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ABSTRACT 30 

Antibodies are essential biological research tools and important therapeutic agents, but 31 

some exhibit non-specific binding to off-target proteins and other biomolecules. Such 32 

polyreactive antibodies compromise screening pipelines, lead to incorrect and 33 

irreproducible experimental results, and are generally intractable for clinical development. 34 

We designed a set of experiments using a diverse naïve synthetic camelid antibody 35 

fragment (‘nanobody’) library to enable machine learning models to accurately assess 36 

polyreactivity from protein sequence (AUC > 0.8). Moreover, our models provide 37 

quantitative scoring metrics that predict the effect of amino acid substitutions on 38 

polyreactivity. We experimentally tested our model’s performance on three independent 39 

nanobody scaffolds, where over 90% of predicted substitutions successfully reduced 40 

polyreactivity. Importantly, the model allowed us to diminish the polyreactivity of an 41 

angiotensin II type I receptor antagonist nanobody, without compromising its 42 

pharmacological properties. We provide a companion web-server that offers a 43 

straightforward means of predicting polyreactivity and polyreactivity-reducing mutations 44 

for any given nanobody sequence. 45 
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INTRODUCTION 54 

Due to their specificity and affinity, antibodies are an indispensable class of 55 

biomedical research tools as well as important therapeutics for the treatment of cancer, 56 

autoimmune, and infectious diseases. Current antibody discovery methods prioritize the 57 

generation of antibodies and antibody fragments with high target specificity. However, 58 

some antibodies that strongly bind one target interact with additional antigens with low-59 

affinity. In clinical development, these non-specific or polyreactive antibodies show poor 60 

pharmacokinetics or other liabilities that limit clinical use1-3. Additionally, polyreactive 61 

antibodies encountered in the basic research setting cause misinterpretation of results, 62 

low reproducibility in routine experiments, and wasted time and money4. Thus, there have 63 

been several calls to standardize the quality and specificity of antibodies used in research 64 

settings similar to those in the clinic5,6. 65 

Developing and improving methods to detect and quantify polyreactivity are 66 

essential for enhancing the quality of antibodies in both clinical development and basic 67 

research settings. Many experimental methods that evaluate polyreactivity7-14 are low-68 

throughput and require experimental screening with purified antibody. The degree of 69 

polyreactivity is highly method and reagent-dependent and is typically measured after 70 

antigen selection, making it difficult to prioritize the most promising clones. Understanding 71 

sequence features of polyreactive antibodies could provide an efficient avenue to 72 

quantitatively assess antibody polyreactivity without experimental effort. Previous 73 

computational methods15-22 have revealed features of polyreactivity antibodies, such as 74 

J- and V-chain usage17, high isoelectric points in the complementarity determining regions 75 

(CDRs)16,18-25, longer CDR3s16,23, enrichment of arginine, glycine, valine, and tryptophan 76 
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containing motifs18, and glutamine residues23. Despite these extensive analyses the 77 

relative importance of many characteristics is disputed21 and prediction software cannot 78 

quantitate polyreactivity17.  79 

For broad utility, a computational method should accurately predict the degree of 80 

polyreactivity and compute candidate rescue mutations from the input of a user sequence 81 

alone. To achieve this goal, we designed experiments to learn features of high and low 82 

polyreactivity clones from a naïve synthetic yeast display library of heavy-chain only 83 

camelid antibody fragments (nanobodies)26,27 through computational methods. Synthetic 84 

nanobodies provide an ideal reductionist system to probe polyreactivity in the context of 85 

a fixed framework without the influence of heavy and light chain pairing effects. These 86 

methods result in generalizable software that quantifies nanobody polyreactivity based 87 

on sequence alone and most importantly designs specific mutations to decrease 88 

polyreactivity.  89 

We successfully applied our software to three polyreactive nanobodies, including 90 

AT118i4h32, a nanobody antagonist of the angiotensin II type I receptor (AT1R)28, where 91 

we reduced polyreactivity without compromising binding affinity or target-specific 92 

pharmacology. This sequence-based approach may be a generally useful tool for 93 

prioritizing nanobody clones identified in selection experiments and improving 94 

nanobodies targeting diverse antigens. While nanobodies are gaining popularity as next 95 

generation biotherapeutics29 that target antigen surfaces and tissue types not accessible 96 

to conventional antibodies, the approaches developed here are in principle fully 97 

applicable to conventional antibodies as well. 98 

 99 
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RESULTS 100 

Enriching naïve library for polyreactive clones 101 

Unlike previous analyses of antibody polyreactivity which relied on clinical 102 

candidates 23-25, clones enriched for antigen binding17, or primarily focused on the 103 

contribution of VH CDR3 antibody polyreactivity18,21, we designed experiments to assess 104 

polyreactivity of clones from a naïve synthetic yeast display library through binding to 105 

detergent-solubilized Spodoptera frugiperda (Sf9) insect cell membranes (Figure 1)14. 106 

