

1 **Partial sex linkage and linkage disequilibrium on the guppy sex chromosome**

2

3 Suo Qiu, Lengxob Yong¹, Alastair Wilson¹, Darren P. Croft², Chay Graham, Deborah

4 Charlesworth

5

6 Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh,
7 West Mains Road, Edinburgh EH9 3LF, UK

8

9 ¹ Centre for Ecology and Conservation, College of Life and Environmental Sciences,
10 University of Exeter, Treliiever Road, Penryn TR10 9FE, UK

11

12 ² Centre for Research in Animal Behaviour, College of Life and Environmental Sciences,
13 University of Exeter, Perry Road, Exeter EX4 4QG, UK

14

15

16 **Running title:** Guppy sex chromosome differentiation

17

18 **Keywords**

19 Linkage disequilibrium, genome assembly, partial sex linkage, sexual antagonism, balancing
20 selection, evolutionary strata

21

22

23 **Abstract**

24 The guppy Y chromosome has been considered a model system for the evolution of
25 suppressed recombination between sex chromosomes, and it has been proposed that
26 complete sex-linkage has evolved across about 3 Mb surrounding this fish's sex-determining
27 locus, followed by recombination suppression across a further 7 Mb of the 23 Mb XY pair,
28 forming younger "evolutionary strata". Sequences of the guppy genome show that Y is very
29 similar to the X chromosome, making it important to understand which parts of the Y are
30 completely non-recombining, and whether there is indeed a large completely non-
31 recombining region. Here, we describe new evidence that supports a different
32 interpretation of the data that suggested the presence of such a region. We analysed
33 PoolSeq data in samples from multiple natural populations from Trinidad. This yields
34 evidence for linkage disequilibrium (LD) between sequence variants and the sex-
35 determining locus. Downstream populations have higher diversity than upstream ones
36 (which display the expected signs of bottlenecks). The associations we observe conform to
37 predictions for a genome region with infrequent recombination that carries one or more
38 sexually antagonistic polymorphisms. They also suggest the region in which the sex-
39 determining locus must be located. However, no consistently male-specific variants were
40 found, supporting the suggestion that any completely sex-linked region may be very small.

41

42

43 **Introduction**

44 Genetic sex determination and sexual dimorphism were first studied in the guppy, *Poecilia*
45 *reticulata* (formerly *Lebistes reticulatus*) just over 100 years ago (Schmidt, 1920), and the
46 species has been considered a good system for understanding the lack of recombination
47 between sex chromosome pairs. This fish has male heterogamety, though like the sex
48 chromosomes of many other fish, the XY pair is homomorphic, or, at most, slightly
49 heteromorphic, with the Y being larger than the X (Lisachov, Zadesenets, Rubtsov, &
50 Borodin, 2015; Nanda et al., 2014; Traut & Winking, 2001). Recent genome sequence
51 analyses have shown that the gene contents of this chromosome pair are very similar,
52 unlike the situation in many species (which often show extreme differences between the Y
53 chromosome sequences and their X-linked counterparts). It has nevertheless been proposed
54 that recombination suppression events have occurred repeatedly, producing extensive non-
55 recombining regions, or “evolutionary strata” (Wright et al., 2017) like those in
56 heteromorphic sex chromosome pairs, including those of humans and other mammals
57 (Cortez et al., 2014; Lahn & Page, 1999), birds (Xu et al., 2019) and the plant *Silene latifolia*
58 (Papadopoulos, Chester, Ridout, & Filatov, 2015).

59 It is important to understand whether the guppy XY pair indeed has evolutionary strata, for
60 the following reason. Trinidadian guppy Y chromosomes carry sexually antagonistic (SA)
61 male coloration factors that are advantageous in males, and increase male mating success,
62 outweighing the disadvantage of being more conspicuous to predatory fish that are present
63 along with guppies in their natural habitats (Endler, 1980; Houde, 1992). These factors are
64 polymorphic within Trinidadian guppy populations (Haskins, Haskins, McLaughlin, & Hewitt,
65 1961). Because the presence of SA polymorphisms is the most plausible situation that can
66 generate selection for closer linkage with the sex-determining locus, resulting in evolution
67 of suppressed recombination (Rice, 1987, see also a recent review by Otto, 2019), the guppy
68 is ideal for studying this central hypothesis for the evolution of potentially extensive Y-linked
69 regions.

70 The proposed guppy strata include an old stratum between 22 and 25 Mb in the assembly of
71 chromosome 12 (LG12), which includes the sex-determining locus, which is thought to be
72 located roughly 30% of the physical distance from the terminal region of the roughly 26.5
73 Mb telocentric XY pair (Lisachov et al., 2015; Nanda et al., 2014; Tripathi, Hoffmann, Weigel,

74 & Dreyer, 2009). The younger strata are claimed to cover about 7 Mb of the more
75 centromere-proximal part of the XY pair (Bergero, Gardner, Bader, Yong, & Charlesworth,
76 2019; Charlesworth, Bergero, Graham, Gardner, & Yong, 2020; Darolli, Wright, & Mank,
77 2020; Fraser et al., 2020; Wright et al., 2017). However, the Y has also been shown to cross
78 over occasionally with the X chromosome, so that most of the chromosome is partially,
79 rather than completely, sex-linked (reviewed by Lindholm & Breden, 2002), although
80 recombination rates are very low across most of the chromosome. Based on molecular
81 markers, crossovers have only rarely been detected in a large region from the centromere
82 end to about 25.5 Mb (Bergero et al., 2019). Here, we describe new evidence that supports
83 an alternative interpretation of the results that suggested that the guppy has recently
84 evolved new evolutionary strata.

85 Although studies of guppy samples consistently yield evidence that guppy Y-linked
86 sequences differ from their X-linked counterparts, the signals are weak, and strata
87 containing many genes are not clearly defined by analysis including F_{ST} between the sexes,
88 or divergence between Y and X sequences (Bergero et al., 2019; Charlesworth et al., 2020;
89 Darolli et al., 2020; Fraser et al., 2020; Wright et al., 2017). It is likely that the male-
90 determining region is physically small (Bergero et al., 2019), and it remains uncertain
91 whether there is any extended completely sex-linked region. No completely male-specific
92 variant (indicating complete Y-linkage) has yet been found, though all the studies just cited
93 describe hints that associations between variants and the sex-determining locus are
94 commonest in the region distal to 20 Mb of the chromosome.

95 In testing for such associations and attempting to understand neutral molecular variation in
96 natural populations, such as those of guppies, it is important to take account of the
97 demographic history of the populations sampled. Specifically, bottlenecks cause loss of low
98 frequency variants, reducing diversity, and also increase the variance in diversity values.
99 Bottlenecks can therefore lead to regions of high F_{ST} , even when no selective process has
100 affected the sequences. In samples of the two sexes, regions of the sex chromosome pair
101 distant from the sex-determining locus may show high F_{ST} values, and other genome regions
102 may appear as outliers with high values. Linkage disequilibrium (LD) between sequence
103 variants and F_{ST} between two subdivided populations are equivalent (Charlesworth,
104 Nordborg, & Charlesworth, 1997). In the context of subdivision into X- and Y-linked

105 chromosome regions, such associations can be used to identify the location of the sex-
106 determining locus. Sequences very closely linked to such polymorphisms maintained by
107 long-term balancing selection should display associated neutral variants (in an XY system,
108 male-specific variants). The region will therefore have higher sequence diversity in males
109 than females. This signal might be particularly clear in bottlenecked populations, with low
110 diversity elsewhere in the genome. However, stronger associations are expected in such
111 populations, as small sample sizes result in strong LD by chance, even between sequence
112 variants that are not closely linked (Park, 2019). Large samples will therefore be needed to
113 detect the signal of Y-linkage in the face of randomly generated LD, and to distinguish
114 between such LD and complete sex linkage (evolutionary strata). Given that bottlenecks
115 probably occurred in the formation of populations of Trinidadian guppies in upstream
116 locations (Magurran, 2005), their effects must be considered in drawing conclusions based
117 on neutral molecular variation, particularly for upstream samples, which were inferred to
118 have evolved evolutionary strata not found in downstream samples (Bergero et al., 2019;
119 Charlesworth et al., 2020; Darolti et al., 2020; Fraser et al., 2020; Wright et al., 2017).
120 The effect on diversity of neutral variants linked to a balanced polymorphism in a
121 population of constant size depends on the quantity $r = 4N_e r$, where r is the recombination
122 rate in males between a neutral site and the selected locus. Under commonly observed
123 recombination rates, the effect is therefore restricted to a physically small region, but to
124 larger regions if crossovers are rare, or N_e is very small. Deterministic results for the
125 coalescence time between Y- and X-linked sequences when the selected locus is a sex-
126 determining locus (Kirkpatrick, Guerrero, & Scarpino, 2010) are illustrated in Figure 1. Pairs
127 of X-linked sequences should also show a peak of differentiation at the sex-determining
128 locus, though this is much smaller than between Y- and X-linked sequences (Figure 1).
129 Variants across larger physical distances can show associations with individuals' sexes if a
130 polymorphic SA factor is present in a partially sex-linked region closely linked to the sex-
131 determining locus (Kirkpatrick & Guerrero, 2014). This effect might be detectable in the
132 guppy if most of the Y recombines rarely with the sex-determining locus.

133 **Figure 1 about here**

134 Populations of guppies with the SA polymorphisms already mentioned are present in most
135 rivers in the Northern Range mountains of Trinidad. Some of the polymorphisms have

136 probably been maintained for long times, as they are shared by many different populations.
137 They are found in both upstream sites, under low predation pressure, and downstream
138 ones, with heavy predation (reviewed in Magurran, 2005), and in Tobago (Haskins et al.,
139 1961). Their maintenance involves rare male advantages (BA Fraser, Hughes, Tosh, & Rodd,
140 2013; Hughes, Houde, Price, & Rodd, 2013; Olendorf et al., 2006), not solely SA selection.
141 Nevertheless, the maintenance of SA polymorphisms leads to selection for the evolution of
142 suppressed recombination, although this is not certain to occur, as the male coloration
143 factors are also male-limited in expression (reviewed in Haskins et al., 1961). Differentiation
144 between the sexes for sequences on LG12, which carries the guppy sex-determining locus,
145 was inferred to be stronger in samples from upstream than downstream sites, suggesting
146 evolution of suppressed recombination (Wright et al., 2017).

147 Although the effects of different predation regimes on the maintenance of partially sex-
148 linked SA coloration factors, and the evolution of suppressed recombination, have not been
149 modelled, the ecological differences between up- and downstream sites might allow sex
150 chromosome strata to evolve only in upstream sites. One possibility is that, in downstream
151 sites, recombinant females that inherit and express coloration factors will be selectively
152 disadvantaged, keeping the frequency of these factors so low that selection against
153 recombinants might be too weak to select for closer linkage with the male-determining
154 factor.

