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ABSTRACT

Antibodies are essential biological research tools and important therapeutic agents, but
some exhibit non-specific binding to off-target proteins and other biomolecules. Such
polyreactive antibodies compromise screening pipelines, lead to incorrect and
irreproducible experimental results, and are generally intractable for clinical development.
We designed a set of experiments using a diverse naive synthetic camelid antibody
fragment (‘nanobody’) library to enable machine learning models to accurately assess
polyreactivity from protein sequence (AUC > 0.8). Moreover, our models provide
quantitative scoring metrics that predict the effect of amino acid substitutions on
polyreactivity. We experimentally tested our model's performance on three independent
nanobody scaffolds, where over 90% of predicted substitutions successfully reduced
polyreactivity. Importantly, the model allowed us to diminish the polyreactivity of an
angiotensin |l type | receptor antagonist nanobody, without compromising its
pharmacological properties. We provide a companion web-server that offers a
straightforward means of predicting polyreactivity and polyreactivity-reducing mutations

for any given nanobody sequence.
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INTRODUCTION

Due to their specificity and affinity, antibodies are an indispensable class of
biomedical research tools as well as important therapeutics for the treatment of cancer,
autoimmune, and infectious diseases. Current antibody discovery methods prioritize the
generation of antibodies and antibody fragments with high target specificity. However,
some antibodies that strongly bind one target interact with additional antigens with low-
affinity. In clinical development, these non-specific or polyreactive antibodies show poor
pharmacokinetics or other liabilities that limit clinical use'3. Additionally, polyreactive
antibodies encountered in the basic research setting cause misinterpretation of results,
low reproducibility in routine experiments, and wasted time and money*. Thus, there have
been several calls to standardize the quality and specificity of antibodies used in research
settings similar to those in the clinic®S.

Developing and improving methods to detect and quantify polyreactivity are
essential for enhancing the quality of antibodies in both clinical development and basic
research settings. Many experimental methods that evaluate polyreactivity’'* are low-
throughput and require experimental screening with purified antibody. The degree of
polyreactivity is highly method and reagent-dependent and is typically measured after
antigen selection, making it difficult to prioritize the most promising clones. Understanding
sequence features of polyreactive antibodies could provide an efficient avenue to
quantitatively assess antibody polyreactivity without experimental effort. Previous
computational methods'®-?2 have revealed features of polyreactivity antibodies, such as
J- and V-chain usage'’, high isoelectric points in the complementarity determining regions

(CDRs)'618-25 |onger CDR3s'®2%, enrichment of arginine, glycine, valine, and tryptophan
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containing motifs'®, and glutamine residues?®. Despite these extensive analyses the
relative importance of many characteristics is disputed?' and prediction software cannot
quantitate polyreactivity'”.

For broad utility, a computational method should accurately predict the degree of
polyreactivity and compute candidate rescue mutations from the input of a user sequence
alone. To achieve this goal, we designed experiments to learn features of high and low
polyreactivity clones from a naive synthetic yeast display library of heavy-chain only
camelid antibody fragments (nanobodies)?%?” through computational methods. Synthetic
nanobodies provide an ideal reductionist system to probe polyreactivity in the context of
a fixed framework without the influence of heavy and light chain pairing effects. These
methods result in generalizable software that quantifies nanobody polyreactivity based
on sequence alone and most importantly designs specific mutations to decrease
polyreactivity.

We successfully applied our software to three polyreactive nanobodies, including
AT118i4h32, a nanobody antagonist of the angiotensin Il type | receptor (AT1R)?8, where
we reduced polyreactivity without compromising binding affinity or target-specific
pharmacology. This sequence-based approach may be a generally useful tool for
prioritizing nanobody clones identified in selection experiments and improving
nanobodies targeting diverse antigens. While nanobodies are gaining popularity as next
generation biotherapeutics?® that target antigen surfaces and tissue types not accessible
to conventional antibodies, the approaches developed here are in principle fully

applicable to conventional antibodies as well.
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100 RESULTS

101  Enriching naive library for polyreactive clones

102 Unlike previous analyses of antibody polyreactivity which relied on clinical
103  candidates 225, clones enriched for antigen binding'’, or primarily focused on the
104  contribution of Vi CDR3 antibody polyreactivity'®2', we designed experiments to assess
105  polyreactivity of clones from a naive synthetic yeast display library through binding to
106  detergent-solubilized Spodoptera frugiperda (Sf9) insect cell membranes (Figure 1)'4.
107  This mixed protein polyspecificity reagent (PSR) is compatible with sorting large pools of
108 antigen naive clones, allowing us to determine global contributions to polyreactivity in an
109 unbiased manner. The yeast display library contains >2x10° unique nanobody clones that
110  mimic a naive llama immune repertoire in CDR sequence composition and CDR3 length
111  and possesses moderate diversity in the CDR1 and CDR2 regions and extensive diversity
112 in the CDR3 region. We used Magnetic-Activated Cell Sorting (MACS) to both enrich for
113 polyreactive clones and deplete non-expressing clones from the library. Following MACS,
114  distinct populations of clones with high and low polyreactivity were isolated by

