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Abstract 24 

Over the past two decades, the study of resting-state functional magnetic resonance 25 

imaging has revealed that functional connectivity within and between networks are 26 

linked to cognitive states and pathologies. However, the white matter connections 27 

supporting connectivity remain only partially described. We developed a method to 28 

jointly map the white and grey matter contributing to each resting-state network. Using 29 

the Human Connectome Project, we generated an atlas of 30 resting-state networks. The 30 

method also allows highlighting the overlap between networks, which revealed that most 31 

of the brain’s white matter (89%) is shared between multiple networks, with 16% shared 32 

by at least 7 resting-state networks. These overlaps, especially the existence of regions 33 

shared by numerous networks, suggest that white matter lesions in these areas might 34 

strongly impact the correlations and the communication within resting-state networks. 35 

We provide an open-source software to explore the joint contribution of white and grey 36 

matter to RSNs and facilitate the study of the impact of white matter damage on RSNs. In 37 

a first clinical application of the software, we were able to link stroke patients and 38 

impacted resting-state networks, showing that their symptoms aligned well with the 39 

estimated functions of the networks.  40 

 41 

 42 

 43 

 44 

 45 

 46 

Introduction 47 

Since the early 1990s, functional magnetic resonance imaging (fMRI) peers inside the 48 

workings of the living human brain1. Task fMRI unveiled countless aspects of brain 49 

functioning in healthy participants and patients. However, paradigm-free resting-state 50 

fMRI (rs-fMRI) analysis shows a striking correspondence with tasks-related fMRI2 yet 51 

provides the most comprehensive depiction of the brain's functional organisation. Rs-52 

fMRI explores the awake brain at rest when no specific external task is required from the 53 
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participant. During rest, quasi-periodic low-frequency oscillations in the fMRI signal — 54 

blood-oxygen-level-dependent signal or BOLD — spontaneously occur3. Distant brain 55 

regions display synchronous BOLD signal oscillations, testifying to functional 56 

connectivity between regions and forming intrinsic functional networks, so-called 57 

resting-state networks (RSNs)4–6. RSNs are related to cognition2, and their alteration has 58 

been linked to various brain pathologies7–9, potentially opening up this field to a wide 59 

range of applications10. Hence, a resting-state acquisition is appealing and much less 60 

demanding than the active participant involvement in a task.  61 

The identification of RSNs has been tackled in multiple ways11. One of the most popular 62 

approaches is an independent component analysis (ICA)5,12,13, a data-driven method of 63 

signal separation14 able to identify and extract independent components (ICs) 64 

corresponding to RSNs in the resting-state signal across the brain. From such 65 

components, resting-state networks and their grey matter maps can be identified.  66 

With the progress of the functional connectivity framework, the question of the 67 

underlying structural connectivity became pressing. Indeed, understanding the 68 

anatomical drivers of the functional connection between multiple regions is necessary to 69 

properly study these networks' dynamics and biological relevance. In that regard, the 70 

advent of diffusion-weighted imaging (DWI) tractography enabled the description of 71 

white matter circuits in the living human brain. DWI measures the preferential 72 

orientations of water diffusion in the brain15, which mostly follow axonal directions. Using 73 

orientation information, tractography algorithms piece together local estimates of water 74 

diffusion to reconstruct white matter pathways16. DWI is a potent, non-invasive in-vivo 75 

tool for mapping the white matter anatomy17 and estimating structural connectivity 76 

between brain regions18,19. Leveraging tractography, the joint study of functional and 77 

structural connectivity, has become an active field of research. However, previous work 78 

compared functional connectivity and structural connectivity between pairs of grey 79 

matter brain parcels20,21. Or when studies provided white matter maps related to resting-80 

state networks, they either focused on a single network22–25 or a restricted number of 81 

RSNs26–28 with limited statistical confirmation of structural-functional connectivity 82 

relationships22–25. 83 

Notably, ICA applied to white matter tractography data produces circuits whose grey 84 

matter projections resemble resting-state networks29,30. These results demonstrate that 85 

information about the organisation of RSNs can also be extracted from white matter data 86 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 10, 2023. ; https://doi.org/10.1101/2022.01.10.475690doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475690
http://creativecommons.org/licenses/by-nc/4.0/


4 

and might be complementary to the information provided by resting-state BOLD signal 87 

analysis. However, to our knowledge, a comprehensive description of the white matter 88 

circuits in all identifiable resting-state networks is still lacking. In principle, such 89 

endeavour could be achieved by using the Functionnectome30,31. This recently developed 90 

method combines fMRI with tractography by projecting the grey matter BOLD signal onto 91 

white matter pathways.  92 

In the present study, we extended our previous approach — the Functionnectome 93 

methodology30 — to RSNs, integrating the grey matter resting-state signal with white 94 

matter connections, and analysed the resulting data through ICA. We produced the most 95 

comprehensive atlas of 30 RSNs specifying their grey matter maps together with their 96 

white matter circuitry — the WhiteRest atlas. This atlas unlocks the systematic 97 

exploration of white matter components supporting resting-state networks. The atlas 98 

comes with companion software, the WhiteRest tool, a module of the Functionnectome 99 

that will facilitate this exploration and assist the investigation of brain lesions' effects on 100 

RSNs and cognition. 101 

Results 102 

Mapping the resting brain: RSNs in white matter and 103 

grey matter 104 

Rs-fMRI scans derived from the Human Connectome Project32 were converted 105 

into functionnectome volumes using the Functionnectome software30,31 (available at 106 

http://www.bcblab.com). The original rs-fMRI and functionnectome volumes were 107 

simultaneously entered into an Independent Component Analysis for each participant. 108 

