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Abstract The study of pattern formation has benefited from reverse-engineering gene

regulatory network (GRN) structure from spatio-temporal quantitative gene expression data.

Traditional approaches omit tissue morphogenesis, hence focusing on systems where the

timescales of pattern formation and morphogenesis can be separated. In such systems, pattern

forms as an emergent property of the underlying GRN. This is not the case in many animal

patterning systems, where patterning and morphogenesis are simultaneous. To address pattern

formation in these systems we need to adapt our methodologies to explicitly accommodate cell

movements and tissue shape changes. In this work we present a novel framework to

reverse-engineer GRNs underlying pattern formation in tissues experiencing morphogenetic

changes and cell rearrangements. By combination of quantitative data from live and fixed

embryos we approximate gene expression trajectories (AGETs) in single cells and use a subset to

reverse-engineer candidate GRNs using a Markov Chain Monte Carlo approach. GRN fit is

assessed by simulating on cell tracks (live-modelling) and comparing the output to quantitative

data-sets. This framework outputs candidate GRNs that recapitulate pattern formation at the

level of the tissue and the single cell. To our knowledge, this inference methodology is the first to

integrate cell movements and gene expression data, making it possible to reverse-engineer GRNs

patterning tissues undergoing morphogenetic changes.

Introduction
Embryonic pattern formation underlies much of the diversity of form observed in nature. As such,

one of the main goals in developmental biology is to understand how spatio-temporal molecular

patterns emerge in developing embryos, are maintained and change over the course of evolu-

tion. Over the past three decades, the interest of the field has focused on elucidating the function

and dynamics of the gene regulatory networks (GRNs) underlying these processes. GRNs can be

formulated mathematically as non-linear systems of coupled differential equations whose param-

eters can be inferred from quantitative gene expression data: a methodology known as reverse-

engineering Reinitz and Sharp (1996); Liang et al. (1998); D’haeseleer et al. (2000); Gardner and

Faith (2005); Rockman (2008); He et al. (2009); Jaeger and Monk (2010); Crombach et al. (2012).
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Reverse-engineering has been successfully applied to a myriad of systems, from the Drosophila

blastoderm to the vertebrate neural tube Verd et al. (2017, 2018); Manu et al. (2009); Balaskas

et al. (2012), generating a wealth of knowledge on the mechanisms by which GRNs read out mor-

phogen gradients Verd et al. (2019); Jaeger et al. (2004); Balaskas et al. (2012); Cohen et al. (2015);

Kicheva et al. (2014); El-Sherif et al. (2014), scale patternsWu et al. (2015), control the timing of dif-

ferentiation Averbukh et al. (2018); Schröter et al. (2012); Rayon et al. (2020), synchronise cellular

fates Uriu et al. (2010) and evolve pattern formation Crombach et al. (2016).

Much of what we know about pattern formation has been learnt from reverse-engineering

GRN structure from spatio-temporal quantitative data in systems where the timescales of pattern

formation and morphogenesis are different and can therefore be separated. In such systems,

spatio-temporal gene expression profiles are typically obtained by measuring gene expression lev-

els across the tissue of interest in fixed stained samples, and interpolating betweenmeasurements

at different time points Crombach et al. (2012). The underlying and seldom stated assumption, is

that the patterning dynamics are much faster than the cell movements in the developing tissue,

and that therefore cellmovements can be ignored during the timescales atwhich the pattern forms.

This is true in many systems and processes, such segmentation patterning in early Drosophila em-

bryogenesis. When this is indeed the case, pattern formation can be considered an emergent prop-

erty of GRN dynamics alone Kicheva et al. (2012) and much insight can be drawn from analysing

reverse-engineered GRNs. However, it should not be regarded a property of developmental pat-

terning systems in general.

In systems where tissue patterning and tissuemorphogenesis are coupled and occurring simul-

taneously, GRNs alone do not generate the resulting patterns and can therefore not fully explain

them. This has been recently highlighted by work in organoids, where shape, size and cell type dis-

tribution are difficult to control as a result of altered patterning due to abnormal morphogeneses

in unconstrained tissue geometries Huch et al. (2017). To understand developmental pattern for-

mation we have to address how morphogenesis and GRNs together control fate specification and

embryonic organisation. Importantly, to be able to do this, we have to adapt our current reverse-

engineering methodologies to explicitly accommodate cell movements and tissue shape changes.

