

1 Atlasing white matter and grey matter joint
2 contributions to resting-state networks in the
3 human brain

4 **Victor Nozais^{1,2} Stephanie J Forkel^{2,3,4,5} Laurent Petit¹ Lia Talozzi^{2,6}**

5 **Maurizio Corbetta⁷ Michel Thiebaut de Schotten^{1,2} Marc Joliot¹**

6 1 Univ. Bordeaux, CNRS, CEA, IMN, UMR 5293, GIN, F-33000 Bordeaux, France

7 2 Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France

8 3 Donders Institute for Brain Cognition Behaviour, Radboud University, Nijmegen, the
9 Netherlands

10 4 Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry,
11 Psychology and Neuroscience, King's College London, London, UK

12 5 Departments of Neurosurgery, Technical University of Munich School of Medicine,
13 Munich, Germany.

14 6 Department of Neurology, Stanford University, Stanford, USA

15 7 Department of Neuroscience, Venetian Institute of Molecular Medicine and Padova
16 Neuroscience Center, University of Padua, Padova, PD 32122, Italy

17

18 Corresponding authors:

19 Marc Joliot: marc.joliot@u-bordeaux.fr

20 Victor Nozais: victor.nozais@u-bordeaux.fr

21

22

23

24 Abstract

25 Over the past two decades, the study of resting-state functional magnetic resonance
26 imaging has revealed that functional connectivity within and between networks are
27 linked to cognitive states and pathologies. However, the white matter connections
28 supporting connectivity remain only partially described. We developed a method to
29 jointly map the white and grey matter contributing to each resting-state network. Using
30 the Human Connectome Project, we generated an atlas of 30 resting-state networks. The
31 method also allows highlighting the overlap between networks, which revealed that most
32 of the brain's white matter (89%) is shared between multiple networks, with 16% shared
33 by at least 7 resting-state networks. These overlaps, especially the existence of regions
34 shared by numerous networks, suggest that white matter lesions in these areas might
35 strongly impact the correlations and the communication within resting-state networks.
36 We provide an open-source software to explore the joint contribution of white and grey
37 matter to RSNs and facilitate the study of the impact of white matter damage on RSNs. In
38 a first clinical application of the software, we were able to link stroke patients and
39 impacted resting-state networks, showing that their symptoms aligned well with the
40 estimated functions of the networks.

41
42
43
44
45
46

47 Introduction

48 Since the early 1990s, functional magnetic resonance imaging (fMRI) peers inside the
49 workings of the living human brain¹. Task fMRI unveiled countless aspects of brain
50 functioning in healthy participants and patients. However, paradigm-free resting-state
51 fMRI (rs-fMRI) analysis shows a striking correspondence with tasks-related fMRI² yet
52 provides the most comprehensive depiction of the brain's functional organisation. Rs-
53 fMRI explores the awake brain at rest when no specific external task is required from the

54 participant. During rest, quasi-periodic low-frequency oscillations in the fMRI signal –
55 blood-oxygen-level-dependent signal or BOLD – spontaneously occur³. Distant brain
56 regions display synchronous BOLD signal oscillations, testifying to functional
57 connectivity between regions and forming intrinsic functional networks, so-called
58 resting-state networks (RSNs)^{4–6}. RSNs are related to cognition², and their alteration has
59 been linked to various brain pathologies^{7–9}, potentially opening up this field to a wide
60 range of applications¹⁰. Hence, a resting-state acquisition is appealing and much less
61 demanding than the active participant involvement in a task.

62 The identification of RSNs has been tackled in multiple ways¹¹. One of the most popular
63 approaches is an independent component analysis (ICA)^{5,12,13}, a data-driven method of
64 signal separation¹⁴ able to identify and extract independent components (ICs)
65 corresponding to RSNs in the resting-state signal across the brain. From such
66 components, resting-state networks and their grey matter maps can be identified.

67 With the progress of the functional connectivity framework, the question of the
68 underlying structural connectivity became pressing. Indeed, understanding the
69 anatomical drivers of the functional connection between multiple regions is necessary to
70 properly study these networks' dynamics and biological relevance. In that regard, the
71 advent of diffusion-weighted imaging (DWI) tractography enabled the description of
72 white matter circuits in the living human brain. DWI measures the preferential
73 orientations of water diffusion in the brain¹⁵, which mostly follow axonal directions. Using
74 orientation information, tractography algorithms piece together local estimates of water
75 diffusion to reconstruct white matter pathways¹⁶. DWI is a potent, non-invasive in-vivo
76 tool for mapping the white matter anatomy¹⁷ and estimating structural connectivity
77 between brain regions^{18,19}. Leveraging tractography, the joint study of functional and
78 structural connectivity, has become an active field of research. However, previous work
79 compared functional connectivity and structural connectivity between pairs of grey
80 matter brain parcels^{20,21}. Or when studies provided white matter maps related to resting-
81 state networks, they either focused on a single network^{22–25} or a restricted number of
82 RSNs^{26–28} with limited statistical confirmation of structural-functional connectivity
83 relationships^{22–25}.

84 Notably, ICA applied to white matter tractography data produces circuits whose grey
85 matter projections resemble resting-state networks^{29,30}. These results demonstrate that
86 information about the organisation of RSNs can also be extracted from white matter data

87 and might be complementary to the information provided by resting-state BOLD signal
88 analysis. However, to our knowledge, a comprehensive description of the white matter
89 circuits in all identifiable resting-state networks is still lacking. In principle, such
90 endeavour could be achieved by using the Functionnectome^{30,31}. This recently developed
91 method combines fMRI with tractography by projecting the grey matter BOLD signal onto
92 white matter pathways.

93 In the present study, we extended our previous approach – the Functionnectome
94 methodology³⁰ – to RSNs, integrating the grey matter resting-state signal with white
95 matter connections, and analysed the resulting data through ICA. We produced the most
96 comprehensive atlas of 30 RSNs specifying their grey matter maps together with their
97 white matter circuitry – the WhiteRest atlas. This atlas unlocks the systematic
98 exploration of white matter components supporting resting-state networks. The atlas
99 comes with companion software, the WhiteRest tool, a module of the Functionnectome
100 that will facilitate this exploration and assist the investigation of brain lesions' effects on
101 RSNs and cognition.