This mixed protein polyspecificity reagent (PSR) is compatible with sorting large pools of 107 

antigen naïve clones, allowing us to determine global contributions to polyreactivity in an 108 

unbiased manner. The yeast display library contains >2x109 unique nanobody clones that 109 

mimic a naïve llama immune repertoire in CDR sequence composition and CDR3 length 110 

and possesses moderate diversity in the CDR1 and CDR2 regions and extensive diversity 111 

in the CDR3 region. We used Magnetic-Activated Cell Sorting (MACS) to both enrich for 112 

polyreactive clones and deplete non-expressing clones from the library. Following MACS, 113 

distinct populations of clones with high and low polyreactivity were isolated by 114 

Fluorescence-Activated Cell Sorting (FACS) (Supplementary Figure 1A-B).  115 
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 116 
 117 
Figure 1. Development of computational tool to assess and mitigate polyreactivity. 118 
Starting from a large, naïve synthetic nanobody library, pools of nanobodies with low and 119 
high polyreactivity were isolated. Machine learning models were trained on deep 120 
sequencing data from these pools to learn sequence features of low and high polyreactive 121 
nanobodies. These algorithms were incorporated into software that quantitatively predicts 122 
polyreactivity levels and recommends substitutions that reduce it. 123 
 124 

PSR reagent has not been used to assess nanobody polyreactivity, but is well 125 

validated against other measures of polyreactivity for conventional antibodies2,14,15. To 126 

validate PSR performance on nanobodies, we recombinantly expressed six nanobodies 127 

with varying levels of polyreactivity from our FACS sorted pools and assessed 128 

polyreactivity by conventional ELISA assays against lysozyme, double stranded DNA 129 

(dsDNA), single stranded DNA (ssDNA), insulin, lipopolysaccharide (LPS), and bare 130 

plastic (Figure 2, Supplementary Figure 2A-F). ELISA polyreactivity assays performed 131 

using different reagents correlated well with one another (r2 values between 0.789 and 132 

0.986, p < 0.05) with the exception of lysozyme (r2 values between -0.109 and 0.045, p-133 

values between 0.8127 and 0.9230), which did not correlate with the other reagents. 134 

Harvey, Shin, Skiba et al. Figure 1
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Furthermore, direct ELISA assays strongly correlated with insect cell PSR (r2 values 135 

between 0.7849 and 0.9268) except for lysozyme which exhibited a very weak correlation 136 

(r2 = -0.1876). The correlations between insulin, LPS, and ssDNA direct ELISA assays to 137 

insect cell PSR staining were highly significant (p < 0.05), while bare plastic and dsDNA 138 

direct ELISA assays were modestly significant (p < 0.10). Lysozyme direct ELISA assays 139 

did not significantly correlate with insect cell PSR staining (p = 0.7219). We also observed 140 

that polyreactive clones had increased retention times in conventional size exclusion 141 

chromatography albeit not with statistical significance (r2 = 0.7836, p = 0.1168), 142 

suggesting that nanobody polyreactivity may be detected during routine protein 143 

purification (Supplementary Figure 2G). Overall, the ELISA experiments support that the 144 

pools of nanobodies selected by PSR staining possess high and low levels of 145 

polyreactivity. Armed with this validation, we deep-sequenced the two FACS sorted pools 146 

and obtained 65,147 unique low polyreactivity sequences and 69,155 unique highly 147 

polyreactive sequences that contained 51,308 and 59,623 distinct CDR regions. 148 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2022. ; https://doi.org/10.1101/2022.01.12.476085doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.12.476085
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

 149 

 150 

Figure 2. Correlations between direct ELISA assays and insect cell polyspecificity 151 
reagent (PSR) staining.  152 
a, Spodoptera frugiperda (Sf9) insect cell PSR staining of single nanobodies isolated from 153 
FACS sorts. Data are mean +/- SEM of three independent biological experiments 154 
performed in technical triplicate. Polyreactivity levels are normalized with respect to the 155 
highest value. b, CDR sequences of isolated nanobodies. c, Direct ELISA assays 156 
measured the apparent EC50 (EC50APP) of five index panel members and nanobody AT118 157 
to the specified reagents. ELISA data are representative of two independent experiments, 158 
each performed in technical triplicates. 159 
 160 

Harvey, Shin, Skiba et al. Figure 2
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Development of computational method 161 

