

temporal domain requires less data than denoising in the image domain because the time course of each
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voxel is used as a training sample. This makes each voxel a training sample, instead of making each subject
a training sample, effectively reducing the amount of required training data to the training required for
only one DWI dataset. Second, denoising in the temporal domain is also more likely to retain coherence
of the time series for each voxel than denoising in the image domain, in which volumes collected at
different timepoints are denoised separately. Retaining coherence of the time series is critical for

computing diffusion metrics because the entire time series of a voxel is typically used in diffusion models.

To evaluate this proposed denoising procedure, we first validated the method on simulated DWI
data. Then, we evaluated the ability of the method to reduce noise in DWI data after SoS reconstruction,
1.e., SoS-related noise. We chose to test our method on SoS-related noise for two reasons: first, current
existing denoising methods fail to mitigate the noise floor in high b-value images from SoS reconstruction;
second, one can simultaneously reconstruct the image using SENSE1 to serve as the ground truth for
training purposes. Finally, we show two possible applications of our method in obtaining low-noise DWI
data from deep learning on high-noise DWI data. The first application aims to reduce noise associated
with GRAPPA [34]; the second application aims to reduce noise associated with simultaneous multi-slice

acquisition (SMS) [35, 36].

2. Materials and Methods
2.1 The CNN network and Optimization of hyper-parameters

Inspired by the 1D convolutional neural network (CNN) for denoising speeches [37, 38], we
constructed a simple 1D-CNN model that has five layers, including two convolutional layers, each
followed by a max-pooling layer, and a dense layer (Figure 1). The first convolutional layer was given an
input of the ‘noisy’ high-noise image and consisted of 16 one-dimensional filtering kernels of size 16. The
second convolutional layer consisted of 32 one-dimensional filtering kernels of size 8. The ReLu
activation function was used in both convolutional layers. There was 1 max-pooling layer that had a kernel
size of 2 with stride 2. In the dense layer, the extracted features of the high-noise image were mapped to
the low-noise reference image (Figure 1). The model was implemented in Tensorflow v1.14 [39] and

python 3.7.3 on a computer with Intel 17-10700 CPU, 32G memory, and Nvidia RTX 2060 GPU.

The CNN model uses a stochastic gradient descent algorithm for optimization. This model includes

several parameters that, in practice, should be optimized for any specific DWI dataset, namely the number
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of epochs, learning rate, and batch size. The number of epochs is the number of times that the entire
training dataset passes through the model and should be large enough to ensure that the model converges
to a point that the error from the model is minimized. The learning rate determines the step size of updating
the internal model parameters and needs to be chosen properly to ensure that the training is stable and
avoids local minima. The batch size is the number of samples put into the model at one time in the
computation that updates the internal model parameters. The updating of the internal model can affect the

model error for a specific learning rate.

We selected the number of epochs, learning rate, and batch size empirically based on the training
on in vivo data described in 2.2.2. We kept the number of epochs stable at a high enough value to allow
the model to converge to a solution and manipulated two parameters, learning rate and batch size, to find
optimal learning parameters. First, we determined the appropriate number of epochs based on a best guess
learning rate of 0.001 and batch size of 6000 empirically. We found that the error of the model decreased
quickly and stabilized after 6000 epochs for all our data. To be safe, we set the number of epochs to 20000.
Second, we determined the optimal learning rate and batch size for the model. We tested learning rate and
batch size together because learning rate and batch size often interact in the CNN’s learning procedure.
We tested six values for the learning rate [0.00025, 0.0005, 0.001, 0.002, 0.004, 0.008] and four values
for the batch size [3000, 6000, 9000, 12000], resulting in 24 tests. For each test, we trained a model on
75% of the voxels from a DWI dataset and, after 20000 epochs, we applied the resulting model to the
remaining 25% test voxels. For each combination of learning rate and batch size, the root-mean-square
error (RMSE) between the dSoS image and the SENSEI image in the testing set was used as a measure
of performance. We found the optimal learning with the best learning rate of 0.001 and batch size of 6000

(see Figure S1 in supplementary material).

2.2 Validation of Denoising Technique

2.2.1 Validation using simulated data

Design. We simulated DWI data to validate the 1D-CNN method for denoising DWI datasets.
We simulated a noise-free ground truth and added Gaussian noise to complex MRI data to create both a
low-noise and a high-noise dataset to evaluate 1D-CNN denoising for various levels of noise. We then
applied both ID-CNN and MP-PCA [19] denoising to both the low-noise and high-noise datasets to

validate the 1D-CNN denoising method against a commonly employed denoising procedure. The design
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is depicted in Figure 2A. We were then able to compare among seven DWI datasets: (1) a noise-free
ground truth, (2) low-noise DWI data with SNR = 30, (3) high-noise DWI data with SNR = 10, (4) low-
noise after 1D-CNN denoising, (5) high-noise after 1D-CNN denoising, (6) low-noise after MP-PCA
denoising, and (7) high-noise after MP-PCA denoising.