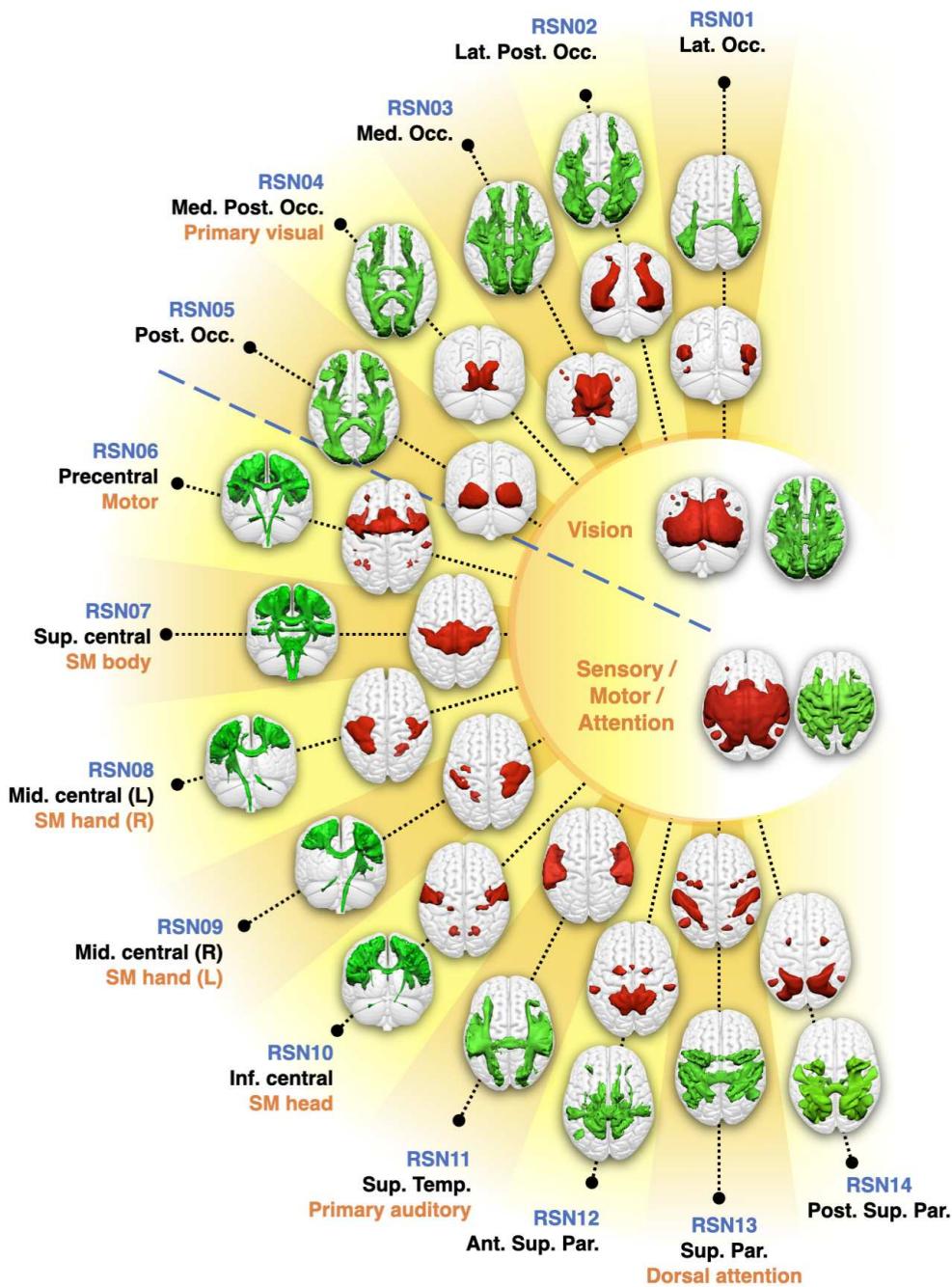
102 Results

103 Mapping the resting brain: RSNs in white matter and 104 grey matter

105 Rs-fMRI scans derived from the Human Connectome Project³² were converted
106 into functionnectome volumes using the Functionnectome software^{30,31} (available at
107 <http://www.bcbilab.com>). The original rs-fMRI and functionnectome volumes were
108 simultaneously entered into an Independent Component Analysis for each participant.
109 The resulting individual independent components were then automatically classified
110 using MICCA³³, generating 30 IC groups, each group corresponding to one resting-state
111 network. These groups were used to create RSN z-maps with paired white matter and
112 grey matter maps (Fig. 1) – the WhiteRest atlas.

113

114



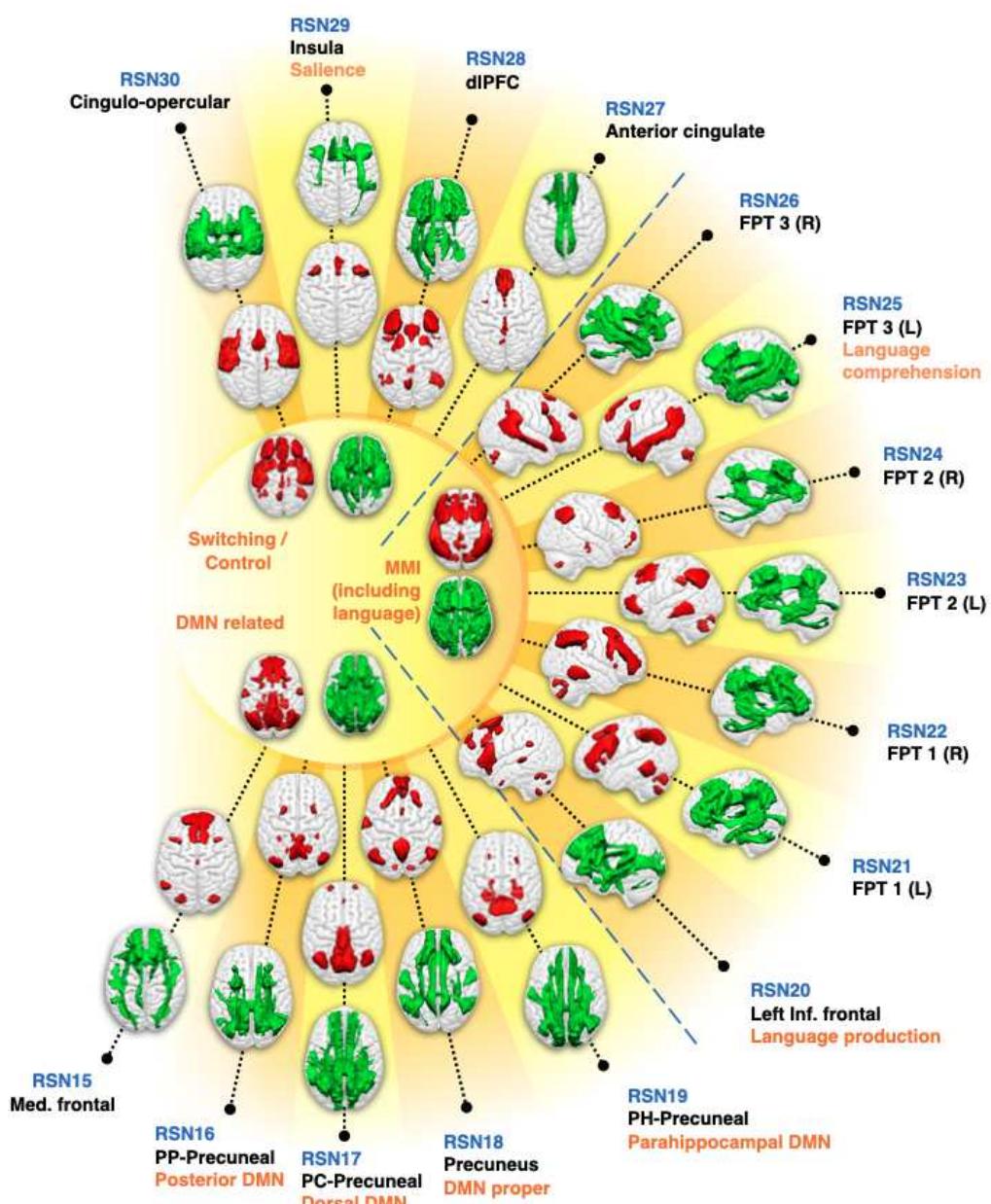
115

116 **Figure 1:** WhiteRest resting-state atlas of the visual and sensory/motor/attention
117 domains.