We developed computational models trained on the sequences from the FACS-162 

sorted pools to classify nanobodies as possessing high or low polyreactivity. We 163 

constructed a suite of supervised, discriminative models that can separate high and low 164 

polyreactivity sequences (Figure 3A-B). These models include a logistic regression model 165 

of a one-hot embedding of the CDR sequences, a logistic regression model of a k-mer 166 

embedding (k=3) of the CDR sequences, a convolutional neural network (CNN), and a 167 

recurrent neural network (RNN). The one-hot logistic regression model learns weights for 168 

each amino acid type at each position in the CDR sequences that are most predictive of 169 

polyreactivity; the k-mer logistic regression learns weights for each motif (lengths 1, 2, 170 

and 3) that are most predictive of polyreactivity, irrespective of where they occur within a 171 

given CDR sequence. Convolutional neural networks use convolutional filters to learn 172 

spatial information (e.g., an amino acid and its neighboring residues) and are often used 173 

in image classification. Recurrent neural networks capture sequential information (e.g. 174 

the probability of a residue given the previous residues) and are frequently used in text 175 

and audio analysis. For the one-hot logistic regression and for the CNN, we align the CDR 176 

sequences using the IMGT numbering scheme with ANARCI30. The k-mer logistic 177 

regression and the RNN methods do not require aligned CDR sequences. In order to test 178 

the generalizability of our models, we clustered the nanobody sequences using k-means 179 

clustering to generate five clusters of sequences, which we used to build train and test 180 

splits. These splits and careful selection allowed us to avoid over-optimistic prediction 181 

accuracies that result from the tests sets overlapping or close to the training sets31. 182 

Specifically, we ensured that all sequences in the test sets were more than 10 edit-183 
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distance (Levenshtein distance) and possessed only ~75% sequence similarity in the 184 

CDR sequences from each other (Figure 3A).  185 

 186 

 187 
 188 
 189 
 190 
 191 
Figure 3. Development of computational models to predict polyreactivity. 192 
Supervised models were trained on pools of high and low polyreactivity sequences. a, 193 
Pipeline of computational model development, from raw NGS data to held-out predictions 194 
with sequence clustering for rigorous validation. b, Comparison of supervised models 195 
(one-hot and k-mer logistic regression, RNN, CNN) and biochemical properties such as 196 
hydrophobicity, isoelectric point, CDR3 lengths, and number of arginine residues. c, 197 
Trained parameters of a one-hot logistic regression model, showing which amino acids 198 
at specific positions are most predictive of high polyreactivity and low polyreactivity (red 199 
and blue, respectively). d, Polyreactivity scores of top motifs learned from a k-mer logistic 200 
regression model most predictive of low and high polyreactivity (top and bottom, 201 
respectively). e, Separation of high and low polyreactivity nanobodies by each of the 202 
models and biochemical properties displayed in panel b. 203 

 204 
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The one-hot logistic regression, k-mer logistic regression, and RNN models 205 

performed well at classifying distant nanobody sequences as high or low polyreacitvity, 206 

achieving 0.85, 0.83, and 0.84 Area Under Curve (AUC) respectively (Figure 3B). 207 

Whereas, the CNN (AUC=0.78, Figure 3B) achieved similar performance to metrics as 208 

described previously in literature, such as isoelectric point16,22-24 and the number of 209 

arginine residues18,20,21,25 (AUCs of 0.79 and 0.73 respectively, Figure 3B). Consistent 210 

with previous literature15,23, we found that hydrophobicity, as described by the 211 

hydrophobicity index, is not strongly predictive of polyreactivity (AUC of 0.57, Figure 3B). 212 

However, CDR3 length, which is a reported feature of polyreactive antibodies16,23 is not 213 

highly predictive of nanobody polyreactivity (AUC of 0.58, Figure 3B). Score and 214 

measurement distributions of the nanobody sequences for each of these metrics, 215 

separated by labeled class are displayed in Figure 3E. 216 

In addition to the models’ robust performance, sequence features learned by the 217 

logistic regression methods are easily interpretable. A distinct advantage of the one-hot 218 

logistic regression model is its ability to produce a picture of amino acid contribution to 219 

polyreactivity at each position of nanobody CDR sequences (Figure 3C). In agreement 220 

with previous findings, we find that acidic residues in CDRs 2 and 3 are characteristic of 221 

low polyreactivity clones and the presence of arginine residues across all CDRs, and 222 

lysine, tryptophan, or tyrosine in CDR3 contribute to higher polyreactivity. Despite the 223 

overall enrichment of arginine and tryptophan polyreactive clones, the position specific 224 

analysis provided by the one-hot model indicates that low polyreactivity clones tolerate 225 

arginine in positions 30 and 38 of CDR1 and tryptophan in position 105 in CDR3.  226 
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Furthermore, the k-mer logistic regression model provides insight into sequence 227 

dependencies on the local level in high or low polyreactivity clones (Figure 3D). K-mer 228 

motifs containing negatively charged residues such as glutamate and aspartate are highly 229 

associated with low polyreactivity sequences, and positively charged residues such as 230 

arginine and lysine are predicted to contribute to polyreactivity, agreeing with the 231 

predictions of the one-hot logistic regression model. These motifs differ from previously 232 

reported polyreactive motifs, that were enriched in glycine and the hydrophobic amino 233 

acids valine and tryptophan18. However, these previously reported motifs were derived 234 

from a library where only CDR3 was diversified. We proceeded to use the one-hot and k-235 

mer logistic regression models for further analysis based on of their accuracy and 236 

interpretability. 237 

 238 

Quantitative scoring of nanobody polyreactivity 239 

In order to test if our model could go beyond predicting binary classification labels 240 

and quantitively score polyreactivity, we stained 48 nanobodies isolated from MACS and 241 