115  Fluorescence-Activated Cell Sorting (FACS) (Supplementary Figure 1A-B).
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118 Figure 1. Development of computational tool to assess and mitigate polyreactivity.
119  Starting from a large, naive synthetic nanobody library, pools of nanobodies with low and
120  high polyreactivity were isolated. Machine learning models were trained on deep
121  sequencing data from these pools to learn sequence features of low and high polyreactive
122 nanobodies. These algorithms were incorporated into software that quantitatively predicts
123 polyreactivity levels and recommends substitutions that reduce it.

124

125 PSR reagent has not been used to assess nanobody polyreactivity, but is well
126  validated against other measures of polyreactivity for conventional antibodies?'4'5. To
127  validate PSR performance on nanobodies, we recombinantly expressed six nanobodies
128  with varying levels of polyreactivity from our FACS sorted pools and assessed
129  polyreactivity by conventional ELISA assays against lysozyme, double stranded DNA
130  (dsDNA), single stranded DNA (ssDNA), insulin, lipopolysaccharide (LPS), and bare
131  plastic (Figure 2, Supplementary Figure 2A-F). ELISA polyreactivity assays performed
132 using different reagents correlated well with one another (r? values between 0.789 and

133 0.986, p < 0.05) with the exception of lysozyme (r? values between -0.109 and 0.045, p-

134  values between 0.8127 and 0.9230), which did not correlate with the other reagents.
6
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135  Furthermore, direct ELISA assays strongly correlated with insect cell PSR (r? values
136 between 0.7849 and 0.9268) except for lysozyme which exhibited a very weak correlation
137 (r? =-0.1876). The correlations between insulin, LPS, and ssDNA direct ELISA assays to
138 insect cell PSR staining were highly significant (p < 0.05), while bare plastic and dsDNA
139  direct ELISA assays were modestly significant (p < 0.10). Lysozyme direct ELISA assays
140  did not significantly correlate with insect cell PSR staining (p = 0.7219). We also observed
141  that polyreactive clones had increased retention times in conventional size exclusion
142 chromatography albeit not with statistical significance (r? = 0.7836, p = 0.1168),
143  suggesting that nanobody polyreactivity may be detected during routine protein
144  purification (Supplementary Figure 2G). Overall, the ELISA experiments support that the
145 pools of nanobodies selected by PSR staining possess high and low levels of
146  polyreactivity. Armed with this validation, we deep-sequenced the two FACS sorted pools
147 and obtained 65,147 unique low polyreactivity sequences and 69,155 unique highly

148  polyreactive sequences that contained 51,308 and 59,623 distinct CDR regions.
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151 Figure 2. Correlations between direct ELISA assays and insect cell polyspecificity
152 reagent (PSR) staining.

153  a, Spodoptera frugiperda (Sf9) insect cell PSR staining of single nanobodies isolated from
154 FACS sorts. Data are mean +/- SEM of three independent biological experiments
155 performed in technical triplicate. Polyreactivity levels are normalized with respect to the
156  highest value. b, CDR sequences of isolated nanobodies. ¢, Direct ELISA assays
157 measured the apparent ECso (ECsoapp) of five index panel members and nanobody AT118
158 tothe specified reagents. ELISA data are representative of two independent experiments,
159  each performed in technical triplicates.

160
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161 Development of computational method

162 We developed computational models trained on the sequences from the FACS-
163  sorted pools to classify nanobodies as possessing high or low polyreactivity. We
164  constructed a suite of supervised, discriminative models that can separate high and low
165  polyreactivity sequences (Figure 3A-B). These models include a logistic regression model
166  of a one-hot embedding of the CDR sequences, a logistic regression model of a k-mer
167 embedding (k=3) of the CDR sequences, a convolutional neural network (CNN), and a
168  recurrent neural network (RNN). The one-hot logistic regression model learns weights for
169 each amino acid type at each position in the CDR sequences that are most predictive of
170  polyreactivity; the k-mer logistic regression learns weights for each motif (lengths 1, 2,
171  and 3) that are most predictive of polyreactivity, irrespective of where they occur within a
172 given CDR sequence. Convolutional neural networks use convolutional filters to learn
173  spatial information (e.g., an amino acid and its neighboring residues) and are often used
174  in image classification. Recurrent neural networks capture sequential information (e.g.
175  the probability of a residue given the previous residues) and are frequently used in text
176  and audio analysis. For the one-hot logistic regression and for the CNN, we align the CDR
177  sequences using the IMGT numbering scheme with ANARCI®®. The k-mer logistic
178  regression and the RNN methods do not require aligned CDR sequences. In order to test
179  the generalizability of our models, we clustered the nanobody sequences using k-means
180 clustering to generate five clusters of sequences, which we used to build train and test
181  splits. These splits and careful selection allowed us to avoid over-optimistic prediction
182  accuracies that result from the tests sets overlapping or close to the training sets®'.