The resulting individual independent components were then automatically classified 109 

using MICCA33, generating 30 IC groups, each group corresponding to one resting-state 110 

network. These groups were used to create RSN z-maps with paired white matter and 111 

grey matter maps (Fig. 1) — the WhiteRest atlas. 112 

 113 

 114 
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 115 

Figure 1: WhiteRest resting-state atlas of the visual and sensory/motor/attention 116 

domains.  117 

This composite figure shows the white matter 3D maps (green) and grey matter 3D maps 118 

(red). Centre of the figure: Functional domains of the corresponding RSNs. The functional 119 

domains’ 3D maps are the union of the associated RSNs. Labelling indicates an arbitrary 120 

RSN number (in blue), the primary cortical anatomical landmarks (in black) and putative 121 

cognitive function (in orange). Ant. Sup. Par.: Anterior superior parietal network; Inf. 122 

central — SM head: Inferior central network (somatomotor, head portion); Lat. Occ.: 123 
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Lateral occipital network; Lat. Post. Occ.: Lateral posterior occipital network; Med. Occ.: 124 

Medial occipital network; Med. Post. Occ.: Medial posterior occipital network; Mid. 125 

central (L) — SM hand (R): Middle central network, left hemisphere component 126 

(somatomotor, right-hand portion); Mid. central (R) — SM hand (L): Middle central 127 

network, right hemisphere component (somatomotor, left-hand portion); Post. Occ.: 128 

Posterior occipital network; Post. Sup. Par.: Posterior superior parietal network; Sup. 129 

central — SM body: Superior central network (somatomotor, body portion); Sup. Temp: 130 

Superior temporal network.  131 
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 132 

 133 

Figure 2: WhiteRest resting-state atlas of the switching/control, manipulation and 134 

maintenance of information (MMI), and default mode network (DMN) related domains. 135 

This composite figure shows the white matter 3D maps (green) and grey matter 3D maps 136 

(red). Centre of the figure: Functional domains of the corresponding RSNs. Labelling 137 

indicates an arbitrary RSN number (in blue), the primary cortical anatomical landmarks 138 

(in black) and putative cognitive function (in orange). DMN: Default Mode Network. dlPFC: 139 

Dorso-lateral prefrontal cortex network; FPT 1/2/3 (L/R): Fronto-parieto-temporal 140 

network 1/2/3, Left/Right hemisphere component; Med. frontal: Medial frontal network; 141 
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PC-Precuneal: Posterior cingulate-precuneal network; PH-Precuneal: Parahippocampal-142 

Precuneal network; PP-Precuneal: Posterior parietal-precuneal network. 143 

 144 

The paired white matter and grey matter z-maps generated by our method were 145 

thresholded using an arbitrarily high threshold of 7 to get a highly conservative estimate 146 

of the RSNs’ spatial extent. Using this threshold, the combined white matter maps cover 147 

96% of the brain white matter, except for some orbito-frontal and ventro-temporal 148 

pathways, part of the internal capsule and part of the brain stem. Similarly, the combined 149 

grey matter maps cover 79% of the cortical grey matter, except for ventral areas in the 150 

temporal and frontal lobes.  151 

The WhiteRest atlas reveals both the functional grey matter of an RSN and this 152 

network's structural white matter circuitry. In the WhiteRest atlas, 21 of the 30 RSNs 153 

display a symmetrical pattern between the left and the right hemispheres. Nine networks 154 

are strongly lateralised, with four pairs of networks with contralateral homotopic 155 

counterparts, and one network that was exclusively left lateralised (RSN20, language 156 

production network). To help further explore each RSN, a description of the maps of all 157 

the RSNs can be found in the supplementary material (Supplementary figures 1 - 30; the 158 

continuous maps are also available at https://identifiers.org/neurovault.collection:11895 159 

for the white matter, and https://identifiers.org/neurovault.collection:11937 for the grey 160 

matter). As an illustrative example, the Default Mode Network (DMN) maps are 161 

showcased in Figure 3. Although the DMN can be described as a set of sub-networks, one 162 

of them is most representative of what is usually called “DMN” in the literature24,26,34: the 163 

RSN18, which we labelled as “DMN proper”. 164 

 165 
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166 

Figure 3: Default Mode Network proper (RSN18) maps, dorsal view. White matter map in 167 

green, grey matter map in red. Composite map in the middle. The cerebellum is visible 168 

through the glass-brain effect. AF-P: Arcuate fasciculus (posterior segment); mSFg.: 169 

medial superior frontal gyrus; MTg: Middle temporal gyrus; SFg: Superior frontal gyrus; 170 

SLF2: Second branch of the superior longitudinal fasciculus. 171 

 172 

The grey matter map of the DMN proper revealed the bilateral involvement of the 173 

medial frontal cortex (the medial superior frontal gyrus, the gyrus rectus, and the frontal 174 

pole), the superior frontal gyrus, the middle temporal gyrus, the precuneus, the angular 175 

gyrus and the cerebellum. The white matter maps of the RSN showed previously 176 

described pathways of the DMN, such as the second branch of the superior longitudinal 177 

fasciculus (SLF2) connecting the superior parietal lobe to the superior frontal gyrus and 178 

the cingulum connecting the precuneus area to the medial frontal area. Additionally, the 179 

middle temporal gyrus and the angular gyrus are connected by the posterior segment of 180 

the arcuate fasciculus. Interhemispheric connections were also present within the 181 

anterior and posterior corpus callosum connecting both frontal lobes and both precunei, 182 

respectively.  183 

While the description of a known RSN, such as the DMN, can be used to validate 184 

the atlas, WhiteRest can also explore the uncharted white matter anatomy of RSNs, for 185 

instance, the Dorsal Attention Network (RSN13) presented in Figure 4. 186 

 187 

 188 
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 189 

Figure 4: Dorsal Attention Network (RSN13) maps, dorsal view. White matter map in 190 

green, grey matter map in red. Union of the two maps in the middle. The insula and 191 

cerebellum are visible through the glass-brain effect. AF-P: Arcuate fasciculus (posterior 192 

segment); FAT: Frontal Aslant Tract; IPs/SPL: Intraparietal sulcus and superior parietal 193 

lobule; Middle CC: Middle part of the corpus callosum; MTg: Middle temporal gyrus; 194 