FACS pools with PSR to obtain an “index set” of sequenced clones with defined levels of 242 

polyreactivity (Figure 4A, Supplementary Table 1). Index panel nanobodies partitioned 243 

into three groups according to their level of polyreactivity: minimal polyreactivity (light 244 

gray), moderate polyreactivity (gray), and high polyreactivity (dark gray). To validate the 245 

rank order of the 48 nanobodies we measured the polyreactivity of index panel members 246 

using PSR reagent derived from solubilized HEK293 cell membranes. We found that 247 

insect cell and HEK293 derived PSR staining are highly correlated (r2 = 0.895, p < 248 

0.0001), indicating that polyreactivity levels do not vary with PSR reagent type 249 
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(Supplementary Figure 3C). Furthermore, to confirm that the rank order was not skewed 250 

by PSR binding to unfolded nanobodies on the surface of yeast, the index set was stained 251 

with an anti-VHH antibody, which recognizes the folded nanobody framework region 252 

(Supplementary Figure 3A). Levels of anti-VHH antibody staining are not correlated to 253 

insect cell PSR staining (r2 = 0.046, p = 0.1446, Supplementary Figure 3B), indicating that 254 

unfolded clones do not confound our dataset. 255 

Biophysical characteristics of clones in our index set were reflective of the learned 256 

features in our high and low polyreactivity pools. There is a modest correlation between 257 

PSR staining of the index set and nanobody isoelectric point (r2 = 0.390, p < 0.0001, 258 

Supplementary Figure 3D). While nanobodies with low isoelectric points possess low 259 

polyreactivity, nanobodies with high pI values demonstrate a range of polyreactivity. 260 

Similarly, nanobody hydrophobicity index values are not correlated with polyreactivity (r2 261 

= 0.036, p = 0.195, Supplementary Figure 3E).  262 

Of the 48 nanobodies, 4 were previously seen in our training set, so we did not 263 

include these in our quantitative tests. Each of the 44 remaining nanobodies had at least 264 

6 mutations from any single nanobody sequence in the training set; the median of the 265 

minimum edit distance (a proxy for the number of mutations) of each of these index set 266 

nanobodies to the training set was 10 edit distance (the maximum similarity to the training 267 

set was 75% sequence identity). The correlation between the quantitative model 268 

predictions and the experimental binding scores to PSR, are strong - about 85% of the 269 

maximum theoretical correlation (Spearman 𝜌!  of 0.77 and 0.79, for the one-hot and k-270 

mer logistic regression models, respectively) (Figure 3B). For comparison, the Spearman 271 

correlations between the three independent biological replicate experiments were 0.87, 272 
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0.87, and 0.95. Thus, our models trained on sequence pools of high and low polyreactivity 273 

nanobody CDR sequences are highly accurate for both classification and regression 274 

tasks for clones with distinct sequences. 275 

 276 

Model performance at predicting polyreactivity of closely related sequences 277 

To determine if our computational model could accurately assess the influence of 278 

point mutations in single nanobody clones, we utilized the autonomous hypermutation 279 

yeast surface display (AHEAD) error-prone DNA replication system32 to rapidly evolve the 280 

four most polyreactive clones from our index set (Nb E05’, F02’, G09’, and F07’) to have 281 

reduced binding to the PSR reagent. Over the course of four AHEAD cycles involving 282 

nanobody hypermutation and FACS sorting, global PSR staining of the evolved nanobody 283 

population decreased (Supplementary Figure 4). Deep sequencing analysis following the 284 

fourth FACS round revealed variation in the CDR regions of each of the four nanobodies.  285 

A large proportion of the clones enriched by AHEAD are predicted to have reduced 286 

polyreactivity by both the one-hot and 3-mer logistic regression models. For the four 287 

clones, 97%, 67%, 69%, and 93% of the observed mutations are predicted to decrease 288 

polyreactivity by the one-hot logistic regression model, with similar decreases predicted 289 

by the k-mer logistic regression model (Supplementary Table 2). Furthermore, K31E36, 290 