183  Specifically, we ensured that all sequences in the test sets were more than 10 edit-
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184  distance (Levenshtein distance) and possessed only ~75% sequence similarity in the
185 CDR sequences from each other (Figure 3A).
186
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191
192 Figure 3. Development of computational models to predict polyreactivity.
193  Supervised models were trained on pools of high and low polyreactivity sequences. a,
194  Pipeline of computational model development, from raw NGS data to held-out predictions
195  with sequence clustering for rigorous validation. b, Comparison of supervised models
196  (one-hot and k-mer logistic regression, RNN, CNN) and biochemical properties such as
197  hydrophobicity, isoelectric point, CDR3 lengths, and number of arginine residues. c,
198  Trained parameters of a one-hot logistic regression model, showing which amino acids
199  at specific positions are most predictive of high polyreactivity and low polyreactivity (red
200 and blue, respectively). d, Polyreactivity scores of top motifs learned from a k-mer logistic
201  regression model most predictive of low and high polyreactivity (top and bottom,
202  respectively). e, Separation of high and low polyreactivity nanobodies by each of the
203  models and biochemical properties displayed in panel b.
204
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205 The one-hot logistic regression, k-mer logistic regression, and RNN models
206 performed well at classifying distant nanobody sequences as high or low polyreacitvity,
207 achieving 0.85, 0.83, and 0.84 Area Under Curve (AUC) respectively (Figure 3B).
208  Whereas, the CNN (AUC=0.78, Figure 3B) achieved similar performance to metrics as
209 described previously in literature, such as isoelectric point'®2224 and the number of
210 arginine residues'®2021.25 (AUCs of 0.79 and 0.73 respectively, Figure 3B). Consistent
211  with previous literature'?3, we found that hydrophobicity, as described by the
212 hydrophobicity index, is not strongly predictive of polyreactivity (AUC of 0.57, Figure 3B).
213  However, CDR3 length, which is a reported feature of polyreactive antibodies'®?® is not
214 highly predictive of nanobody polyreactivity (AUC of 0.58, Figure 3B). Score and
215 measurement distributions of the nanobody sequences for each of these metrics,
216  separated by labeled class are displayed in Figure 3E.

217 In addition to the models’ robust performance, sequence features learned by the
218 logistic regression methods are easily interpretable. A distinct advantage of the one-hot
219 logistic regression model is its ability to produce a picture of amino acid contribution to
220  polyreactivity at each position of nanobody CDR sequences (Figure 3C). In agreement
221  with previous findings, we find that acidic residues in CDRs 2 and 3 are characteristic of
222 low polyreactivity clones and the presence of arginine residues across all CDRs, and
223 lysine, tryptophan, or tyrosine in CDR3 contribute to higher polyreactivity. Despite the
224 overall enrichment of arginine and tryptophan polyreactive clones, the position specific
225 analysis provided by the one-hot model indicates that low polyreactivity clones tolerate

226  arginine in positions 30 and 38 of CDR1 and tryptophan in position 105 in CDRS3.

11
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227 Furthermore, the k-mer logistic regression model provides insight into sequence
228 dependencies on the local level in high or low polyreactivity clones (Figure 3D). K-mer
229  motifs containing negatively charged residues such as glutamate and aspartate are highly
230 associated with low polyreactivity sequences, and positively charged residues such as
231 arginine and lysine are predicted to contribute to polyreactivity, agreeing with the
232 predictions of the one-hot logistic regression model. These motifs differ from previously
233 reported polyreactive motifs, that were enriched in glycine and the hydrophobic amino
234  acids valine and tryptophan'®. However, these previously reported motifs were derived
235  from a library where only CDR3 was diversified. We proceeded to use the one-hot and k-
236  mer logistic regression models for further analysis based on of their accuracy and
237  interpretability.