Data synthesization. We generated five datasets to validate the 1D-CNN procedure for denoising
DWI data: (1) a noise-free ground truth, (2) low-noise DWI data with SNR = 30 to be used for model
training, (3) high-noise DWI data with SNR = 10 to be used for model training, (4) low-noise DWI data
with SNR = 30 to be used for model testing, (5) high-noise DWI data with SNR = 10 to be used for model
testing. Four slices of noise-free DWI images were simulated based on the DW-POSSUM framework
[40], with 4 volumes at b-value = 0 s/mm? (b0), 90 diffusion directions at b-value = 1000 s/mm? (b1000)
and 90 diffusion directions at b-value = 2000 s/mm? (b2000). To generate the low-noise and high-noise
DWI datasets, Gaussian noise was added to the real and imaginary channels of the noise-free ground truth
using an eight-channel coil model followed by adaptive coil combine. For simplicity, we did not introduce

motion, eddy current distortion, or physiological noise into the simulated datasets.

Data processing: 1D-CNN. We performed two training procedures, one for the simulated low-
noise DWI data and the other for the simulated high-noise DWI data, so that the image pairs used for
training the 1D-CNN models were: (1) low-noise DWI data and the noise-free ground truth and (2) high-
noise DWI data and the noise-free ground truth. Both 1D-CNN models were trained with the following
training parameters: 20000 epochs, learning rate of 0.001, and batch size of 6000. The model trained with
the low-noise dataset was applied to the held-out low-noise DWI dataset that was simulated for testing.
The model trained with the high-noise DWI dataset was applied to the held-out high-noise DWI dataset

that was simulated for model testing.

Data processing: MP-PCA. MP-PCA denoising was applied to the simulated low-noise and high-
noise DWI data using the “dwidenoise” command in MrTrix3 (https:/www.mrtrix.org/). All options were
default except for “extent”, whose default setting was changed to 9x9x3 from 9x9x9 to account for our

simulated data including only 4 slices.

Calculation of diffusion metrics. Diffusion metrics were estimated for all seven comparison

images (see Validation using simulated data: Design). Tensor-based diffusion metrics were estimated in
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FSL (https:/fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) using the weighted least squares option. NODDI-based

diffusion metrics were estimated using the NODDI Matlab toolbox (http://mig.cs.ucl.ac.uk/index.php).

We focused on fractional anisotropy (FA), mean diffusivity (MD), intra-cellular volume fraction (ICVF),

and orientation dispersion index (ODI) when evaluating the 1D-CNN denoising method.

2.2.2 Validation using in vivo data

Design. To validate the 1D-CNN denoising method using in vivo data, we took advantage of the
difference in noise levels that result from different reconstructions of the k-space data into image space.
More specifically, Sum-of-Squares (SoS) reconstruction of DWI images results in images with higher
noise than SENSEI1 reconstruction [13] and, crucially, the high-noise and low-noise pair are derived from

the exact same image.

Three human participants were recruited. We collected two DWI images for each subject. The first
image was reconstructed using both the sum-of-squares (SoS) and also the SENSEI coil combination
methods, resulting in an SoS and SENSE1 reconstruction of the same image. The second image was
reconstructed using only the SENSEI coil combination method and was used as a test-retest repeat of the
SENSEI reconstruction of the first image. We then applied 1D-CNN denoising to the SoS image to
generate a denoised SoS image (dSoS). This procedure resulted in four comparison datasets: (1) SoS, (2)

SENSEI, (3) dSoS, and (4) SENSE1-repeat.

We took several steps to test the effects of 1D-CNN denoising on diffusion metrics in in vivo data.
First, we computed FA and MD from the tensor model using all DWI images. Second, we computed OD
and ICVF from the NODDI model to evaluate the effects of the denoising procedure on higher-order
diffusion models. Third, we estimated each metric, FA, MD, OD, and ICVF, in the gray matter and white
matter separately. As the DWI signal attenuation from diffusion weighting varies with tissue types, which
ultimately affects the SNR, it is worth investigating if the effectiveness of 1D-CNN denoising procedure
was dependent on the tissue type. Finally, we tested the performance of 1D-CNN by visually inspecting
the images of each diffusion metric calculated from SoS, dSoS, and SENSEI data, plotting histograms of
each metric calculated from SoS, dSoS, and SENSE1 data, and computing correlations between the
diffusion metrics calculated from the SENSEI data and the SoS and dSoS data. Given that SoS-related

noise was expected to be particularly problematic at higher h-values, we expected the denoising procedure
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to impact FA/MD and ICVF estimates derived from multi-shell data that contains high »-value images.
We expected the histogram and correlation analyses to demonstrate that the proposed denoising procedure
results in diffusion metrics that are more similar to the metrics computed on the SENSE1 standard than

metrics computed on the original SoS data and, further, than metrics computed on a SENSE1 repeat.

