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Abstract

Over the past two decades, the study of resting-state functional magnetic resonance
imaging has revealed that functional connectivity within and between networks are
linked to cognitive states and pathologies. However, the white matter connections
supporting connectivity remain only partially described. We developed a method to
jointly map the white and grey matter contributing to each resting-state network. Using
the Human Connectome Project, we generated an atlas of 30 resting-state networks. The
method also allows highlighting the overlap between networks, which revealed that most
of the brain’s white matter (89%) is shared between multiple networks, with 16% shared
by at least 7 resting-state networks. These overlaps, especially the existence of regions
shared by numerous networks, suggest that white matter lesions in these areas might
strongly impact the correlations and the communication within resting-state networks.
We provide an open-source software to explore the joint contribution of white and grey
matter to RSNs and facilitate the study of the impact of white matter damage on RSNs. In
a first clinical application of the software, we were able to link stroke patients and
impacted resting-state networks, showing that their symptoms aligned well with the

estimated functions of the networks.

Introduction

Since the early 1990s, functional magnetic resonance imaging (fMRI) peers inside the
workings of the living human brain'. Task fMRI unveiled countless aspects of brain
functioning in healthy participants and patients. However, paradigm-free resting-state
fMRI (rs-fMRI) analysis shows a striking correspondence with tasks-related fMRI* yet
provides the most comprehensive depiction of the brain's functional organisation. Rs-

fMRI explores the awake brain at rest when no specific external task is required from the
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participant. During rest, quasi-periodic low-frequency oscillations in the fMRI signal —
blood-oxygen-level-dependent signal or BOLD — spontaneously occur®. Distant brain
regions display synchronous BOLD signal oscillations, testifying to functional
connectivity between regions and forming intrinsic functional networks, so-called
resting-state networks (RSNs)**. RSNs are related to cognition? and their alteration has
been linked to various brain pathologies’®, potentially opening up this field to a wide
range of applications. Hence, a resting-state acquisition is appealing and much less
demanding than the active participant involvement in a task.

The identification of RSNs has been tackled in multiple ways". One of the most popular
approaches is an independent component analysis (ICA)>>® a data-driven method of
signal separation able to identify and extract independent components (ICs)
corresponding to RSNs in the resting-state signal across the brain. From such
components, resting-state networks and their grey matter maps can be identified.

With the progress of the functional connectivity framework, the question of the
underlying structural connectivity became pressing. Indeed, understanding the
anatomical drivers of the functional connection between multiple regions is necessary to
properly study these networks' dynamics and biological relevance. In that regard, the
advent of diffusion-weighted imaging (DWI) tractography enabled the description of
white matter circuits in the living human brain. DWI measures the preferential
orientations of water diffusion in the brain®, which mostly follow axonal directions. Using
orientation information, tractography algorithms piece together local estimates of water
diffusion to reconstruct white matter pathways*. DWI is a potent, non-invasive in-vivo
tool for mapping the white matter anatomy” and estimating structural connectivity
between brain regions™®". Leveraging tractography, the joint study of functional and
structural connectivity, has become an active field of research. However, previous work
compared functional connectivity and structural connectivity between pairs of grey
matter brain parcels**?". Or when studies provided white matter maps related to resting-
state networks, they either focused on a single network*# or a restricted number of
RSNs*2® with limited statistical confirmation of structural-functional connectivity
relationships® 2,

Notably, ICA applied to white matter tractography data produces circuits whose grey
matter projections resemble resting-state networks**°. These results demonstrate that

information about the organisation of RSNs can also be extracted from white matter data
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87 and might be complementary to the information provided by resting-state BOLD signal
88 analysis. However, to our knowledge, a comprehensive description of the white matter
89 circuits in all identifiable resting-state networks is still lacking. In principle, such
90 endeavour could be achieved by using the Functionnectome®’®'. This recently developed
91 method combines fMRI with tractography by projecting the grey matter BOLD signal onto
92  white matter pathways.
93 In the present study, we extended our previous approach — the Functionnectome
94 methodology®® — to RSN, integrating the grey matter resting-state signal with white
95  matter connections, and analysed the resulting data through ICA. We produced the most
96 comprehensive atlas of 30 RSNs specifying their grey matter maps together with their
97  white matter circuitry — the WhiteRest atlas. This atlas unlocks the systematic
98 exploration of white matter components supporting resting-state networks. The atlas
99 comes with companion software, the WhiteRest tool, a module of the Functionnectome
100  that will facilitate this exploration and assist the investigation of brain lesions' effects on

101  RSNs and cognition.

102 Results

103 Mapping the resting brain: RSNs in white matter and
104 grey matter

105 Rs-fMRI scans derived from the Human Connectome Project® were converted

106  into functionnectome volumes using the Functionnectome software®** (available at
107  http://www.bcblab.com). The original rs-fMRI and functionnectome volumes were

108  simultaneously entered into an Independent Component Analysis for each participant.

109  The resulting individual independent components were then automatically classified
110  using MICCA*, generating 30 IC groups, each group corresponding to one resting-state
111 network. These groups were used to create RSN z-maps with paired white matter and
112 grey matter maps (Fig. 1) — the WhiteRest atlas.

113

114
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116  Figure 1. WhiteRest resting-state atlas of the visual and sensory/motor/attention
117  domains.