238

239  Quantitative scoring of nanobody polyreactivity

240 In order to test if our model could go beyond predicting binary classification labels
241  and quantitively score polyreactivity, we stained 48 nanobodies isolated from MACS and
242  FACS pools with PSR to obtain an “index set” of sequenced clones with defined levels of
243  polyreactivity (Figure 4A, Supplementary Table 1). Index panel nanobodies partitioned
244  into three groups according to their level of polyreactivity: minimal polyreactivity (light
245  gray), moderate polyreactivity (gray), and high polyreactivity (dark gray). To validate the
246  rank order of the 48 nanobodies we measured the polyreactivity of index panel members
247 using PSR reagent derived from solubilized HEK293 cell membranes. We found that
248 insect cell and HEK293 derived PSR staining are highly correlated (r> = 0.895, p <

249  0.0001), indicating that polyreactivity levels do not vary with PSR reagent type

12
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250  (Supplementary Figure 3C). Furthermore, to confirm that the rank order was not skewed
251 by PSR binding to unfolded nanobodies on the surface of yeast, the index set was stained
252 with an anti-Vun antibody, which recognizes the folded nanobody framework region
253  (Supplementary Figure 3A). Levels of anti-Vun antibody staining are not correlated to
254 insect cell PSR staining (r> = 0.046, p = 0.1446, Supplementary Figure 3B), indicating that
255 unfolded clones do not confound our dataset.

256 Biophysical characteristics of clones in our index set were reflective of the learned
257  features in our high and low polyreactivity pools. There is a modest correlation between
258 PSR staining of the index set and nanobody isoelectric point (r? = 0.390, p < 0.0001,
259  Supplementary Figure 3D). While nanobodies with low isoelectric points possess low
260  polyreactivity, nanobodies with high pl values demonstrate a range of polyreactivity.
261  Similarly, nanobody hydrophobicity index values are not correlated with polyreactivity (r?
262 =0.036, p =0.195, Supplementary Figure 3E).

263 Of the 48 nanobodies, 4 were previously seen in our training set, so we did not
264  include these in our quantitative tests. Each of the 44 remaining nanobodies had at least
265 6 mutations from any single nanobody sequence in the training set; the median of the
266  minimum edit distance (a proxy for the number of mutations) of each of these index set
267  nanobodies to the training set was 10 edit distance (the maximum similarity to the training
268 set was 75% sequence identity). The correlation between the quantitative model
269  predictions and the experimental binding scores to PSR, are strong - about 85% of the
270  maximum theoretical correlation (Spearman pg of 0.77 and 0.79, for the one-hot and k-
271  mer logistic regression models, respectively) (Figure 3B). For comparison, the Spearman

272  correlations between the three independent biological replicate experiments were 0.87,

13
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273 0.87,and 0.95. Thus, our models trained on sequence pools of high and low polyreactivity
274  nanobody CDR sequences are highly accurate for both classification and regression
275  tasks for clones with distinct sequences.

276

277 Model performance at predicting polyreactivity of closely related sequences

278 To determine if our computational model could accurately assess the influence of
279  point mutations in single nanobody clones, we utilized the autonomous hypermutation
280 yeast surface display (AHEAD) error-prone DNA replication system®? to rapidly evolve the
281  four most polyreactive clones from our index set (Nb E05’, F02’, GO9’, and FO7’) to have
282  reduced binding to the PSR reagent. Over the course of four AHEAD cycles involving
283  nanobody hypermutation and FACS sorting, global PSR staining of the evolved nanobody
284  population decreased (Supplementary Figure 4). Deep sequencing analysis following the
285  fourth FACS round revealed variation in the CDR regions of each of the four nanobodies.
286 A large proportion of the clones enriched by AHEAD are predicted to have reduced
287  polyreactivity by both the one-hot and 3-mer logistic regression models. For the four
288  clones, 97%, 67%, 69%, and 93% of the observed mutations are predicted to decrease
289  polyreactivity by the one-hot logistic regression model, with similar decreases predicted
290 by the k-mer logistic regression model (Supplementary Table 2). Furthermore, K31E3°,
291  A50T®®, and R57P% substitutions that arose in nanobody E05’ reflect the position specific
292  analysis provided by the one-hot logistic regression model, where K, R, and A are
293  characteristic of polyreactive nanobodies at positions 36, 55, and 64 and all three
294  substitutions are characteristic of clones with reduced polyreactivity (Figure 3C). In a

295  computational ranking of the polyreactivity of all 494 single amino acid substitutions using

14
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296 the one-hot logistic regression model in the CDR regions of E0S’ found in our AHEAD
297  experiment, from lowest to highest, R57P% ranked 28", K31E?3® ranked 37™, and A50T>®
298 is 101st. Overall, the AHEAD-based directed evolution experiment produces clones that
299  our computational models predict to have reduced polyreactivity suggesting that our
300 models can accurately score the polyreactivity of closely related sequences.