155 An alternative is that suppressed recombination between the XY pair should evolve most
156 readily in downstream sites, because of the high predation rate that would affect
157 recombinant females that inherit and express coloration factors. This view is supported by
158 evidence for more frequent (though still rare) recombination between a sex-linked male
159 coloration factor (*Sb*) and the male-determining locus in up- than downstream males from
160 the Aripo river (Haskins et al., 1961). Moreover, stronger associations between the male-
161 determining locus and the *Sb* factor in high- than low-predation males, using testosterone
162 treatment to reveal the factors present in females, were supported by consistent results in
163 other rivers for coloration (Gordon, López-Sepulcre, & Reznick, 2012). These results suggest
164 that low recombination rates between the coloration factors and the male-determining
165 locus prevail in high-predation conditions, but, after colonisation of upstream sites, with
166 weaker predation pressure, recombinants are less disfavoured (reviewed in Charlesworth,

167 2018). This hypothesis implies that close linkage in high-predation populations is reversible,
168 and not caused by a Y chromosome inversion. Indeed, the genome sequences of the male
169 and female of this species from a high-predation site in the Guanapo river show no
170 rearrangement between the Y and the X (Fraser et al., 2020; Künstner et al., 2017). Instead,
171 the recombination rate difference between the two kinds of populations seems more likely
172 to be due to a shift in the localisation of crossovers, or in the crossover rate in an LG12
173 region that recombines rarely in males from high-predation sites, consistent with changes
174 detected in evolutionary experiments in the guppy (Gordon, López-Sepulcre, Rumbo, &
175 Reznick, 2017).

176 The conclusion that evolutionary strata have evolved only in low-predation populations is
177 further called into question by evidence that crossovers occasionally occur in the regions
178 identified as younger strata (Almeida et al., 2021; Bergero et al., 2019; Charlesworth et al.,
179 2020; Darolti et al., 2020). Even rare crossing over will prevent accumulation of Y-specific
180 variants, and indeed, as mentioned above, no consistently male-specific variants have so far
181 been found in guppy populations. It is therefore worth considering alternative explanations,
182 such as the bottleneck hypothesis outlined above, for the finding that regions showing
183 associations with the sexes extend across larger regions in samples from low-predation
184 populations, compared with other populations.

185 Here, we compare diversity and F_{ST} values between the sexes for the XY pair and the
186 autosomes for Trinidadian guppy population samples from several rivers. Although
187 autosomal diversity was reported by Almeida et al. (2021) only relative X/A and Y/A values
188 were interpreted. However, it is important to consider the absolute values, because high F_{ST}
189 values can be due to low diversity, since F_{ST} reflects the proportion of total diversity that is
190 found between, rather than within populations, and low diversity within one or both of the
191 populations being compared necessarily implies high F_{ST} (Charlesworth, 1998; Charlesworth
192 et al., 1997; Cruickshank & Hahn, 2014). This can also affect F_{ST} values between the sexes.
193 For example, if an advantageous X-linked mutation has recently spread through a
194 population, causing a selective sweep, the resulting low diversity of X chromosome alleles
195 could create high male-female F_{ST} .

196

197 Our aims were as follows:

- 198 1) To analyse genome-wide patterns of synonymous site diversity to help understand
199 natural Trinidadian guppy populations and test for recent bottlenecks in upstream
200 populations.
- 201 2) To test whether the region in which the guppy male-determining factor is known to
202 be located displays unusually high nucleotide diversity, relative to values in other
203 genome regions in individuals sampled from the same population, or whether the
204 entire sex chromosome shows elevated diversity, or whether parts of the X
205 chromosome might show evidence for low diversity (due to possible selective
206 sweeps on the X), which could account for regions of high male-female F_{ST} values.
- 207 3) If the entire sex chromosome shows elevated diversity in males, to test whether
208 females also show higher diversity on this chromosome pair, compared with the
209 autosomes, as predicted above if the elevated diversity in males is due to LD with
210 the sex-determining locus under partial sex linkage.
- 211 4) To examine the sex chromosome region in which SNP genotypes are most strongly
212 associated with individuals' phenotypic sexes, to narrow down the location of the
213 guppy male-determining factor, and to assess the likely size of any non-recombining
214 region, or evolutionary stratum. In the Discussion section, we discuss problems that
215 may be responsible for the difficulty experienced in locating this factor.

216

217 **Methods**

218 **Trinidadian guppy samples**

219 Fish were sampled from 12 natural populations in Trinidad (Supplementary Table S1), and
220 20 males and 20 females were preserved in the field before transport to the UK for DNA
221 extraction and sequencing.

222 **Mapping pooled sequences to Guppy female assembly**

223 Low coverage Illumina sequencing was done for separate male and female pools, each of 20
224 individuals, for each sample, yielding sequence lengths of 150 bp, and the raw sequence
225 reads from the 24 pools were processed as described previously (Yong, Croft, Troscianko,
226 Ramnarine, & Wilson, 2021). Briefly, reads were trimmed to remove low quality bases and
227 adapter sequences using *cutadapt*. The cleaned reads were mapped to the guppy female

228 assembly v1.0 (accession number: GCF_000633615.1) using BWA (H. Li & Durbin, 2010).
229 Mapped reads were sorted and PCR duplicates were removed using Samtools v1.9 (H Li et
230 al., 2009). Reads around indels were realigned using the modules RealignerTargetCreator
231 and IndelRealigner implemented in gatk v3.4. Finally, the input file for the diversity analyses
232 described in the next section was generated using the Samtools mpileup function, reads
233 with mapping quality lower than 20 were discarded, and SNPs were called in Popoolation.

234

235 **Nucleotide diversity analyses in males and females**

236 To ensure that the sequences used are reliably aligned single-copy genes, and the variants
237 analysed are likely to behave close to neutrally, we used synonymous sites in annotated
238 genes for population genomic analyses of nucleotide diversity. Synonymous nucleotide
239 diversity (π_s) and Watterson's Θ_s were estimated using the Popoolation software (Kofler et
240 al., 2011); the software's Syn-nonsyn-sliding.pl and Syn-nonsyn-at-position.pl scripts were
241 used to estimate these quantities in non-overlapping 250Kbp windows and in individual
242 genes, which yielded similar results (see below). To obtain reliable diversity estimates, SNPs
243 with coverage lower than 1/3 of the average coverage for the sample, or higher than 3
244 times the average coverage, were first filtered out. SNPs for these calculations were defined
245 with one as the minimum number of reads supporting the minor allele, to check that the π_s
246 results are consistent with those using the SNPGenie software (Nelson, Moncla, & Hughes,
247 2015). As described later, the conclusions based on diversity values were not changed by
248 setting this number to 2 (mc=2 in Popoolation; reads with alternative variants below that
249 threshold are assumed to be errors). Because Θ_s estimates depend on rare variants (the
250 majority of variants in populations), the threshold needed in Popoolation analyses affects
251 these values, as discussed in the Results section. Diversity values were estimated separately
252 for the samples of males and females from each collection site. Finally, values of the
253 quantity $1 - (\pi_s/\Theta_s)$, denoted by $\Delta\Theta_s$, were calculated for each window or gene. This detects
254 frequency differences between variants, as values of Θ are estimated using variants
255 irrespective of their frequencies, whereas π values largely reflect intermediate frequency
256 variants. $\Delta\Theta_s$ can therefore detect the excess of rare variants that is expected in a
257 population as it returns towards the neutral equilibrium frequency distribution after a
258 recent bottleneck; in such populations, higher values of $\Delta\Theta_s$ are expected (Tajima, 1989).

259 The $\Delta\Theta_S$ measure is preferable to Tajima's D values as it is less affected by the lengths of the
260 sequences analysed.

261

262 **PoolSeq detection of candidate fully sex-linked sites and sex-linked regions**

263 To test for candidate completely sex linked variants on the sex chromosome pair, we
264 screened the data from each sample of 20 males and 20 females to detect sites with
265 variants consistently showing the genotype configuration expected under complete sex
266 linkage: under male heterogamety, the guppy sex-chromosome system (Winge, 1922b), all
267 females will be homozygous for an X-linked variant at candidate sites, while all males will be
268 heterozygous for a different variant. Male-specificity in a large enough sample indicates Y
269 linkage, though not necessarily complete Y linkage (see discussion below and
270 Supplementary Figure 1). Sites with the configuration suggesting XX in females and XY in
271 males are called "XY sites" in what follows. This analysis used all site types, not just
272 synonymous sites, because variants of any kind can help detect sex linkage. Previous
273 analyses using Illumina sequencing data (Almeida et al., 2021; Bergero et al., 2019;
274 Charlesworth et al., 2020; Reichwald et al., 2009) have also analysed regional differences in
275 the proportions of polymorphic sites with genotype configurations suggesting different
276 strengths of association with sex-determining loci, but sample sizes were small, or the
277 individuals were from captive populations. Large samples from multiple natural populations
278 are needed to narrow down the location of the guppy sex-determining locus, and our study
279 adds new samples to those analysed previously (Almeida et al., 2021; Bergero et al., 2019;
280 Charlesworth et al., 2020), and describes the results of the analyses in greater detail,
281 revealing valuable new information (see Results).

282 Table 1 illustrates our approach for such screening of PoolSeq data, based on the
283 frequencies of alternative bases at biallelic sites. At a site where a variant was detected in a
284 sample of females, the proportion of the variant (XFREQ) was computed using the total
285 number of reads of either base, after the filtering described above (TOTAL). This detects
286 candidate sites with no variation in the X chromosomes present in the females. At all such
287 sites with variants detected in the male sample, we calculated the proportion of the variant,
288 multiplied by 2, yielding YFREQ, the variant's estimated frequency in the population of Y
289 chromosomes. The table illustrates the method with three sites. When all 20 males are

290 heterozygotes for a base that differs from the one found in all females, the YFREQ value is 1,
291 suggesting fixation of the variant in the Y population (as expected for the male-determining
292 locus, which must be present in all males). YFREQ values of 1, suggesting fixation in the Y
293 population, may also be found at sites completely linked to the male-determining factor.

294 Because the individuals were sequenced in pools of males and females, the true numbers
295 will be less than 20 of each sex. It is nevertheless unlikely that many variants will be at high
296 intermediate frequencies in the males, and have this YFREQ value, but yet be invariant in
297 the female sample. For example, consider a site with both XFREQ and YFREQ values of 1,
298 which thus has an estimated frequency of the rarer variant (detected only in the males) of
299 0.25 (see Table 1). Most sites satisfying this criterion will be XY sites that are likely to be sex
300 linked, even if many fewer than 20 females were in fact sequenced. For instance, if half of
301 the individuals of either sex carry the allele detected in the males, the binomial probability
302 that the variant is not present in a female pool of only 10 individuals is 0.098% (ignoring
303 genotyping errors in the male sample, or failure to detect the variant in heterozygous
304 females). A further problem is that sequencing or mapping errors (or rare recombination
305 events) might produce XFREQ values slightly below 1 in some samples, which would not be
306 included as candidates for having male-specific variants. We therefore repeated the analysis
307 with $\text{XFREQ} \geq 0.975$ (i.e. one of the 40 alleles in our female sample matching the putatively
308 Y-specific allele). As described below, this did not increase the sharing of candidate fully sex-
309 linked sites between populations.

310 This approach has the potential to detect candidate sites with patterns suggesting complete
311 sex linkage, and chromosome regions that show enrichment for such sites. Importantly,
312 some variants at sites within a completely sex-linked region may have YFREQ values < 1 ,
313 because a recent mutation in a Y-linked sequence may not have become fixed at the site
314 (although, in the absence of recombination, such a segregating variant will still be male-
315 specific, and the site will have $\text{XFREQ} = 1$). Segregating male-specific variants might also be
316 due to maintenance of different Y haplotypes. We consider this in the Discussion section,
317 along with comparing this approach with alternative methods used for screening for sex-
318 linkage. Variants in partially sex-linked regions may also have high YFREQ values, but both
319 these, and their XFREQ values should be < 1 .