Posterior CC: Posterior part of the corpus callosum; PrCg: Precentral gyrus; Precentral 195 

s.: Precentral sulcus; SFg: Superior frontal gyrus; SLF2: Second branch of the Superior 196 

Longitudinal Fasciculus; SMg: Supramarginal gyrus. 197 

 198 

The grey matter map revealed the involvement of core regions of the DAN, with 199 

the parietal cortex – supramarginal gyrus (SMg), intraparietal sulcus (IPs) and superior 200 

parietal lobule (IPL) – and part of the superior frontal gyrus (SMg), in the frontal eye field 201 

region. It also showed other areas associated with the DAN, namely the precentral gyrus 202 

(PrCg), the insula and the posterior part of middle temporal gyrus (MTg). The white 203 

matter map unveiled the involvement of the second branch of the superior longitudinal 204 

fasciculus (SLF2), connecting the inferior parietal cortex (IPs, SMg) with the frontal 205 

regions of the network (i.e. SFg, PrCg and insula). SFg and PrCg were also interconnected 206 

via the frontal aslant tract. The map also showed the involvement of the posterior 207 

segment of the arcuate fasciculus, connecting the MTg with the parietal cortex. 208 

Additionally, the map revealed the involvement of the corpus callosum, ensuring 209 

interhemispheric connectivity. 210 
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White matter RSNs, overlaps, and stroke lesions 211 

The WhiteRest atlas suggests that most RSNs share white matter pathways with 212 

other RSNs. Indeed, most of the brain’s white matter (i.e. 89%) is shared amongst multiple 213 

RSN, with 16% of the white matter shared by at least 7 RSNs. By comparison, the grey 214 

matter contribution to RSNs show much less overlap, where 53% of the grey matter 215 

uniquely contributes to one RSN, and 45% to 2 or 3 RSNs. To determine the exact extent 216 

of the overlaps in the white matter, we generated an overlap map displaying the number 217 

of RSN per voxel in the brain. Large areas of the deep white matter showed high RSN 218 

overlap count (> 7 overlapping RSNs), including in the centrum semiovale and sub-219 

portions of the medial corpus callosum (Fig. 5). RSNs also overlapped highly in the 220 

cingulum, the second and third branches of the superior longitudinal fasciculi (SLF2, 221 

SLF3), the arcuate fasciculi, and the inferior fronto-occipital fasciculi (IFOF) in both 222 

hemispheres. In contrast, the superficial white matter demonstrated less RSN overlap. 223 

 224 

 225 

Figure 5: RSN overlap in the brain. a: Overlay map of RSN white matter maps. Colour bar: 226 

Number of RSN per voxel (saturated for n>14). Anterior CC: Anterior corpus callosum; AF-227 

L: Arcuate fasciculus (long segment); Cing.: Cingulum; IFOF: Inferior fronto-occipital 228 
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fasciculus; ILF: Inferior longitudinal fasciculus; Posterior CC: Posterior corpus callosum; 229 

SLF2: Second branch of the superior longitudinal fasciculus; SLF3: Third branch of the 230 

superior longitudinal fasciculus; Unc: Uncinate fasciculus. b: Violin plots (normalised by 231 

plotted area) of the overlap values in the total white matter and along the studied 232 

pathways (left and right hemispheres combined). Each plot also contains a boxplot with 233 

the median, the interquartile range (IQR), and “whiskers” extending within 1.5 IQRs of the 234 

lower and upper quartile. WM: average whole white matter. 235 

 236 

The existence of areas with high-density RSN overlap in the white matter point 237 

toward the idea that lesions to the white matter could severely impact the functioning of 238 

multiple RSNs and hence cause a diverse pattern of clinical symptoms. To explore this 239 

aspect, we developed a new module, the WhiteRest tool, freely available online through 240 

the Functionnectome software (available at http://www.bcblab.com). The WhiteRest 241 

tool estimates the white matter disruption of an RSN by a lesion with a “disconnectome-242 

RSN overlap” score, the DiscROver score. It can also measure the local involvement of 243 

each RSN for any given region of interest (ROI) in the white matter (measured as 244 

“Presence score”, see the WhiteRest user guide in the supplementary material). 245 

 246 

We validated the WhiteRest atlas in a clinical dataset of 131 stroke patients35 and 247 

compared their neurobehavioral deficits with the measured impact of the lesion on the 248 

RSNs. More specifically, we explored the three deficits which could clearly be associated 249 

with RSNs based on their estimated function. The three deficits and the four RSNs in 250 

question were: left upper-limb motor control (MotorL) deficit associated with the 251 

somatomotor network of the left-hand (RSN 09)(Fig. 6a); right upper-limb motor control 252 

(MotorR) deficit associated with the somatomotor network of the right-hand (RSN 253 

08)(Fig. 6b); and language deficit associated with the language comprehension network 254 