Data acquisition. We collected DWI data from three subjects using the Human Connectome
Project (HCP) Lifespan protocol [41] on a Siemens 3T Prisma (Siemens Healthineers, Erlangen,
Germany). The procedure began with one anatomical T1w image followed by a series of DWI images and
a repeat of the T1w and diffusion images. See Figure 2 for details of the DWI data acquisition procedure.
T1w images were acquired using the 3D MP-RAGE pulse sequence: TR/TE=2400/2.3 ms, TI=1060 ms,
flip angle=8, matrix=320x320, bandwidth=210 Hz/pixel, iPAT=2, resulting in 0.8 mm isotropic
resolution. DWI images were collected in both AP and PA phase encoding directions with the following
parameters: TR/TE = 3470/87 ms, 72 slices, 1.5 mm isotropic resolution, 37 gradient directions with b-
value = 1000, 2500 s/mm? plus 6 b0 images, resulting in a total of 80 images, SMS acceleration factor =
4. In addition, we collected one repetition of the AP and PA DWI images for each subject. Crucially, each
DWI images was reconstructed with both SoS and SENSE1 [13] coil combination methods so that the
SoS and SENSEI1 data used for the model training and testing (described below) originated from the same
k-space data.

Anatomical image processing. We applied standard preprocessing steps to the T1lw images.
Anatomical images were aligned to the AC-PC plane with an affine transformation using HCP
preprocessing pipeline [42] as implemented in the HCP AC-PC Alignment App on brainlife.io (bl.app.99)
to the standard MNI152 adult template. AC-PC aligned images were then segmented using the Freesurfer
6.0 [43] as implemented in the Freesurfer App on brainlife.io (bl.app.0) to generate the cortical volume
maps with labeled cortical regions according to the Destrieux 2009 atlas [44]. We collected on an

additional repeat T1w image for each subject.

Diffusion image processing. Processing of the DWI data occurred in three steps before the data
were used to calculate various diffusion metrics and run fiber tracking. First, we applied minimal
preprocessing to the DWI images to prepare them for the training and optimization procedure. AP phase-
encoded and PA phase-encoded images were combined using FSL Topup & Eddy to correct for

susceptibility distortion correction and inter-volume subject motion (brainlife.app.287). This step
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combined AP and PA images, resulting in one SoS image, one SENSEI image, and one SENSE]1 repeat
for each subject. A mask of the brain was extracted from the DWI with b-values equal to 0 s/mm?. All

following analyses were conducted using only voxels within this brain mask.

Second, we trained the 1D-CNN model using the SoS and SENSEI data of each subject with the
optimal parameters (20,000 epochs, learning rate = 0.001, batch size = 6000), resulting in three sets of
model coefficients, one for each subject. We then applied the trained model obtained for each subject to
the SoS data of the other two subjects separately in a round-robin style, resulting in two sets of dSoS data
for each subject. With the addition of the dSoS data, data for each subject included one SoS image, one
SENSEI1 image, one SENSEI1 repeat, one dSoS image that was denoised using the model coefficients of
a second subject, and one dSoS image that was denoised using the model coefficients of the remaining

subject.

Third, additional preprocessing steps were applied to each image separately. Additional
preprocessing steps included PCA denoising, Gibbs deringing, bias field correction, and Rician noise
removal available in the Mrtrix3 preprocessing pipeline [45] as implemented in the Mrtrix3 Preprocess
App on brainlife.io (bl.app.68). PCA denoising and Gibbs deringing procedures were performed first. The
preprocessed DWI data and gradients were then aligned to each subject’s ACPC-aligned anatomical image

using boundary-based registration (BBR) in FSL [46].

Calculation of diffusion metrics. To evaluate the effect of denoising on tensor-based diffusion
metrics and diffusion metric derived from higher order diffusion models, we fit both the tensor model [2]
and the Neurite Orientation Dispersion and Density Index (NODDI) model [6] to the processed DWI data.
Fractional anisotropy (FA) and mean diffusivity (MD) were estimated from the tensor model in FSL using
the weighted least square option. We measured intra-cellular volume fraction (ICVF) by fitting the
NODDI model on multi-shell data using the NODDI Matlab toolbox developed by UCL Microstructure
Imaging Group (http://mig.cs.ucl.ac.uk/index.php).

Tractography. To evaluate the effect of denoising on tractography, tractography was performed
on each DWI dataset to generate streamlines. We used constrained spherical deconvolution (CSD) to
model the diffusion tensor for tracking [47, 48]. Tracking with the CSD model fit was performed

probabilistically using the tractography procedures provided by Mrtrix3 Anatomically constrained
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Tractography (ACT) [49, 50] implemented in brainlife.io (bl.app.101). We generated 150000 streamlines
at Ly, = 8 and maximum curvatures = 35 degrees. The tractogram was then segmented into major white
matter tracts using a recently developed, automated segmentation approach [51] implemented in
brainlife.io (brainlife.app.188). Streamlines that were shorter than 10 mm or longer than 200 mm were
excluded. Streamlines that were more than 4 standard deviations away from the centroid of each tract
and/or 4 standard deviations away from the tract’s average streamline length were considered aberrant
streamlines and were removed using the Remove Tract Outliers App on brainlife.io (brainlife.app.195).
Streamline counts were obtained using the Tract Statistics App on brainlife.io (brainlife.app.189). See

Table 1 for more information on the Brainlife applications used.