118 This composite figure shows the white matter 3D maps (green) and grey matter 3D maps
119 (red). Centre of the figure: Functional domains of the corresponding RSNs. The functional
120 domains' 3D maps are the union of the associated RSNs. Labelling indicates an arbitrary
121 RSN number (in blue), the primary cortical anatomical landmarks (in black) and putative
122 cognitive function (in orange). Ant. Sup. Par.: Anterior superior parietal network; Inf.
123 central – SM head: Inferior central network (somatomotor, head portion); Lat. Occ.:

124 Lateral occipital network; Lat. Post. Occ.: Lateral posterior occipital network; Med. Occ.:
125 Medial occipital network; Med. Post. Occ.: Medial posterior occipital network; Mid.
126 central (L) – SM hand (R): Middle central network, left hemisphere component
127 (somatomotor, right-hand portion); Mid. central (R) – SM hand (L): Middle central
128 network, right hemisphere component (somatomotor, left-hand portion); Post. Occ.:
129 Posterior occipital network; Post. Sup. Par.: Posterior superior parietal network; Sup.
130 central – SM body: Superior central network (somatomotor, body portion); Sup. Temp:
131 Superior temporal network.

132



133

134 **Figure 2:** WhiteRest resting-state atlas of the switching/control, manipulation and
135 maintenance of information (MMI), and default mode network (DMN) related domains.
136 This composite figure shows the white matter 3D maps (green) and grey matter 3D maps
137 (red). Centre of the figure: Functional domains of the corresponding RSNs. Labelling
138 indicates an arbitrary RSN number (in blue), the primary cortical anatomical landmarks
139 (in black) and putative cognitive function (in orange). DMN: Default Mode Network. dlPFC:
140 Dorso-lateral prefrontal cortex network; FPT 1/2/3 (L/R): Fronto-parieto-temporal
141 network 1/2/3, Left/Right hemisphere component; Med. frontal: Medial frontal network;

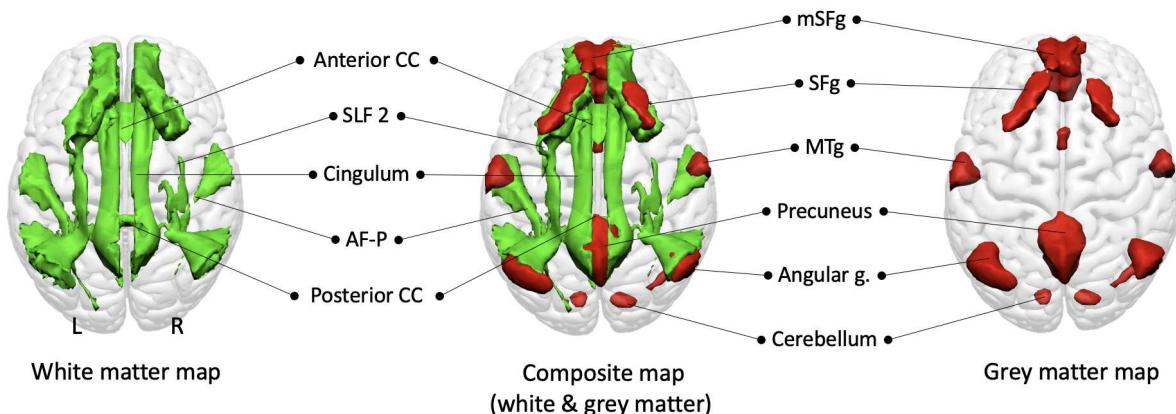
142 PC-Precuneal: Posterior cingulate-precuneal network; PH-Precuneal: Parahippocampal-
143 Precuneal network; PP-Precuneal: Posterior parietal-precuneal network.

144

145 The paired white matter and grey matter z-maps generated by our method were
146 thresholded using an arbitrarily high threshold of 7 to get a highly conservative estimate
147 of the RSNs' spatial extent. Using this threshold, the combined white matter maps cover
148 96% of the brain white matter, except for some orbito-frontal and ventro-temporal
149 pathways, part of the internal capsule and part of the brain stem. Similarly, the combined
150 grey matter maps cover 79% of the cortical grey matter, except for ventral areas in the
151 temporal and frontal lobes.

152 The WhiteRest atlas reveals both the functional grey matter of an RSN and this
153 network's structural white matter circuitry. In the WhiteRest atlas, 21 of the 30 RSNs
154 display a symmetrical pattern between the left and the right hemispheres. Nine networks
155 are strongly lateralised, with four pairs of networks with contralateral homotopic
156 counterparts, and one network that was exclusively left lateralised (RSN20, language
157 production network). To help further explore each RSN, a description of the maps of all
158 the RSNs can be found in the supplementary material (Supplementary figures 1 - 30; the
159 continuous maps are also available at <https://identifiers.org/neurovault.collection:11895>
160 for the white matter, and <https://identifiers.org/neurovault.collection:11937> for the grey
161 matter). As an illustrative example, the Default Mode Network (DMN) maps are
162 showcased in Figure 3. Although the DMN can be described as a set of sub-networks, one
163 of them is most representative of what is usually called "DMN" in the literature^{24,26,34}: the
164 RSN18, which we labelled as "DMN proper".

165



166

167 **Figure 3:** Default Mode Network proper (RSN18) maps, dorsal view. White matter map in
168 green, grey matter map in red. Composite map in the middle. The cerebellum is visible
169 through the glass-brain effect. AF-P: Arcuate fasciculus (posterior segment); mSFG.:
170 medial superior frontal gyrus; MTg: Middle temporal gyrus; SFg: Superior frontal gyrus;
171 SLF2: Second branch of the superior longitudinal fasciculus.