(RSN 25)(Fig. 6c) and with the language production network (RSN 20)(Fig. 6d). Each deficit 255 

score (MotorL, MotorR, and Language deficit) is derived from a principal component 256 

analysis (PCA) of the set of neurobehavioral assessment scores related to the deficit. The 257 

impact of a lesion on RSNs was measured with the DiscROver score from the WhiteRest 258 

tool. We show a strong and highly significant correlation between the neurobehavioral 259 

deficit scores and the DiscROver scores for the related RSNs. The Pearson correlation 260 

between the scores was: 0.75 (R2 = 0.57) for the “Left upper-limb”; 0.60 (R2 = 0.36) for the 261 
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“Right upper-limb”; 0.68 (R2 = 0.46) for the “Language (comprehension)”; and 0.61 (R2 = 262 

0.37) for the “Language (production)”. All correlations were highly significant with p < 10-263 

13. For a more qualitative overview, we also showed that the lesion of all patients with 264 

strong deficits (deficit score in the upper decile, Supp. Fig. 31) overlapped with the studied 265 

RSN (Supp. Fig. 32 to 37). 266 

 267 

 268 

Figure 6: Relationship between neurobehavioral deficit and WhiteRest DiscROver. a-b: 269 

Left (a) and right (b) upper-limb motor control deficit vs. DiscROver score for the 270 

Somatomotor network of the left (a) and right (b) hand; c-d: Language deficit vs. 271 

DiscROver score for the language comprehension network (c) and the language 272 
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production network (d). In each graph, all the patients are represented (n = 131) and the 273 

blue line corresponds to the linear fit between the scores, and the light blue area 274 

corresponds to the confidence interval (set at 95%) for the linear fit. a.u.: arbitrary unit 275 

(scores set between 0 and 1); R2: Coefficient of determination. 276 

 277 

Using this dataset, we also tested the plausibility of our above-mentioned 278 

hypothesis whether lesions impacting multiple RSNs would “cause a diverse pattern of 279 

clinical symptoms”. To do so, we selected patients for whom at least a third (DiscROver 280 

score > 33) of both the right-hand somatomotor RSN and the language comprehension 281 

RSN were impacted. Among these few patients (n = 11), the majority (n = 9) had clear 282 

symptoms (i.e., deficit score in the upper quartile) for both language and right upper-limb 283 

motor control (Supp. Fig. 38 & 39). While the group size of this analysis is too small for 284 

definitive conclusions and limited to two RSNs, we believe these preliminary results are 285 

a strong indication that our original hypothesis holds some truth and ought to incentivise 286 

more research into this issue. 287 

Discussion 288 

We introduce WhiteRest, an atlas derived from integrated functional signal and 289 

structural information revealing white matter and grey matter components for each 290 

resting-state network. As such, the present work showcases two original results. First is 291 

the atlas, which consists of the systematic mapping of white matter that contributes to 292 

the resting-state networks. Second, our results demonstrate that white matter pathways 293 

can contribute to multiple RSNs. This new atlas offers the prospect of exploring the 294 

impact of white matter lesions on the integrity of resting-state networks and, thus, their 295 

functioning. 296 

 297 

The WhiteRest atlas is, to our knowledge, the first comprehensive statistical 298 

mapping of the white matter contribution to RSNs. We generated white and grey matter 299 

maps concurrently, yielding continuous statistical maps of the RSNs in both tissues, thus, 300 

allowing for a thorough exploration of each network. The combination of functional and 301 

structural information can help the exhaustive detection of RSNs as there is evidence that 302 

structural connectivity holds complementary information regarding RSNs29. Hence, the 303 
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multimodality of the signal might help identify and segregate networks as previously 304 

demonstrated by other groups with different modalities (e.g., Glasser’s multi-modal 305 

parcellation36). Previous studies also combined grey matter functional and white matter 306 

structural information to explore the white matter contribution to resting-states 307 

networks but were limited to a low number of RSNs25,27, or were focused on the white 308 

matter support of dynamical changes in functional connectivity37. In contrast, recent 309 

works that undertook the atlasing of the RSN white matter connectivity did not directly 310 

combine functional and structural information. They mapped the RSN white matter 311 

circuits by connecting RSNs cortical regions from a pre-existing cortical RSNs atlas, using 312 

tractography data28,38. In this approach, the functional-structural mapping is highly 313 

dependent on the original cortical RSN atlas, while in our method, grey and white matter 314 

information are used concurrently.  315 

Another intriguing approach to the functional study of white matter has recently 316 

been gaining traction and shown auspicious results: the analysis of the BOLD signal 317 

directly in the white matter (mini-review by Gore et al., 2019). Using the BOLD signal from 318 

white matter allows for its functional exploration and mapping without resorting to 319 

connectivity models, which may lead to more physiologically accurate descriptions. 320 

Multiple studies have used this framework to unveil RSNs in white matter, successfully 321 

adapting classical RSN investigation methods to the white matter39–42. These studies 322 

revealed a functional parcellation of the white matter, showing that it was possible to 323 

identify multiple RSNs purely from functional signals while staying consistent with the 324 

underlying structural connectivity. However, these approaches have yet to produce a 325 

functional parcellation of the white matter displaying continuous, long-range 326 

connectivity between different cortical regions. While efforts have been made to link 327 

white matter RSNs with grey matter RSNs, previous studies were unable to present a 328 

consistent 1-to-1 correspondence between white and grey matter RSNs. Thus, current 329 

analyses using the white matter BOLD signal are limited regarding the functional 330 

investigation of the white matter. In contrast, by combining structural and functional 331 