To evaluate the effect of 1D-CNN denoising on tractography, we counted the number of
streamlines in several major white matter tracts and calculated the difference in the streamline counts for
these tracts between the gold standard SENSEI reconstruction and the other DWI images using the multi-
shell data: SoS, dSoS, and the SENSE1 repeat. Because the noise in DWI data blurs the orientation
dispersion function (ODF), resulting in lower FA values and less accurate tractography, we expected that
tractography would perform best in the SENSE1 images followed by the dSoS images and then the original
SoS image. We, therefore, expected the SENSE1-dSoS difference would be smaller than the SENSE1-
SoS difference, suggesting that 1D-CNN denoising positively affected tractography.

2.3 Application

The high-noise and low-noise dataset pairs used in the simulation and in vivo studies described
above came from the same base image; however, it is likely in human subject research that the high-noise
and low-noise dataset pair will come from different base images. To assess the feasibility of the ID-CNN
method for denoising high-noise DWI data using a low-noise dataset derived from a different base image,
we conducted two experiments. In the first experiment, we denoised a high-noise DWI dataset acquired
with GRAPPA [34] by training the 1D-CNN model on a GRAPPA (i.e., high-noise) and a non-GRAPPA
(i.e., low-noise) pair. In the second experiment, the high-noise dataset was an simultaneous multi-slice
(SMS) [35, 36] dataset while the low-noise dataset was without SMS. GRAPPA and SMS were selected
because they are normally used in DWI to decrease acquisition time. The detailed acquisition parameters

are shown below.
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Experiment 1, GRAPPA: Three subjects were scanned on a Prisma scanner for two consecutive
runs with the following parameters: TR/TE = 5400/88.2 ms, 72 slices, 1.5 mm isotropic resolution, 37
gradient directions with b-value = 1000, 2500 s/mm? plus 6 b0 images, simultaneous multi-slice (SMS)
acceleration factor = 2, resulting a total of 80 images. GRAPPA with acceleration factor 2 (iPAT2) was
used in the first run but not in the second run. Therefore, the SNR of the images in the first run with iPAT

equal to 2 is lower than that in the second run with iPAT equal to 1.

Experiment 2, SMS: Three subjects were scanned on a Prisma scanner for two consecutive runs
with the following parameters: TR/TE = 3470/87 ms, 1.5 mm isotropic resolution, 37 gradient directions
with b-value = 1000, 2500 s/mm? plus 6 b0 images, resulting a total of 80 images. The SMS option with
an acceleration factor of 4 was used in the first run, resulting in 72 slices, but not in the second run,

resulting in 18 slices.
2.3.3 Data processing

All images were processed in FSL first for Eddy current/motion correction. For Experiment 1,
the susceptibility-induced distortion was slightly different between the two runs. For Experiment 2, there
was also a slight anatomical mismatch between the two runs. Therefore, a nonlinear transformation was
performed on the low-noise images to align them with the high-noise ones. The training of 1D-CNN for
denoising was between the low-noise and high-noise datasets of subject 2 and the model was applied to
the other two subjects. Again, we chose learning rate of 0.001 and batch size of 6000. The fitting
converged quickly before reaching 20000 epochs.

3. Results
3.1 Validation of 1D-CNN on simulated data

Figure 3 shows the difference between denoised image and the noisy image as well as the
difference between denoised image and the ground truth of a representative slice with b-value 2000 s/mm?
from the SNR=10 dataset. MP-PCA removed some noise but was unable to restore the signal to the ground
truth, as manifested in the CSF region. In contrast, 1D-CNN mapped the noisy image to the ground truth,
although the removed noise shows some structures of the brain. Figure 4 compares the resultant diffusion

metrics of FA, MD, and ICVF for noisy images with SNR 10 and 30, the corresponding denoised images
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using MP-PCA and 1D-CNN, and the ground truth. The noise floor led to an underestimation of FA and
MD and an overestimation of ICVF that becomes more prominent as SNR decreases. MP-PCA denoising
alleviated that effect on FA and MD but not on ICVF. In contrast, ID-CNN significantly improved the
accuracy of MD and ICVF. At SNR = 30, however, there is little difference between the results of MP-
PCA, 1D-CNN, and uncorrected.

3.2 Evaluation of 1D-CNN on in viveo data

The performance of 1D-CNN was evaluated in the in vivo dataset in three domains: DWI images,

diffusion metrics, and tractography.

In the DWI image domain, the denoised SoS (dSoS) images were compared to the SENSE1 gold
standard through visual inspection and also by evaluating the correlation between the DWI signal in dSoS
and SENSEI images. Visual inspection of the DWI images indicated that 1D-CNN resulted in DWI
images that were more similar to the gold standard SENSE1 images than the original SoS reconstructed
images. The denoised SoS (dSoS) images appeared less noisy than the original SoS images. A
representative slice of the SoS image, the SENSE1 image, and the dSoS image for one subject are shown
in Figure 5a for » = 1000 s/mm? and b = 2500 s/mm?. The average correlation coefficients between
SENSE1 and dSoS images were computed for each b-value (Figure Sb). The correlation between
SENSE1 and SoS images was improved after denoising in both low and high b-value images, with high
b-value images improved the most. Notably, the correlations were much greater than those between

SENSEI repeat scans (» = 0.6 — 0.8).