301 With confidence in our models’ performance on related clones, we employed our
302 computational model to independently predict sequence substitutions to reduce
303  polyreactivity of the highly polyreactive clone E10’ and moderately polyreactive clone D06
304 from our index set. We performed a comprehensive in silico single and double mutant
305 scan, scored each sequence with both the one-hot logistic regression model and the k-
306 mer logistic regression model (Figure 4B-D), and ranked all the possible single and
307 double mutants, including insertions and deletions, surrounding the seed sequence. We
308 sampled the substitutions most likely to reduce polyreactivity (with the exception of a
309 substitution that would have introduced a cysteine that could disrupt disulfide bond
310 formation) by selecting diverse mutations across residue types and positions that are
311  contained within a single CDR and span each of the possible combinations of different
312 CDR regions. Furthermore, if there was a mutation indicated to decrease polyreactivity
313 by the k-mer logistic regression that scored similarly according to the one-hot logistic
314  regression model, we selected the sequence with a higher k-mer logistic regression score
315 to take into account local sequence dependencies. We selected the three top scoring
316  single mutations for each of the CDR regions, the top scoring double mutants within a

317 single CDR region, and the top scoring double mutants spanning two CDR regions where
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at least one of the individual single mutations had not already been tested in a different
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Figure 4. Validation of computational model for quantitative predictions of
polyreactivity and design of rescue mutations. a, Generation of an index panel of
polyreactivity mutants by Spodoptera frugiperda (Sf9) insect cell membranes protein
polyspecificity reagent (PSR) staining of yeast displaying 48 unique nanobodies isolated
from MACS enrichment as well as non-reactive and polyreactive FACS pools. Data are
mean +/- SEM of three independent biological experiments performed in technical
triplicate. b, New nanobody sequence(s) can be input into a webserver, which will output
computational predictions of polyreactivity and biochemical properties of the sequence(s).
It is also possible to input a nanobody sequence to retrieve top scoring rescue mutations
predicted to decrease polyreactivity. ¢, e, The one-hot logistic regression model and k-
mer logistic regression model trained on the full NGS dataset from FACS sorts with PSR
binding were used to test quantitative predictions and rankings of the index set of clones
spanning a wide range of polyreactivity levels (as measured by PSR binding) (spearman
ps of 0.77 and 0.79, respectively). d, f, An in silico double mutation scan (spanning
substitutions, insertions, and deletions) was scored for predicted polyreactivity using both
the one-hot logistic regression model and k-mer logistic regression model. From these in
silico double mutation scans, a diverse set (spanning each CDR and combinations of
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338 CDRs) of high scoring mutations predicted to have low polyreactivity were selected as
339  rescue mutations for experimental testing from two parent clones, E10’ and D0G6.

gj(l) For the moderately polyreactive DO6 nanobody, 18 out of 21 variants that were
342 computationally designed to decrease polyreactivity reduced levels of binding to insect
343  cell PSR staining (Figure 5A). More stringently, 11 out of 21 mutations exhibited at least
344  two-fold reductions in polyreactivity. Although substitutions in each of the CDR regions
345 were able to lower polyreactivity, CDR3 appeared to drive polyreactivity as the most
346  significant reductions in polyreactivity occurred from variations in the CDR3 region
347  including A97H'%¢ and R98D'%” R99H"%,

348 For the highly polyreactive E10’ nanobody, 15 out of 16 computationally predicted
349  single and double substitutions reduced binding to PSR reagent (Figure 5B). 9 out of the
350 16 substitutions reduced polyreactivity by at least 50%, including mutations in each of the
351 three CDR regions. Strikingly, the R99D'%7 Y102E"° clone, which was predicted to have
352 the lowest polyreactivity value using the k-mer logistic regression model has very low

353  polyreactivity by experimental PSR staining.