(grey matter) signals with the Functionnectome, our approach generated white matter 332 

maps that could better represent each network, and systematically paired them with 333 

their well-known grey matter counterparts. The WhiteRest atlas also demonstrated 334 

overlaps between RSNs, consistent with fibres from distinct networks crossing in the 335 

white matter. 336 
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 337 

Our data-driven method allowed for a global approach by mapping the whole 338 

brain, except for ventral areas in zones strongly affected by magnetic susceptibility 339 

artefacts, where both the fMRI and diffusion signals are degraded43. The individual-ICA-340 

based scheme used to produce the statistical group maps revealed a fine granularity of 341 

the RSNs, where brain regions that are spatially distant but functionally and structurally 342 

connected are attributed to the same RSN. The fine granularity of the default mode 343 

network (DMN) in the WhiteRest atlas is a good example of the multimodal improvement 344 

of the networks’ segregation. Our analysis replicated four previously described44 DMN-345 

related RSNs involving the precuneus (RSN 16, 17, 18 & 19), while also differentiating a DMN 346 

proper (RSN18) from a medial frontal network (RSN15). For the DMN proper, the structural 347 

connectivity is largely known22–28,45, which offers a good opportunity to validate our 348 

method. For instance, WhiteRest’s DMN proper white matter map confirmed the 349 

involvement of the cingulum, connecting the precuneus with the frontal cortex22–28,45 , and 350 

of the superior longitudinal fasciculus (SLF2) connecting the superior frontal gyrus with 351 

the angular gyrus24,25,27. Similarly, the posterior segment of the arcuate fasciculus that 352 

connects the inferior parietal lobule with the posterior temporal lobe has also been 353 

reported in previous studies for the DMN22,24. Complementing the DMN-proper, following 354 

previous DMN descriptions24, the medial frontal network involved the inferior 355 

longitudinal fasciculus (ILF, connecting the occipital lobe with the temporal lobe), the 356 

uncinate (connecting the temporal pole to the inferior frontal lobe), and the cingulum 357 

(connecting temporal-parietal-frontal areas). 358 

Similarly, the WhiteRest atlas can be used in a prospective and explorative 359 

manner, as shown with the unveiling of the dorsal attention network (RSN13). While the 360 

grey matter architecture of the DAN is well documented46,47, its white matter support has 361 

only been partially explored48. To our knowledge, WhiteRest reveals the first 362 

comprehensive description of the DAN’s white matter, that includes bilateral association 363 

fibres connecting ipsilateral regions, and commissural fibres ensuring interhemispheric 364 

connectivity. However, disentangling the exact functional relevance of each connection 365 

remains a challenge that will require, for example, functionnectome investigation30 or 366 

advanced lesions analyses49–51. Such approaches might shed light on the hierarchical and 367 

functional implications of RSN circuits49,50,52,53. Recent results have highlighted the 368 

importance of white matter structural disconnections in the disruption of functional 369 
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connectivity53, and this disruption has been linked to behavioural and cognitive 370 

dysfunction54,55. Therefore, being able to identify these RSN white matter “highways” 371 

would propel our understanding of disconnection symptoms, improve recovery 372 

prognostics, and inform preoperative brain surgery planning56. To facilitate these efforts, 373 

we released the WhiteRest tool (as a module of the Functionnectome) that quantifies the 374 

presence of RSNs in a specific region of the brain’s white matter. The WhiteRest module 375 

was designed to accept regions of interest (e.g. from parcellations or lesions) in the MNI 376 

152 space (2x2x2 mm3) and estimates the RSNs involved or in the case of lesions, which 377 

RSNs would be impacted by a lesion in this region. 378 

 379 

As a proof of concept and to validate the atlas, the WhiteRest tool was applied to 380 

the lesions of 131 stroke patients to compare the DiscROver score of 4 RSNs with the 381 

symptoms associated with their putative functions. We observed a strong correlation 382 

between each neurobehavioral deficit and their corresponding RSN DiscROver score, 383 

namely: Left and right upper-limb motor control deficit with the somatomotor networks 384 

of left- and right-hand, respectively; and language deficit with both language production 385 

and language comprehension networks. 386 

These results serve as the first clinical validation of the WhiteRest atlas, showing 387 

that its structural and functional mapping is sound, and that it could be employed in the 388 

scope of patient research, opening up a novel strategy to assert the cognitive functions 389 

related to RSNs. Associating functions to RSNs is usually done by indirect inference, using 390 

their spatial maps and contrasting them with fMRI-derived activation maps of specific 391 

cognitive functions2. As lesion studies have historically been a major tool in determining 392 

functions of grey matter area57, and more recently of white matter pathways58, WhiteRest 393 

provides a new tool to understand the link between cognition and resting-state networks. 394 

Reversely, the WhiteRest integrated functional and structural connectivity can shed light 395 

on the functional mechanisms of the brain and the origins of cognitive disorders. While 396 

promising results link stroke symptoms and RSNs in our study, further investigations will 397 

be required to fully disentangle the relationship between cognition (or cognitive deficits) 398 

and RSNs, using more advanced models than the relatively simple linear approach from 399 

the present study. Recent works have been undertaking the prediction of symptoms and 400 

recovery from stroke based on functional and structural data58,59, a very important and 401 
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interesting goal for which WhiteRest may eventually be of use, adding interpretable data 402 

to these multimodal methods.  403 

 404 

While the WhiteRest module and atlas represent an advance in resting state 405 

functional neuroimaging, it is not exempt from limitations. For instance, we excluded the 406 

cerebellum-centred RSN in the present work. This decision was motivated by some 407 