In the diffusion metrics domain, there was little difference for FA among the SoS, SENSEI, and
dSoS data based on visual inspection of the maps and histograms, as shown in Figure 6. However, MD,
OD and ICVF were positively affected by the denoising procedure. The histograms revealed that OD and
ICVF calculated from the SoS data were overestimated while MD was underestimated relative to the
SENSEI standard, and that effect was mitigated substantially by denoising (Figure 6). Comparing the
correlations among SoS, SENSEI1, and dSoS images revealed that the SENSE1 data were more highly
correlated with the dSoS data (OD: 0.9744 in GM and 0.9790 in WM, ICVF: 0.9592 in GM and 0.9180
in WM) than with the SoS data (OD: 0.9558 in GM and 0.9615 in WM, ICVF: 0.8529 in GM and 0.8499
in WM) (Table 2).
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In the tractography domain, we counted the number of streamlines in several major white matter
tracts and calculated the difference in the streamline counts for these tracts between the gold standard
SENSE1 reconstruction and the other DWI images using the multi-shell data: SoS, dSoS, and the SENSE1
repeat. These differences are shown in Figure 7 for nine major white matter tracts: IFOF (left and right),
ILF (left and right), Forceps Major, Arc (left and right), and SLF 1 and 2 (left and right). The SENSEI-
dSoS differences were smaller or no different than the SENSE1-SoS differences for all tracts and,
importantly, the SENSE1-dSoS differences were never greater than the SENSE1-SoS differences,
indicating that the tractography algorithm did not perform worse on the dSoS data than on the original

SoS data.

3.3 Effect of training samples

The proposed denoising procedure requires only data from one subject for training. This is a
strength of the procedure because it allows researchers to perform 1D-CNN denoising without having to
collect an extremely large amount of data. However, training the model on only one subject presents the
potential concern that the model coefficients might receive some bias related to the training subject’s data
such that the application of the trained model to another subject’s data would effectively bias the second
subject’s data towards the training subject. This would be problematic for the majority of neuroanatomical
studies because such studies often aim to interrogate individual or group differences. If 1D-CNN biases
the denoised data towards a single subject, i.e., the training subject, then any real differences present

among subjects or between groups would be more difficult to detect.

The impact of this potential bias of the training subject on the denoised image was interrogated by
computing the correlation coefficients between diffusion metrics of dSoS images denoised using models
trained from different subjects’ data. If the dSoS images are influenced by the training subject, then we
would expect to find a low correlation if the dSoS images were influenced by the spatial characteristics of

the training data because the training data from different subjects are totally independent.

Table 3 lists the correlation coefficients of three diffusion metrics (FA, ICVF, OD) derived from
denoised SoS data of each subject using the other two subjects as training data, respectively. For FA and
OD, the correlation coefficients in GM and WM were all greater than 0.99. For MD, the correlation
coefficients were all greater than 0.99 in GM and 0.96 in WM. The correlation coefficients were slightly
lower for ICVF, but the values (> 0.96 in GM and > 0.94 in WM)) are still much higher than those between
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two repeated scans. The corresponding scatter plots of these four diffusion metrics are shown in Figure
S2 in the Supplementary Material. Although the diffusion measures differ with different training dataset,
the high correlation coefficients suggest that the choice of subject used as a training dataset has a negligible

impact on denoised images.

3.4 Applications

As denoising validation from simulated data and in vivo data indicated that denoising has little
impact on FA and OD, we only show the effect on MD and ICVF in the two application experiments.
Figure 8 shows the original high-noise image, low-noise image, and denoised image using 1D-CNN along
with derived MD and ICVF maps of a representative slice in Experiment 1 (iPAT2 vs. iPAT1) for b-value
2500 s/mm?. Similarly, an underestimation of MD and a ceiling effect of ICVF were observed for high-
noise data were mostly corrected after 1D-CNN denoising. Figure 9 shows the original high-noise image,
low-noise image, and denoised image using 1D-CNN along with the derived MD and ICVF maps of a
representative slice in Experiment 2 (SMS4 vs. SMS1) for b-value 2500 s/mm?. Again, an underestimation
of MD and a ceiling effect of ICVF were observed for high-noise data that were corrected after 1D-CNN
denoising. 1D-CNN denoising not only revealed more details in the low b-value image that were present
in the high b-value images but also made the MD and ICVF values closer to those derived from the low-

noise dataset.