320

321 **Results**

322 *Nucleotide diversity in different populations and evidence for recent population size*
323 *bottlenecks*

324 With both diversity measures we estimated (see Methods), most low-predation (LP)
325 populations have the expected lower diversity than the high-predation (HP) ones from the
326 same river (Figures 2 and 3 and Table 2), for both LG12 and autosomal sequences (except
327 for the Quare river samples, individually labelled in Figure 3, with no diversity difference);
328 the patterns are similar for diversity based on genes, rather than windows (Supplementary
329 Table S3A). Even including the Quare river, mean π in upstream populations is at least 37%
330 lower than in downstream ones, based on autosomal sequences from both sexes (or 41%
331 based on medians); this diversity measure is conservative for detecting diversity loss, as π
332 depends most strongly on variants at intermediate frequencies, which are least likely to be
333 lost. The differences in θ are larger (Supplementary Table S3A), as this diversity measure is
334 more weighted to low frequency variants (see Methods), which are most likely to be lost in
335 bottleneck events.

336 Figures 2 and 3 about here

337 Both high- and low-predation samples also show deficits of low-frequency variants ($\Delta\theta_s$
338 values, see Methods, are shown in Figure 3 and Supplementary Table S3). Because the
339 sequences were obtained by PoolSeq, absolute values of this quantity cannot be
340 interpreted, but the values are consistently higher in three of the four rivers where up- and
341 down-stream samples could be compared, with significant differences in both sexes, for
342 both autosomal and sex-linked variants (Supplementary Table S4). Three rivers have only
343 one predation regime represented (Guanapo, Paria and Petit Marianne, see Supplementary
344 Table S1), and the results from these are also consistent with this pattern (Figure 3,
345 Supplementary Tables S3 and S4). However, the Quare upstream sample (Quare LP in Figure
346 3) is again unusual, as its unexpectedly high diversity (for both LG12 and autosomal
347 sequences) is accompanied by an absence of evidence for loss of rare variants, and its $\Delta\theta_s$
348 value is low, like the values for downriver samples, indicating an abundance of rare variants.
349 The differences between up and downstream samples were largely unchanged with a higher
350 threshold number of reads supporting the minor allele (see Methods), though this reduced
351 the diversity estimates; as expected, since many sites with low frequency minor alleles were

352 filtered out, θ_s was greatly reduced, but upstream samples still consistently had high $\Delta\theta_s$
353 values, compared with downstream ones (Supplementary Figure 3B and Table S3C).
354 The lower diversity of the upstream samples is expected to lead to comparisons involving
355 such samples having the highest F_{ST} values. This can explain the high values in comparisons
356 between pairs of upstream populations from different rivers, using all site types, and lower
357 ones between upstream and downstream populations from the same river (B. A. Fraser,
358 Künstner, Reznick, Dreyer, & Weigel, 2015; Suk & Neff, 2009; Willing et al., 2010) (the same
359 is seen for the samples and synonymous sites studied here, using the PoolFstat
360 package (Hivert, Leblois, Petit, Gautier, & Vitalis, 2018), Supplementary Table S2.
361

362 *Male-female differentiation*

363 Figures 2 and Figure 3A show that we also detect higher synonymous site diversity in males
364 than females. The sex difference is especially clear in downstream samples where diversity
365 is high (Figure 3 and Supplementary Figure S3; Supplementary Figure S2 shows detailed
366 results for LG12 for all 12 populations sampled). Again, these differences were maintained
367 under a higher threshold number of reads supporting the minor allele (Supplementary Table
368 S3C). Because separate pools were sequenced from males and females, and sex differences
369 in diversity were not confined to the sex chromosome (Supplementary Table S3B), we
370 quantified the effect of sex linkage using the ratio of sex chromosome/autosomal diversity
371 values in each sex. Almost all samples have excess diversity on the sex chromosome (Figure
372 4, Supplementary Figures S2B and S3). Interestingly, this is detected in both sexes, not just
373 in the males, though the excess is larger in males than females in 9 of the 12 samples. In all
374 high-predation populations, and in the low-predation Quare sample, excess diversity was
375 detected in males across much of chromosome 12; all these samples had at least 70
376 windows with ratios above 1 (out of the total of 106 250 kb chromosome 12 windows),
377 highly significantly exceeding the expected 53 windows under the null hypothesis that this
378 chromosome has diversity values similar to those for autosomal sequences. Among the
379 female samples, only the high-predation one from the Guanapo river yielded a significant
380 excess of such windows (69/106). This population also showed high F_{ST} between males and
381 females in a previous study (Fraser et al., 2020).
382

383

Figure 4 about here

384 The tendency for LG12 sequences sampled from females to have higher diversity than
385 autosomal ones suggests that the X chromosome has not experienced recent hard selective
386 sweeps. Genetic maps of LG12 in female guppies are consistently around 50 centiMorgans
387 (Bergero et al., 2019; Charlesworth et al., 2020), implying that more than a single crossover
388 event per meiosis is rare. A recent strong selective sweep event would therefore create a
389 wide region of very low diversity (Supplementary Figure S2).

390

391 *Attempts to locate the guppy male-determining region*

392 The LG12 region in which the guppy male-determining factor is known to be located (distal
393 to 20 Mb) appears to show higher synonymous site diversity in males than females, unlike
394 the rest of the chromosome (Figure 2, Supplementary Figure S2). However, the difference is
395 small, and the coverage is low in the region, and, across LG12, other high diversity values
396 are clearly associated with low coverage (Supplementary Figure S8). Overall, these appears
397 to be repetitive regions, and may not reliably identify the region that includes the male-
398 determining factor. We therefore used a different approach, based on associations between
399 sex and genotypes at variable sites on LG12. The approach searches the PoolSeq data for
400 sites (of any type, not just coding region sites) where the genotypes in males and females
401 conform to those expected under complete sex linkage, as described in the Methods
402 section, which also describes the criteria used for including a site in the searches. Figure 5
403 shows results for sites that were polymorphic in each population, and at which variants
404 were detected only in the population's male sample (while the females had good coverage,
405 but were monomorphic, with XFREQ values equalling 1), and had YFREQ values above 0.9,
406 indicating strong association with the male-determining locus (see Methods). Although
407 male-specific variants are concentrated in the expected region, the picture for the entire
408 LG12 (Figure 5) does not point clearly to a completely sex-linked region; the upper part of
409 Figure 5 shows that at most 4 populations have sites satisfying this stringent Y criterion. This
410 is consistent with the diversity results described above, and with the previously published
411 results described in the Introduction. Supplementary Figures S4 and S5A show results for
412 male-specific variants with YFREQ = 0.7, to allow for non-fixation in the Y chromosome
413 population. This does not alter the regions showing most associations with the sex-

414 determining locus. If we include sites where one allele in our female sample matched the
415 putatively Y-specific allele (see Methods) the sharing of candidate fully sex-linked sites
416 between populations did not increase (Supplementary Figure S5B).

417 **Figure 5 about here**

418 Overall, these analyses do not definitively identify either the male-determining locus or any
419 clear fully sex-linked region in which it is located. Of the total of 7,705 candidate sites with
420 male-specific variants in at least one population sampled, 79% were detected in only one of
421 our 12 samples. The broad signals in some samples may reflect the expected wide LD in
422 bottlenecked populations explained above. However, some high-predation samples
423 (including those from the Aripo and Guanapo rivers) yielded few candidate sites, and very
424 few were detected in the Aripo LP2 sample (though their locations are consistent with the
425 region identified in the other samples, Supplementary Figure S4). Instead of a clear sex-
426 linked region, two regions of the sex chromosome, between roughly 20.5 and 21.8 Mb, and
427 distal to 24.5 Mb in the female assembly, are enriched in sites with apparently male-specific
428 variants, while the signal is much weaker between 21,519,986 and 25,369,837, with no
429 candidates shared by more than 2 populations. No recombinants have yet been found
430 between markers within these three regions and the male-determining locus (Charlesworth
431 et al., 2020), and they may all be completely sex-linked, or almost so, while the pseudo-
432 autosomal region or PAR starts more distally (slightly centromere-proximal to 25,194,513
433 bp, see (Charlesworth et al., 2020); the regions are shown, together with information about
434 their genetic map locations, in Supplementary Figures S6, and Supplementary Figure S7
435 shows that the two sub-regions with the strongest signal of sex linkage also have high
436 repetitive content. The gap between these two regions does not reflect low coverage
437 (Supplementary Figure 8). The terminal parts of the sex chromosome may still not be
438 correctly assembled, given their high repetitive content and presence of sequences that
439 were unplaced in the male assembly (Supplementary Figures S7 and S6), and the correct
440 location of gap region could be distal to the two regions with male-specific SNPs.

441 Only 36 of the potentially male-specific sites satisfy the threshold of $YFREQ \geq 0.7$ in at least 4
442 population samples, 29 of which are distal to 20.9 Mb. The candidate site found in the
443 largest number of populations (at position 21,410,653) is found in only 7 samples. Excluding
444 two sites distal to the gap region suggests a candidate sex-linked region with a total size of

445 590,830 bp, which includes only 22 genes (Supplementary Table S5). Two, cyclin and
446 shroom3-like, are in the previously proposed candidate region (contig IV gene island),
447 whose repetitive parts had higher coverage in males than females, and are duplicated near
448 24 Mb in the assembly of the sequenced male (Fraser et al., 2020). Another candidate
449 region (Dor et al., 2019), in the more terminal LG12 region assembled distal to the gap, was
450 also detected in this study of fish from natural populations, but no candidate genes
451 emerged (Fraser et al., 2020).

452

453 **DISCUSSION**

454 Our analyses indicate a greater genome-wide excess of rare synonymous site
455 polymorphisms in upstream than downstream guppy populations, indicating that at least
456 the upstream ones are not at mutation-drift equilibrium. This will pose problems for
457 population genomic approaches aimed at detecting footprints of balancing selection (as
458 here) or adaptive changes.

459 Low diversity in upstream populations is consistent with previous studies of polymorphic
460 microsatellite or SNP markers (Barson et al., 2009; Willing et al., 2010).and very high F_{ST}
461 values between pairs of samples from upstream populations from different rivers, though
462 previous studies of F_{ST} either did not provide nucleotide diversity estimates (Suk & Neff,
463 2009; Fraser et al., 2015) or did not detect bottlenecks (Willing et al., 2010). F_{ST} estimates
464 using the same PoolSeq data as analysed here (Yong et al., 2021 see Supplementary Table
465 S2), support the same pattern, and a recent population genomics study using all site types
466 inferred the occurrence of bottlenecks in several rivers (Whiting et al., 2021). Our analyses
467 of synonymous, probably weakly selected, variants in coding sequences reveals specific loss
468 of rare variants, as expected if upstream populations are recovering after having lost
469 diversity in their recent history. Their low diversity is therefore unlikely to reflect long-term
470 low effective population sizes. It also cannot reflect extremely severe recent bottlenecks
471 causing almost complete loss of variability, and leaving only variants at intermediate
472 frequencies, which would cause a difference in $\Delta\Theta_S$ values opposite to that observed.
473 Metapopulation dynamics, with local extinction and recolonisation events involving
474 bottlenecks, could explain the observed low diversity in up-stream guppy populations

475 (Figure 3A, Supplementary Table S3) and very high F_{ST} values between up-river sites from
476 different drainages.

477 Rare migration from downstream populations seems unlikely to have produced the
478 observed consistent pattern. Unless migration rates are very low, samples of more than 10
479 individuals per deme in a subdivided population should not display strong departures from
480 equilibrium (Table 7.1 of Charlesworth & Charlesworth, 2010). Migration from up- to down-
481 river localities is probably more frequent (Whiting et al., 2021). The Quare results differ
482 from the general pattern, possibly because of migration of fish from headwaters of other
483 rivers during floods.