limitations of tractography that are exacerbated in the cerebellum60, mitigating the 408 

quality of the modelled pathways. For example, the fine structure of the cerebellum and 409 

the gathering of fibres in the brainstem are affected by partial volume and bottleneck 410 

effects61. Also, some of the maps displayed white matter pathways leading to grey matter 411 

areas absent on the related grey matter map. Some of these cases can be explained as 412 

simply threshold-dependent (i.e. z>7 to facilitate the visualisation of 3D structures), 413 

which hid some of the less significant (but still involved) areas. However, these pathways 414 

might correspond to the structural link between different RSNs. Thus, when exploring a 415 

network in detail, we strongly advise checking the non-thresholded maps to better 416 

appreciate the entire white matter network involved in RSNs.  417 

 418 

All in all, we introduced a novel combined atlas of resting-state networks based 419 

on functional and structural connectivity to deliver white matter and grey matter maps 420 

for each RSN — the WhiteRest atlas. This atlas allows for the exploration of the structural 421 

support of individual RSN and facilitates the study of the impact of white matter lesions 422 

on resting-state networks. Accordingly, we released the WhiteRest module that 423 

estimates the proportion of RSNs impacted by a given white matter lesion. With this tool, 424 

future research can focus on exploring the link between white matter lesions and their 425 

effects on the related resting-state networks in light of symptom diagnosis. Leveraging a 426 

deep-learning approach recently introduced44 opens the possibility for individual 427 

resting-state functionnectome analyses and will facilitate a more personalised 428 

neuromedicine. 429 

 430 
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Methods 431 

HCP dataset 432 

The dataset used in the present study is composed of the openly-available resting-433 

state scans (rsfMRI) from 150 participants (75 females; age range 22-35 years) of the 434 

Human Connectome Project (HCP)32, with 45 participants from the test-rest HCP dataset 435 

and 105 randomly sampled participants from the Young adult dataset 436 

(http://www.humanconnectome.org/study/hcp-young-adult/; WU-Minn 437 

Consortium; Principal investigators: David Van Essen and Kamil Ugurbil; 438 

1U54MH091657). 439 

Acquisition parameters 440 

Full description of the acquisition parameters can be found on the HCP website 441 

(https://www.humanconnectome.org/hcp-protocols-ya-3t-imaging) and in the 442 

original HCP publication62. Briefly, the resting-state scans were acquired with 3 Tesla 443 

Siemens Skyra scanners and consist of whole-brain gradient-echo EPI acquisitions using 444 

a 32-channel head coil with a multi-band acceleration factor of 8. The parameters were 445 

set with: TR)=)720)ms, TE)=)33.1)ms, 72 slices, 2.0)mm isotropic voxels, in-plane 446 

FOV)=)208)×)180)mm, flip angle)=)52°, BW)=)2290)Hz/Px. Each resting-state acquisition 447 

consisted of 1200 frames (14min and 24sec), and was repeated twice using a right-to-left 448 

and a left-to-right phase encoding.  449 

Preprocessing 450 

The resting-state acquisitions were then preprocessed using the “Minimal 451 

preprocessing pipeline” fMRIVolume63, applying movement and distortion corrections 452 

and registration to the MNI152 (2009) non-linear asymmetric space. Note that all the 453 

analyses done in the present study were conducted in this space, and subsequent 454 

mention of “MNI152” will refer to that space. Further processing steps were also applied: 455 

despiking; voxelwise detrending of potentially unwanted signal (6 motion regressors, 18 456 

motion-derived regressors64, and CSF, white matter, and grey matter mean time-457 

courses); temporal filtering (0.01-0.1 Hz); and spatial smoothing (5 mm FWHM). While of 458 
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exceptional quality, we chose to alter the HCP data to make it clinically relevant. A 459 

composite resting-state 4D volume was generated by discarding the 300 first and 300 460 

last frames of the resting state acquisitions and concatenating (along the time axis) the 461 

resulting volumes. For each participant, this corresponded to 7.5 minutes with the left-462 

right and 7.5 minutes with the right-left phase of acquisition (= 1200 frames total). 463 

Stroke dataset 464 

A dataset of 131 stroke patients (46% female, 54 years +/-11 years, range 19-83 465 

years) with diverse cognitive deficits was used to validate the plausibility of the atlas and 466 

demonstrate the feasibility for potential clinically oriented approaches. The cohort of 467 

patients (n = 132) was recruited at the School of Medicine of Washington University in St. 468 

Louis (WashU)35. One patient from this cohort was excluded because of missing data. All 469 

participants gave informed consent, as per the procedure implemented by WashU 470 

Institutional Review Board and in agreement with the Declaration of Helsinki (2013). The 471 

data of each patient consisted of their MRI-derived manually segmented brain lesion as 472 

well as the associated neurobehavioral scores. In the present study, we focused on 3 473 

deficits: language, left upper-limb motor control, and right upper-limb motor control 474 

deficits. They were established based on the acute (13 ±	 4.9 days after stroke) 475 

neurobehavioral assessment scores of the patients, with 7 scores for language deficit, and 476 

7 scores for each upper-limb motor control (left and right). The language deficit was 477 

tested using the Semantic (animal) verbal fluency test (SVFT, 1 score) and the Boston 478 

Diagnostic Aphasia Examinations (BDAE, 6 scores). The left and right upper-limb motor 479 

control deficit was tested using the Action Research Arm test (ARAT, 3 scores), the Jamar 480 