118  This composite figure shows the white matter 3D maps (green) and grey matter 3D maps
119  (red). Centre of the figure: Functional domains of the corresponding RSNs. The functional
120  domains’ 3D maps are the union of the associated RSNs. Labelling indicates an arbitrary
121 RSN number (in blue), the primary cortical anatomical landmarks (in black) and putative
122 cognitive function (in orange). Ant. Sup. Par.: Anterior superior parietal network; Inf.

123 central — SM head: Inferior central network (somatomotor, head portion); Lat. Occ.:
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124  Lateral occipital network; Lat. Post. Occ.: Lateral posterior occipital network; Med. Occ.:
125  Medial occipital network; Med. Post. Occ.: Medial posterior occipital network; Mid.
126  central (L) — SM hand (R): Middle central network, left hemisphere component
127  (somatomotor, right-hand portion); Mid. central (R) — SM hand (L): Middle central
128  network, right hemisphere component (somatomotor, left-hand portion); Post. Occ.:
129  Posterior occipital network; Post. Sup. Par.: Posterior superior parietal network; Sup.
130  central — SM body: Superior central network (somatomotor, body portion); Sup. Temp:

131  Superior temporal network.
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134  Figure 2: WhiteRest resting-state atlas of the switching/control, manipulation and
135  maintenance of information (MMI), and default mode network (DMN) related domains.
136  This composite figure shows the white matter 3D maps (green) and grey matter 3D maps
137  (red). Centre of the figure: Functional domains of the corresponding RSNs. Labelling
138  indicates an arbitrary RSN number (in blue), the primary cortical anatomical landmarks
139  (inblack) and putative cognitive function (in orange). DMN: Default Mode Network. dIPFC:
140  Dorso-lateral prefrontal cortex network; FPT 1/2/3 (L/R): Fronto-parieto-temporal
141  network1/2/3, Left /Right hemisphere component; Med. frontal: Medial frontal network;
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142  PC-Precuneal: Posterior cingulate-precuneal network; PH-Precuneal: Parahippocampal-
143  Precuneal network; PP-Precuneal: Posterior parietal-precuneal network.

144

145 The paired white matter and grey matter z-maps generated by our method were
146  thresholded using an arbitrarily high threshold of 7 to get a highly conservative estimate
147  of the RSNs’ spatial extent. Using this threshold, the combined white matter maps cover
148  96% of the brain white matter, except for some orbito-frontal and ventro-temporal
149  pathways, part of the internal capsule and part of the brain stem. Similarly, the combined
150  grey matter maps cover 79% of the cortical grey matter, except for ventral areas in the
151  temporal and frontal lobes.

152 The WhiteRest atlas reveals both the functional grey matter of an RSN and this
153  network's structural white matter circuitry. In the WhiteRest atlas, 21 of the 30 RSNs
154  display a symmetrical pattern between the left and the right hemispheres. Nine networks
155 are strongly lateralised, with four pairs of networks with contralateral homotopic
156  counterparts, and one network that was exclusively left lateralised (RSN20, language
157  production network). To help further explore each RSN, a description of the maps of all
158  the RSNs can be found in the supplementary material (Supplementary figures 1 - 30; the

159  continuous maps are also available at https: / /identifiers.org /neurovault.collection:11895

160  for the white matter, and https: / /identifiers.org /neurovault.collection:11937 for the grey

161  matter). As an illustrative example, the Default Mode Network (DMN) maps are
162  showcased in Figure 3. Although the DMN can be described as a set of sub-networks, one
163  of them is most representative of what is usually called “DMN” in the literature®**%3*: the
164  RSNI18, which we labelled as “DMN proper”.

165
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167  Figure 3: Default Mode Network proper (RSN18) maps, dorsal view. White matter map in

168  green, grey matter map in red. Composite map in the middle. The cerebellum is visible
169  through the glass-brain effect. AF-P: Arcuate fasciculus (posterior segment); mSFg.:
170  medial superior frontal gyrus; MTg: Middle temporal gyrus; SFg: Superior frontal gyrus;
171 SLF2: Second branch of the superior longitudinal fasciculus.
172
173 The grey matter map of the DMN proper revealed the bilateral involvement of the
174  medial frontal cortex (the medial superior frontal gyrus, the gyrus rectus, and the frontal
175  pole), the superior frontal gyrus, the middle temporal gyrus, the precuneus, the angular
176 ~ gyrus and the cerebellum. The white matter maps of the RSN showed previously
177  described pathways of the DMN, such as the second branch of the superior longitudinal
178  fasciculus (SLF2) connecting the superior parietal lobe to the superior frontal gyrus and
179  the cingulum connecting the precuneus area to the medial frontal area. Additionally, the
180  middle temporal gyrus and the angular gyrus are connected by the posterior segment of
181  the arcuate fasciculus. Interhemispheric connections were also present within the
182  anterior and posterior corpus callosum connecting both frontal lobes and both precunei,
183  respectively.
184 While the description of a known RSN, such as the DMN, can be used to validate
185  the atlas, WhiteRest can also explore the uncharted white matter anatomy of RSN, for
186  instance, the Dorsal Attention Network (RSN13) presented in Figure 4.
187
188
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189
190  Figure 4: Dorsal Attention Network (RSN13) maps, dorsal view. White matter map in

191 green, grey matter map in red. Union of the two maps in the middle. The insula and
192 cerebellum are visible through the glass-brain effect. AF-P: Arcuate fasciculus (posterior
193  segment); FAT: Frontal Aslant Tract; IPs/SPL: Intraparietal sulcus and superior parietal
194 lobule; Middle CC: Middle part of the corpus callosum; MTg: Middle temporal gyrus;
195  Posterior CC: Posterior part of the corpus callosum; PrCg: Precentral gyrus; Precentral
196  s.: Precentral sulcus; SFg: Superior frontal gyrus; SLF2: Second branch of the Superior
197  Longitudinal Fasciculus; SMg: Supramarginal gyrus.