A50T55, and R57P64 substitutions that arose in nanobody E05’ reflect the position specific 291 

analysis provided by the one-hot logistic regression model, where K, R, and A are 292 

characteristic of polyreactive nanobodies at positions 36, 55, and 64 and all three 293 

substitutions are characteristic of clones with reduced polyreactivity (Figure 3C). In a 294 

computational ranking of the polyreactivity of all 494 single amino acid substitutions using 295 
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the one-hot logistic regression model in the CDR regions of E05’ found in our AHEAD 296 

experiment, from lowest to highest, R57P64 ranked 28th, K31E36 ranked 37th, and A50T55 297 

is 101st. Overall, the AHEAD-based directed evolution experiment produces clones that 298 

our computational models predict to have reduced polyreactivity suggesting that our 299 

models can accurately score the polyreactivity of closely related sequences. 300 

With confidence in our models’ performance on related clones, we employed our 301 

computational model to independently predict sequence substitutions to reduce 302 

polyreactivity of the highly polyreactive clone E10’ and moderately polyreactive clone D06 303 

from our index set. We performed a comprehensive in silico single and double mutant 304 

scan, scored each sequence with both the one-hot logistic regression model and the k-305 

mer logistic regression model (Figure 4B-D), and ranked all the possible single and 306 

double mutants, including insertions and deletions, surrounding the seed sequence. We 307 

sampled the substitutions most likely to reduce polyreactivity (with the exception of a 308 

substitution that would have introduced a cysteine that could disrupt disulfide bond 309 

formation) by selecting diverse mutations across residue types and positions that are 310 

contained within a single CDR and span each of the possible combinations of different 311 

CDR regions. Furthermore, if there was a mutation indicated to decrease polyreactivity 312 

by the k-mer logistic regression that scored similarly according to the one-hot logistic 313 

regression model, we selected the sequence with a higher k-mer logistic regression score 314 

to take into account local sequence dependencies. We selected the three top scoring 315 

single mutations for each of the CDR regions, the top scoring double mutants within a 316 

single CDR region, and the top scoring double mutants spanning two CDR regions where 317 
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at least one of the individual single mutations had not already been tested in a different 318 

combination. 319 

 320 
Figure 4. Validation of computational model for quantitative predictions of 321 
polyreactivity and design of rescue mutations. a, Generation of an index panel of 322 
polyreactivity mutants by Spodoptera frugiperda (Sf9) insect cell membranes protein 323 
polyspecificity reagent (PSR) staining of yeast displaying 48 unique nanobodies isolated 324 
from MACS enrichment as well as non-reactive and polyreactive FACS pools. Data are 325 
mean +/- SEM of three independent biological experiments performed in technical 326 
triplicate. b, New nanobody sequence(s) can be input into a webserver, which will output 327 
computational predictions of polyreactivity and biochemical properties of the sequence(s). 328 
It is also possible to input a nanobody sequence to retrieve top scoring rescue mutations 329 
predicted to decrease polyreactivity. c, e, The one-hot logistic regression model and k-330 
mer logistic regression model trained on the full NGS dataset from FACS sorts with PSR 331 
binding were used to test quantitative predictions and rankings of the index set of clones 332 
spanning a wide range of polyreactivity levels (as measured by PSR binding) (spearman 333 
𝜌!  of 0.77 and 0.79, respectively). d, f, An in silico double mutation scan (spanning 334 
substitutions, insertions, and deletions) was scored for predicted polyreactivity using both 335 
the one-hot logistic regression model and k-mer logistic regression model. From these in 336 
silico double mutation scans, a diverse set (spanning each CDR and combinations of 337 
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CDRs) of high scoring mutations predicted to have low polyreactivity were selected as 338 
rescue mutations for experimental testing from two parent clones, E10’ and D06.  339 
 340 

For the moderately polyreactive D06 nanobody, 18 out of 21 variants that were 341 

computationally designed to decrease polyreactivity reduced levels of binding to insect 342 

cell PSR staining (Figure 5A). More stringently, 11 out of 21 mutations exhibited at least 343 

two-fold reductions in polyreactivity. Although substitutions in each of the CDR regions 344 

were able to lower polyreactivity, CDR3 appeared to drive polyreactivity as the most 345 

significant reductions in polyreactivity occurred from variations in the CDR3 region 346 

including A97H106 and R98D107 R99H108.  347 

For the highly polyreactive E10’ nanobody, 15 out of 16 computationally predicted 348 

single and double substitutions reduced binding to PSR reagent (Figure 5B). 9 out of the 349 

16 substitutions reduced polyreactivity by at least 50%, including mutations in each of the 350 

three CDR regions. Strikingly, the R99D107 Y102E110 clone, which was predicted to have 351 

the lowest polyreactivity value using the k-mer logistic regression model has very low 352 

polyreactivity by experimental PSR staining.  353 

 354 
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 355 
 356 

Figure 5. In silico designed substutions reduce nanobody polyreactivity. a, 357 
Polyspecificity reagent (PSR) staining of yeast displaying D06 variants. For the 358 
moderately polyreactive D06 nanobody, 18 out of 21 variants that were computationally 359 
designed to decrease polyreactivity reduced levels of binding to insect cell PSR staining 360 
Data in a comprise the mean +/- SEM of at least three independent experiments, each 361 
performed in technical triplicate. b, PSR staining of yeast displaying E10’ variants. For 362 
the highly polyreactive E10’ nanobody, 15 out of 16 computationally predicted single and 363 
double substitutions reduced binding to PSR reagent. Data in b comprise the mean +/- 364 
SEM of at least three independent experiments, each performed in technical triplicate.  365 