In this work we present an inference methodology that we have developed to reverse-engineer

GRNs underlying pattern formation in tissues that are experiencing morphogenetic changes and

cell rearrangements. As a case studywe focus on T-box gene patterning in the developing zebrafish

presomitic mesoderm (PSM) (Fig.1A). T-box genes coordinate fate specification along the PSM as

cells move out of the tailbud and make their way towards the somites Fulton et al. (2022). Cell

movements in the PSM can be live-imaged and followed in 3D Thomson et al. (2021). By the time

they reach a somite, cells in the PSM will have undergone a stereotypical progression of T-box

gene expression: Tbxta and Tbx16 in the tailbud, followed by Tbx16 in the posterior PSM and

Tbx6 in the anterior PSM (Fig.1A&D). The Tbx16/Tbx6 boundary roughly marks the cells’ transition

out of the tailbud and in zebrafish it is thought to correlate with marked changes in cell behaviours

where extensive cell mixing in the tailbud gives way to reduced, almost nonexistent, cell mixing and

neighbourhood cohesion in the PSMMongera et al. (2018). Therefore, while all cells will eventually

have undergone the same gene expression progression, their expression dynamics will differ as

cells spend variable amounts of time in the tailbud Fulton et al. (2022). Despite this, a tissue-

level pattern forms which scales with PSM length during the course of posterior development and

somitogenesis Fulton et al. (2022). T-box pattern formation in the developing zebrafish PSM is

therefore a good example of a developmental process where the molecular pattern across the

tissue is an emergent property of the GRN and the cell movements and tissue shape changes

involved in the tissue’s morphogenesis.

The reverse-engineering methodology presented in this paper accommodates cell movements

within the developing tissue, hence taking tissuemorphogenesis explicitly into accountwhile reverse-

engineering GRNs. To be able to do so, this methodology requires a combination of quantitative

data: cell tracking data obtained from live-imaging the developing tissue and three-dimensional
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quantitative gene expression of the genes and signalling pathways of interest over developmental

time. We project the 3D gene expression data onto the cell tracks to approximate gene expression

trajectories (AGETs) in single cells, hence approximating the gene expression dynamics in single

cells. Using a subset of AGETs from ten cells randomly spaced within the tissue we were able to

reverse-engineer candidate GRNs using a Markov Chain Monte Carlo (MCMC) approach. The fit of

the resulting reverse-engineered GRNs is assessed by simulating them in each cell in the tracks

using initial and boundary conditions extracted directly from the gene expression data, a method-

ology that we refer to as "live-modelling". The resulting well-fitting GRNs clustered into 22 clusters,

generating candidate GRNs that can be further investigated and challenged using experimental

work Fulton et al. (2022).

To our knowledge, this inferencemethodology is the first to integrate cell movements and gene

expression data, making it possible to reverse-engineer GRNs patterning tissues undergoing mor-

phogenetic changes. We hope that the reverse-engineering toolbox provided by our work will con-

tribute to broaden the types of patterning systems that can be studied quantitatively and mecha-

nistically, increasing our understanding of how pattern formation in development and evolution.

Results and Discussion

Approximating gene expression dynamics on single cell tracks: AGETs

The ideal data to reverse-engineer gene regulatory networks are temporally accurate quantifica-

tions of the gene expression dynamics at the single cell level as the tissue develops. Unfortunately,

current state of the art in live gene expression reporter technology, while very advanced, cannot

follow three genes and two signalling pathways simultaneously in space and time, while also ensur-

ing that the dynamics of all reporters faithfully recapitulate the expression dynamics of the genes

of interest. For this reason, it has been necessary to develop an alternative approach based on

approximating the single cell gene expression trajectories in the developing PSM, which we will

from now on refer to as AGETs (approximated gene expression trajectories).

In brief, AGETs are obtained by projecting spatial quantifications of gene expression in the PSM

obtained using HCRs and antibody stains, onto each time frame of a time lapse of the developing

PSM at approximately the same stage, and then reading out the projected expression level for

each gene and signal, in every cell in the time lapse at every time point. The output result is an

approximated gene expression trajectory for every cell in the time lapse, which can now be used

to reverse-engineer gene regulatory networks which, when simulated on the tracks recapitulate

T-box pattern formation on the developing PSM.

Data requirements and preparation

Two kinds of data are required to produce AGETs: cell tracks obtained from live-imaging the devel-

oping tissue of interest and quantitative spatial gene expression data at each developmental stage

covered by the tracks.