198

199 The grey matter map revealed the involvement of core regions of the DAN, with
200  the parietal cortex - supramarginal gyrus (SMg), intraparietal sulcus (IPs) and superior
201  parietal lobule (IPL) - and part of the superior frontal gyrus (SMg), in the frontal eye field
202 region. It also showed other areas associated with the DAN, namely the precentral gyrus
203  (PrCg), the insula and the posterior part of middle temporal gyrus (MTg). The white
204 matter map unveiled the involvement of the second branch of the superior longitudinal
205  fasciculus (SLF2), connecting the inferior parietal cortex (IPs, SMg) with the frontal
206  regions of the network (i.e. SFg, PrCg and insula). SFg and PrCg were also interconnected
207  via the frontal aslant tract. The map also showed the involvement of the posterior
208 segment of the arcuate fasciculus, connecting the MTg with the parietal cortex.
209  Additionally, the map revealed the involvement of the corpus callosum, ensuring

210  interhemispheric connectivity.

10
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211 White matter RSNs, overlaps, and stroke lesions

212 The WhiteRest atlas suggests that most RSNs share white matter pathways with
213 other RSNs. Indeed, most of the brain’s white matter (i.e. 89%) is shared amongst multiple
214 RSN, with 16% of the white matter shared by at least 7 RSNs. By comparison, the grey
215  matter contribution to RSNs show much less overlap, where 53% of the grey matter
216 uniquely contributes to one RSN, and 45% to 2 or 3 RSNs. To determine the exact extent
217 of the overlaps in the white matter, we generated an overlap map displaying the number
218  of RSN per voxel in the brain. Large areas of the deep white matter showed high RSN
219  overlap count (> 7 overlapping RSNs), including in the centrum semiovale and sub-
220  portions of the medial corpus callosum (Fig. 5). RSNs also overlapped highly in the
221  cingulum, the second and third branches of the superior longitudinal fasciculi (SLF2,
222 SLF3), the arcuate fasciculi, and the inferior fronto-occipital fasciculi (IFOF) in both

223 hemispheres. In contrast, the superficial white matter demonstrated less RSN overlap.

224
Posterior CC Anterior CC
a
65 50 35
b
SLF3 5
g
g 10
g
Z s
IFOF / ILF .
Posterior CC & o &P \;<'\’ y & &
225 20 5 -10 X

226  Figure 5: RSN overlap in the brain. a: Overlay map of RSN white matter maps. Colour bar:
227  Number of RSN per voxel (saturated for n>14). Anterior CC: Anterior corpus callosum; AF-

228  L: Arcuate fasciculus (long segment); Cing.: Cingulum; IFOF: Inferior fronto-occipital

11
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229  fasciculus; ILF: Inferior longitudinal fasciculus; Posterior CC: Posterior corpus callosum;
230  SLF2: Second branch of the superior longitudinal fasciculus; SLF3: Third branch of the
231  superior longitudinal fasciculus; Unc: Uncinate fasciculus. b: Violin plots (normalised by
232 plotted area) of the overlap values in the total white matter and along the studied
233  pathways (left and right hemispheres combined). Each plot also contains a boxplot with
234  the median, the interquartile range (IQR), and “whiskers” extending within 1.5 IQRs of the
235 lower and upper quartile. WM: average whole white matter.

236

237 The existence of areas with high-density RSN overlap in the white matter point
238  toward the idea that lesions to the white matter could severely impact the functioning of
239  multiple RSNs and hence cause a diverse pattern of clinical symptoms. To explore this
240  aspect, we developed a new module, the WhiteRest tool, freely available online through
241  the Functionnectome software (available at http://www.bcblab.com). The WhiteRest
242 tool estimates the white matter disruption of an RSN by a lesion with a “disconnectome-
243 RSN overlap” score, the DiscROver score. It can also measure the local involvement of
244  each RSN for any given region of interest (ROI) in the white matter (measured as
245  “Presence score”, see the WhiteRest user guide in the supplementary material).

246

247 We validated the WhiteRest atlas in a clinical dataset of 131 stroke patients® and
248  compared their neurobehavioral deficits with the measured impact of the lesion on the
249  RSNs. More specifically, we explored the three deficits which could clearly be associated
250  with RSNs based on their estimated function. The three deficits and the four RSNs in
251  question were: left upper-limb motor control (MotorL) deficit associated with the
252 somatomotor network of the left-hand (RSN 09)(Fig. 6a); right upper-limb motor control
253  (MotorR) deficit associated with the somatomotor network of the right-hand (RSN
254  08)(Fig. 6b); and language deficit associated with the language comprehension network
255 (RSN 25)(Fig. 6¢) and with the language production network (RSN 20)(Fig. 6d). Each deficit
256  score (MotorL, MotorR, and Language deficit) is derived from a principal component
257  analysis (PCA) of the set of neurobehavioral assessment scores related to the deficit. The
258  impact of a lesion on RSNs was measured with the DiscROver score from the WhiteRest
259  tool. We show a strong and highly significant correlation between the neurobehavioral
260  deficit scores and the DiscROver scores for the related RSNs. The Pearson correlation