484

485 *Diversity within the two sexes, and diversity differences between sex chromosomes and*
486 *autosomes*

487 Synonymous sites, under weak selective constraints reducing diversity, are also preferable
488 for testing for the predicted higher diversity in males than females from natural
489 populations. We indeed consistently detect sex chromosome-specific differences (Figures 3
490 and 4), whereas a previous analysis of F_{ST} between guppy males and females, using all site
491 types, did not detect clear differences between LG12 and the autosomes (Fraser et al.,
492 2020).

493 Diversity is higher than for autosomal sequences across the entire guppy LG12 in
494 downstream populations (Figure 2 and Supplementary Figure 2). Upstream populations
495 might have been expected to show the clearest signals, because associations between SNPs
496 and the male-determining locus (under balancing selection) should be maintained even if
497 the rest of the genome has lost variability. However, LD generated by sampling during
498 bottlenecks in these populations may outweigh this. Also, as outlined in the Introduction,
499 the signal may be restricted to a small region near the male-determining locus, as in two fish
500 whose sex-determining factors are allelic differences of single genes within recombining
501 genome regions, the fugu (Kamiya et al., 2012) and species in the very distantly related
502 genus *Seriola* (Koyama et al., 2019), and maybe also in *Nothobranchius furzeri*, another fish
503 with homomorphic X and Y chromosomes (Reichwald et al., 2015).

504 The large LG12-wide excess of diversity in male guppies from high-predation populations
505 suggests that the whole chromosome (other than the terminal pseudo-autosomal region) is
506 generally transmitted from fathers to sons, with only rare crossing over. Although family
507 studies cannot reliably estimate very low recombination rates, they show that rates in male
508 guppies are very low across most of this chromosome (Bergero et al., 2019; Charlesworth et
509 al., 2020; Haskins et al., 1961). Associations might thus be found across much greater
510 physical distances than in fugu or *Seriola*, and male coloration factors might therefore be
511 maintained at any of the many genes located within the rarely recombining region. A very
512 low population recombination rate ($r < 5$) would be required to account for the observed
513 almost 20% higher sex chromosome than autosomal diversity in males in the absence of a
514 SA polymorphism (Figure 1). Presence of a SA polymorphism can, however, increase the Y-X
515 coalescence times and at sites closely linked to the polymorphic locus, and also increases
516 coalescence times between X-linked regions (Kirkpatrick & Guerrero, 2014). We indeed
517 detect elevated X-linked, compared with autosomal, diversity in samples of females (Figure
518 4).

519 *P. wingei* appears to show greater LD, across a larger proportion of LG12, than *P. reticulata*.
520 (Almeida et al., 2021; Darolti et al., 2020; Darolti et al., 2019), and this too could reflect
521 associations with variants across a wide LG12 region. Samples from natural populations are
522 not available, and the small sample sizes studied from this species will be even more
523 important than in the guppy. Alternatively, the Y of this species may carry more male
524 coloration factors.

525

526 *Approaches for discovering completely sex-linked regions and variants*

527 Many approaches can detect an extensive non-recombining sex-determining region, or
528 evolutionary stratum containing many sites with male-specific variants, will be detected by,
529 but it will be difficult to detect a small region, or a non-recombining region that evolved
530 recently, or one in which occasional recombination events still occur. Physically small male-
531 determining loci, however, will be difficult to locate in genomes if associations arise due to
532 close, but incomplete, linkage across large regions, especially if linked SA polymorphisms are
533 maintained. Low diversity populations might then show the clearest difference between the
534 sex-linked region and the rest of the genome, making the male-determining locus more

535 detectable. In small or bottlenecked populations, LD is expected to be higher than larger
536 ones, because lower r leads to greater LD at equilibrium (Haddrill, Thornton, Charlesworth,
537 & Andolfatto, 2005). The footprint of sex-linkage might therefore be detected at more
538 distant variants in such populations. On the other hand, bottlenecks increase the variance of
539 LD, and result in strong LD by chance, even between sequence variants that are not closely
540 linked (Park, 2019).

541

542 The presence of male-determining factor on the guppy LG12 could nevertheless potentially
543 be detected by testing for regions with higher diversity, whether the functional site is in a
544 coding or a non-coding region, using analyses of individual sites, as proposed here, to find
545 variable sites with XY genotype configurations. Given a male-determining factor shared by
546 all populations of a species, even a single base change from the sequence in females should
547 be detectable. In the guppy, associations are consistently found within a region of the sex
548 chromosome distal to 20 Mb, and our analysis (Figure 5) confirms that most of the
549 associated SNPs lie within two regions, while a region between these largely lacks such SNPs
550 (Almeida et al., 2021). Our analysis detected somewhat clearer associations in downstream
551 than upstream samples (Figures 4 and 5).

552 The approach used here may be preferable to using F_{ST} values between the sexes. F_{ST} can
553 detect sites associated with the sex-determining locus (Almeida et al., 2021; Bergero et al.,
554 2019; Fraser et al., 2020). However, very high F_{ST} values can arise if diversity in one of the
555 populations is low, since F_{ST} quantifies the proportion of diversity found between
556 populations (Charlesworth, 1998; Charlesworth et al., 1997; Cruickshank & Hahn, 2014).
557 When the sexes are treated as two populations, this could happen if there has been a recent
558 selective sweep on the X chromosome, causing low diversity in females, or a recent
559 bottleneck that eliminated much X-linked diversity leaving a high proportion of the
560 remaining diversity due to Y-X divergence, even if that divergence is small in absolute terms.
561 Such events could explain the chromosome-wide high F_{ST} values between males and
562 females observed in a Guanapo population sample, but not other populations (Fraser et al.,
563 2020).

564 Furthermore, if distinct Y haplotypes co-exist, each with “private”, haplotype-specific
565 variants (as might occur if the rarely recombining region carries polymorphic male
566 coloration factors), this will lead to low F_{ST} between the sexes. Diverse Y haplotypes have
567 been uncovered in *Poecilia* (= *Micropoecilia*) *parae* (Sandkam et al., 2021), a species with
568 polymorphic Y-linked male coloration (Lindholm, Brooks, & Breden, 2004). Three different
569 male colour patterns are associated with distinctive k-mers, indicating that some sequence
570 variants are present only in males with certain colour phenotypes, and supporting complete
571 Y linkage (Sandkam et al., 2021). In such a situation, the male-determining factor should be
572 shared by all males, but variants in the completely linked region will have arisen
573 independently on the haplotype of each coloration factor, and many sites could show
574 variants that are not shared with other males (Supplementary Figure S1). Analysing
575 individual sites, rather than F_{ST} in windows containing multiple variable sites, partially
576 avoids this problem, because only shared Y-linked variants that arose before the different Y
577 haplotypes split will be detected. However, if individuals are sequenced separately and can
578 be phased reliably, LD analysis can potentially resolve such situations more completely.

579 Our approach can nevertheless fail to find completely sex-linked variants, or physically small
580 sex-linked regions. If the reference genome assembly of a species with male heterogamety
581 is derived from sequencing a female, and if the male-determining gene is a Y-specific
582 sequence, such as a duplication with a male-determining effect, it will not be represented in
583 the reference genome. This is unlikely in the guppy, as use of a male genome assembly also
584 failed to reveal clear associations (Fraser et al., 2020). Second, regions of high repeat
585 density, may prevent Y- and X-linked sequences aligning reliably, resulting in gaps even if
586 the male-determiner is a single nucleotide polymorphism in a gene present in both the X-
587 and Y-linked regions. Our filtering to removed regions with high coverage (see Methods),
588 may have created gaps where repetitive sequences are abundant, potentially excluding sites
589 with XY genotype configurations. However, the absence of strong associations between
590 about 21.8 and 24.5 Mb appears not simply to reflect this problem, as coverage values are
591 not very low in this region (unlike parts of the flanking regions with high densities of male-
592 specific SNPs, Supplementary Figure S8).

593 The two chromosome 12 regions could reflect separate peaks of variation associated with
594 two loci under balancing selection: the male-determining factor, and a sexually antagonistic
595 polymorphism, or cluster of polymorphisms, as modelled by Kirkpatrick & Guerrero (2014).

596 Another possibility that cannot currently be excluded, is that the different populations have
597 different male-determining factors (Almeida et al., 2021). Non-1:1 primary sex ratios should
598 then arise in crosses between or within populations. Sex ratio data are scarce in guppies. To
599 our knowledge, data are not yet available from newly born progeny or unborn fry extracted
600 from gravid females (which could be obtained using microsatellite or other molecular
601 markers located in the sex chromosome region that recombines rarely, and therefore
602 behave as Y-linked in most progeny of heterozygous males). However, inter-strain crosses
603 and crosses involving YY males showed that female-biased sex ratios in laboratory strains of
604 guppies are determined primarily by Y-linked genes decreasing production or competitive
605 ability of Y-bearing sperm, possibly reflecting accumulation of deleterious alleles, or
606 pleiotropic effects of Y-linked alleles that increase male fitness (Farr, 1981).

607 Finally, perhaps the genome region is arranged differently in different individuals. This could
608 explain the different location of the signal in the Quare samples (though the signal at 20.9
609 Mb is weak).

610 Male-specific variants proximal to 20 Mb probably mainly reflect LD due to infrequent
611 recombination. Some parts of the guppy sex chromosome pair recombine very rarely with
612 the male-determining factor, while others do so at rates of up to 8%, though it is unclear
613 whether these rates occur in natural populations, as many genetic studies used captive
614 ornamental fish (Lindholm & Breden, 2002). It is unclear whether exchanges of coloration
615 factors between the Y and X are observed because these factors are located in the region of
616 frequent recombination distal to the male-determining locus, or reflect crossovers proximal
617 to this locus. It is also unknown whether crossovers occur nearer the centromere end of the
618 chromosome, where cytogenetic studies of crossover locations (Lisachov et al., 2015) and
619 genetic mapping of molecular markers (Charlesworth et al., 2020) suggest that they are very
620 rare.

621

622 **CONCLUSIONS**

623 Overall, our results show that there is no need to invoke complete sex linkage, or the
624 evolution of new non-recombining strata, to explain the pattern of differentiation between
625 males and females across different parts of the guppy LG12. There may be no extensive
626 (multi-gene) completely non-recombining region corresponding to evolutionary strata of
627 other organisms such as humans. The appearance of strata may reflect the LD that is
628 expected across regions that rarely recombine with the male-determining locus, and
629 especially in bottlenecked populations. The male-determining locus is probably within a
630 region 600 kb near 21Mb in the guppy female LG12 assembly, much smaller than the 3 Mb
631 suggested oldest stratum (Wright et al., 2017). This is consistent with evidence that the
632 male-determining factor maps distal to a marker at 21.3 Mb, while the boundary of the
633 pseudo-autosomal region is near 25 Mb (Charlesworth et al., 2020). Although the assembly
634 of the terminal part of LG12 remains uncertain, the sex-linked region could be confined to a
635 single SNP in or near one of the 22 genes in the region defined here (Supplementary Table
636 S5).

637 The localization of crossovers at one end of each chromosome arm in male guppies, may be
638 an ancestral state, as emerging results from sex-specific genetic maps suggest similar
639 patterns in other fish (Sardell & Kirkpatrick, 2019). Stronger terminal localization of
640 recombination in male guppies may have evolved, but there is currently no evidence for
641 such a change. Therefore, rather than selecting for suppressed recombination between loci
642 with SA polymorphisms and the male-determining locus, it is plausible that low
643 recombination across most of LG12 (producing close linkage with the male-determining
644 factor), favoured establishment of such polymorphisms. The resulting associations of
645 variants across the XY pair (Kirkpatrick & Guerrero, 2014) would resemble young
646 evolutionary strata.