In this case study, cell tracks were obtained by live-imaging a fluorescently labelled developing

zebrafish tailbud between the 22nd and 25th somite stages using a two-photon microscope (see

Thomson et al. (2021) and Materials and Methods). The raw data obtained consists of a series of

point clouds representing the position of single cells in 3D space in 61 consecutive frames, taken at

twominute intervals. The raw datawere processed using a tracking algorithm in the image analysis

software Imaris to obtain the position of single cells over time, and selected tracks were validated

manually. The resulting data are a collection of cell tracks that describe the how individual cells

move as the zebrafish tailbud and PSM develops. A cell track provides spatial information over

time but is devoid of any information regarding gene expression levels in each cell.
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Gene expression levels were approximated from fixed tailbud samples stained for the genes

and signals of interest using HCR Choi et al. (2018) for the T-box gene products and antibody stains

for the signals (see Materials and Methods). If gene expression patterns don’t scale with the devel-

opment of the tissue, stage-specific stains should be used separately. Otherwise, if the pattern of

interest scales with tissue growth over developmental time - as is the case in the developing PSM

- images at different stages can be quantified and pooled together. T-box genes - Tbxta, Tbx16

and Tbx6 - were simultaneously stained for on zebrafish tailbuds that had been fixed between the

23rd and 25th somite stages (SS) (Fig.1A). Of a total of 13 images, ten were processed and used

for fitting (2x 23SS, 3x 24SS and 5x 25SS). Three separate antibody stained samples were used to

quantify signals Wnt and FGF. In addition to the gene expression, tailbuds were stained with DAPI

to be able to locate the cells. Only one side of the zebrafish PSM was used.

A processing pipeline (Fig.1A) was developed to quantify the imaging data, again using the

image anaysis software Imaris (Fig.1). The first step in the pipeline consists of isolating the PSM

from the surrounding tissues in the tailbud, including the spinal cord and the notochord. This was

achieved by drawing a surface around the PSM using morphological and gene expression land-

marks as a guide to identify different tissue boundaries (Fig.1B). Next, in order to consider only

gene expression levels inside of the isolated PSM, all gene expression outside of the defined sur-

face was set to zero (Fig.1C). Background noise in the data was reduced by setting lower-bound

thresholds for every gene. These thresholds were chosen such that Tbxta and Tbx16 would ap-

pear restricted to the posterior end of the PSM (Fig.1Di, Dii, Ei and Eii) with their expression in

the anterior PSM reduced to zero. Similarly, thresholds were set for Tbx6 expression such as to

eliminate any background expression in the posterior PSM (Fig.1Diii and Eiii). Each gene is then

normalized; normalization had to be robust to be able to deal with expression levels that could

be very noisy in places. A Savitzky-Golay filter was applied to each gene to smoothen the signal

(Fig.1D) and the smoothened maximum for each gene was set to one. Finally, spots were created

in each detected nucleus from which a point cloud consisting of the 3D spatial coordinates and

associated Tbxta, Tbx16 and Tbx6 levels were extracted (Fig.1E). The same pipeline was used to

obtain the levels of signals Wnt and FGF in single cells.
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Figure 1. Gene expression data preparation pipeline (A) Typical HCR image of a 22 somite stage tailbud

stained for Tbxta (red), Tbx16 (yellow), Tbx6 (blue) and DAPI (gray). Anterior to the right, posterior to the left,

dorsal up and ventral down from here on. (B) Surface masking the PSM based on T-box expression and

morphological landmarks. (C) Gene expression and nuclear marker in the isolated PSM (as before Tbxta in

red, Tbx16 in yellow, Tbx6 in blue and DAPI in gray). (D) Normalising gene expression levels: Tbxta and Tbx16

levels in the anterior PSM are normalised to zero while posterior PSM levels of Tbx6 are normalised to zero,

to eliminate background expression. A Gaussian filter has been then applied to each T-box gene to smoothen

gene expression across the PSM. (E) Nuclei are segmented using the DAPI channel creating spots in 3D space.

Spots are coloured according to the median intensity of each gene (i) Tbxta, ii) Tbx16 and iii) Tbx6 ), where

purple denotes zero expression and red, highest expression. The spatial coordinates of the spots together

with the median intensities were exported and used to generate the AGETs.

AGET construction

AGETs are constructed to approximate the gene expression dynamics of single cells as they move

and undergo complex re-arrangements during tissue morphogenesis. This requires live-imaging

data, which provides information of the cell’s spatial trajectories over time, to be combined with

quantitative gene expression data at the single cell level. To achieve this, we begin by projecting

the pre-processed HCR data onto the tracks, to in this way obtain a read-out of the gene expression

and signalling levels that each cell experiences as it moves.

In order to project the extracted quantitative gene expression data onto the cell tracks, a first

step is to align the point clouds representing the positions of the cells in 3D space processed from

the HCRs (Fig.1E) with the point clouds for each of the 61 time frames in the time lapse (Fig.2A). We

use point-to-plane ICP (iterative closest point) to perform this alignment (??), which in brief, is an

iterative algorithm that seeks to map two point clouds onto each other by recursively minimising

the distance between them (see Materials and Methods, and Fig.2). Once the point clouds have

been aligned, equivalent regions of the different PSMs will overlap in space (Fig.2A) making it possi-

ble to map the quantitative gene expression from the processed HCRs onto the cells (represented

by points) at each given time frame in the time lapse (Fig.2B and Algorithm1).