261  between the scores was: 0.75 (R* = 0.57) for the “Left upper-limb”; 0.60 (R? = 0.36) for the

12
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“Right upper-limb”; 0.68 (R* = 0.46) for the “Language (comprehension)”; and 0.61 (R* =
0.37) for the “Language (production)”. All correlations were highly significant with p < 10"
. For a more qualitative overview, we also showed that the lesion of all patients with
strong deficits (deficit score in the upper decile, Supp. Fig. 31) overlapped with the studied
RSN (Supp. Fig. 32 to 37).
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Figure 6: Relationship between neurobehavioral deficit and WhiteRest DiscROver. a-b:
Left (a) and right (b) upper-limb motor control deficit vs. DiscROver score for the
Somatomotor network of the left (a) and right (b) hand; c-d: Language deficit vs.

DiscROver score for the language comprehension network (c¢) and the language

13
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273 production network (d). In each graph, all the patients are represented (n = 131) and the
274  blue line corresponds to the linear fit between the scores, and the light blue area
275  corresponds to the confidence interval (set at 95%) for the linear fit. a.u.: arbitrary unit
276  (scores set between 0 and 1); R* Coefficient of determination.

277

278 Using this dataset, we also tested the plausibility of our above-mentioned
279  hypothesis whether lesions impacting multiple RSNs would “cause a diverse pattern of
280  clinical symptoms”. To do so, we selected patients for whom at least a third (DiscROver
281  score > 33) of both the right-hand somatomotor RSN and the language comprehension
282 RSN were impacted. Among these few patients (n = 11), the majority (n = 9) had clear
283  symptoms (i.e., deficit score in the upper quartile) for both language and right upper-limb
284  motor control (Supp. Fig. 38 & 39). While the group size of this analysis is too small for
285  definitive conclusions and limited to two RSNs, we believe these preliminary results are
286  astrongindication that our original hypothesis holds some truth and ought to incentivise

287 more research into this issue.

288 Discussion

289 We introduce WhiteRest, an atlas derived from integrated functional signal and
290  structural information revealing white matter and grey matter components for each
291  resting-state network. As such, the present work showcases two original results. First is
292  the atlas, which consists of the systematic mapping of white matter that contributes to
293  the resting-state networks. Second, our results demonstrate that white matter pathways
294  can contribute to multiple RSNs. This new atlas offers the prospect of exploring the
295 impact of white matter lesions on the integrity of resting-state networks and, thus, their
296  functioning.

297

298 The WhiteRest atlas is, to our knowledge, the first comprehensive statistical
299  mapping of the white matter contribution to RSNs. We generated white and grey matter
300 maps concurrently, yielding continuous statistical maps of the RSNs in both tissues, thus,
301 allowing for a thorough exploration of each network. The combination of functional and
302  structural information can help the exhaustive detection of RSNs as there is evidence that

303  structural connectivity holds complementary information regarding RSNs**. Hence, the
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304 multimodality of the signal might help identify and segregate networks as previously
305 demonstrated by other groups with different modalities (e.g., Glasser’s multi-modal
306  parcellation®). Previous studies also combined grey matter functional and white matter
307  structural information to explore the white matter contribution to resting-states
308 networks but were limited to a low number of RSNs??’ or were focused on the white
309 matter support of dynamical changes in functional connectivity”. In contrast, recent
310  works that undertook the atlasing of the RSN white matter connectivity did not directly
311 combine functional and structural information. They mapped the RSN white matter
312 circuits by connecting RSNs cortical regions from a pre-existing cortical RSNs atlas, using
313  tractography data*?®. In this approach, the functional-structural mapping is highly
314  dependent on the original cortical RSN atlas, while in our method, grey and white matter
315 information are used concurrently.
316 Another intriguing approach to the functional study of white matter has recently
317  been gaining traction and shown auspicious results: the analysis of the BOLD signal
318  directly in the white matter (mini-review by Gore et al., 2019). Using the BOLD signal from
319  white matter allows for its functional exploration and mapping without resorting to
320  connectivity models, which may lead to more physiologically accurate descriptions.
321  Multiple studies have used this framework to unveil RSNs in white matter, successfully
322  adapting classical RSN investigation methods to the white matter***. These studies
323  revealed a functional parcellation of the white matter, showing that it was possible to
324  identify multiple RSNs purely from functional signals while staying consistent with the
325 underlying structural connectivity. However, these approaches have yet to produce a
326  functional parcellation of the white matter displaying continuous, long-range
327  connectivity between different cortical regions. While efforts have been made to link
328  white matter RSNs with grey matter RSNs, previous studies were unable to present a
329  consistent 1-to-1 correspondence between white and grey matter RSNs. Thus, current
330 analyses using the white matter BOLD signal are limited regarding the functional
331 investigation of the white matter. In contrast, by combining structural and functional
332  (grey matter) signals with the Functionnectome, our approach generated white matter
333  maps that could better represent each network, and systematically paired them with
334  their well-known grey matter counterparts. The WhiteRest atlas also demonstrated
335 overlaps between RSNs, consistent with fibres from distinct networks crossing in the