647 LD across the sex chromosome could reflect presence of other SA polymorphisms not just
648 male coloration factors. Guppy populations show several other sexual dimorphisms,
649 including smaller size of males than females and behavioural differences (Olendorf et al.,
650 2006). However, it is currently unclear whether the differentiation detected across the
651 guppy sex chromosomes implies the presence of multiple SA factors, as theoretical
652 modelling shows that this requires strong selection at loci that are tightly linked, but distant
653 from the sex determining region, and the loci remain polymorphic only if selection favours

654 heterozygotes (Otto, 2019). The evolutionary history that determines nucleotide diversity
655 depends on recent demographic changes, not just on the recombination rates and effective
656 population sizes (i.e. r values in Figure 1) under which populations are evolving. Upstream
657 populations have undergone such changes, and also evolutionary changes since these sites
658 were colonised, as reviewed by Magurran (2005), and selective sweeps may have affected
659 diversity of some genome regions. Therefore, even if the low recombination rates across
660 much of the guppy LG12 could be estimated, it may be impossible to use the fit of diversity
661 results to theoretical equations to test whether LD with weakly selected synonymous
662 variants is so high that SA polymorphisms must be invoked to account for it.

663

664 **Acknowledgements:** This project was supported by ERC grant number 695225 (GUPPYSEX).
665 We thank Mateusz Konczal (Adam Mickiewicz University, Poznań, Poland) for helpful
666 suggestions about analyses.

667

668 References

- 669 Almeida, P., Proux-Wera, E., Churcher, A., Soler, L., Dainat, J., Pucholt, P., . . . Mank, J. E.
670 (2020). Genome assembly of the basket willow, *Salix viminalis*, reveals earliest stages
671 of sex chromosome expansion. *BMC Biology*, 18(78). doi:10.1186/s12915-020-
672 00808-1
- 673 Almeida, P., Sandkam, B. A., Morris, J., Darolti, I., Breden, F., & Mank, J. (2021). Divergence
674 and remarkable diversity of the Y chromosome in guppies. *Molecular Biology and*
675 *Evolution*, 38(2), 619–633. doi:10.1093/molbev/msaa257
- 676 Barson, N., Cable, J., van Oosterhout, C., Joyce, D., Cummings, S., Blais, J., . . . Persad, N.
677 (2009). Population genetic analysis of microsatellite variation of guppies (*Poecilia*
678 *reticulata*) in Trinidad and Tobago: evidence for a dynamic source-sink
679 metapopulation structure, founder events and population bottlenecks. *Journal of*
680 *Evolutionary Biology*, 22(3), 485-497. doi:10.1111/j.1420-9101.2008.01675.x
- 681 Bergero, R., Gardner, J., Bader, B., Yong, L., & Charlesworth, D. (2019). Exaggerated
682 heterochiasmy in a fish with sex-linked male coloration polymorphisms. *Proceedings*
683 *of the National Academy of Sciences of the United States of America*, 116(14), 6924-
684 6931. doi:10.1073/pnas.1818486116
- 685 Charlesworth, B. (1998). Measures of divergence between populations and the effect of
686 forces that reduce variability. *Molecular Biology and Evolution*, 15, 538-543.
- 687 Charlesworth, B., Nordborg, M., & Charlesworth, D. (1997). The effects of local selection,
688 balanced polymorphism and background selection on equilibrium patterns of genetic
689 diversity in subdivided inbreeding and outcrossing populations. *Genetical Research*,
690 70, 155-174.
- 691 Charlesworth, D. (2018). The guppy sex chromosome system and the sexually antagonistic
692 polymorphism hypothesis for Y chromosome recombination suppression. *Genes*,
693 9(5), 264. doi:10.3390/genes9050264

- 694 Charlesworth, D., Bergero, R., Graham, C., Gardner, J., & Yong, L. (2020). Locating the sex
695 determining region of linkage group 12 of guppy (*Poecilia reticulata*). *G3 (Bethesda)*,
696 10(10), 3639-3649. doi:10.1534/g3.120.401573
- 697 Charlesworth, D., & Charlesworth, B. (2010). *Elements of Evolutionary Genetics*. Greenwood
698 Village, Colorado: Roberts and Company.
- 699 Cortez, D., Marin, R., Toledo-Flores, D., Froidevaux, L., Liechti, A., Waters, P. D., . . .
700 Kaessmann, H. (2014). Origins and functional evolution of Y chromosomes across
701 mammals. *Nature*, 508, 488–493. doi:10.1038/nature13151
- 702 Cruickshank, T., & Hahn, M. W. (2014). Reanalysis suggests that genomic islands of
703 speciation are due to reduced diversity, not reduced gene flow. *Molecular Ecology*,
704 23(13), 3133-3157. doi:10.1111/mec.12796
- 705 Darolti, I., Wright, A., & Mank, J. (2020). Guppy Y chromosome integrity maintained by
706 incomplete recombination suppression. *Genome Biology and Evolution*, 12(6), 965–
707 977. doi:10.1093/gbe/evaa099
- 708 Darolti, I., Wright, A., Sandkam, B., Morris, J., Bloch, N., Farré, M., . . . Mank, J. (2019).
709 Extreme heterogeneity in sex chromosome differentiation and dosage compensation
710 in livebearers *Proceedings of the National Academy of Sciences of the United States
711 of America*, 116(38), 19031–19036. doi:10.1073/pnas.1905298116
- 712 Dor, L., Shirak, A., Kohn, Y., Gur, T., Welle, J., Zilberg, Z., . . . Ron, M. (2019). Mapping of the
713 sex determining region on linkage group 12 of guppy (*Poecilia reticulata*). *G3
714 (Bethesda)*, 9, 3867-3875. doi:10.1534/g3.119.400656
- 715 Endler, J. A. (1980). Natural selection on color patterns in *Poecilia reticulata*. *Evolution*, 34,
716 76-91.
- 717 Farr, J. (1981). Biased sex ratios in laboratory strains of guppies, *Poecilia reticulata*. *Heredity*, 47(2),
718 237-248.
- 719 Fraser, B., Hughes, K., Tosh, D., & Rodd, F. (2013). The role of learning by a predator, *Rivulus
720 hartii*, in the rare-morph survival advantage in guppies. *Journal of Evolutionary
721 Biology*, 26(12), 2597-2605. doi:10.1111/jeb.12251
- 722 Fraser, B., Whiting, J. R., Paris, J. R., Weadick, C. J., Parsons, P. J., Charlesworth, D., . . .
723 Weigel, D. (2020). Improved reference genome uncovers novel sex-linked regions in
724 the guppy (*Poecilia reticulata*). *Genome Biology and Evolution*, 12(10), 1789–1805.
725 doi:10.1093/gbe/evaa187
- 726 Fraser, B. A., Künstner, A., Reznick, D. N., Dreyer, C., & Weigel, D. (2015). Population
727 genomics of natural and experimental populations of guppies (*Poecilia reticulata*).
728 *Molecular Ecology*, 24, 389–408. doi:10.1111/mec.13022
- 729 Gordon, S. P., López-Sepulcre, A., & Reznick, D. N. (2012). Predation-associated differences
730 in sex-linkage of wild guppy coloration. *Evolution*, 66(3), 912-918.
731 doi:10.1111/j.1558-5646.2011.01495.x
- 732 Gordon, S. P., López-Sepulcre, A., Rumbo, D., & Reznick, D. N. (2017). Rapid changes in the
733 sex linkage of male coloration in introduced guppy populations. *American Naturalist*,
734 189(2), 196-200. doi:10.1086/689864
- 735 Haddrill, P. R., Thornton, K. R., Charlesworth, B., & Andolfatto, P. (2005). Multilocus patterns
736 of nucleotide variability and the demographic and selection history of *Drosophila
737 melanogaster* populations. *Genome Research*, 15(6), 790-799.
738 doi:doi:10.1101/gr.3541005

- 739 Haskins, C., Haskins, E. F., McLaughlin, J., & Hewitt, R. E. (1961). Polymorphisms and
740 population structure in *Lebistes reticulatus*, an ecological study. In W. F. Blair (Ed.),
741 *Vertebrate Speciation* (pp. 320-395). Austin, TX: University of Texas Press.
- 742 Haskins, C., Young, P., Hewitt, R. E., & Haskins, E. F. (1970). Stabilised heterozygosis of
743 supergenes mediating certain Y-linked colour patterns. *Heredity*, 25, 575-588.
744 doi:10.1038/hdy.1970.64
- 745 Hivert, V., Leblois, R., Petit, E., Gautier, M., & Vitalis, R. (2018). Measuring genetic
746 differentiation from Pool-seq data. *Genetics*, 210(1), 315–330.
747 doi:10.1534/genetics.118.300900
- 748 Houde, A. E. (1992). Sex-linked heritability of a sexually selected character in a natural
749 population of *Poecilia reticulata* (Pisces: Poeciliidae) (guppies). *Heredity*, 69, 229-
750 235. doi:10.1038/hdy.1992.120
- 751 Hughes, K., Houde, A., Price, A., & Rodd, F. (2013). Mating advantage for rare males in wild
752 guppy populations. *Nature*, 503, 108–110. doi:10.1038/nature12717
- 753 Kamiya, T., Kai, W., Tasumi, S., Oka, A., Matsunaga, T., Mizuno, M., . . . Kikuchi, K. (2012). A
754 trans-species missense SNP in amhr2 is associated with sex determination in the
755 tiger pufferfish, *Takifugu rubripes* (Fugu). *PLoS Genetics*, 8(7), e1002798.
756 doi:10.1371/journal.pgen.1002798
- 757 Kirkpatrick, M., & Guerrero, R. (2014). Signatures of sex-antagonistic selection on
758 recombining sex chromosomes. *Genetics*, 197, 531-541.
759 doi:10.1534/genetics.113.156026
- 760 Kirkpatrick, M., Guerrero, R., & Scarpino, S. (2010). Patterns of neutral genetic variation on
761 recombining sex chromosomes. *Genetics*, 184(4), 1141-1152.
762 doi:10.1534/genetics.109.113555
- 763 Kofler, R., Orozco-terWengel, P., Maio, N. D., Pandey, R., Nolte, V., Futschik, A., . . .
764 Schlötterer, C. (2011). PoPoolation: A Toolbox for Population Genetic Analysis of
765 Next Generation Sequencing Data from Pooled Individuals. *PLOS ONE*, 6(1), e15925
766 doi:10.1371/journal.pone.0015925
- 767 Koyama, T., Nakamoto, M., Yamashita, R., Yamashita, T., Sasaki, K., Kuruma, Y., . . . Okada, Y.
768 (2019). A SNP in a steroidogenic enzyme is associated with phenotypic sex in Seriola
769 fishes. *Current Biology*, 29, 1901-1909. doi:10.1016/j.cub.2019.04.069
- 770 Künstner, A., Hoffmann, M., Fraser, B. A., Kottler, V. A., Sharma, E., Weigel, D., & Dreyer, C.
771 (2017). The genome of the Trinidadian guppy, *Poecilia reticulata*, and variation in the
772 Guanapo population. *PLOS ONE*, 11(12), e0169087.
773 doi:10.1371/journal.pone.0169087
- 774 Lahn, B. T., & Page, D. C. (1999). Four evolutionary strata on the human X chromosome.
775 *Science*, 286, 964-967. doi:10.1126/science.286.5441.964
- 776 Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler
777 transform. *Bioinformatics*, 26. doi:10.1093/bioinformatics/btp698
- 778 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., . . . Subgroup, G. P. D. P.
779 (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16),
780 2078-2079. doi:10.1093/bioinformatics/btp352
- 781 Lindholm, A., & Breden, F. (2002). Sex chromosomes and sexual selection in Poeciliid fishes.
782 *American Naturalist*, 160, S214-S224. doi:10.1086/342898
- 783 Lindholm, A., Brooks, R., & Breden, F. (2004). Extreme polymorphism in a Y-linked sexually
784 selected trait. *Heredity*, 95, 156–162. doi:10.1038/sj.hdy.6800386