354
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355
356

357 Figure 5. In silico designed substutions reduce nanobody polyreactivity. a,
358 Polyspecificity reagent (PSR) staining of yeast displaying D06 variants. For the
359 moderately polyreactive D06 nanobody, 18 out of 21 variants that were computationally
360 designed to decrease polyreactivity reduced levels of binding to insect cell PSR staining
361 Data in a comprise the mean +/- SEM of at least three independent experiments, each
362  performed in technical triplicate. b, PSR staining of yeast displaying E10’ variants. For
363 the highly polyreactive E10’ nanobody, 15 out of 16 computationally predicted single and
364  double substitutions reduced binding to PSR reagent. Data in b comprise the mean +/-
365 SEM of at least three independent experiments, each performed in technical triplicate.
366

367 Reducing polyreactivity of a functional clone

368 We next tested if our model could be employed to decrease the polyreactivity of
369 nanobody clone that was independently selected for antigen specificity. AT118i4h32 is a
370  nanobody antagonist for the angiotensin Il type 1 receptor (AT1R), a G protein-coupled
371 receptor (GPCR) that is a central regulator of blood pressure and renal function.
372  AT118i4h32 directly competes with the binding of small molecule and peptide ligands to
373 the AT1R and is active in vivo, reducing mouse blood pressure in a comparable degree

374  to the clinically used angiotensin receptor blocker losartan?®. Additionally, AT118i4h32
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375 has been humanized with 11 amino acid substitutions to resemble a human Vu3-23.
376  Although pharmacologically intriguing, AT118i4h32 is highly polyreactive in the PSR
377 assay and has a high pl value (9.6), which is characteristic of polyreactive antibodies.
378  Furthermore, a crystal structure of AT118i4h32 displays large patches of positive charge
379  onthe protein surface (Figure 6a, Supplementary Table 3) and enrichment of both solvent

380 exposed arginine and hydrophobic residues in the CDR regions (Figure
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382 Figure 6. Development of AT118i4h32 variants with reduced polyspecificity. a,
383 electrostatic surface of AT118i4h32. CDR1, CDR2, and CDR3 are colored blue, green,
384 and orange. All positions substituted to produce variants of AT118i4h32 with reduced
385  polyreactivity are shown in sticks with atomic coloring b, AT118i4h32 structure as colored
386 in a. G26D?” and T57I5° substitutions are boxed. ¢, PSR staining of yeast displaying
387 AT118i4h32 variants. All amino acid substitutions decrease polyreactivity. Data in c
388 comprise the mean +/- SEM of four independent experiments, each performed in
389 technical ftriplicate. d, binding of AT118i4h32 variants to HEK293 suspension cells
390 expressing FLAG-AT1R. Cells were stained with AT118i4h32-V5-His variants,
391 AlexaFlour-488 conjugated anti-FLAG, and AlexaFlour-647 conjugated anti-V5
392  antibodies, then analyzed by flow cytometry. Data in d is the average of three independent
393  experiments performed in technical triplicate, error bars are shown as SEM. e, radioligand
394  competition binding of AT118i4h32 variants or the small molecule antagonist losartan and
395 [3H]-olmesartan to AT1R in cell membranes. Like WT AT118i4h32, the G26D, T57I, and
396  G26D+T57 variants compete with olmesartan for binding to the AT1R. Data in e is the
397 average of three independent experiments performed in technical triplicate, error bars are
398 shown as SEM. f, suppression of Gg-mediated inositol monophosphate production by
399  AT118i4 in response to Angll stimulation. HEK293 suspension cells expressing FLAG-
400 AT1R were treated with 5 yM AT118i4h32 or no nanobody prior to Angll stimulation. Data
401 in d is the average of three independent experiments performed in technical triplicate,
402  error bars are shown as SEM. K values are reported in Supplementary Table 3.

403

404 We analyzed the sequence of AT118i4h32 and selected twelve single amino acid
405  substitutions scattered throughout each CDR predicted to reduce polyreactivity based on
406  the one-hot logistic regression model. AT118i4h32 variants were displayed on the surface
407  of yeast and all showed reduced levels of PSR binding (Figure 6C). Neutralizing the highly
408  basic patch composed of R303°, R31%6, and R99'% on the surface of AT118i4h32 (Figure
409 6A) with R31D%* and R99D'% substitutions substantially reduces AT118i4h32
410  polyreactivity. Notably, introduction of an additional arginine residue with the Y29R®
411  substitution, which introduces a RRR sequence motif into CDR1, reduces polyreactivity,
412  further demonstrating that arginine’s contribution to polyreactivity is highly position
413  dependent.

414 To assess the effects of these substitutions on antigen binding, AT118i4h32

415  variants were recombinantly expressed in E. coli and purified to evaluate AT1R binding
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416 by flow cytometry (Figure 6D). Two AT118i4h32 variants, G26D?’ and T571%°, retained at
417  least 80% of wild-type binding levels to the AT1R. Combination of the G26D?” and T571°
418  substitutions retained high levels of binding to the AT1R and yielded a clone with a modest
419  decrease in PSR binding compared to the G26D?’ variant (Figure 6C), bringing the overall
420 level of polyreactivity close to that of the clinically approved nanobody drug
421  Cablivi/caplacizumab3®® (Supplementary Figure 5A). Additionally, the G26D?%’, T571%°
422  variant has reduced polyreactivity compared to the wild-type nanobody as measured by
423  ELISA assay (Supplementary Figure 5B-G). AT118i4h32 variants containing G26D?” and
424  T571%° maintain the ability to act as receptor antagonists, displacing small molecule
425  orthosteric antagonists (Figure 6E) and suppressing receptor signaling upon angiotensin
426 1l (Angll) stimulation (Figure 6F).