 366 

Reducing polyreactivity of a functional clone 367 

We next tested if our model could be employed to decrease the polyreactivity of 368 

nanobody clone that was independently selected for antigen specificity. AT118i4h32 is a 369 

nanobody antagonist for the angiotensin II type 1 receptor (AT1R), a G protein-coupled 370 

receptor (GPCR) that is a central regulator of blood pressure and renal function. 371 

AT118i4h32 directly competes with the binding of small molecule and peptide ligands to 372 

the AT1R and is active in vivo, reducing mouse blood pressure in a comparable degree 373 

to the clinically used angiotensin receptor blocker losartan28. Additionally, AT118i4h32 374 
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has been humanized with 11 amino acid substitutions to resemble a human VH3-23. 375 

Although pharmacologically intriguing, AT118i4h32 is highly polyreactive in the PSR 376 

assay and has a high pI value (9.6), which is characteristic of polyreactive antibodies. 377 

Furthermore, a crystal structure of AT118i4h32 displays large patches of positive charge 378 

on the protein surface (Figure 6a, Supplementary Table 3) and enrichment of both solvent 379 

exposed arginine and hydrophobic residues in the CDR regions (Figure  380 

 381 
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Figure 6. Development of AT118i4h32 variants with reduced polyspecificity. a, 382 
electrostatic surface of AT118i4h32. CDR1, CDR2, and CDR3 are colored blue, green, 383 
and orange. All positions substituted to produce variants of AT118i4h32 with reduced 384 
polyreactivity are shown in sticks with atomic coloring b, AT118i4h32 structure as colored 385 
in a. G26D27 and T57I65 substitutions are boxed. c, PSR staining of yeast displaying 386 
AT118i4h32 variants. All amino acid substitutions decrease polyreactivity. Data in c 387 
comprise the mean +/- SEM of four independent experiments, each performed in 388 
technical triplicate. d, binding of AT118i4h32 variants to HEK293 suspension cells 389 
expressing FLAG-AT1R. Cells were stained with AT118i4h32-V5-His variants, 390 
AlexaFlour-488 conjugated anti-FLAG, and AlexaFlour-647 conjugated anti-V5 391 
antibodies, then analyzed by flow cytometry. Data in d is the average of three independent 392 
experiments performed in technical triplicate, error bars are shown as SEM. e, radioligand 393 
competition binding of AT118i4h32 variants or the small molecule antagonist losartan and 394 
[3H]-olmesartan to AT1R in cell membranes. Like WT AT118i4h32, the G26D, T57I, and 395 
G26D+T57 variants compete with olmesartan for binding to the AT1R. Data in e is the 396 
average of three independent experiments performed in technical triplicate, error bars are 397 
shown as SEM. f, suppression of Gq-mediated inositol monophosphate production by 398 
AT118i4 in response to AngII stimulation. HEK293 suspension cells expressing FLAG-399 
AT1R were treated with 5 μM AT118i4h32 or no nanobody prior to AngII stimulation. Data 400 
in d is the average of three independent experiments performed in technical triplicate, 401 
error bars are shown as SEM. Ki values are reported in Supplementary Table 3.  402 

 403 

We analyzed the sequence of AT118i4h32 and selected twelve single amino acid 404 

substitutions scattered throughout each CDR predicted to reduce polyreactivity based on 405 

the one-hot logistic regression model. AT118i4h32 variants were displayed on the surface 406 

of yeast and all showed reduced levels of PSR binding (Figure 6C). Neutralizing the highly 407 

basic patch composed of R3035, R3136, and R99108 on the surface of AT118i4h32 (Figure 408 

6A) with R31D36 and R99D108 substitutions substantially reduces AT118i4h32 409 

polyreactivity. Notably, introduction of an additional arginine residue with the Y29R30 410 

substitution, which introduces a RRR sequence motif into CDR1, reduces polyreactivity, 411 

further demonstrating that arginine’s contribution to polyreactivity is highly position 412 

dependent.  413 

To assess the effects of these substitutions on antigen binding, AT118i4h32 414 

variants were recombinantly expressed in E. coli and purified to evaluate AT1R binding 415 
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by flow cytometry (Figure 6D). Two AT118i4h32 variants, G26D27 and T57I65, retained at 416 

least 80% of wild-type binding levels to the AT1R. Combination of the G26D27 and T57I65 417 

substitutions retained high levels of binding to the AT1R and yielded a clone with a modest 418 

decrease in PSR binding compared to the G26D27 variant (Figure 6C), bringing the overall 419 

level of polyreactivity close to that of the clinically approved nanobody drug 420 