- 785 Lisachov, A., Zadesenets, K., Rubtsov, N., & Borodin, P. (2015). Sex chromosome synapsis
786 and recombination in male guppies. *ZEBRAFISH*, 12(2), 174-180.
787 doi:10.1089/zeb.2014.1000
- 788 Magurran, A. E. (2005). *Evolutionary Ecology: The Trinidadian Guppy*. Oxford: Oxford
789 University Press.
- 790 Nanda, I., Schories, S., Tripathi, N., Dreyer, C., Haaf, T., Schmid, M., & Schartl, M. (2014). Sex
791 chromosome polymorphism in guppies. *Chromosoma*, 123(4), 373-383.
792 doi:10.1007/s00412-014-0455-z
- 793 Nelson, C., Moncla, L., & Hughes, A. (2015). SNPGenie: estimating evolutionary parameters
794 to detect natural selection using pooled next-generation sequencing data.
795 *Bioinformatics*, 31(22), 3709-3711. doi:10.1093/bioinformatics/btv449
- 796 Olendorf, R., Rodd, F., Punzalan, D., Houde, A., Reznick, D., & Hughes, K. (2006). Frequency-
797 dependent survival in natural guppy populations. *Nature*, 441, 633-636.
798 doi:10.1038/nature04646
- 799 Otto, S. (2019). Evolutionary potential for genomic islands of sexual divergence on
800 recombining sex chromosomes. *New Phytologist*, 224(3), 1241-1251.
801 doi:10.1111/nph.16083
- 802 Pan, Q., Kay, T., Depincé, A., Adolfi, M., Schartl, M., Guiguen, Y., & Herpin, A. (2021).
803 Evolution of master sex determiners: TGF- β signalling pathways at regulatory
804 crossroads. *Philosophical Transactions of the Royal Society B*, 376, 20200091.
805 doi:10.1098/rstb.2020.0091
- 806 Papadopoulos, A. S. T., Chester, M., Ridout, K., & Filatov, D. A. (2015). Rapid Y degeneration
807 and dosage compensation in plant sex chromosomes. *Proceedings of the National
808 Academy of Sciences of the United States of America*, 112(42), 13021-13026.
809 doi:10.1073/pnas.1508454112
- 810 Park, L. (2019). Population-specific long-range linkage disequilibrium in the human genome
811 and its influence on identifying common disease variants. *Scientific Reports*, 9,
812 11380. doi:10.1038/s41598-019-47832-y
- 813 Reichwald, K., Lauber, C., Nanda, I., Kirschner, J., Hartmann, N., Schories, S., . . . Platzer, M.
814 (2009). High tandem repeat content in the genome of the short-lived annual fish
815 *Nothobranchius furzeri*: a new vertebrate model for aging research. *Genome
816 Biology*, 10, R16. doi:10.1186/gb-2009-10-2-r16
- 817 Reichwald, K., Petzold, A., Koch, P., Downie, B., Hartmann, N., Pietsch, S., . . . Platzer, M.
818 (2015). Insights into sex chromosome evolution and aging from the genome of a
819 short-lived fish. *Cell*, 163, 1527-1538. doi:10.1016/j.cell.2015.10.071
- 820 Rice, W. R. (1987). The accumulation of sexually antagonistic genes as a selective agent
821 promoting the evolution of reduced recombination between primitive sex-
822 chromosomes. *Evolution*, 41, 911-914.
- 823 Sandkam, B. A., Almeida, P., I Darolti, Furma, B., Bijl, W. v. d., Morris, J., . . . Mank, J. (2021).
824 Extreme Y chromosome polymorphism corresponds to five male reproductive
825 morphs. *Nat Ecol Evol*. doi:10.1038/s41559-021-01452-w
- 826 Sardell, J., & Kirkpatrick, M. (2019). Sex differences in the recombination landscape.
827 *American Naturalist*, 195, 361-379. doi:10.1086/704943
- 828 Schmidt, J. (1920). The genetic behaviour of a secondary sexual character. *Comptes-rendus
829 des travaux du Laboratoire Carlsberg*, 14, 8.
- 830 Suk, H., & Neff, B. D. (2009). Microsatellite genetic differentiation among populations of the
831 Trinidadian guppy. *Heredity*, 102, 425-434. doi:10.1038/hdy.2009.7

- 832 Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis. *Genetics*,
833 123, 585-595.
- 834 Traut, W., & Winking, H. (2001). Meiotic chromosomes and stages of sex chromosome
835 evolution in fish: zebrafish, platyfish and guppy. *Chromosome Research*, 9(8), 659-
836 672. doi:10.1023/A:1012956324417
- 837 Tripathi, N., Hoffmann, M., Weigel, D., & Dreyer, C. (2009). Linkage analysis reveals the
838 independent origin of Poeciliid sex chromosomes and a case of atypical sex
839 inheritance in the guppy (*Poecilia reticulata*). *Genetics*, 182, 365-374.
840 doi:10.1534/genetics.108.098541
- 841 Whiting, J. R., Paris, J. R., Zee, M. J. v. d., Parsons, P. J., Weigel, D., & Fraser, B. A. (2021).
842 Drainage-structuring of ancestral variation and a common functional pathway shape
843 limited genomic convergence in natural high- and low-predation guppies. *PLoS
844 Genetics*, e1009566. doi:10.1371/journal.pgen.1009566
- 845 Willing, E.-M., Bentzen, P., van Oosterhout, C., Hoffmann, M., Cable, J., Breden, F., . . .
846 Dreyer, C. (2010). Genome-wide single nucleotide polymorphisms reveal population
847 history and adaptive divergence in wild guppies. *Molecular Ecology*, 19, 968-984.
848 doi:10.1111/j.1365-294X.2010.04528.x
- 849 Winge, O. (1922a). One-sided masculine and sex-linked inheritance in *Lebistes reticulatus*.
850 *Journal of Genetics*, 12, 145-162.
- 851 Winge, O. (1922b). A peculiar mode of inheritance and its cytological explanation. *Journal of
852 Genetics*, 12, 137-144.
- 853 Wright, A., Darolti, I., Bloch, N., Oostra, V., Sandkam, B., Buechel, S., . . . Mank, J. (2017).
854 Convergent recombination suppression suggests a role of sexual conflict in guppy sex
855 chromosome formation *Nature Communications*, 8, 14251.
856 doi:10.1038/ncomms14251
- 857 Xu, L., Auer, G., Peona, V., Suh, A., Deng, Y., Feng, S., . . . Zhou, Q. (2019). Dynamic
858 evolutionary history and gene content of sex chromosomes across diverse songbirds.
859 *Nature Ecology and Evolution* 3, 834-844. doi:10.1038/s41559-019-0850-1
- 860 Yong, L., Croft, D. P., Troscianko, J., Ramnarine, I. W., & Wilson, A. (2021). Sensory-based
861 quantification of male colour patterns in Trinidadian guppies reveals no support for
862 parallel phenotypic evolution in multivariate trait space. *Molecular Ecology*.
863 doi:10.1111/mec.16039
- 864

865 **Data Accessibility and Benefit-Sharing**

866 Genomic data (raw fastq files) are available under ENA Project Accession PRJEB45804.
867 "Benefits Generated: Collaborating scientists from the University of the West Indies,
868 Trinidad, R. Mahabir and R. Heathcote assisted with the collection of the natural population
869 samples and Trinidad-UK shipment of guppies, respectively, as acknowledged in Yong. et al
870 (2021).

871 Benefits Generated: Benefits from this research accrue from the sharing of our data and
872 results on public databases as described above."

873

874 **Author Contributions**

875 designed research: DC
876 performed research: LY, AW, DPC
877 analyzed data: SQ, LY, CG
878 wrote the paper: DC, AQ, AW, DPC
879
880

881 **Table 1.** Examples of the method for finding candidate fully sex-linked variants among
882 variants detected in the sample from a natural population of a species known to have a
883 genetic sex-determining system with male heterogamety. The commonest variant in the
884 females (in bold font in the table), is defined as the X-linked allele and the alternative
885 variant at the same site is inferred to be Y-linked. The total coverage at a site is denoted by
886 “TOTAL”.
887

Site		Counts of A:T:C:G at a site		XFREQ= X/TOTAL	YFREQ= Y/TOTAL*2
Position in the female assembly	REF base	Females	Males		
12	T	0: 33 :0:0	0: 29 :0:1	1	0.017
9320	T	2: 44 :0:0	23: 48 :0:0	0.957	0.648
9414	G	14:0:0: 88	105:0:0: 75	0.863	1.167

888
889
890

891 **Figure legends**

892 **Figure 1.** Peak of neutral diversity predicted in males and females at regions linked to a
893 male-determining factor for the case with no sexually antagonistic polymorphisms in the
894 region. The values are based on equations for coalescence times between pairs of X-linked
895 sequences and between Y- and X-linked ones (Kirkpatrick, Guerrero, & Scarpino, 2010). The
896 elevated Y-X divergence times can be detected in phased data as higher Y-X divergence
897 values at neutral sites close to the male-determining factor, or in unphased data as higher
898 diversity in males than females. The y axis shows the excess in diversity at different
899 distances from a male-determining factor, compared with unlinked sites. Distances are
900 shown on the x axis as the recombination rate in males, θ , or $4Nr$ values, where r is the
901 recombination distance in Morgans), and also as the physical distances assuming a very low
902 recombination rate of 0.01 cM/Mb and an N value of 1 million. A higher recombination rate
903 would proportionately decrease the physical distances. Coalescence times (and
904 consequently diversity values) are also elevated for X chromosome sequences, but only
905 slightly.

906

907 **Figure 2.** Example of diversity estimates from the Aripo river, showing the two diversity
908 measures, both based on synonymous sites (plots for all samples analysed are in
909 Supplementary Figure S2). The values shown are mean values in 250 kbp windows, with red
910 for female samples and blue for male ones. The green lines indicate a diversity level of 1%,
911 to emphasise the lower diversity in in the low- than a high-predation collection site (left-
912 and right-hand plots, respectively), and its much higher θ_s than π_s value, suggesting a recent
913 bottleneck in this site.

914

915 **Figure 3.** Diversity estimates in all populations sampled. Part A shows the consistently lower
916 values of synonymous site diversity (π_s) in low-predation upstream sites (solid symbols),
917 compared with downstream, high-predation collection sites from the same rivers (open
918 symbols), and part B shows the higher $\Delta\theta_s$ values in the former, suggesting that upstream
919 sites have consistently been affected by recent bottlenecks. Blue and pink symbols show
920 male and female results, respectively.