4. Discussion

The behavior of noise in DWI images varies across images. For those with high SNR the noise is
exhibited as Gaussian noise; for those with very low SNR (say, < 10), rectified noise floor can appear.
Rectified noise floor can severely lower the accuracy in estimating diffusion metrics sensitive to diffusion
properties at high b-values, such as ICVF from NODDI, mean kurtosis from DKI, and various measures
from MAP-MRI. Most DWI denoising methods work well in removing the Gaussian noise but not the
rectified noise. Our primary goal was to develop a practical method for removing noise in DWI data that
is not removed adequately by currently available denoising methods. We were particularly interested in
developing a method that would be effective for multi-shell DWI data that contain high b-values that are
required for higher order diffusion models. Using simulated data and SoS noise in in vivo data as examples,
we demonstrated that a deep learning method was able to correct for rectified noise floor in DWI images

that cannot be corrected using state-of-the-art DWI denoising methods. Our method was based on a one-
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dimensional CNN deep-learning network applied to the time course of DWI data, substantially reducing
the amount of training data required for denoising relative to current DL denoising procedures. With only
one dataset as the training sample (i.e., one subject’s worth of DWI data), the 1D-CNN method effectively

removes noise for any dataset acquired the same way as the training data.

The proposed 1D-CNN denoising method is essentially a regression model that fits the low-noise
images from high-noise images rather than fitting the noise. Therefore, it can deal with more complicated
noise behavior. The simulation results demonstrated that the ultimate target of restoring a noisy image to
its noise-free reference image can be accomplished with 1D-CNN, a feature that sets it apart from other
state-of-the-art denoising methods (e.g., MP-PCA). In denoising SoS-related noise using SENSE1 data as
the ground truth, 1D-CNN reduced the effects of noise so that the denoised DWI images and subsequently
derived diffusion metrics were more similar to the ground truth than a repeated scan. The voxel-wise
correlations of the image intensity between denoised SoS data and SENSE1 were above 0.95 for all
subjects tested, much higher than the correlations between repeated scans using the SENSEI coil combine
mode (Figure 5). Similarly, the voxel-wise correlations between the diffusion metrics computed from
dSoS and SENSEI1 data were also very high and always greater than the voxel-wise correlations between
the SENSE1 and SENSEI-repeat scans (Table 2). Both results indicate that the proposed denoising
method can substantially reduce SoS-related noise to a level where the diffusion signal can be recovered
and modelled with as much fidelity as if the DWI data were originally collected with a SENSE1 coil

combine method.

We did not observe substantial benefit of ID-CNN denoising for FA. This is probably because FA
is more determined by the directionality rather than diffusion signal at high b-value. The noise floor is
particularly problematic for higher order diffusion models that rely on high b-value images. The
correlation coefficients of all diffusion metrics were either marginally or significantly improved after
denoising — an effect that was most evident for measurements obtained using higher order diffusion

models (Figures 4, 7 and Table 2).

Tractography results were generally in line with our expectations that the denoising procedure
would improve tractography performance. The difference between streamline counts for the SENSE1
standard and the dSoS tractogram was smaller or no different than the difference between the SENSEI

standard and the SoS tractrogram for each tract (Figure 7). However, these results also demonstrated that

17


https://doi.org/10.1101/2022.01.17.476708
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.17.476708; this version posted January 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

SoS-related noise is not likely problematic for tractography performance because the difference in
streamline counts between the SENSE1 standard, the SoS tractogram, and the dSoS tractogram were very
small relative to the total number of streamlines (i.e., < 1%). We had expected tractography performance
to be negatively affected by the SoS-related noise; however, little to no effect in tractography performance
is consistent with our results that demonstrated little to no effect of SoS-related noise on FA, which is

closely related to the directionality of diffusion.

Effect of training data. In theory, the training data must contain all the characteristic time courses
of the DWI data to be denoised, which are related to the tissue microstructure and coil configuration. This
requires a vast amount of training data. One of the advantages of the proposed method is that it only needs
a few DWI datasets because each DWI dataset consists of many training samples (~5%10° for HCP
protocol). Although it is possible to use multiple datasets to train the model, we have shown that even one
DWI dataset acquired with the same protocol is adequate for the training purpose. In addition, although
different training data leads to deviated denoising results, as illustrated by the scatter plots of diffusion
metrics in Figure S2, the choice of training data does not affect the results dramatically, as suggested by
the high correlation between resultant diffusion metrics using different training data for denoising (Table
3). Therefore, the training can be carried out using one representative dataset in practice. However, the
hyper-parameters of the model need to be tuned separately for each protocol because the choice of learning
rate and batch size affects the performance of the algorithm using gradient descent for optimization. We
expect different values for the optimal learning rate and batch size for different acquisition protocols. It
seems that for an optimal learning rate, there is some freedom in setting the batch size (e.g., learning rate

0.01 and 0.02 in Figure S1).

Possible applications. The python script for denoising can be downloaded from

https://github.com/huchengMRI/DWI-SoS-denoising. We provided codes for both Tensorflow 1.1 and

2.0. There could be many applications of 1D-CNN in denoising DWI data. The first one is retrospectively
correcting DWI data with high b-values that was reconstructed with SoS coil combine. The researcher
must collect at least one DWI dataset with the same acquisition scheme as the data-to-be-denoised. The
images must then be reconstructed using, one, the Sum-of-squares (SoS) reconstruction method and, two,
the SENSEI reconstruction method. These are the datasets to be fed into the CNN architecture. The
datasets can be divided into training and validation parts to find the optimal hyper-parameters (e.g.,

learning rate, batch size, number of epochs) for the specific DWI acquisition scheme. Then, the trained
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model can be applied to any high-noise dataset for denoising as long as it was acquired with the same

acquisition parameters.