Dynamometer grip strength assessment (1 score), the 9-Hole Peg test (9HPT, 1 score), and 481 

the shoulder flexion and wrist extension assessment (2 scores). Additional precisions can 482 

be found in the supplementary methods. 483 

Extraction of white matter and grey matter components 484 

Projection of the functional signal to the white matter 485 

To explore the white matter structures of resting-state networks, we projected 486 

the functional signal from the rs-fMRI scans onto the white matter using the 487 
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Functionnectome30,31 (https://github.com/NotaCS/Functionnectome). The 488 

Functionnectome is a recently introduced method that unlocks the functional study of 489 

white matter. Briefly, the Functionnectome takes an fMRI scan and a grey matter mask as 490 

inputs combines grey matter BOLD signal with white matter anatomical priors, and 491 

outputs a new functional volume (called a functionnectome) with the same dimensions 492 

as the original fMRI scan (same 3D space, same number of time-points), but with the 493 

functional signal associated to the white matter. The Functionnectome provides default 494 

white matter priors30. The white matter priors were originally derived from the 7 Tesla 495 

diffusion data of a subset of 100 randomly selected HCP participants from the HCP young 496 

adults cohort. Deterministic tractography was run on this diffusion data using StarTrack 497 

(https://www.mr-startrack.com) to estimate the structural connectivity between each 498 

voxel of the brain and build the Functionnectome white matter priors. 499 

In this functionnectome volume, the signal of a white matter voxel results from 500 

the combination of the BOLD signals from the voxels within the grey matter mask that 501 

are structurally connected to it (weighted by the probability of connection). The 502 

structural connectivity probability is given by the anatomical priors provided with the 503 

software (customisable priors option available). Using the Functionnectome thus allows 504 

the analysis of the functional signal in a connectivity-oriented framework by integrating 505 

the signal from distant but structurally connected grey matter voxels or clusters of 506 

voxels.  507 

 508 

For our analysis, each of the 150 rs-fMRI scans from the dataset were processed 509 

with the Functionnectome, along with a grey matter mask (the same mask for all the 510 

subjects). This mask was computed using the brain parcellation data from all the 511 

participants: the mask corresponds to the voxels identified as part of the grey matter in 512 

at least 10% of the participants. This processing produced 150 resting-state 513 

functionnectome (rs-functionnectome) volumes, one per participant. 514 

Independent component analysis 515 

To extract RSN from the data, we used an independent component analysis (ICA) 516 

method. For each participant, the original rs-fMRI scan was spatially concatenated with 517 

the associated rs-functionnectome. It resulted in functional volumes containing, side by 518 

side, the original resting-state signal (on the grey matter) and the rs-functionnectome 519 
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signal (on the white matter). These composite functional volumes were then analysed 520 

with MELODIC (multivariate exploratory linear optimised decomposition into 521 

independent components, version 3.15), from the FMRIB Software Library (FSL)65 to 522 

extract independent components (ICs) from the signal. The number of IC per participant 523 

was individually determined by Laplace approximation66. This resulted in a set of ICs, 524 

unlabeled putative RSNs, per participant. Each IC was composed of a temporal 525 

component (the IC’s time-course) and a spatial map, displaying side by side (due to the 526 

above-mentioned spatial concatenation) the component in rs-fMRI (i.e. grey matter) 527 

space and in the rs-functionnectome (i.e. white matter) space. Each IC was then split into 528 

paired white matter maps and grey matter maps. 529 

Generating RSN maps by clustering ICs 530 

We used MICCA33, an unsupervised classification algorithm developed to 531 

automatically group ICs from multiple individual ICAs (from different participants) based 532 

on the similarity of their spatial maps. The resulting groups, composed of ICs 533 

reproducible across participants, were used to produce group maps. Such an individual-534 

based ICA scheme was preferred to the classical group ICA as some evidence suggests 535 

that group ICA can fail to separate some RSNs if they share functional hubs33. 536 

The atlas was produced by applying MICCA using the procedure described in the 537 

original Naveau et al. paper33, in a 5-repetition scheme (i.e. ICA and MICCA were repeated 538 

5 times per participant, and the resulting IC groups were paired with ICASSO67). The 539 

procedure generated 36 IC groups and their associated z-map, reproducible across the 540 

repetitions. Among them, 5 groups were identified as artefacts and were excluded, and 1 541 

was located in the cerebellum and was excluded too in later analyses. The artefacts were 542 

visually identified when the grey matter z-map was spread along the border of the brain 543 

mask (typical of motion artefacts, n = 3), or was mainly located in ventricles or along blood 544 

vessels (n = 2). The cerebellar RSN was discarded because of known problems with 545 

tractography in the cerebellum60, to avoid providing the atlas with a white matter map 546 

poorly representing the correct connectivity of this region. 547 

We thus obtained a total of 30 RSNs, producing the WhiteRest atlas. Each RSN was 548 

then named by experts (MJ, VN) according to its anatomical localisation and in reference 549 

to AAL68,69 and AICHA68 atlas. Likewise, the classification of RSNs to a functional domain 550 
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was done by an expert using the grey matter spatial patterns and estimated functional 551 

role of the RSNs presented here, compared to the one from Doucet et al.12  552 

Note that we applied MICCA on the grey matter maps of the ICs. We used these 553 

maps for the clustering as MICCA has been developed and validated to cluster only 554 

classical resting-state derived spatial maps (in grey matter space). As each grey matter 555 

map is associated with a white matter map (since they are part of the same IC), the 556 

procedure still produces paired grey and white matter RSN maps, as presented in the 557 

atlas. 558 

Overlap analysis and DiscROver 559 

To measure the extent of overlaps between RSNs in the white matter, all the maps 560 

were thresholded (z>7), binarised, and summed, generating a new map with the number 561 