To approximate the gene expression and signalling values in a cell from the time lapse, we first
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find its five closest neighbouring cells from the processed HCR data. Since all PSMs have been

aligned as point clouds, we now have a point cloud representing cells from both the PSM in the

time lapse and those from the HCRs. The median gene expression and signalling values are calcu-

lated from the expression and signalling values of the five nearest neighbouring cells and assigned

to the cell from the time lapse (Fig.2B and see Algorithm 1 for a more detailed description of the

process). Fig.2Bi shows the result of mapping T-box gene expression data from ten pre-processed

HCR images onto the first frame of the tracking data while Fig.2Bii shows the quantified gene ex-

pression levels for all cells along the posterior to anterior axis. We repeat this procedure for each

of the 61 frames in the time lapse resulting in an approximated gene expression trajectory (AGET)

for every cell in the timelapse (Fig.2C).

Figure 2. Calculating AGETs. (A) In orange is the processed HCR image showing the positions of the cells in

the PSM (source point cloud) and in blue are the positions of the cells taken from the first frame of the

tracking data (target point cloud). Using ICP, all the source point clouds obtained from the HCR images are

aligned with the target point cloud obtained from each frame (61 in total) of the tracking data. This is

illustrated by the overlapping orange, blue and black point clouds. (B) i. T-box gene expression from ten

pre-processed HCR images, projected onto the first frame of the tracking data. Tbxta in red, Tbx16 in yellow

and Tbx6 in blue. ii. Maximum projection of the data in i. quantified along the posterior to anterior axis. (C) i.

For illustration purposes, three AGETs representing approximated T-box gene and signaling dynamics in

three single cells at different position in the developing PSM (shown in C.ii). X-axis represents relative gene

expression levels and y-axis reflects the time frame in the time lapse (from 1 to 61). Tbxta in red, Tbx16 in

yellow and Tbx6 in blue, Wnt in pink, FGF in green. (C) ii. Ten cell tracks spanning the length of the PSM,

whose AGETs were subsequently used for the GRN inference process. The color gradedness indicates

position over time, where the initial position of the cell is show in purple and the final position is shown in

yellow. The ten cells have been chosen semi-randomly. The outline illustrates the shape of the PSM. AGETs

associated with cells 4, 5 and 6 are shown in panel C.i.
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Using AGETs to reverse-engineer gene regulatory networks that recapitulate pat-

tern formation on a developing tissue

The motivation behind developing a methodology to construct AGETs is to be able to use them to

reverse-engineer candidate gene regulatory networks that might be underlying a given patterning

process when dynamic measurements or reliable approximations of gene expression at the single

cell level are unavailable. In the previous section we have described how AGETs are constructed by

combining tracking data with quantitative gene expression data. In this section, we present how

AGETs can be used to reverse-engineer GRNs.

GRN models are often formulated as systems of coupled differential equations where state

variables describe the concentrations of the genes of interest and parameters, the interactions be-

tween genes, as well as other factors such as production and degradation rates. In the case of the

T-box genes, there are three state variables representing Tbxta, Tbx16 and Tbx6 levels and a total

of 24 parameters to be fit (see Materials and Methods). Dynamic data are required to constrain

and fit such models, and in this case these will be provided by the AGETs calculated previously.

AGETs will therefore be used as the target expression dynamics for the fitting procedure instead

of directly measured gene expression dynamics. As with other fitting procedures, an optimal pa-

rameter set will be one that minimises the difference between the target and the simulated data.

We chose to adapt a Markov Chain Monte Carlo (MCMC) algorithm to use as our parameter sam-

pling method since MCMC has been extensively used and repeatedly validated for GRN inference

Ram and Chetty (2009). In addition, MCMC and has the advantage of providing an array of candi-

date networks by approximating the entire posterior distribution of all GRN parameters.

Using all 1903 available AGETs to fit our models would be ideal, as together they represent the

tissue scale patterning dynamics that we seek to recapitulate. However, this is currently computa-

tionally expensive and unfortunately, unfeasible. Instead, we chose to fit to an ensemble of only

ten AGETs that span the length of the PSM. These AGETs were selected semi-randomly, where a

randomly chosen set of ten AGETs would be visually inspected to ensure that they together rep-

resented cells across the length of the PSM, and would otherwise be discarded. In addition, we

only selected AGETs of maximal duration, namely those that corresponded to cells that had been

consecutively tracked for the entire duration of the time lapse (61 frames). The ten AGETs used

for reverse engineering and their approximate position in an idealised PSM is shown in Fig.2C.ii.