172

173 The grey matter map of the DMN proper revealed the bilateral involvement of the
174 medial frontal cortex (the medial superior frontal gyrus, the gyrus rectus, and the frontal
175 pole), the superior frontal gyrus, the middle temporal gyrus, the precuneus, the angular
176 gyrus and the cerebellum. The white matter maps of the RSN showed previously
177 described pathways of the DMN, such as the second branch of the superior longitudinal
178 fasciculus (SLF2) connecting the superior parietal lobe to the superior frontal gyrus and
179 the cingulum connecting the precuneus area to the medial frontal area. Additionally, the
180 middle temporal gyrus and the angular gyrus are connected by the posterior segment of
181 the arcuate fasciculus. Interhemispheric connections were also present within the
182 anterior and posterior corpus callosum connecting both frontal lobes and both precunei,
183 respectively.

184 While the description of a known RSN, such as the DMN, can be used to validate
185 the atlas, WhiteRest can also explore the uncharted white matter anatomy of RSNs, for
186 instance, the Dorsal Attention Network (RSN13) presented in Figure 4.

187

188

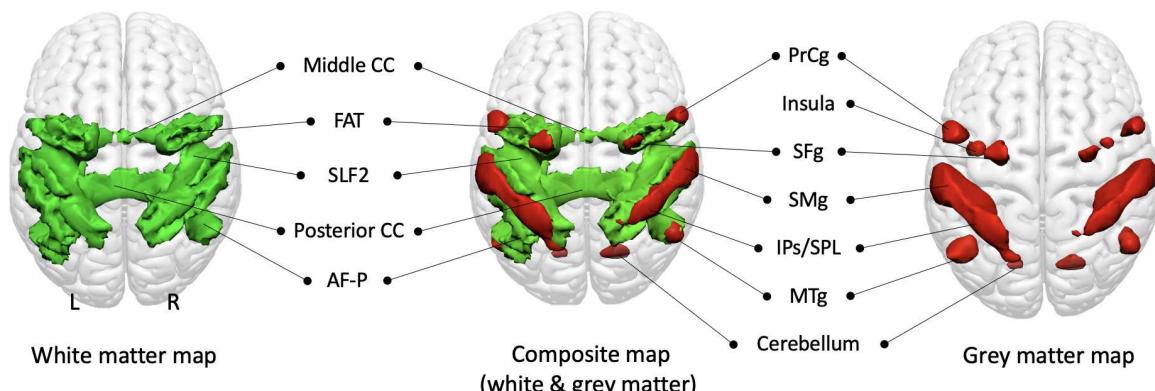
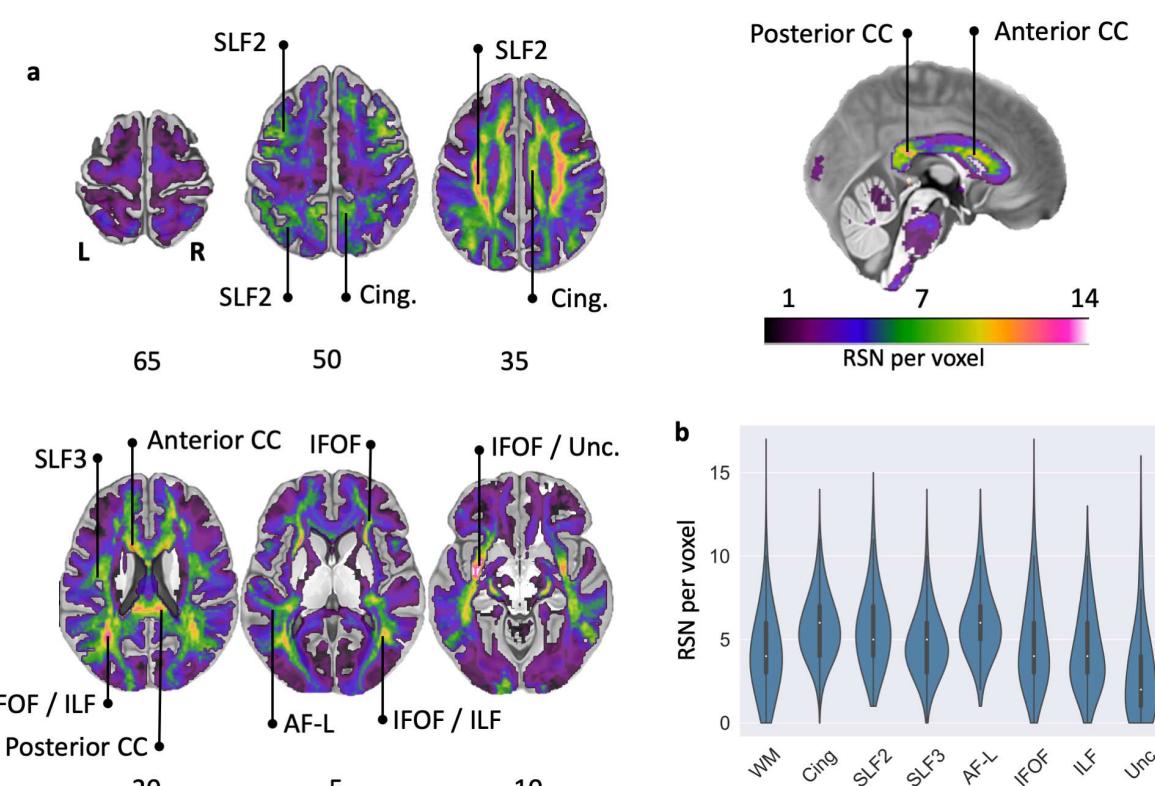


Figure 4: Dorsal Attention Network (RSN13) maps, dorsal view. White matter map in green, grey matter map in red. Union of the two maps in the middle. The insula and cerebellum are visible through the glass-brain effect. AF-P: Arcuate fasciculus (posterior segment); FAT: Frontal Aslant Tract; IPs/SPL: Intraparietal sulcus and superior parietal lobule; Middle CC: Middle part of the corpus callosum; MTg: Middle temporal gyrus; Posterior CC: Posterior part of the corpus callosum; PrCg: Precentral gyrus; Precentral s.: Precentral sulcus; SFg: Superior frontal gyrus; SLF2: Second branch of the Superior Longitudinal Fasciculus; SMg: Supramarginal gyrus.

The grey matter map revealed the involvement of core regions of the DAN, with the parietal cortex – supramarginal gyrus (SMg), intraparietal sulcus (IPs) and superior parietal lobule (IPL) – and part of the superior frontal gyrus (SMg), in the frontal eye field region. It also showed other areas associated with the DAN, namely the precentral gyrus (PrCg), the insula and the posterior part of middle temporal gyrus (MTg). The white matter map unveiled the involvement of the second branch of the superior longitudinal fasciculus (SLF2), connecting the inferior parietal cortex (IPs, SMg) with the frontal regions of the network (i.e. SFg, PrCg and insula). SFg and PrCg were also interconnected via the frontal aslant tract. The map also showed the involvement of the posterior segment of the arcuate fasciculus, connecting the MTg with the parietal cortex. Additionally, the map revealed the involvement of the corpus callosum, ensuring interhemispheric connectivity.