Cablivi/caplacizumab33 (Supplementary Figure 5A). Additionally, the G26D27, T57I65 421 

variant has reduced polyreactivity compared to the wild-type nanobody as measured by 422 

ELISA assay (Supplementary Figure 5B-G). AT118i4h32 variants containing G26D27 and 423 

T57I65 maintain the ability to act as receptor antagonists, displacing small molecule 424 

orthosteric antagonists (Figure 6E) and suppressing receptor signaling upon angiotensin 425 

II (AngII) stimulation (Figure 6F).  426 

To investigate how the G26D27 T57I65 substitutions alter AT118i4h32’s structure 427 

and contribute to reduce polyreactivity, we crystallized AT118i4h32 G26D27 T57I65 and 428 

solved the structure at 1.6 Å resolution (Figure 6B, Supplementary Table 3). The T57I65 429 

substitution is located at the end of CDR2. I5765 forms more favorable hydrophobic 430 

interactions with neighboring I5156 and I65 side chains than T5765. In the case of 431 

AT118i4h32, maintaining this hydrophobic interaction is essential for antigen recognition, 432 

as the T57D65 substitution diminished AT1R binding two-fold (Figure 6D). While the T57I65 433 

mildly decreases polyreactivity, AT118i4h32 variants containing the T57I65 substitutions 434 

had slightly decreased thermal stability (Supplementary Table 4), indicating that changes 435 

in reduced polyreactivity are not necessarily correlated with thermal stability. 436 

Residue D2627, found at the N-terminus of helical CDR1, forms a hydrogen bond 437 

with the side chain of framework residue N76 in all eight copies of the nanobody in the 438 
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crystal structure’s asymmetric unit (Figure 6B). This hydrogen bond rigidifies the CDR1 439 

position and may reduce the flexibility of the nanobody’s CDR regions. Additionally, the 440 

G26D substitution improves AT118i4h32’s stability; we observed a five-fold increase in 441 

AT118i4h32 G26D27 yield from E. coli and a two degree increase in melting temperature 442 

of the G26D27 variant (Supplementary Table 4) over wild-type levels. Corresponding 443 

G26D27 substitutions reduced the polyreactivity of nanobodies D06 and E10’. Despite 444 

occurring in just 0.05% of sequences from the naïve repertoire of seven llamas34 (1.12 445 

million unique nanobody sequences), the D27 substitution may be both beneficial and 446 

tolerated in many sequence contexts and may broadly reduce polyreactivity by reducing 447 

the conformational flexibility of the CDR regions35.  448 

 449 

Expansion of computational method 450 

Upon examination of corresponding substituted positions in D06, E10’, and 451 

AT118i4h32 we observe some substitutions reduce polyreactivity in all clones, such as 452 

G26D27, whereas other mutations dramatically reduced polyreactivity of some 453 

nanobodies (i.e., E10’ A97W105 and AT118i4h32 A96W105) while having little to no effect 454 

in another clone (i.e., D06 N96W105). This suggests that position dependency is critical 455 

for polyreactivity, which may be more accurately captured with a larger data set. 456 

Therefore, we sought to improve our in silico method with expanded sequencing data. 457 

Through additional rounds of FACS selection, we collected 1,221,800 unique low 458 

polyreactivity clones and 1,058,842 unique high polyreactivity clones. We trained our 459 

suite of supervised classification models on this extended dataset and included analysis 460 
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of an extra position at the end of CDR2, which has some variability in the synthetic 461 

nanobody library, but was not included in the initial analysis.  462 

To test classification accuracy, we clustered the sequences into 10 clusters using 463 

a k-means algorithm for train/test splits, and again limited our training dataset to 464 

sequences with at least 10 mutations as compared to any sequence in the test sets. We 465 

achieved comparable classification AUCs to the logistic regression and RNN models 466 

trained on the original FACS sorts (one-hot logistic regression: 0.83, 3-mer logistic 467 

regression: 0.83, RNN: 0.84) (Supplementary Figure 6A). The convolutional neural 468 

network model received a significant performance boost (CNN: 0.83 compared to 469 

previously 0.78 AUC) (Supplementary Figure 6A). For the higher throughput dataset, we 470 

see that the models that capture more complexities in sequences, such as the CNN and 471 

RNN, have higher accuracies, suggesting that there are meaningful dependencies in 472 

nanobody sequences that contribute to polyreactivity beyond site-specific amino acid 473 

contributions and/or 3-mer motifs and would allow us to make more accurate predictions 474 

to reduce polyreactivity for individual sequences. Furthermore, for each of these models 475 

we see an improved correlation (Spearman R) of polyreactivity scores with the index set 476 

measurements (one-hot logistic regression: 0.87, 3-mer logistic regression: 0.86, CNN: 477 