921

922 **Figure 4.** Excess of the estimated diversity on LG12, the sex chromosome, versus the
923 autosomal estimates. The nucleotide diversity estimates are for synonymous sites (values of
924 π_s), based on results analysed in windows (see Methods). For each population sample
925 shown on the x axis, the plot shows values of the extent to which the LG12/autosome
926 diversity ratio exceeds 1. Blue bars show the results for males and pink bars those for
927 females.

928

929 **Figure 5.** Candidate fully sex-linked sites in the entire LG12, based on PoolSeq data. SNPs at
930 all site types (synonymous or non-synonymous) were analysed in our samples of 20
931 individuals of each sex from each of 12 natural populations, and the plot shows results for
932 sites with no variants in the 20 diploid sequences from females (XFREQ = 1 in Table 1). The
933 upper section shows the results for each such site that varied within any of the populations
934 analysed, and the y axis shows the number of populations where a site satisfied the
935 criterion to be classed as having the XY configuration, suggesting that it is a good candidate
936 for complete sex-linkage. The analyses results shown used the criterion that the YFREQ
937 value was at least 0.9, indicating that at most two males in the sample of 20 could have

938 lacked the putatively Y-linked alternative variant at the site. No site has a male-specific
939 candidate SNP in all 12 populations. The bottom part shows the locations of candidate male-
940 specific SNPs in each of the individual population samples (in different colours), to show the
941 consistent signals in the terminal part of the chromosome in all the different populations.
942
943

944 **Supplementary files**

945 **Supplementary Tables**

946 **Table S1.** List of samples and locations in Trinidad.

947

948 **Table S2.** F_{ST} between samples from different populations using all site types.

949

950 **Table S3.** Diversity in the two sexes in the samples from different populations, estimated for
951 synonymous sites, showing lower diversity in upstream low-predation sites than in
952 downstream sites with high predation, except in the Quare river. Note that the Guanapo
953 river is represented by only a high-predation sample, the PM one only by a LP site, and the
954 Paria river has no high-predation sites.
955
956

957 **Table S4.** Significance values of Wilcoxon tests for differences in the values of the quantity
958 $\Delta\theta_s$ (see main text) between samples from high- and low-predation sites from 4 rivers
959 where samples were available from both site types. The $\Delta\theta_s$ values were estimated using
960 synonymous sites.
961
962

963 **Table S5.** Genes within the LG12 region with the most candidates for complete sex linkage.

964

965 **Supplementary Figures**

966 **Figure S1.** Haplotypes in a genome region linked to a male-determining factor, such that
967 genotypes of some sites in the region are associated with the sex phenotype. The columns
968 on the left diagram three X haplotypes and 6 Y ones, and the rows show the states at 12
969 hypothetical variable sites, with blue colours indicating mutations that arose since the male-
970 determining factor arose in the region (sites that have retained the same state in the Y and
971 X haplotypes are not shown). At least one variant, the male-determining factor itself (dark
972 blue), is by definition, found only in males (and shows complete association with maleness,
973 assuming complete penetrance and no environmental effects. This factor could be an SNP in
974 a gene, or a duplication into the region. Pink indicates the X-linked allele at this site and
975 other sites.

976 Part A shows the 5 configurations possible when there is a single Y haplotype. Subsequent
977 mutations in a completely Y-linked region will be male-specific (barring repeated mutation
978 at the same site in the Y and the X), but will initially be rare among the Y haplotypes, and
979 show partial associations with the sex phenotype phenotype (configuration number 3); they
980 may later become fixed in the population of Y haplotypes, and thus become
981 completely associated with the sex phenotype (configuration number 2). In the diagram,
982 only one site other than the sex-determining locus is completely associated with this factor,
983 with all Ys carrying the blue variant and all Xs carrying the pink one (configuration2; in the
984 notation used in Table 1, such variants will have a frequency of 0.5 in males, and YFREQ

985 value of 1, and a frequency of 0 in females, with XFREQ also = 1). Sites outside the
986 completely sex-linked region may recombine onto the X, and show partial associations with
987 the sex phenotype. Sites with configurations 4 and 5 must be partially sex-linked (and some
988 with configuration 3 may also be in this category). Configuration 5 sites have a
989 polymorphism shared by both sexes, and configuration indicates 4 sites that are fixed for a
990 variant in the Y sample, but segregating in the X sample.

991 Part B shows the case when there are two Y haplotypes, so that variants in the completely
992 sex-linked region are often not fixed in the sample of Y chromosomes. If the existence of
993 two haplotypes was not recognised, these sites would be assigned configuration 3. If these
994 are the majority of the variable sites showing associations with the the sex phenotype, it
995 might be very difficult to determine the position of the maleness factor, especially if
996 information is missing for some sites. Configuration 2 (if validated in a large enough sample)
997 suggest sites in an ancestral Y haplotype that evolved before the separation into types 1 and
998 2.

999

1000 **Figure S2.** Nucleotide diversity estimates (π_s values) for LG12 for all sampled populations
1001 (Figure 2 shows the example of Aripo river downstream and upstream samples), and the
1002 $\Delta\Theta_s$ values (see Methods). Part A shows the results without normalisation, and part B shows
1003 values of normalized by the values for autosomal genes estimated from the sample of the
1004 same sex.

1005

1006 **Figure S3.** Sex differences in estimated nucleotide diversity at synonymous sites (values of
1007 π_s), based on results analysed in windows (see Methods), in samples from the sites whose
1008 names are shown above the plots. High-predation (downstream) sites' names are in blue
1009 boxes, and those of low-predation, upstream sites are in green boxes. Results for females
1010 are shown in the two boxes outlined in red at the left of each plot and for males (blue
1011 outlines), on the right of each plot, and separate estimates were obtained for genes on the
1012 sex chromosome, LG12 (coloured pink boxes labelled S on the x axis) and on the autosomes
1013 (green boxes labelled A).

1014

1015 **Figure S4.** Associations between variants and individuals' sexes for each population
1016 sampled, for the region distal to 21 Mb of chromosome 12. The results show sites with no
1017 variation in the female samples (XFREQ= 1, labelled XP=1 in the titles of each plot), and with
1018 a range of YFREQ values (labelled YP values in the key), from the most stringent value of 1,
1019 down to the value of 0.7 shown in Figure S5.

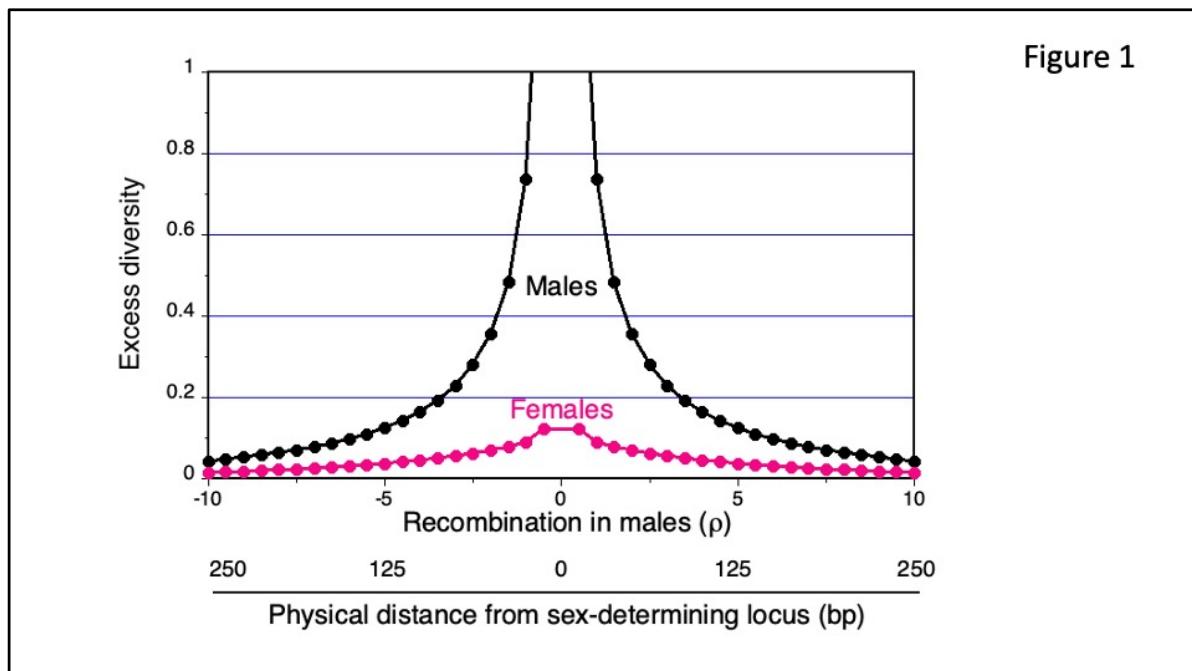
1020

1021 **Figure S5.** Candidate fully sex-linked sites in the entire LG12, analysed and displayed in the
1022 same way as in Figure 5 of the main text, but with YFREQ values > 0.7, instead of 0.9.

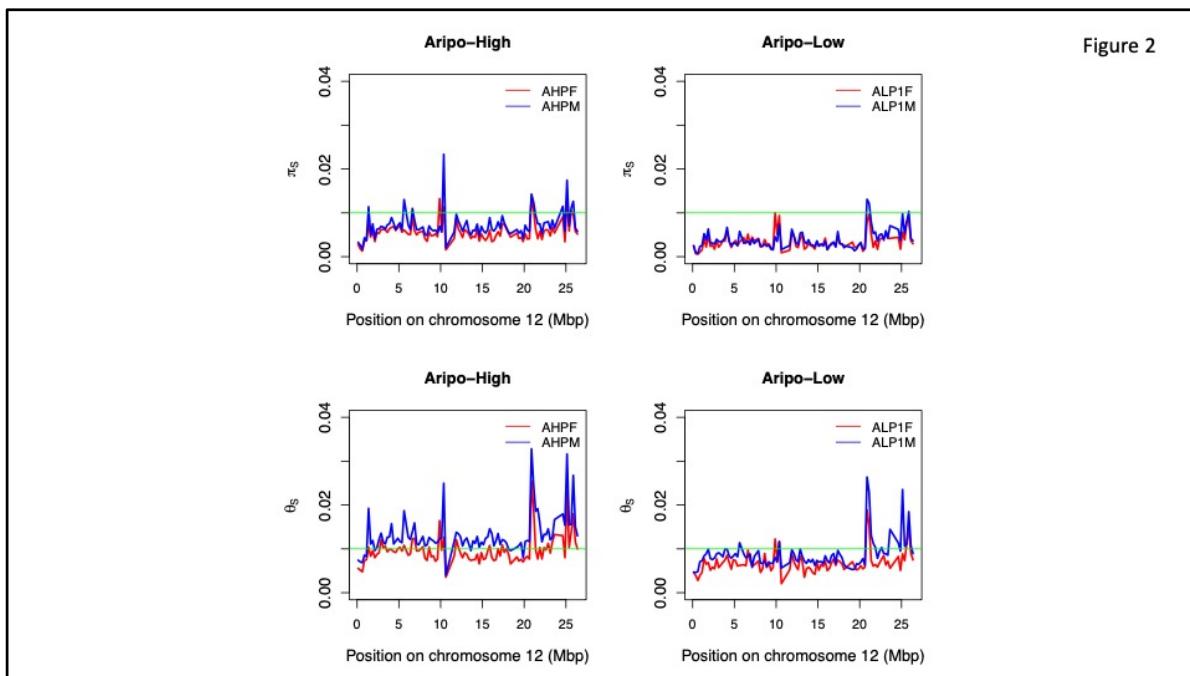
1023

1024 **Figure S6.** Comparison of positions of sites on the guppy sex chromosome in the male and
1025 female assemblies. The plot shows distal to the region that was inverted in the female
1026 assembly (see Figure S7), and it sites that have been genetically mapped to different regions
1027 in male meiosis are indicated in different colours. Markers within sequences in the gap
1028 region shown in Figures 5 and S5 are shown as open circles, and all markers mapped in this
1029 region show complete sex linkage in the sires of both families mapped. 25 markers map to
1030 the PAR in at least one of the sires studied, and 16 map to a region, contig IV, that is also
1031 duplicated at 5 Mb (Fraser et al., 2020). The plot also shows positions in the female

1032 assembly of several scaffolds that were unplaced in the male assembly, but that map
1033 genetically to this part of the guppy sex chromosomes in our sires.