For this case study, we found that reverse-engineering using ten AGETs generated well-fitting can-

didate networks while avoiding over-fitting and optimising the computational time required (see

Materials and Methods).

MCMC inference outputs a collection of parameter sets or combinations (samples) that together

approximate the posterior distribution of the GRN parameters: for every parameter, we obtain a

probability distribution across its values, which provides information about the values that are

most likely to produce good fits. We first chose to explore the network corresponding to the pa-

rameter set with the overall highest posterior probability score, that is the maximum a posteriori

or MAP sample (Fig.3A). We simulated each of the ten AGETs used during the fitting procedure and

then proceeded to simulate all 1903 available AGETs, that is, we simulated on the tracks (which

we refer to as live-modelling). We qualitatively validate the quality of the inference by both com-

paring single AGETs with their simulations (Fig.3B), and by comparing the whole tissue-level gene

expression profiles over time (Fig.3C). We are especially interested in how well the simulations re-

capitulate the whole tissue patterns, as these result from simulating AGETs that had not been used

for model training.

We discard parameter sets that simulate clear pattern aberrations, and consider a good fit

when the position of gene expression domain intersections does not differ by more than the

inter-embryonic biological boundary range (<10% A-P position) in the simulated versus the approx-

imated patterns (Fig.3C). While quantitative measures of the goodness of fit can be easily defined,
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such as comparing the log-likelihood between parameter sets or calculating least-squares mea-

sures, these don’t necessarily reflect whether aspects of the pattern that are of notable biological

importance are being captured, and were therefore not favoured in this part of the analysis.

Fig.3B.i compares four of the ten AGETs (relative positions shown in Fig.3B.ii) (solid lines) used

for model fitting with the resulting simulations (dotted lines). The simulated expression recapit-

ulates well the target expression for the AGETs. The model was formulated as a deterministic

systemwithout added stochasticity which explains the smoothness of the simulated curves, which

nonetheless can be seen to recapitulate AGET gene expression levels and trends. In other sys-

tems, fits might be improved by setting smaller standard deviations. Given that the AGETs had

been obtained from a small data set and are noisy, we avoided over-fitting and were satisfied with

these fits. Fig.3C shows simulated T-box expression for each cell along the normalized posterior

to anterior axis of the PSM (dots). The simulated data have been fit at each separate time point

by curves which are then normalised (dotted curves) and compared to the curves previously fit in

the same way to all AGETs (shown as solid curves). A comparison between AGETs and simulations

is shown at three different time points in Fig.3C (simulation outputs at 33%, 66% and 100% total

time respectively). Importantly, the overall position of the domains is recapitulated and the the

position of domain intersections is within the preset biological range of 10% A-P position. The full

simulation is shown in Movie 1.

Notably, there is a discrepancy between the AGETs and the simulated anterior Tbx6 expression.

The formulatedGRN is unrealistic in this region, where additional factors secreted from the somites

are known to be down-regulating this transcription factor Kawamura et al. (2005). For this reason,

it is reassuring and expected that the model doesn’t recapitulate the pattern well in this region.

In addition, the model predicts that over time, a small percentage of posterior cells will express

low levels of Tbx6. Although unexpected, there is evidence suggesting that this is indeed the case

Fulton et al. (2022). Such low and sparse anterior expression of Tbx6 would have been lost during

the smoothing step in our data preparation pipeline, which is unable of capturing patterns of such

fine resolution as it stands. It is encouraging that candidate GRNs consistently recapitulate this

unexpected feature of the biology and might suggest that the three genes considered are indeed

causally responsible for most of the biological pattern.

In summary, we have been able to infer the parameters of candidate GRNs which recapitulate

the global pattern of T-box expression in the zebrafish PSM by fitting to ten spaced and pseudo-

randomly chosen AGETs.
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Figure 3. Performance and ût of the GRN corresponding to the maximum a posteriori (MAP)

parameters. (A) GRN topology with MAP parameters obtained from the MCMC inference. (B)i. Simulated

data (dotted curves) for four of the ten AGETs (solid curves) used for model fitting (B)ii. Illustrative spatial

location in the PSM of the four AGETs shown in B.i. (C) Snapshots showing simulated T-box gene expression

along the normalized posterior (0) to anterior (1) axis of the PSM (dots) at 33%, 66% and 100% of total

simulation time respectively. Dotted curves represent the simulated data once they have been fit by smooth

curves at each separate time point and normalised. Solid curves represent all AGETs fit and normalised in the

same way

Parameter determinability and model clustering

MCMC is a parameter sampling algorithm, and as such it will return an approximated posterior dis-

tribution for the GRN parameters instead of a single estimate. This provides a range of candidate

networks that can be subsequently analysed and challenged in combination with experimental ap-

proaches. Such parameter distributions also provide valuable information regarding which model

parameters — and therefore genetic interactions — are tightly constrained by the data, and which

aren’t and therefore appearing to take on a broad range of values across the inferred networks.