336  white matter.
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337

338 Our data-driven method allowed for a global approach by mapping the whole
339  brain, except for ventral areas in zones strongly affected by magnetic susceptibility
340  artefacts, where both the fMRI and diffusion signals are degraded*®. The individual-ICA-
341 based scheme used to produce the statistical group maps revealed a fine granularity of
342  the RSNs, where brain regions that are spatially distant but functionally and structurally
343  connected are attributed to the same RSN. The fine granularity of the default mode
344 network (DMN) in the WhiteRest atlas is a good example of the multimodal improvement
345  of the networks’ segregation. Our analysis replicated four previously described** DMN-
346  related RSNs involving the precuneus (RSN 16, 17, 18 & 19), while also differentiating a DMN
347  proper (RSN18) from a medial frontal network (RSN15). For the DMN proper, the structural
348  connectivity is largely known*24 which offers a good opportunity to validate our
349 method. For instance, WhiteRest's DMN proper white matter map confirmed the
350 involvement of the cingulum, connecting the precuneus with the frontal cortex?2%4 and
351  of the superior longitudinal fasciculus (SLF2) connecting the superior frontal gyrus with
352  the angular gyrus**%. Similarly, the posterior segment of the arcuate fasciculus that
353 connects the inferior parietal lobule with the posterior temporal lobe has also been
354 reported in previous studies for the DMN****. Complementing the DMN-proper, following
355 previous DMN descriptions®, the medial frontal network involved the inferior
356 longitudinal fasciculus (ILF, connecting the occipital lobe with the temporal lobe), the
357 uncinate (connecting the temporal pole to the inferior frontal lobe), and the cingulum
358 (connecting temporal-parietal-frontal areas).

359 Similarly, the WhiteRest atlas can be used in a prospective and explorative
360 manner, as shown with the unveiling of the dorsal attention network (RSN13). While the
361 grey matter architecture of the DAN is well documented*# its white matter support has
362 only been partially explored®. To our knowledge, WhiteRest reveals the first
363 comprehensive description of the DAN’s white matter, that includes bilateral association
364 fibres connecting ipsilateral regions, and commissural fibres ensuring interhemispheric
365  connectivity. However, disentangling the exact functional relevance of each connection
366 remains a challenge that will require, for example, functionnectome investigation® or
367 advanced lesions analyses*~'. Such approaches might shed light on the hierarchical and
368 functional implications of RSN circuits****% Recent results have highlighted the

369 importance of white matter structural disconnections in the disruption of functional
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370  connectivity®®, and this disruption has been linked to behavioural and cognitive
371  dysfunction®®. Therefore, being able to identify these RSN white matter “highways”
372 would propel our understanding of disconnection symptoms, improve recovery
373  prognostics, and inform preoperative brain surgery planning®. To facilitate these efforts,
374  we released the WhiteRest tool (as a module of the Functionnectome) that quantifies the
375  presence of RSNs in a specific region of the brain’s white matter. The WhiteRest module
376  was designed to accept regions of interest (e.g. from parcellations or lesions) in the MNI
377 152 space (2x2x2 mm?®) and estimates the RSNs involved or in the case of lesions, which
378  RSNs would be impacted by a lesion in this region.

379

380 As a proof of concept and to validate the atlas, the WhiteRest tool was applied to
381 the lesions of 131 stroke patients to compare the DiscROver score of 4 RSNs with the
382  symptoms associated with their putative functions. We observed a strong correlation
383  between each neurobehavioral deficit and their corresponding RSN DiscROver score,
384  namely: Left and right upper-limb motor control deficit with the somatomotor networks
385  ofleft- and right-hand, respectively; and language deficit with both language production
386  and language comprehension networks.

387 These results serve as the first clinical validation of the WhiteRest atlas, showing
388 that its structural and functional mapping is sound, and that it could be employed in the
389  scope of patient research, opening up a novel strategy to assert the cognitive functions
390 related to RSNs. Associating functions to RSNs is usually done by indirect inference, using
391 their spatial maps and contrasting them with fMRI-derived activation maps of specific
392  cognitive functions® As lesion studies have historically been a major tool in determining
393 functions of grey matter area®, and more recently of white matter pathways®®, WhiteRest
394  provides anew tool to understand the link between cognition and resting-state networks.
395 Reversely, the WhiteRest integrated functional and structural connectivity can shed light
396  on the functional mechanisms of the brain and the origins of cognitive disorders. While
397  promising results link stroke symptoms and RSNs in our study, further investigations will
398  be required to fully disentangle the relationship between cognition (or cognitive deficits)
399  and RSNs, using more advanced models than the relatively simple linear approach from
400 the present study. Recent works have been undertaking the prediction of symptoms and