Parallel imaging techniques have been routinely used in DWI scans to save time, reduce geometric
distortion, and improve spatial resolution despite an SNR penalty [52]. The SNR penalty is proportional
to the square root of the acceleration factor multiplied by a g-factor that is mainly determined by the coil
configuration and acceleration factor [52]. Experiment 1 suggested practical applications of using 1D-
CNN to reduce the effect of noise floor in DWI images with high acceleration factors of parallel imaging.
However, in Experiment 1, we relaxed the TE value to accommodate both iPAT2 and iPAT1. This will
compromise the benefit of shorter TE from parallel imaging. To keep the same short TE, segmented
acquisition scheme [53] can be used to collect low-noise DWI dataset without using parallel imaging.

Segmented acquisition can also reduce geometric distortion, similar to parallel imaging.

Recent development of simultaneous multi-slice (SMS) techniques makes the data acquisition
more efficient with only a slight SNR penalty similar to the g-factor. Experiment 2 suggested that 1D-
CNN can also be used to reduce the effect of noise floor in DWI images acquired with high SMS
acceleration factors. The low-noise image data can be acquired with the same DWI pulse sequence without
using SMS. The SNR is higher without using SMS but only fewer slices can be acquired. Hence, it takes

several scans to obtain the same amount of slices as the high-noise images using SMS.

Another possible application is for high-resolution DWI. One of the challenges for high-resolution
DWI is the noise floor. However, the noise floor problem can be mitigated by constructing images from
multiple thicker slices shifting in the slice-select direction [54]. The thicker slices have higher SNR.
Assuming the noise distribution in the thick-slice images is Gaussian, which is a good approximation at
high SNR, the noise remains Gaussian in the reconstructed image, which is a linear combination of a series
of thick-slice images. Hence, the reconstructed images can be used as the ground truth for training the 1D-

CNN model to correct for the noise floor in normally acquired high-resolution DWI images.

For all these applications, since the high-noise and low-noise images cannot be reconstructed from
the same acquisition as in the SOS/SENSEI] case, it is critical to minimize the difference between the high-
noise image and low-noise image except for the difference in SNR. An important post-processing step is

to coregister the high- and low-noise datasets so that the corresponding voxels match well. However, it is
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not required that the high-noise images and low-noise images are acquired with the same type of

sequences.

Limitations. In the current version of 1D-CNN model, all voxel-wise time courses are used for
training the model, which does not account for noise variation with respect to tissue properties and spatial
locations. An improvement could be made by dividing the image into patches that have similar noise
characteristics and applying 1D-CNN separately on each patch. Another limitation is the image quality of
the reference itself. For instance, the SENSE1 images were used as the ground truth for training the 1D-
CNN model. However, SENSE1 images also contain noise. In fact, the SNR of SENSE1 images can be
very low at high b-values, at which the most severe SoS noise amplification occurs. As a result, the effect
of denoising is compromised. In addition, there is a possibility of mismatch between the low-noise and
high-noise dataset pair. While the SENSE1 datasets and SoS datasets were perfectly matched because they
came from the same base image, it is more common in practice that low-noise and high-noise datasets are

acquired separately. The effect of mismatch needs further investigation.

5. Conclusions

In summary, we have developed a simple 1D-CNN deep learning method to denoise DWI images
and showed promising results in simulation and correcting for SoS noise in in vivo DWI data. By acquiring
both low-noise and high-noise images of one subject, the trained model can be used to reduce noise,
especially related to the rectified noise floor, in any high-noise data using the same DWI protocol and
effectively convert the noise behavior in high-noise images to that of low-noise images. This method can

shed light on further development of deep learning based denoising techniques for diffusion imaging.
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Tables and Figure captions

Table 1. Data, description of analyses, and web-links to the open source code and open cloud services
used in the creation of this dataset can be viewed in their entirety here:

https://doi.org/10.25663/brainlife.pub.25.

APPLICATION GITHUB REPOSITORY OPEN SERVICE DOI GIT BRANCH

HCP AC-PC ALIGNMENT | https:/github.com/brain-life/app-hcp-acpc-alignment ~ doi.org/10.25663/bl.app.99 1.4

FREESURFER . L. .

SEGMENTATION https://github.com/brainlife/app-freesurfer doi.org/10.25663/bl.app.0 1.7

DISTORTION AND . Cep . . .

MOTION CORRECTION https://brainlife.io/app/5¢6¢72838a20890d8a8e¢96af doi.org/10.25663/brainlife.app.287 master

DMRI PREPROCESSING https://github.com/brain-life/app-mrtrix3-preproc doi.org/10.25663/bl.app.68 1.5

TRACTOGRAPHY https://github.com/brain-life/app-mrtrix3-act doi.org/10.25663/bl.app.101 1.3

TRACT SEGMENTATION | https:/github.com/brainlife/app-wmaSeg doi.org/10.25663/brainlife.app.188 33

TRACT CLEANING https://github.com/brainlife/app-removeTractOutliers ~ doi.org/10.25663/brainlife.app.195 1.3
https://github.com/brainlife/app- . .