0.88, RNN: 0.88) (Supplementary Figure 6B-E). The majority of substitutions applied to 478 

clones D06, E10’, and AT118i4h32 are still predicted to decrease polyreactivity across 479 

the four models trained on the deeper FACS sequencing experiments (37, 37, 41, and 23 480 

out of 45 mutations for one-hot logistic regression, k-mer logistic regression, CNN, and 481 

RNN respectively; for the RNN in particular, most mutations that were not predicted to 482 
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decrease polyreactivity had very small changes in predicted signal, Supplementary Table 483 

6). 484 

As a resource to the field, we provide open-access use of our polyreactivity 485 

prediction software on our webpage (http://18.224.60.30:3000/). The webserver allows 486 

users to input a nanobody sequence(s) in FASTA format and outputs the aligned 487 

nanobody sequence with IMGT numbering using ANARCI30, along with biochemical 488 

properties of the sequence, including isoelectric point, hydrophobicity, CDR definitions 489 

(IMGT), CDR lengths, and computational predictions of polyreactivity scores using the 490 

one-hot logistic regression models that were trained for the design of rescue mutations. 491 

 492 

DISCUSSION 493 

Previous work has identified some biophysical characteristics of polyreactivity, but 494 

these studies have generally been performed on relatively small sets of antibody 495 

sequences without an explicit attempt to improve polyreactivity properties. Here, we 496 

designed and conducted high-throughput experiments to capture diverse clones that were 497 

not influenced by other selection pressures, facilitating an unbiased analysis of nanobody 498 

polyreactivity. Starting with a large naïve synthetic library mimicking the llama 499 

immunological repertoire, we isolated large pools of high and low polyreactivity nanobody 500 

clones based upon binding to the mixed-protein PSR reagent. Our models are over 80% 501 

accurate in discriminating between clones with high and low polyreactivity (Figure 3B), 502 

rank levels of polyreactivity with high fidelity (Figure 4), and reliably identify amino acid 503 

substitutions that reduce polyreactivity (Figures 5 and 6C).  504 
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Since our models were built upon experiments that were intentionally designed to 505 

interrogate sequence contributions to polyreactivity, they are highly accurate at 506 

measuring polyreactivity. In accordance with previous studies, our deep dive results 507 

suggest that arginine generally promotes nanobody polyreactivity while glutamate and 508 

asparate usually decrease polyreactivity. However, we find amino acid contributions to 509 

polyreactivity are highly position dependent and more nuanced than broad 510 

generalizations suggest. This finding is in agreement with a recent independent study that 511 

analyzed polyreactivity of a subset of antibodies17. Furthermore, our computational 512 

models’ ability to accurately quantify polyreactivity from sequence identity constitutes a 513 

large step forward as we can diagnose and engineer away polyreactivity of existing 514 

clones. More complex models including the CNN and RNN models also allowed us to 515 

evaluate dependencies of amino acids in different locations in nanobodies to 516 

polyreactivity. We find such dependencies contribute to polyreactivity indicating that both 517 

local and global characteristics of nanobodies influence their degree of polyreactivity.  518 

We provide to the community an easy-to-use webserver that encapsulates our 519 

computational methods. These methods can guide antibody discovery campaigns at 520 

many points in the discovery pipeline. For instance, our software can be used to 521 

prospectively predict amino acid substitutions that will reduce polyreactivity of a single 522 

clone such as AT118i4h32. Moreover, the polyreactivity of a list of antigen binders can 523 

be ranked for clone prioritization during selection campaigns. We found that substitutions 524 

in each of the CDR regions of D06, E10’, and AT118 reduce polyreactivity, suggesting 525 

that each CDR region contributes to polyreactivity. Therefore, if a certain CDR region is 526 

critical for antigen recognition, substitutions in alternative CDR regions can potentially 527 
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compensate in reducing polyreactivity. In addition, our success in reducing polyreactivity 528 

of AT118i4h32, where the humanized framework region differs from clones in the training 529 

set, indicates that our methods are applicable to nanobodies from a range of sources. 530 

Although outside the scope of this manuscript, similar approaches can be applied to 531 

conventional antibodies, adding in the three light-chain CDRs and germline gene choice 532 

as additional factors for polyreactivity prediction and optimization. 533 

 534 

Statistical Methods 535 

Prism software (Graphpad) was used to analyze data and perform error calculations. Data 536 

are expressed as arithmetic / geometric mean ± SEM or arithmetic / geometric mean ± 537 

SD. 538 

 539 

Data Code Availability Statement 540 

The code for scoring new sequences for polyreactivity, designing rescue mutations, 541 

training polyreactivity models, and calculating biochemical properties of a sequence can 542 

be found on github: https://github.com/debbiemarkslab/nanobody-polyreactivity, and the 543 

webserver is available here: (http://18.224.60.30:3000/). Coordinates and structure 544 

factors for the AT118i4h32 structures are deposited in the Protein Data Bank under 545 

accession codes 7T83 and 7T84.  546 
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