1034

1035 **Figure S7.** Comparison of the female (x axis) and male (y axis) assemblies of the guppy sex
1036 chromosome. High densities of repetitive sequences can be seen at 10 Mb, and in both
1037 regions that include most of the male-specific SNPs (see Figures 5 and S5).


1038

1039 **Figure S8.** Mean coverage of sites in 10 kilobase windows across the sex chromosome in
1040 males and females in our pooled sequence data, with the windows where male-specific
1041 SNPs were detected shown in red (using the same threshold as for Figure S5, $Yfreq=0.7$),
1042 and other polymorphic sites in grey. The vertical dashed red lines indicate the two regions
1043 with high densities of SNPs showing associations with maleness; the coordinates for these
1044 regions (in the female assembly) are 20.5 - 21.8 Mb and 24.5 - 26.2 Mb. The figure shows
1045 the Marianne River low predation samples, as an example. Coverage results from other
1046 rivers are very similar.

1047

Figure 1. Peak of neutral diversity predicted in males and females at regions linked to a male-determining factor for the case with no sexually antagonistic polymorphisms in the region. The values are based on equations for coalescence times between pairs of X-linked sequences and between Y- and X-linked ones (Kirkpatrick, Guerrero, & Scarpino, 2010). The elevated Y-X divergence times can be detected in phased data as higher Y-X divergence values at neutral sites close to the male-determining factor, or in unphased data as higher diversity in males than females. The y axis shows the excess in diversity at different distances from a male-determining factor, compared with unlinked sites. Distances are shown on the x axis as the recombination rate in males, r , or $4Nr$ values, where r is the recombination distance in Morgans), and also as the physical distances assuming a very low recombination rate of 0.01 cM/Mb and an N value of 1 million. A higher recombination rate would proportionately decrease the physical distances. Coalescence times (and consequently diversity values) are also elevated for X chromosome sequences, but only slightly.

Figure 2. Example of diversity estimates from the Aripo river, showing the two diversity measures, both based on synonymous sites (plots for all samples analysed are in Supplementary Figure S2). The values shown are mean values in 250 kbp windows, with red for female samples and blue for male ones. The green lines indicate a diversity level of 1%, to emphasise the lower diversity in the low- than a high-predation collection site (left- and right-hand plots, respectively), and its much higher θ_s than π_s value, suggesting a recent bottleneck in this site.

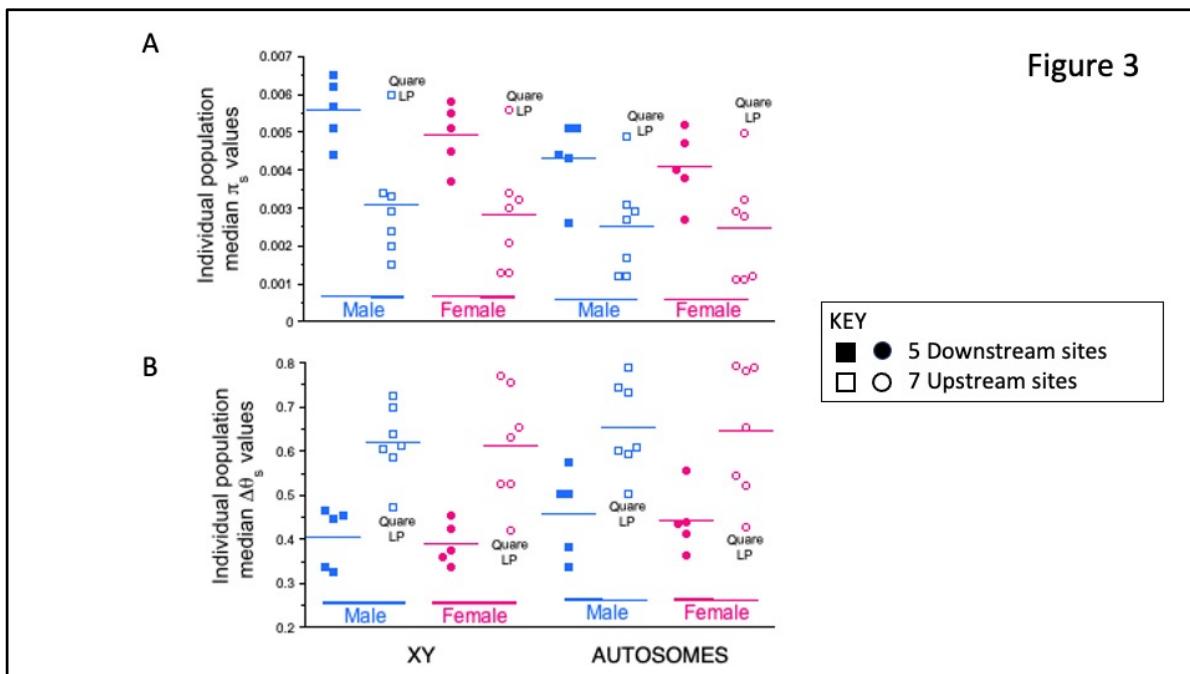


Figure 3. Diversity estimates in all populations sampled. Part A shows the consistently lower values of synonymous site diversity (π_s) in low-predation upstream sites (solid symbols), compared with downstream, high-predation collection sites from the same rivers (open symbols), and part B shows the higher $\Delta\theta_s$ values in the former, suggesting that upstream sites have consistently been affected by recent bottlenecks. Blue and pink symbols show male and female results, respectively.

Figure 4

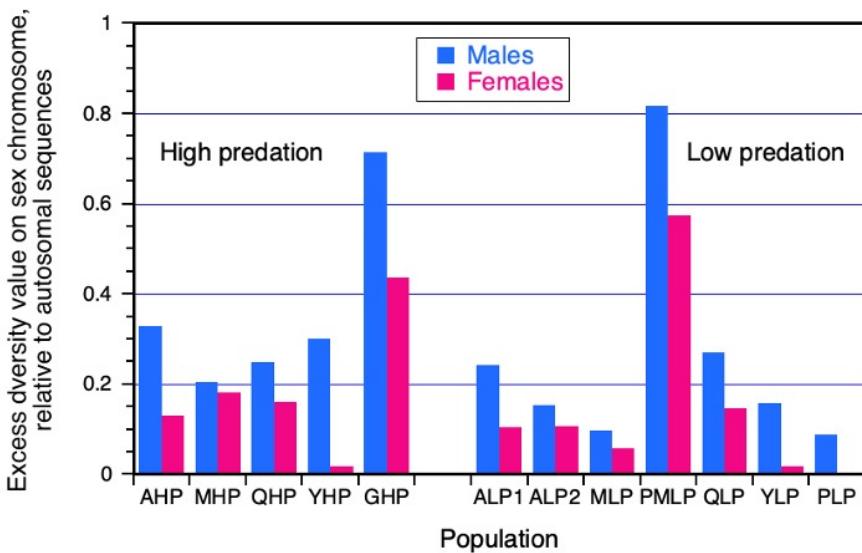


Figure 4. Excess of diversity on LG12, the sex chromosome, versus the autosomal estimates. The nucleotide diversity estimates are for synonymous sites (values of π_S), based on results analysed in windows (see Methods). For each population sample shown on the x axis, the plot shows values of the extent to which the LG12/autosome diversity ratio exceeds 1. Blue bars show the results for males and pink bars those for females.

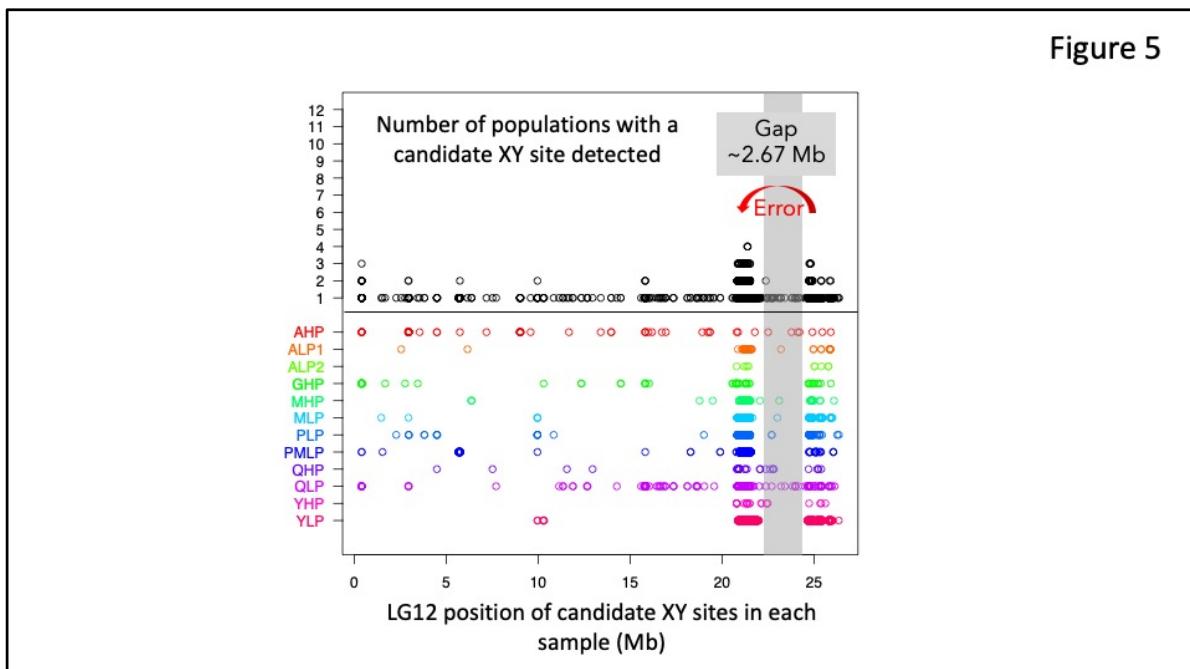


Figure 5. Candidate fully sex-linked sites in the entire LG12, based on PoolSeq data. SNPs at all site types (synonymous or non-synonymous) were analysed in our samples of 20 individuals of each sex from each of 12 natural populations, and the plot shows results for sites with no variants in the 20 diploid sequences from females (XFREQ = 1 in Table 1). The upper section shows the results for each such site that varied within any of the populations analysed, and the y axis shows the number of populations where a site satisfied the criterion to be classed as having the XY configuration, suggesting that it is a good candidate for complete sex-linkage. The results shown used the criterion that the YFREQ threshold value was 0.9, indicating that at least 18 males in the sample of 20 had the putatively Y-linked variant at the site. No site has a male-specific candidate SNP in all 12 populations. The bottom part shows the locations of candidate male-specific SNPs in each of the individual population samples (in different colours), to show the consistent signals in the terminal part of the chromosome in all the different populations, and the gap region where male-specific SNPs are rare.