427 To investigate how the G26D?” T571°° substitutions alter AT118i4h32’s structure
428 and contribute to reduce polyreactivity, we crystallized AT118i4h32 G26D?’ T571°° and
429  solved the structure at 1.6 A resolution (Figure 6B, Supplementary Table 3). The T57165
430  substitution is located at the end of CDR2. 157% forms more favorable hydrophobic
431 interactions with neighboring 151% and 165 side chains than T57%. In the case of
432  AT118i4h32, maintaining this hydrophobic interaction is essential for antigen recognition,
433 as the T57D% substitution diminished AT1R binding two-fold (Figure 6D). While the T5716°
434  mildly decreases polyreactivity, AT118i4h32 variants containing the T571%° substitutions
435  had slightly decreased thermal stability (Supplementary Table 4), indicating that changes
436  in reduced polyreactivity are not necessarily correlated with thermal stability.

437 Residue D262/, found at the N-terminus of helical CDR1, forms a hydrogen bond

438  with the side chain of framework residue N76 in all eight copies of the nanobody in the
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439  crystal structure’s asymmetric unit (Figure 6B). This hydrogen bond rigidifies the CDR1
440  position and may reduce the flexibility of the nanobody’s CDR regions. Additionally, the
441  G26D substitution improves AT118i4h32’s stability; we observed a five-fold increase in
442  AT118i4h32 G26D? yield from E. coli and a two degree increase in melting temperature
443  of the G26D? variant (Supplementary Table 4) over wild-type levels. Corresponding
444  G26D?" substitutions reduced the polyreactivity of nanobodies D06 and E10’. Despite
445  occurring in just 0.05% of sequences from the naive repertoire of seven llamas3* (1.12
446  million unique nanobody sequences), the D27 substitution may be both beneficial and
447  tolerated in many sequence contexts and may broadly reduce polyreactivity by reducing
448  the conformational flexibility of the CDR regions®.

449

450 Expansion of computational method

451 Upon examination of corresponding substituted positions in D06, E10’, and
452 AT118i4h32 we observe some substitutions reduce polyreactivity in all clones, such as
453  G26D?’, whereas other mutations dramatically reduced polyreactivity of some
454  nanobodies (i.e., E10° A97W'% and AT118i4h32 A96W'%5) while having little to no effect
455  in another clone (i.e., D06 N96W'%%). This suggests that position dependency is critical
456  for polyreactivity, which may be more accurately captured with a larger data set.
457  Therefore, we sought to improve our in silico method with expanded sequencing data.
458  Through additional rounds of FACS selection, we collected 1,221,800 unique low
459  polyreactivity clones and 1,058,842 unique high polyreactivity clones. We trained our

460  suite of supervised classification models on this extended dataset and included analysis
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461 of an extra position at the end of CDR2, which has some variability in the synthetic
462  nanobody library, but was not included in the initial analysis.

463 To test classification accuracy, we clustered the sequences into 10 clusters using
464 a k-means algorithm for train/test splits, and again limited our training dataset to
465  sequences with at least 10 mutations as compared to any sequence in the test sets. We
466  achieved comparable classification AUCs to the logistic regression and RNN models
467 trained on the original FACS sorts (one-hot logistic regression: 0.83, 3-mer logistic
468  regression: 0.83, RNN: 0.84) (Supplementary Figure 6A). The convolutional neural
469 network model received a significant performance boost (CNN: 0.83 compared to
470  previously 0.78 AUC) (Supplementary Figure 6A). For the higher throughput dataset, we
471  see that the models that capture more complexities in sequences, such as the CNN and
472  RNN, have higher accuracies, suggesting that there are meaningful dependencies in
473  nanobody sequences that contribute to polyreactivity beyond site-specific amino acid
474  contributions and/or 3-mer motifs and would allow us to make more accurate predictions
475  to reduce polyreactivity for individual sequences. Furthermore, for each of these models
476  we see an improved correlation (Spearman R) of polyreactivity scores with the index set
477  measurements (one-hot logistic regression: 0.87, 3-mer logistic regression: 0.86, CNN:
478  0.88, RNN: 0.88) (Supplementary Figure 6B-E). The majority of substitutions applied to
479  clones D06, E10°, and AT118i4h32 are still predicted to decrease polyreactivity across
480  the four models trained on the deeper FACS sequencing experiments (37, 37, 41, and 23
481  out of 45 mutations for one-hot logistic regression, k-mer logistic regression, CNN, and

482  RNN respectively; for the RNN in particular, most mutations that were not predicted to
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decrease polyreactivity had very small changes in predicted signal, Supplementary Table
6).