401 recovery from stroke based on functional and structural data®*°, a very important and
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402  interesting goal for which WhiteRest may eventually be of use, adding interpretable data
403  to these multimodal methods.
404
405 While the WhiteRest module and atlas represent an advance in resting state
406  functional neuroimaging, it is not exempt from limitations. For instance, we excluded the
407  cerebellum-centred RSN in the present work. This decision was motivated by some
408 limitations of tractography that are exacerbated in the cerebellum®, mitigating the
409  quality of the modelled pathways. For example, the fine structure of the cerebellum and
410  the gathering of fibres in the brainstem are affected by partial volume and bottleneck
411  effects®. Also, some of the maps displayed white matter pathways leading to grey matter
412  areas absent on the related grey matter map. Some of these cases can be explained as
413  simply threshold-dependent (i.e. z>7 to facilitate the visualisation of 3D structures),
414  which hid some of the less significant (but still involved) areas. However, these pathways
415  might correspond to the structural link between different RSNs. Thus, when exploring a
416  network in detail, we strongly advise checking the non-thresholded maps to better
417  appreciate the entire white matter network involved in RSNs.
418
419 All in all, we introduced a novel combined atlas of resting-state networks based
420  on functional and structural connectivity to deliver white matter and grey matter maps
421  for each RSN — the WhiteRest atlas. This atlas allows for the exploration of the structural
422  support of individual RSN and facilitates the study of the impact of white matter lesions
423  on resting-state networks. Accordingly, we released the WhiteRest module that
424  estimates the proportion of RSNs impacted by a given white matter lesion. With this tool,
425  future research can focus on exploring the link between white matter lesions and their
426  effects on the related resting-state networks in light of symptom diagnosis. Leveraging a
427  deep-learning approach recently introduced* opens the possibility for individual
428  resting-state functionnectome analyses and will facilitate a more personalised
429  neuromedicine.

430
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431 Methods

432  HCP dataset

433 The dataset used in the present study is composed of the openly-available resting-
434  state scans (rsfMRI) from 150 participants (75 females; age range 22-35 years) of the
435 Human Connectome Project (HCP)*, with 45 participants from the test-rest HCP dataset
436 and 105 randomly sampled participants from the Young adult dataset
437  (http://www.humanconnectome.org/study/hcp-young-adult/; WU-Minn

438  Consortium; Principal investigators: David Van Essen and Kamil Ugurbil;

439 1US4MHO091657).

440 Acquisition parameters

441 Full description of the acquisition parameters can be found on the HCP website

442  (https://www.humanconnectome.org /hcp-protocols-ya-3t-imaging) and in the

443  original HCP publication®. Briefly, the resting-state scans were acquired with 3 Tesla
444  Siemens Skyra scanners and consist of whole-brain gradient-echo EPI acquisitions using
445  a 32-channel head coil with a multi-band acceleration factor of 8. The parameters were
446  set with: TR=720ms, TE=33.1ms, 72 slices, 2.0 mm isotropic voxels, in-plane
447 FOV =208 x180 mm, flip angle=52°, BW=2290 Hz/Px. Each resting-state acquisition
448  consisted of 1200 frames (14min and 24sec), and was repeated twice using a right-to-left

449  and a left-to-right phase encoding.

450 Preprocessing

451 The resting-state acquisitions were then preprocessed using the “Minimal
452  preprocessing pipeline” fMRIVolume®, applying movement and distortion corrections
453  and registration to the MNI152 (2009) non-linear asymmetric space. Note that all the
454 analyses done in the present study were conducted in this space, and subsequent
455 mention of “MNII152” will refer to that space. Further processing steps were also applied:
456  despiking; voxelwise detrending of potentially unwanted signal (6 motion regressors, 18
457 motion-derived regressors®, and CSF, white matter, and grey matter mean time-

458  courses); temporal filtering (0.01-0.1 Hz); and spatial smoothing (5 mm FWHM). While of
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459  exceptional quality, we chose to alter the HCP data to make it clinically relevant. A
460 composite resting-state 4D volume was generated by discarding the 300 first and 300
461 last frames of the resting state acquisitions and concatenating (along the time axis) the
462  resulting volumes. For each participant, this corresponded to 7.5 minutes with the left-

463  right and 7.5 minutes with the right-left phase of acquisition (= 1200 frames total).

464 Stroke dataset

465 A dataset of 131 stroke patients (46% female, 54 years +/-11 years, range 19-83
466  years) with diverse cognitive deficits was used to validate the plausibility of the atlas and
467 demonstrate the feasibility for potential clinically oriented approaches. The cohort of
468  patients (n = 132) was recruited at the School of Medicine of Washington University in St.
469  Louis (WashU)®. One patient from this cohort was excluded because of missing data. All
470  participants gave informed consent, as per the procedure implemented by WashU
471 Institutional Review Board and in agreement with the Declaration of Helsinki (2013). The
472  data of each patient consisted of their MRI-derived manually segmented brain lesion as
473  well as the associated neurobehavioral scores. In the present study, we focused on 3
474  deficits: language, left upper-limb motor control, and right upper-limb motor control
475  deficits. They were established based on the acute (13 * 4.9 days after stroke)
476  neurobehavioral assessment scores of the patients, with 7 scores for language deficit, and
477 7 scores for each upper-limb motor control (left and right). The language deficit was
478  tested using the Semantic (animal) verbal fluency test (SVFT, 1 score) and the Boston
479  Diagnostic Aphasia Examinations (BDAE, 6 scores). The left and right upper-limb motor
480  control deficit was tested using the Action Research Arm test (ARAT, 3 scores), the Jamar
481 Dynamometer grip strength assessment (1 score), the 9-Hole Peg test (9HPT, 1 score), and
482  the shoulder flexion and wrist extension assessment (2 scores). Additional precisions can

483  be found in the supplementary methods.
484  Extraction of white matter and grey matter components

485 Projection of the functional signal to the white matter

486 To explore the white matter structures of resting-state networks, we projected

487 the functional signal from the rs-fMRI scans onto the white matter using the
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488  Functionnectome?®?! (https: / /github.com /NotaCS /Functionnectome). The