211 White matter RSNs, overlaps, and stroke lesions

212 The WhiteRest atlas suggests that most RSNs share white matter pathways with
213 other RSNs. Indeed, most of the brain's white matter (i.e. 89%) is shared amongst multiple
214 RSN, with 16% of the white matter shared by at least 7 RSNs. By comparison, the grey
215 matter contribution to RSNs show much less overlap, where 53% of the grey matter
216 uniquely contributes to one RSN, and 45% to 2 or 3 RSNs. To determine the exact extent
217 of the overlaps in the white matter, we generated an overlap map displaying the number
218 of RSN per voxel in the brain. Large areas of the deep white matter showed high RSN
219 overlap count (> 7 overlapping RSNs), including in the centrum semiovale and sub-
220 portions of the medial corpus callosum (Fig. 5). RSNs also overlapped highly in the
221 cingulum, the second and third branches of the superior longitudinal fasciculi (SLF2,
222 SLF3), the arcuate fasciculi, and the inferior fronto-occipital fasciculi (IFOF) in both
223 hemispheres. In contrast, the superficial white matter demonstrated less RSN overlap.
224



225
226 **Figure 5:** RSN overlap in the brain. **a:** Overlay map of RSN white matter maps. Colour bar:
227 Number of RSN per voxel (saturated for n>14). Anterior CC: Anterior corpus callosum; AF-
228 L: Arcuate fasciculus (long segment); Cing.: Cingulum; IFOF: Inferior fronto-occipital

229 fasciculus; ILF: Inferior longitudinal fasciculus; Posterior CC: Posterior corpus callosum;
230 SLF2: Second branch of the superior longitudinal fasciculus; SLF3: Third branch of the
231 superior longitudinal fasciculus; Unc: Uncinate fasciculus. **b:** Violin plots (normalised by
232 plotted area) of the overlap values in the total white matter and along the studied
233 pathways (left and right hemispheres combined). Each plot also contains a boxplot with
234 the median, the interquartile range (IQR), and “whiskers” extending within 1.5 IQRs of the
235 lower and upper quartile. WM: average whole white matter.

236

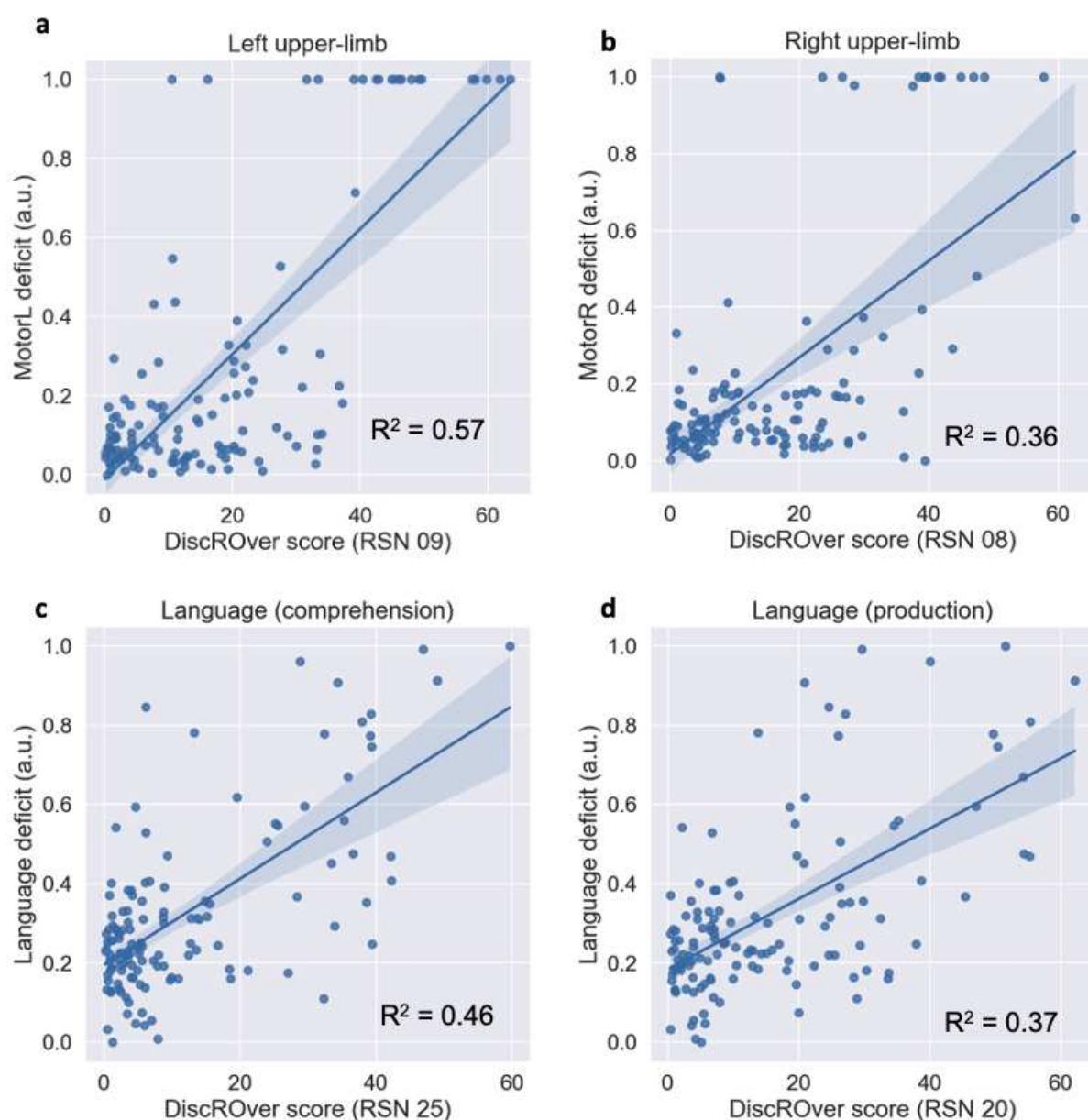
237 The existence of areas with high-density RSN overlap in the white matter point
238 toward the idea that lesions to the white matter could severely impact the functioning of
239 multiple RSNs and hence cause a diverse pattern of clinical symptoms. To explore this
240 aspect, we developed a new module, the WhiteRest tool, freely available online through
241 the Functionnectome software (available at <http://www.bcblab.com>). The WhiteRest
242 tool estimates the white matter disruption of an RSN by a lesion with a “disconnectome-
243 RSN overlap” score, the DiscROver score. It can also measure the local involvement of
244 each RSN for any given region of interest (ROI) in the white matter (measured as
245 “Presence score”, see the WhiteRest user guide in the supplementary material).