As a resource to the field, we provide open-access use of our polyreactivity

prediction software on our webpage (http://18.224.60.30:3000/). The webserver allows
users to input a nanobody sequence(s) in FASTA format and outputs the aligned
nanobody sequence with IMGT numbering using ANARCI®, along with biochemical
properties of the sequence, including isoelectric point, hydrophobicity, CDR definitions
(IMGT), CDR lengths, and computational predictions of polyreactivity scores using the

one-hot logistic regression models that were trained for the design of rescue mutations.

DISCUSSION

Previous work has identified some biophysical characteristics of polyreactivity, but
these studies have generally been performed on relatively small sets of antibody
sequences without an explicit attempt to improve polyreactivity properties. Here, we
designed and conducted high-throughput experiments to capture diverse clones that were
not influenced by other selection pressures, facilitating an unbiased analysis of nanobody
polyreactivity. Starting with a large naive synthetic library mimicking the Illama
immunological repertoire, we isolated large pools of high and low polyreactivity nanobody
clones based upon binding to the mixed-protein PSR reagent. Our models are over 80%
accurate in discriminating between clones with high and low polyreactivity (Figure 3B),
rank levels of polyreactivity with high fidelity (Figure 4), and reliably identify amino acid

substitutions that reduce polyreactivity (Figures 5 and 6C).
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505 Since our models were built upon experiments that were intentionally designed to
506 interrogate sequence contributions to polyreactivity, they are highly accurate at
507 measuring polyreactivity. In accordance with previous studies, our deep dive results
508 suggest that arginine generally promotes nanobody polyreactivity while glutamate and
509 asparate usually decrease polyreactivity. However, we find amino acid contributions to
510 polyreactivity are highly position dependent and more nuanced than broad
511 generalizations suggest. This finding is in agreement with a recent independent study that
512 analyzed polyreactivity of a subset of antibodies'’. Furthermore, our computational
513  models’ ability to accurately quantify polyreactivity from sequence identity constitutes a
514 large step forward as we can diagnose and engineer away polyreactivity of existing
515 clones. More complex models including the CNN and RNN models also allowed us to
516 evaluate dependencies of amino acids in different locations in nanobodies to
517  polyreactivity. We find such dependencies contribute to polyreactivity indicating that both
518 local and global characteristics of nanobodies influence their degree of polyreactivity.

519 We provide to the community an easy-to-use webserver that encapsulates our
520 computational methods. These methods can guide antibody discovery campaigns at
521 many points in the discovery pipeline. For instance, our software can be used to
522  prospectively predict amino acid substitutions that will reduce polyreactivity of a single
523  clone such as AT118i4h32. Moreover, the polyreactivity of a list of antigen binders can
524  be ranked for clone prioritization during selection campaigns. We found that substitutions
525 in each of the CDR regions of D06, E10’, and AT118 reduce polyreactivity, suggesting
526 that each CDR region contributes to polyreactivity. Therefore, if a certain CDR region is

527  critical for antigen recognition, substitutions in alternative CDR regions can potentially
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528 compensate in reducing polyreactivity. In addition, our success in reducing polyreactivity
529  of AT118i4h32, where the humanized framework region differs from clones in the training
530 set, indicates that our methods are applicable to nanobodies from a range of sources.
531 Although outside the scope of this manuscript, similar approaches can be applied to
532 conventional antibodies, adding in the three light-chain CDRs and germline gene choice
533  as additional factors for polyreactivity prediction and optimization.

534

535  Statistical Methods

536  Prism software (Graphpad) was used to analyze data and perform error calculations. Data
537 are expressed as arithmetic / geometric mean + SEM or arithmetic / geometric mean +
538 SD.

539

540 Data Code Availability Statement

541 The code for scoring new sequences for polyreactivity, designing rescue mutations,
542  training polyreactivity models, and calculating biochemical properties of a sequence can

543  be found on github: https://github.com/debbiemarkslab/nanobody-polyreactivity, and the

544  webserver is available here: (http://18.224.60.30:3000/). Coordinates and structure

545 factors for the AT118i4h32 structures are deposited in the Protein Data Bank under
546  accession codes 7T83 and 7T84.
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