of RSN per voxel. 562 

Additionally, we provide a new software, the WhiteRest tool, to explore how the 563 

white matter is shared between RSNs. It offers “Presence” scores measuring local 564 

overlaps of RSNs for a given ROI (see the WhiteRest tool manual in the Sup. Mat.). It also 565 

measures the DiscROver score (for Disconnectome-RSN Overlap score), specifically 566 

designed to estimate the white matter disruption of RSNs by a lesion. First, the extent of 567 

white matter fibres disconnected by the lesion is estimated using the Disconnectome 568 

method49. This method yields a disconnectome map displaying the probability of 569 

structural connectivity between the lesion and each brain voxel (Fig. 7a). Hence, the 570 

higher the value on the disconnectome map, the more likely the disruption of 571 

connectivity in the voxel due to the lesion. Then, the weighted overlap of the RSN (Fig. 572 

7b) with the disconnectome is computed by voxel-wise multiplication of the RSN map and 573 

the disconnectome map (Fig. 7c). The DiscROver score is computed as the sum of the 574 

values of this weighted overlap map, normalised by the sum of the values in the RSN, and 575 

multiplied by 100. With this score, 0 means that the lesion does not impact any white 576 

matter voxel of the RSN, and 100 means it impacts the entire RSN. 577 

The complete computation of the DiscROver score is summarised in Equation 1: 578 

���������(���,�����) = 100 ×
3 "!"#($)×'$%&'(($))*!"#

3 "!"#($))*!"#

    (1) 579 
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With “RSN” representing the atlas white matter Z-map of a given RSN, with its voxel 580 

values annotated as “ZRSN(v)”, and “Disco” the disconnectome map of a lesion, with its voxel 581 

values annotated as “PDisco(v)”. 582 

 583 

 584 

Figure 7. Steps for the computation of the DiscROver score. a - Lesion mask (left) and 585 

associated disconnectome (right). b - RSN map used for the DiscROver score 586 

computation. c - Visual representation of the weighted overlap, and computation of the 587 

DiscROver score. Disco: Disconnectome map; RSN: Resting-state network map. 588 

 589 

Stroke data analysis 590 

To validate our WhiteRest atlas, we used the WhiteRest tool to link stroke lesions with 591 

RSNs. We first selected 4 RSNs for which we were confident we could identify a specific 592 

cognitive function: we chose the somatomotor networks of the right (RSN 08) and left 593 

(RSN 09) hand, the language production network (RSN 20), and the language network 594 

comprehension (RSN 25). The DiscROver score of the 131 lesions was computed for each 595 

of these 4 RSNs.  596 
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Each RSN was paired according to their putative function with one of the 3 studied 597 

cognitive deficits: The somatomotor network of the right-hand with the right upper-limb 598 

motor control deficit; the somatomotor network of the left-hand with the left upper-limb 599 

motor control deficit; and the language production and language comprehension 600 

networks both with the language deficit. 601 

Because each deficit was associated with multiple clinical scores, we ran a principal 602 

component analysis (PCA) on each group of clinical scores and projected the scores on 603 

each corresponding first principal component. The “MotorL deficit” score was generated 604 

using the 7 clinical scores for left upper-limb motor control deficit.  The “MotorR deficit” 605 

score was generated using the 7 clinical scores for right upper-limb motor control deficit. 606 

And the “Language deficit” score was generated using the 7 clinical scores for language 607 

deficit. Additional details on those three sets of scores are available in the supplementary 608 

methods. The PCA-derived scores for each cognitive deficit were normalised between 0 609 

and 1, with 0 corresponding to the minimum deficit and 1 to the maximum deficit in the 610 

data. This dimensionality reduction step allowed us to capture most of the variance in 611 

the data (i.e., the difference in clinical symptoms between patients) while limiting the 612 

study of each cognitive deficit to one variable: MotorL, MotorR, and Language deficit 613 

scores respectively, explained 95%, 91%, and 74% of the variance of their clinical scores. 614 

Finally, for each RSN-deficit pair, the DiscROver scores of all the patients were plotted 615 

against the associated PCA-derived score, with the linear fit and coefficient of 616 

determination (R2). Note that the DiscROver scores for the language production network 617 

and the language comprehension network were plotted against the same Language 618 

deficit score. 619 

 620 

Visualisation 621 

The 3D z-maps presented in figures 1-4 were generated using Surf Ice 622 

(https://www.nitrc.org/projects/surfice/), with the default mni152_2009 brain volume 623 

as the background template. The 2D brain slices of figures 5 and 7 were displayed on a 624 

standard template in MRIcron (https://www.nitrc.org/projects/mricron). Each white 625 

matter map was masked to remove the grey matter part of the volume and improve 626 

readability. The mask used corresponded to voxels defined as white matter in at least 10% 627 
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of the 150 participants, according to the parcellation provided with the HCP datasets. In 628 

figure 5, the RSN count was saturated at 14 on the displayed map to improve readability, 629 

as only a handful of voxels presented higher values. 630 

 631 

Statistics and Reproducibility 632 

In the stroke analysis, the relationship between neurobehavioral deficits and the RSN 633 

DiscROver scores was measured by Pearson’s correlation and linear fit. The statistical 634 

significance of the correlation was measured using the dedicated function from the Scipy 635 

Python library: 636 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html 637 

The confidence intervals (CI) of figure 6 represent the 95% CI estimated with 1000 638 

bootstrap resamples of the data, using the “regplot” function from the Seaborn Python 639 

library: 640 

https://seaborn.pydata.org/generated/seaborn.regplot.html 641 
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