Such information can lead to interesting hypotheses regarding which aspects of the pattern selec-

tion might be most strongly working on.

While in the previous section we analysed the parameter set with the maximal posterior proba-

bility (MAP) to asses the goodness of fit of one of the candidate GRNs, in this section we assess how

well the posterior distribution has been approximated across candidate GRNs (Fig.4)). To do this,
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we selected 1000 parameter sets at random from the posterior distribution, representing 1000 dis-

tinct candidate networks. We then proceeded to cluster them according to the similarity of their

parameter values using agglomerative hierarchical clustering (see Materials and Methods). In or-

der to be able to choose a representative to explore further for each cluster, we set the condition

that the parameter distributions within clusters should be uni-modal. After imposing this condi-

tion, the algorithm returned 30 clusters and the network with mean parameter values was picked

as the representative for each cluster. We simulated the resulting 30 networks and compared them

with AGETs 1-10 used for fitting. The simulations were visually inspected and networks returning

aberrant patterns were discarded along with all the networks in the cluster that they belonged to.

This process left a total of 22 clusters of well-fitting GRNs (Fig.4).

Fig.4 shows the topology of the respresentative GRNs in each of the resulting 22 clusters. By

topology we mean whether parameters are positive (blue) or negative (negative). This provides

only a superficial illustration of the clusters which is useful for visualisation purposes only, leaving

out much of the complexity within these classes since the clustering was done on the quantitative

value of the parameters. For this reason too, it might appear that representative networks of dif-

ferent clusters are the same, however although that might be the case qualitatively (taking only

into account parameter signs), it isn’t the case quantitatively (networks 26, 22, 13, 12, 10, 2 and

6). 10 out of 24 parameters were set as positive in the priors (Fig.4, round blue circles; see Materi-

als and Methods for justification), the remaining 14 could adopt either positive or negative values.

These correspond to parameters that represent the interaction strengths between T-box genes

and from Wnt and FGF to the T-box genes. The global probability of an activation (positive param-

eter) is shown above each corresponding column in Fig.4. Generally, for each parameter there is

a clear preference across all clusters, suggesting a degree of constraint in the determinability of

parameters. We also recorded the in-sample log-likelihood of each network as a measure of how

well these networks fit the data (Fig.4, right). Given how close these values are, we want to em-

phasise at this point that they should all be treated as likely candidates and that further biological

knowledge and experiments will be required to discriminate between them Fulton et al. (2022).

Figure 4. GRN clusters. The topologies of the mean networks are shown for the 22 well-fitting clusters

recovered by the fitting. Rows correspond to representative networks from each cluster, columns represent

individual GRN parameters. Quantitative parameters are reduced to whether they are positive or negative for

illustration purposes. This can give the impression that some networks and clusters are the same, when in

fact they are quantitatively distinct. The percentage above a given parameter indicates the probability that

said parameter is positive across clusters. Parameters marked with a blue circle were defined as positive by

the prior. In-sample log-likelihood for each network is provided as a measure of goodness of fit.

Conclusion
Earlier reverse-engineering frameworks have been unable to accommodate the role of cell rear-

rangements and tissue shape changes in the formation of developmental patterns. This limitation

has heavily biased quantitative studies of pattern formation towards processes in systems where
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the timing of pattern formation and morphogenesis can be separated. Unfortunately, the vast

majority of patterning processes in animal development do not meet this criterion and in conse-

quence, are largely missing from the literature on pattern formation. Furthermore, as a field, most

of our collective knowledge and understanding of the generation and evolution of developmental

patterns has been constructed on the omission of any role thatmight be played by cell movements,

tissue shape changes and other morphogenetic mechanisms.

This need not be the case going forward. Thanks to recent advancements in live-imaging and

spatial gene expression quantification, the data required to adopt the reverse-engineering frame-

work presented in this paper is becoming available in an ever-increasing number of species span-

ning the range of animal phylogeny. This will make it possible to construct AGETs and infer GRNs

in a wider range of systems. Simulation and subsequent analysis of patterning processes that are

dependent on cell movements will increase our understanding of pattern formation and its evolu-

tion, and uncover previously buried general principles that weren’t accessible from the restricted

number of systems that we were studying. Furthermore, this methodology will find applications

well-beyond beyond the study of developmental evolution. In particular, we anticipate a warm re-

ception from fields such as bio-engineering, regenerative medicine and organoid biology, where

understanding how 3D cell cultures should be shaped and constrained as they grow to obtain the

desired final organisation is paramount and has proven not at all trivial.