246

247 We validated the WhiteRest atlas in a clinical dataset of 131 stroke patients³⁵ and
248 compared their neurobehavioral deficits with the measured impact of the lesion on the
249 RSNs. More specifically, we explored the three deficits which could clearly be associated
250 with RSNs based on their estimated function. The three deficits and the four RSNs in
251 question were: left upper-limb motor control (MotorL) deficit associated with the
252 somatomotor network of the left-hand (RSN 09)(Fig. 6a); right upper-limb motor control
253 (MotorR) deficit associated with the somatomotor network of the right-hand (RSN
254 08)(Fig. 6b); and language deficit associated with the language comprehension network
255 (RSN 25)(Fig. 6c) and with the language production network (RSN 20)(Fig. 6d). Each deficit
256 score (MotorL, MotorR, and Language deficit) is derived from a principal component
257 analysis (PCA) of the set of neurobehavioral assessment scores related to the deficit. The
258 impact of a lesion on RSNs was measured with the DiscROver score from the WhiteRest
259 tool. We show a strong and highly significant correlation between the neurobehavioral
260 deficit scores and the DiscROver scores for the related RSNs. The Pearson correlation
261 between the scores was: 0.75 ($R^2 = 0.57$) for the “Left upper-limb”; 0.60 ($R^2 = 0.36$) for the

262 “Right upper-limb”; 0.68 ($R^2 = 0.46$) for the “Language (comprehension)”; and 0.61 ($R^2 =$
263 0.37) for the “Language (production)”. All correlations were highly significant with $p < 10^{-$
264 ¹³. For a more qualitative overview, we also showed that the lesion of all patients with
265 strong deficits (deficit score in the upper decile, Supp. Fig. 31) overlapped with the studied
266 RSN (Supp. Fig. 32 to 37).

267



268

269 **Figure 6:** Relationship between neurobehavioral deficit and WhiteRest DiscROver. **a-b:**
270 Left **(a)** and right **(b)** upper-limb motor control deficit vs. DiscROver score for the
271 Somatomotor network of the left **(a)** and right **(b)** hand; **c-d:** Language deficit vs.
272 DiscROver score for the language comprehension network **(c)** and the language

273 production network (**d**). In each graph, all the patients are represented (n = 131) and the
274 blue line corresponds to the linear fit between the scores, and the light blue area
275 corresponds to the confidence interval (set at 95%) for the linear fit. a.u.: arbitrary unit
276 (scores set between 0 and 1); R²: Coefficient of determination.

277

278 Using this dataset, we also tested the plausibility of our above-mentioned
279 hypothesis whether lesions impacting multiple RSNs would “cause a diverse pattern of
280 clinical symptoms”. To do so, we selected patients for whom at least a third (DiscROver
281 score > 33) of both the right-hand somatomotor RSN and the language comprehension
282 RSN were impacted. Among these few patients (n = 11), the majority (n = 9) had clear
283 symptoms (i.e., deficit score in the upper quartile) for both language and right upper-limb
284 motor control (Supp. Fig. 38 & 39). While the group size of this analysis is too small for
285 definitive conclusions and limited to two RSNs, we believe these preliminary results are
286 a strong indication that our original hypothesis holds some truth and ought to incentivise
287 more research into this issue.

288

Discussion

289 We introduce WhiteRest, an atlas derived from integrated functional signal and
290 structural information revealing white matter and grey matter components for each
291 resting-state network. As such, the present work showcases two original results. First is
292 the atlas, which consists of the systematic mapping of white matter that contributes to
293 the resting-state networks. Second, our results demonstrate that white matter pathways
294 can contribute to multiple RSNs. This new atlas offers the prospect of exploring the
295 impact of white matter lesions on the integrity of resting-state networks and, thus, their
296 functioning.

297

298 The WhiteRest atlas is, to our knowledge, the first comprehensive statistical
299 mapping of the white matter contribution to RSNs. We generated white and grey matter
300 maps concurrently, yielding continuous statistical maps of the RSNs in both tissues, thus,
301 allowing for a thorough exploration of each network. The combination of functional and
302 structural information can help the exhaustive detection of RSNs as there is evidence that
303 structural connectivity holds complementary information regarding RSNs²⁹. Hence, the

304 multimodality of the signal might help identify and segregate networks as previously
305 demonstrated by other groups with different modalities (e.g., Glasser's multi-modal
306 parcellation³⁶). Previous studies also combined grey matter functional and white matter
307 structural information to explore the white matter contribution to resting-states
308 networks but were limited to a low number of RSNs^{25,27}, or were focused on the white
309 matter support of dynamical changes in functional connectivity³⁷. In contrast, recent
310 works that undertook the atlasing of the RSN white matter connectivity did not directly
311 combine functional and structural information. They mapped the RSN white matter
312 circuits by connecting RSNs cortical regions from a pre-existing cortical RSNs atlas, using
313 tractography data^{28,38}. In this approach, the functional-structural mapping is highly
314 dependent on the original cortical RSN atlas, while in our method, grey and white matter
315 information are used concurrently.

316 Another intriguing approach to the functional study of white matter has recently
317 been gaining traction and shown auspicious results: the analysis of the BOLD signal
318 directly in the white matter (mini-review by Gore et al., 2019). Using the BOLD signal from
319 white matter allows for its functional exploration and mapping without resorting to
320 connectivity models, which may lead to more physiologically accurate descriptions.
321 Multiple studies have used this framework to unveil RSNs in white matter, successfully
322 adapting classical RSN investigation methods to the white matter³⁹⁻⁴². These studies
323 revealed a functional parcellation of the white matter, showing that it was possible to
324 identify multiple RSNs purely from functional signals while staying consistent with the
325 underlying structural connectivity. However, these approaches have yet to produce a
326 functional parcellation of the white matter displaying continuous, long-range
327 connectivity between different cortical regions. While efforts have been made to link
328 white matter RSNs with grey matter RSNs, previous studies were unable to present a
329 consistent 1-to-1 correspondence between white and grey matter RSNs. Thus, current
330 analyses using the white matter BOLD signal are limited regarding the functional
331 investigation of the white matter. In contrast, by combining structural and functional
332 (grey matter) signals with the Functionnectome, our approach generated white matter
333 maps that could better represent each network, and systematically paired them with
334 their well-known grey matter counterparts. The WhiteRest atlas also demonstrated
335 overlaps between RSNs, consistent with fibres from distinct networks crossing in the
336 white matter.