489  Functionnectome is a recently introduced method that unlocks the functional study of
490  white matter. Briefly, the Functionnectome takes an fMRI scan and a grey matter mask as
491 inputs combines grey matter BOLD signal with white matter anatomical priors, and
492  outputs a new functional volume (called a functionnectome) with the same dimensions
493  as the original fMRI scan (same 3D space, same number of time-points), but with the
494  functional signal associated to the white matter. The Functionnectome provides default
495  white matter priors®. The white matter priors were originally derived from the 7 Tesla
496  diffusion data of a subset of 100 randomly selected HCP participants from the HCP young
497  adults cohort. Deterministic tractography was run on this diffusion data using StarTrack

498  (https://www.mr-startrack.com) to estimate the structural connectivity between each

499  voxel of the brain and build the Functionnectome white matter priors.
500 In this functionnectome volume, the signal of a white matter voxel results from
501 the combination of the BOLD signals from the voxels within the grey matter mask that
502 are structurally connected to it (weighted by the probability of connection). The
503 structural connectivity probability is given by the anatomical priors provided with the
504 software (customisable priors option available). Using the Functionnectome thus allows
505 the analysis of the functional signal in a connectivity-oriented framework by integrating
506  the signal from distant but structurally connected grey matter voxels or clusters of
507  voxels.
508
509 For our analysis, each of the 150 rs-fMRI scans from the dataset were processed
510  with the Functionnectome, along with a grey matter mask (the same mask for all the
511  subjects). This mask was computed using the brain parcellation data from all the
512 participants: the mask corresponds to the voxels identified as part of the grey matter in
513 at least 10% of the participants. This processing produced 150 resting-state

514  functionnectome (rs-functionnectome) volumes, one per participant.

515 Independent component analysis

516 To extract RSN from the data, we used an independent component analysis (ICA)
517  method. For each participant, the original rs-fMRI scan was spatially concatenated with
518  the associated rs-functionnectome. It resulted in functional volumes containing, side by

519  side, the original resting-state signal (on the grey matter) and the rs-functionnectome
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520  signal (on the white matter). These composite functional volumes were then analysed
521 with MELODIC (multivariate exploratory linear optimised decomposition into
522  independent components, version 3.15), from the FMRIB Software Library (FSL)* to
523  extract independent components (ICs) from the signal. The number of IC per participant
524  was individually determined by Laplace approximation®. This resulted in a set of ICs,
525 unlabeled putative RSNs, per participant. Each IC was composed of a temporal
526  component (the IC’s time-course) and a spatial map, displaying side by side (due to the
527  above-mentioned spatial concatenation) the component in rs-fMRI (i.e. grey matter)
528  space and in the rs-functionnectome (i.e. white matter) space. Each IC was then split into

529  paired white matter maps and grey matter maps.

530 Generating RSN maps by clustering ICs

531 We used MICCA*, an unsupervised classification algorithm developed to
532  automatically group ICs from multiple individual ICAs (from different participants) based
533 on the similarity of their spatial maps. The resulting groups, composed of ICs
534 reproducible across participants, were used to produce group maps. Such an individual-
535 based ICA scheme was preferred to the classical group ICA as some evidence suggests
536  that group ICA can fail to separate some RSN if they share functional hubs™®.

537 The atlas was produced by applying MICCA using the procedure described in the
538 original Naveau et al. paper™®, in a 5-repetition scheme (i.e. ICA and MICCA were repeated
539 5 times per participant, and the resulting IC groups were paired with ICASSO®). The
540  procedure generated 36 IC groups and their associated z-map, reproducible across the
541 repetitions. Among them, 5 groups were identified as artefacts and were excluded, and 1
542  was located in the cerebellum and was excluded too in later analyses. The artefacts were
543  visually identified when the grey matter z-map was spread along the border of the brain
544  mask (typical of motion artefacts, n = 3), or was mainly located in ventricles or along blood
545 vessels (n = 2). The cerebellar RSN was discarded because of known problems with
546  tractography in the cerebellum®, to avoid providing the atlas with a white matter map
547  poorly representing the correct connectivity of this region.

548 We thus obtained a total of 30 RSNs, producing the WhiteRest atlas. Each RSN was
549 then named by experts (MJ, VN) according to its anatomical localisation and in reference

550  to AALS%% and AICHAS®® atlas. Likewise, the classification of RSNs to a functional domain
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551  was done by an expert using the grey matter spatial patterns and estimated functional
552  role of the RSNs presented here, compared to the one from Doucet et al.?

553 Note that we applied MICCA on the grey matter maps of the ICs. We used these
554 maps for the clustering as MICCA has been developed and validated to cluster only
555  classical resting-state derived spatial maps (in grey matter space). As each grey matter
556  map is associated with a white matter map (since they are part of the same IC), the
557  procedure still produces paired grey and white matter RSN maps, as presented in the

558 atlas.

559 Overlap analysis and DiscROver

560 To measure the extent of overlaps between RSNs in the white matter, all the maps
561  were thresholded (z>7), binarised, and summed, generating a new map with the number
562  of RSN per voxel.