Materials and Methods

Animal lines and husbandry

This research was regulated under the Animals (Scientific Procedures) Act 1986 Amendment Reg-

ulations 2012 following ethical review by the University of Cambridge Animal Welfare and Ethical

Review Body (AWERB). Embryos were obtained and raised in standard E3media at 28°C. Wild Type

lines are either Tupfel Long Fin (TL), AB or AB/TL. The Tg(7xTCF-Xla.Sia:GFP) reporter line Moro

et al. (2012) was provided by the Steven Wilson laboratory. Embryos were staged as in Kimmel

et al. (1995).

In Situ Hybridisation Chain Reaction (HCR)

Embryos were incubated until they reached the the desired developmental stage, then fixed in

4% PFA in DEPC treated PBS without calcium and magnesium, and stored at 4°C overnight. Once

fixed, embryos were stained using HCR version 3 following the standard zebrafish protocol found

in Choi et al. (2018). Probes, fluorescent hairpins and buffers were all purchased from Molecular

Instruments. After staining, samples were stained with DAPI and mounted using 80% glycerol.

Immunohistochemistry

Embryos were incubated until they reached the desired developmental stage, then fixed in 4% PFA

in DEPC treated PBS without calcium and magnesium, and stored at 4°C overnight. The embryos

were subsequently blocked in 3% goat serum in 0.25% Triton, 1% DMSO, in PBS for one hour at

room temperature. Our read-out for FGF activity - Diphosphorylated ERK - was detected using the

primary antibody (M9692-200UL, Sigma) diluted 1 in 500 in 3% goat serum in 0.25% Triton, 1%

DMSO, in PBS. All samples were incubated at 4°C overnight and then washed in 0.25% Triton, 1%

DMSO, in PBS. Secondary Alexa 647nm conjugated antibodies were diluted 1 in 500 in 3% goat

serum in 0.25% Triton, 1% DMSO, 1X DAPI in PBS and applied overnight at 4°C.

Imaging and image analysis

Fixed HCR and immunostained samples were imaged with a Zeiss LSM700 inverted confocal at 12

bit, using either 20X or 40X magnification and an image resolution of 512x512 pixels. Nuclear seg-

mentation of whole stained embryonic tailbuds was performed using a tight mask applied around

the DAPI stain using Imaris (Bitplane) with a surface detail of 0.5µm. Positional values for each
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nucleus were exported as X, Y, Z coordinates relative to the posterior-most tip of the PSM where

X, Y, Z were equal to (0, 0, 0). The PSM was then segmented by hand by deleting nuclear surfaces

outside of the PSM, including notochord, spinal cord, anterior somites and ectoderm. PSM length

was normalised individually between 0 and 1 by division of the position in X by the maximum X

value measured in each embryo.

Single cell image analysis was conducted using Imaris (Bitplane) by generating loose surface

masks around the DAPI stain to capture the full nuclear region and a small region of cytoplasm.

Surface masks were then filtered to remove any masks where two cells joined together or small

surfaces caused by background noise, or fragmented apoptotic nuclei. The intensity sum of each

channel was measured and normalised by the area of the surface. Expression level was then nor-

malised between 0 and 1 using the maximum value measured for each gene, in each experiment.

Live imaging datasets of the developing PSM were created using a TriM Scope II Upright 2-

photon scanning fluorescence microscope equipped Insight DeepSee dual-line laser (tunable 710-

1300 nm fixed 1040 nm line) (see details in Thomson et al. (2021)). The developing embryo was

imaged with a 25X 1.05 NA water dipping objective. Embryos were positioned laterally in low melt-

ing agarose with the entire tail cut free to allow for normal development Hirsinger and Steventon

(2017). Tracks were generated automatically and validated manually using the Imaris imaging soft-

ware.

Aligning point clouds with ICP

Weused the Python libraryOpen3d Zhou et al. (2018) and the implementation of the point-to-plane

ICP (Iterative Closest Point) algorithm therein Rusinkiewicz and Levoy (2001) to perform the point

cloud alignment. ICP algorithms can be used to align two point clouds from an initial approximate

alignment. The aim is to find a transformation matrix, that rotates and moves the source point

cloud in a way that achieves an optimal alignment with the target point cloud. ICP algorithms work

by iterating two steps. First, for each point in the source point cloud, the algorithm will determine

the corresponding closest point in the target point cloud. Second, the algorithm will find the trans-

formation matrix that most optimally minimizes the distances between the corresponding points.

The result is a transformed source point cloud that is closely aligned with the target point cloud.