337

338 Our data-driven method allowed for a global approach by mapping the whole
339 brain, except for ventral areas in zones strongly affected by magnetic susceptibility
340 artefacts, where both the fMRI and diffusion signals are degraded⁴³. The individual-ICA-
341 based scheme used to produce the statistical group maps revealed a fine granularity of
342 the RSNs, where brain regions that are spatially distant but functionally and structurally
343 connected are attributed to the same RSN. The fine granularity of the default mode
344 network (DMN) in the WhiteRest atlas is a good example of the multimodal improvement
345 of the networks' segregation. Our analysis replicated four previously described⁴⁴ DMN-
346 related RSNs involving the precuneus (RSN 16, 17, 18 & 19), while also differentiating a DMN
347 proper (RSN18) from a medial frontal network (RSN15). For the DMN proper, the structural
348 connectivity is largely known^{22-28,45}, which offers a good opportunity to validate our
349 method. For instance, WhiteRest's DMN proper white matter map confirmed the
350 involvement of the cingulum, connecting the precuneus with the frontal cortex^{22-28,45}, and
351 of the superior longitudinal fasciculus (SLF2) connecting the superior frontal gyrus with
352 the angular gyrus^{24,25,27}. Similarly, the posterior segment of the arcuate fasciculus that
353 connects the inferior parietal lobule with the posterior temporal lobe has also been
354 reported in previous studies for the DMN^{22,24}. Complementing the DMN-proper, following
355 previous DMN descriptions²⁴, the medial frontal network involved the inferior
356 longitudinal fasciculus (ILF, connecting the occipital lobe with the temporal lobe), the
357 uncinate (connecting the temporal pole to the inferior frontal lobe), and the cingulum
358 (connecting temporal-parietal-frontal areas).

359 Similarly, the WhiteRest atlas can be used in a prospective and explorative
360 manner, as shown with the unveiling of the dorsal attention network (RSN13). While the
361 grey matter architecture of the DAN is well documented^{46,47}, its white matter support has
362 only been partially explored⁴⁸. To our knowledge, WhiteRest reveals the first
363 comprehensive description of the DAN's white matter, that includes bilateral association
364 fibres connecting ipsilateral regions, and commissural fibres ensuring interhemispheric
365 connectivity. However, disentangling the exact functional relevance of each connection
366 remains a challenge that will require, for example, functionnectome investigation³⁰ or
367 advanced lesions analyses⁴⁹⁻⁵¹. Such approaches might shed light on the hierarchical and
368 functional implications of RSN circuits^{49,50,52,53}. Recent results have highlighted the
369 importance of white matter structural disconnections in the disruption of functional

370 connectivity⁵³, and this disruption has been linked to behavioural and cognitive
371 dysfunction^{54,55}. Therefore, being able to identify these RSN white matter “highways”
372 would propel our understanding of disconnection symptoms, improve recovery
373 prognostics, and inform preoperative brain surgery planning⁵⁶. To facilitate these efforts,
374 we released the WhiteRest tool (as a module of the Functionnectome) that quantifies the
375 presence of RSNs in a specific region of the brain’s white matter. The WhiteRest module
376 was designed to accept regions of interest (e.g. from parcellations or lesions) in the MNI
377 152 space (2x2x2 mm³) and estimates the RSNs involved or in the case of lesions, which
378 RSNs would be impacted by a lesion in this region.

379

380 As a proof of concept and to validate the atlas, the WhiteRest tool was applied to
381 the lesions of 131 stroke patients to compare the DiscROver score of 4 RSNs with the
382 symptoms associated with their putative functions. We observed a strong correlation
383 between each neurobehavioral deficit and their corresponding RSN DiscROver score,
384 namely: Left and right upper-limb motor control deficit with the somatomotor networks
385 of left- and right-hand, respectively; and language deficit with both language production
386 and language comprehension networks.

387 These results serve as the first clinical validation of the WhiteRest atlas, showing
388 that its structural and functional mapping is sound, and that it could be employed in the
389 scope of patient research, opening up a novel strategy to assert the cognitive functions
390 related to RSNs. Associating functions to RSNs is usually done by indirect inference, using
391 their spatial maps and contrasting them with fMRI-derived activation maps of specific
392 cognitive functions². As lesion studies have historically been a major tool in determining
393 functions of grey matter area⁵⁷, and more recently of white matter pathways⁵⁸, WhiteRest
394 provides a new tool to understand the link between cognition and resting-state networks.
395 Reversely, the WhiteRest integrated functional and structural connectivity can shed light
396 on the functional mechanisms of the brain and the origins of cognitive disorders. While
397 promising results link stroke symptoms and RSNs in our study, further investigations will
398 be required to fully disentangle the relationship between cognition (or cognitive deficits)
399 and RSNs, using more advanced models than the relatively simple linear approach from
400 the present study. Recent works have been undertaking the prediction of symptoms and
401 recovery from stroke based on functional and structural data^{58,59}, a very important and

402 interesting goal for which WhiteRest may eventually be of use, adding interpretable data
403 to these multimodal methods.

404

405 While the WhiteRest module and atlas represent an advance in resting state
406 functional neuroimaging, it is not exempt from limitations. For instance, we excluded the
407 cerebellum-centred RSN in the present work. This decision was motivated by some
408 limitations of tractography that are exacerbated in the cerebellum⁶⁰, mitigating the
409 quality of the modelled pathways. For example, the fine structure of the cerebellum and
410 the gathering of fibres in the brainstem are affected by partial volume and bottleneck
411 effects⁶¹. Also, some of the maps displayed white matter pathways leading to grey matter
412 areas absent on the related grey matter map. Some of these cases can be explained as
413 simply threshold-dependent (i.e. $z>7$ to facilitate the visualisation of 3D structures),
414 which hid some of the less significant (but still involved) areas. However, these pathways
415 might correspond to the structural link between different RSNs. Thus, when exploring a
416 network in detail, we strongly advise checking the non-thresholded maps to better
417 appreciate the entire white matter network involved in RSNs.

418

419 All in all, we introduced a novel combined atlas of resting-state networks based
420 on functional and structural connectivity to deliver white matter and grey matter maps
421 for each RSN – the WhiteRest atlas. This atlas allows for the exploration of the structural
422 support of individual RSN and facilitates the study of the impact of white matter lesions
423 on resting-state networks. Accordingly, we released the WhiteRest module that
424 estimates the proportion of RSNs impacted by a given white matter lesion. With this tool,
425 future research can focus on exploring the link between white matter lesions and their
426 effects on the related resting-state networks in light of symptom diagnosis. Leveraging a
427 deep-learning approach recently introduced⁴⁴ opens the possibility for individual
428 resting-state functionnectome analyses and will facilitate a more personalised
429 neuromedicine.

430

431 Methods

432 HCP dataset

433 The dataset used in the present study is composed of the openly-available resting-
434 state scans (rsfMRI) from 150 participants (75 females; age range 22-35 years) of the
435 Human Connectome Project (HCP)³², with 45 participants from the test-rest HCP dataset
436 and 105 randomly sampled participants from the Young adult dataset
437 (<http://www.humanconnectome.org/study/hcp-young-adult/>); WU-Minn
438 Consortium; Principal investigators: David Van Essen and Kamil Ugurbil;
439 1U54MH091657).