563 Additionally, we provide a new software, the WhiteRest tool, to explore how the
564  white matter is shared between RSNs. It offers “Presence” scores measuring local
565  overlaps of RSNs for a given ROI (see the WhiteRest tool manual in the Sup. Mat.). It also
566 measures the DiscROver score (for Disconnectome-RSN Overlap score), specifically
567  designed to estimate the white matter disruption of RSNs by a lesion. First, the extent of
568  white matter fibres disconnected by the lesion is estimated using the Disconnectome
569 method49. This method yields a disconnectome map displaying the probability of
570  structural connectivity between the lesion and each brain voxel (Fig. 7a). Hence, the
571  higher the value on the disconnectome map, the more likely the disruption of
572 connectivity in the voxel due to the lesion. Then, the weighted overlap of the RSN (Fig.
573  7b)with the disconnectome is computed by voxel-wise multiplication of the RSN map and
574  the disconnectome map (Fig. 7c). The DiscROver score is computed as the sum of the
575  values of this weighted overlap map, normalised by the sum of the values in the RSN, and
576  multiplied by 100. With this score, O means that the lesion does not impact any white
577  matter voxel of the RSN, and 100 means it impacts the entire RSN.

578  The complete computation of the DiscROver score is summarised in Equation 1:

579 DiscROver(RSN, Disco) = 100 x Zversn ZRsN (V) XPbisco(V) (1)

YversN Zrsn(v)
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580  With “RSN” representing the atlas white matter Z-map of a given RSN, with its voxel
581 values annotated as “Zrsn(v)”, and “Disco” the disconnectome map of a lesion, with its voxel

582  values annotated as “Ppisco(V)".

583
c
Lesion Disconnectome map
(Disco)
: _ 2. Disco X RSN
DiscROver =100 x S RSN
RSN White matter map
(RSN)
584

585  Figure 7. Steps for the computation of the DiscROver score. a - Lesion mask (left) and
586  associated disconnectome (right). b - RSN map used for the DiscROver score
587  computation. ¢ - Visual representation of the weighted overlap, and computation of the
588  DiscROver score. Disco: Disconnectome map; RSN: Resting-state network map.

589

590 Stroke data analysis

591 To validate our WhiteRest atlas, we used the WhiteRest tool to link stroke lesions with
592  RSNs. We first selected 4 RSNs for which we were confident we could identify a specific
593  cognitive function: we chose the somatomotor networks of the right (RSN 08) and left
594 (RSN 09) hand, the language production network (RSN 20), and the language network
595 comprehension (RSN 25). The DiscROver score of the 131 lesions was computed for each

596  of these 4 RSNs.
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597  Each RSN was paired according to their putative function with one of the 3 studied
598  cognitive deficits: The somatomotor network of the right-hand with the right upper-limb
599  motor control deficit; the somatomotor network of the left-hand with the left upper-limb
600 motor control deficit; and the language production and language comprehension
601 networks both with the language deficit.
602  Because each deficit was associated with multiple clinical scores, we ran a principal
603  component analysis (PCA) on each group of clinical scores and projected the scores on
604  each corresponding first principal component. The “MotorL deficit” score was generated
605  using the 7 clinical scores for left upper-limb motor control deficit. The “MotorR deficit”
606  score was generated using the 7 clinical scores for right upper-limb motor control deficit.
607  And the “Language deficit” score was generated using the 7 clinical scores for language
608  deficit. Additional details on those three sets of scores are available in the supplementary
609 methods. The PCA-derived scores for each cognitive deficit were normalised between O
610 and 1, with O corresponding to the minimum deficit and 1 to the maximum deficit in the
611 data. This dimensionality reduction step allowed us to capture most of the variance in
612  the data (i.e., the difference in clinical symptoms between patients) while limiting the
613  study of each cognitive deficit to one variable: MotorL, MotorR, and Language deficit
614  scores respectively, explained 95%, 91%, and 74% of the variance of their clinical scores.
615  Finally, for each RSN-deficit pair, the DiscROver scores of all the patients were plotted
616  against the associated PCA-derived score, with the linear fit and coefficient of
617  determination (R2). Note that the DiscROver scores for the language production network
618 and the language comprehension network were plotted against the same Language
619  deficit score.

620

621 Visualisation

622 The 3D =z-maps presented in figures 1-4 were generated using Surf Ice

623  (https://www.nitrc.org /projects /surfice /), with the default mni152_2009 brain volume

624  as the background template. The 2D brain slices of figures 5 and 7 were displayed on a

625 standard template in MRIcron (https://www.nitrc.org/projects /mricron). Each white

626  matter map was masked to remove the grey matter part of the volume and improve

627  readability. The mask used corresponded to voxels defined as white matter in at least 10%
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628  of the 150 participants, according to the parcellation provided with the HCP datasets. In
629  figure 5, the RSN count was saturated at 14 on the displayed map to improve readability,
630 as only a handful of voxels presented higher values.

631

632 Statistics and Reproducibility

633 In the stroke analysis, the relationship between neurobehavioral deficits and the RSN
634  DiscROver scores was measured by Pearson’s correlation and linear fit. The statistical
635  significance of the correlation was measured using the dedicated function from the Scipy
636  Python library:

637 https://docs.scipy.org /doc /scipy /reference /generated /scipy.stats.pearsonr.html

638 The confidence intervals (CI) of figure 6 represent the 95% CI estimated with 1000
639  bootstrap resamples of the data, using the “regplot” function from the Seaborn Python
640 library:

641 https://seaborn.pydata.org/generated /seaborn.regplot.html
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