As a pre-processing step, the source and target point clouds have been re-scaled to have the same

A-P length. Since we are working with biological tissues, point clouds will not correspond exactly,

differing slightly in size and shape. This will impact the quality of the resulting alignment which had

to be visually assessed and validated. In this case study, three of the thirteen source images were

excluded from the analysis due to poor alignment.

AGET construction

While the main methodology used for constructing AGETs is covered in the results section, below

(Algorithm 1) we provide pseudo-code that describes the same process.
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Algorithm 1:Mapping T-box gene expression from HCR images onto tracking data

Result: Cell tracks with T-box gene expression information

Create target point clouds from tracking data T argeti, for every time point i * 1, ..., 61;

Create source point clouds with gene expression information from HCR images Sourcej , for

every source image j * 1, ..., 10;

for i in 1 ∶ 61 do

for j in 1 ∶ 10 do

Align Sourcej and T argeti with ICP registration;

for Every point Cellk in T argeti do

Find n=5 closest neighbours of Cellk in Sourcej ;

Calculate medianMijk of closest neighbours;

AssignMijk to Cellk;

end

end

for Every point Cellk in T argeti do

Calculate medianMik of mediansMijk from 10 source point clouds Source1∶10;

AssignMik to Cellk;

end

end

Extract all cell tracks with their assigned gene expression.

Mathematical model formulation

We used a dynamical systems formulation model the T-box gene regulatory network in the ze-

brafish PSM. The model’s aim is to recapitulate the dynamics of T-box gene expression in every

cell in the developing zebrafish PSM, generating the emergence of the tissue-level T-box gene ex-

pression pattern. We use a connectionist model formulation which has been extensively used and

validated to previously model other developmental patterning processes Mjolsness et al. (1991);

Jaeger et al. (2004); Crombach et al. (2012).

The mRNA concentrations encoded by the T-box genes tbxta, tbx16 and tbx6 are represented

by the state variables of the dynamical system. For each gene, the concentration of its associated

mRNA a at time t is given by ga(t). mRNA concentration over time is governed by the following

system of three coupled ordinary differential equations:

dga(t)

dt
= Ra�(ua) − �aga(t) (1)

whereRa and �a respectively represent the rates of mRNA production and decay. � is a sigmoid

regulation-expression function used to represent the cooperative, saturating, coarse-grained ki-

netics of transcriptional regulation and introduces non-linearities into the model that enable it to

exhibit complex dynamics:

�(ua) =
1

2

(

ua
√

(ua)
2 + 1

+ 1

)

, (2)

where

ua =
1

b*G

W bagb(t) +
1

s*S

Esags(t) + ℎa. (3)

G = {tbxta, tbx16, tbx6} refers to the set of T-box genes while S = {Wnt,FGF} represents the

set of external regulatory inputs provided by the Wnt and FGF signalling environments. The con-

centrations of the external regulators gs are provided directly from the AGETs into the simulation

and are not themselves being modelled. Changing Wnt and FGF concentrations over time renders
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the parameter term
1

s*S

Esags(t) time-dependent and therefore, themodel non-autonomous Collier

et al. (1996); Verd et al. (2014).

The inter-connectivity matrices W and E house the parameters representing the regulatory

interactions among the T-box genes, and fromWnt and FGF to the T-box genes, respectively. Matrix

elements wba and esa are the parameters representing the effect of regulator b or s on target gene

a. These can be positive (representing an activation from b or s onto a), negative (representing a

repression), or close to zero (no interaction). ℎa is a threshold parameter denoting the basal activity

of gene a, which acknowledges the possible presence of regulators absent from our model. To

perform the live-modelling simulations, the same model formulation is implemented in each cell

in the time-lapse. Initial concentrations of tbxta, tbx16 and tbx6 are read out directly from the first

time point of the AGET corresponding to that cell, and dynamic Wnt and FGF values are updated

from the same AGET.

Model ûtting: MCMC approach

Weused theMarkovChainMonteCarlo approach implemented in the Python emcee library Foreman-

Mackey et al. (2013) to approximate the posterior distribution of the GRN parameters. A property

of this implementation is the use of an ensemble of walkers, rather than a single one. We used

a uniform prior over a reasonably large range of values and fitted to the time scale used in the

simulation. The time scale was chosen such that 1 equals the time that the fastest cell takes to

travel through the whole PSM and enter a somite. We used a Gaussian distribution with fixed stan-

dard deviations per gene to model the differences between simulated gene expression and target

gene expression approximated by the AGETs, and in this way obtain a likelihood function. We ran

the MCMC with 70 walkers and for a total of 50’000 steps. Although the auto-correlation time was

high and the acceptance fraction with 4.1% was on the low side, the inferred parameters lead to

well-fitting simulated data. Model training took approximately three days using 20 cores.
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