TRACT STATISTICS tractographyQualityCheck doi.org/10.25663/brainlife.app.189 1.2
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Table 2. Correlations of the tensor-based diffusion metrics (i.e., FA, MD) and NODDI-based diffusion
metrics (i.e., OD, ICVF) between SENSE1-SoS, SENSE1-dSoS, and SENSE1-SENSEI repeat.

ENSE1 -

SENSEI-SOS  SENSEI-DSOS e
FA (GM) 0.949 0.961 0.924
FA (WM) 0957 0.964 0.941
MD (GM) 0817 0.920 0.828
MD (WM) 0572 0.808 0.719
0D (GM) 0.956 0974 0.867
OD (WM) 0.962 0979 0.932
ICVF (GM) 0.853 0.959 0.881
ICVF (WM) 0.850 0918 0.850
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Table 3. SENSE1-dSoS correlations of diffusion metrics (FA, MD, OD, and ICVF). For the dSoS data
used in this table, the model was trained on data that was merged from the other two subjects. The dSoS
data for SUBJ 1, for example, was obtained by applying a model trained on the combined data of SUBJ
2 and SUBJ 3 to SUBJ 1’s SoS data.

FA MD oD ICVF

GM WM GM WM GM WM GM WM

SuBJ 1 0.998 0.997 0.995 0.975 0.994 0.995 0.978 0.943

SuBJ 2 0.990 0.997 0.993 0.978 0.991 0.994 0.981 0.962

SuBJ 3 0.997 0.997 0.991 0.966 0.991 0.993 0.972 0.941
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Figure 1. Schematic drawing of the architecture of the 1D CNN model for denoising.
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Figure 2. A. We simulated a noise-free ground truth dataset (1) and added noise to create a low-noise
dataset with SNR 30 (2) and a high-noise dataset with SNR 10 (3) to evaluate 1D-CNN denoising. The
low-noise and high-noise simulated datasets were both denoised using 1D-CNN and MP-PCA, resulting
in four additional datasets: low-noise after ID-CNN denoising (4), low-noise after MP-PCA denoising
(5), high-noise after ID-CNN denoising (6), and high-noise after MP-PCA denoising (7). B. Denoising
SoS-related noise using SENSEI reference data. MRI scans were acquired from 3 subjects for denoising
validation. There are two identical runs, each consisting of one T1w scan, two DWI scans with opposite
phase encoding directions (DWI-AP and DWI-PA). Each DWI scan is constructed with SoS and SENSEI

coil combines, respectively to generate two sets of images.
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SNR10 MPPCA 1D-CNN  SNR30 MPPCA 1D-CNN w/o noise

MD FA DWI (b2000)

ICVF

Figure 3. The noisy DWI images (SNR 10 and 30), corresponding denoised images with MP-PCA and
1D-CNN, and the ground truth, along with derived FA, MD, and ICVF maps of a representative slice from

simulation.
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Figure 4. Difference (arbitrary unit) between denoised image and original noisy image (top) and the

ground truth (bottom) for MP-PCA and 1D-CNN from simulation.
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Figure 5. (a) A representative slice of the SoS image, the SENSE1 image, and the denoised SoS (dSoS)
image for b= 1000 s/mm? and b = 2500 s/mm?; (b) The average correlation coefficients between SENSE1
and dSoS images, and between SENSEI and SoS images, for gray matter (GM) and white matter (WM).
The dashed lines indicate the magnitude of correlation coefficients between two repeated scans with

SENSE1 (SENSEI inter-scan) as a reference.
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Figure 6. Different diffusion metrics (FA, MD, ICVF, and OD) computed from SoS, SENSE1, and dSoS
images showing on a representative slice. The corresponding histograms are shown in the bottom. For
ICVF and OD, the dSoS data (green) is more similar to the gold standard SENSE1 data (blue) than the
original SoS data (red). The benefit of our denoising procedure is most evident in ICVF and OD, the two
measures that are derived from higher-order diffusion models that rely on high h-value images, although

some improvement can also be seen in the MD value.
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Figure 7. The difference in the number of tractography streamlines between SENSE1 and SoS, SENSE1
and dSoS, and SENSEI repetitions for nine bundles: IFOF (left and right), ILF (left and right), Forceps
Major, Arc (left and right), and SLF 1 and 2 (left and right). The x-axis is the average difference in
streamline count between the comparison (i.e., SENSE1-SoS (red), SENSE1-dSoS (blue), SENSEI-
SENSEI repeat (black)). The error bars are standard deviation.
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Figure 8. The original high-noise image, low-noise image, and denoised image using I D-CNN along with
derived MD and ICVF maps of a representative slice in Experiment 1 (iPAT2 vs. iPAT1) for b-value 2500

s/mm?.
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Figure 9. The original high-noise image, low-noise image, and denoised image using 1 D-CNN along with
derived MD and ICVF maps of a representative slice in Experiment 2 (SMS4 vs. SMS1) for b-value 2500

s/mm?.
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