440 Acquisition parameters

441 Full description of the acquisition parameters can be found on the HCP website
442 (<https://www.humanconnectome.org/hcp-protocols-ya-3t-imaging>) and in the
443 original HCP publication⁶². Briefly, the resting-state scans were acquired with 3 Tesla
444 Siemens Skyra scanners and consist of whole-brain gradient-echo EPI acquisitions using
445 a 32-channel head coil with a multi-band acceleration factor of 8. The parameters were
446 set with: TR = 720 ms, TE = 33.1 ms, 72 slices, 2.0 mm isotropic voxels, in-plane
447 FOV = 208 × 180 mm, flip angle = 52°, BW = 2290 Hz/Px. Each resting-state acquisition
448 consisted of 1200 frames (14min and 24sec), and was repeated twice using a right-to-left
449 and a left-to-right phase encoding.

450 Preprocessing

451 The resting-state acquisitions were then preprocessed using the “Minimal
452 preprocessing pipeline” fMRIVolume⁶³, applying movement and distortion corrections
453 and registration to the MNI152 (2009) non-linear asymmetric space. Note that all the
454 analyses done in the present study were conducted in this space, and subsequent
455 mention of “MNI152” will refer to that space. Further processing steps were also applied:
456 despiking; voxelwise detrending of potentially unwanted signal (6 motion regressors, 18
457 motion-derived regressors⁶⁴, and CSF, white matter, and grey matter mean time-
458 courses); temporal filtering (0.01-0.1 Hz); and spatial smoothing (5 mm FWHM). While of

459 exceptional quality, we chose to alter the HCP data to make it clinically relevant. A
460 composite resting-state 4D volume was generated by discarding the 300 first and 300
461 last frames of the resting state acquisitions and concatenating (along the time axis) the
462 resulting volumes. For each participant, this corresponded to 7.5 minutes with the left-
463 right and 7.5 minutes with the right-left phase of acquisition (= 1200 frames total).

464 Stroke dataset

465 A dataset of 131 stroke patients (46% female, 54 years \pm 11 years, range 19-83
466 years) with diverse cognitive deficits was used to validate the plausibility of the atlas and
467 demonstrate the feasibility for potential clinically oriented approaches. The cohort of
468 patients ($n = 132$) was recruited at the School of Medicine of Washington University in St.
469 Louis (WashU)³⁵. One patient from this cohort was excluded because of missing data. All
470 participants gave informed consent, as per the procedure implemented by WashU
471 Institutional Review Board and in agreement with the Declaration of Helsinki (2013). The
472 data of each patient consisted of their MRI-derived manually segmented brain lesion as
473 well as the associated neurobehavioral scores. In the present study, we focused on 3
474 deficits: language, left upper-limb motor control, and right upper-limb motor control
475 deficits. They were established based on the acute (13 ± 4.9 days after stroke)
476 neurobehavioral assessment scores of the patients, with 7 scores for language deficit, and
477 7 scores for each upper-limb motor control (left and right). The language deficit was
478 tested using the Semantic (animal) verbal fluency test (SVFT, 1 score) and the Boston
479 Diagnostic Aphasia Examinations (BDAE, 6 scores). The left and right upper-limb motor
480 control deficit was tested using the Action Research Arm test (ARAT, 3 scores), the Jamar
481 Dynamometer grip strength assessment (1 score), the 9-Hole Peg test (9HPT, 1 score), and
482 the shoulder flexion and wrist extension assessment (2 scores). Additional precisions can
483 be found in the supplementary methods.

484 Extraction of white matter and grey matter components

485 Projection of the functional signal to the white matter

486 To explore the white matter structures of resting-state networks, we projected
487 the functional signal from the rs-fMRI scans onto the white matter using the

488 Functionnectome^{30,31} (<https://github.com/NotaCS/Functionnectome>). The
489 Functionnectome is a recently introduced method that unlocks the functional study of
490 white matter. Briefly, the Functionnectome takes an fMRI scan and a grey matter mask as
491 inputs combines grey matter BOLD signal with white matter anatomical priors, and
492 outputs a new functional volume (called a functionnectome) with the same dimensions
493 as the original fMRI scan (same 3D space, same number of time-points), but with the
494 functional signal associated to the white matter. The Functionnectome provides default
495 white matter priors³⁰. The white matter priors were originally derived from the 7 Tesla
496 diffusion data of a subset of 100 randomly selected HCP participants from the HCP young
497 adults cohort. Deterministic tractography was run on this diffusion data using StarTrack
498 (<https://www.mr-startrack.com>) to estimate the structural connectivity between each
499 voxel of the brain and build the Functionnectome white matter priors.

500 In this functionnectome volume, the signal of a white matter voxel results from
501 the combination of the BOLD signals from the voxels within the grey matter mask that
502 are structurally connected to it (weighted by the probability of connection). The
503 structural connectivity probability is given by the anatomical priors provided with the
504 software (customisable priors option available). Using the Functionnectome thus allows
505 the analysis of the functional signal in a connectivity-oriented framework by integrating
506 the signal from distant but structurally connected grey matter voxels or clusters of
507 voxels.

508

509 For our analysis, each of the 150 rs-fMRI scans from the dataset were processed
510 with the Functionnectome, along with a grey matter mask (the same mask for all the
511 subjects). This mask was computed using the brain parcellation data from all the
512 participants: the mask corresponds to the voxels identified as part of the grey matter in
513 at least 10% of the participants. This processing produced 150 resting-state
514 functionnectome (rs-functionnectome) volumes, one per participant.

515 Independent component analysis

516 To extract RSN from the data, we used an independent component analysis (ICA)
517 method. For each participant, the original rs-fMRI scan was spatially concatenated with
518 the associated rs-functionnectome. It resulted in functional volumes containing, side by
519 side, the original resting-state signal (on the grey matter) and the rs-functionnectome

520 signal (on the white matter). These composite functional volumes were then analysed
521 with MELODIC (multivariate exploratory linear optimised decomposition into
522 independent components, version 3.15), from the FMRIB Software Library (FSL)⁶⁵ to
523 extract independent components (ICs) from the signal. The number of IC per participant
524 was individually determined by Laplace approximation⁶⁶. This resulted in a set of ICs,
525 unlabeled putative RSNs, per participant. Each IC was composed of a temporal
526 component (the IC's time-course) and a spatial map, displaying side by side (due to the
527 above-mentioned spatial concatenation) the component in rs-fMRI (i.e. grey matter)
528 space and in the rs-functionnectome (i.e. white matter) space. Each IC was then split into
529 paired white matter maps and grey matter maps.

530 Generating RSN maps by clustering ICs

531 We used MICCA³³, an unsupervised classification algorithm developed to
532 automatically group ICs from multiple individual ICAs (from different participants) based
533 on the similarity of their spatial maps. The resulting groups, composed of ICs
534 reproducible across participants, were used to produce group maps. Such an individual-
535 based ICA scheme was preferred to the classical group ICA as some evidence suggests
536 that group ICA can fail to separate some RSNs if they share functional hubs³³.

537 The atlas was produced by applying MICCA using the procedure described in the
538 original Naveau et al. paper³³, in a 5-repetition scheme (i.e. ICA and MICCA were repeated
539 5 times per participant, and the resulting IC groups were paired with ICASSO⁶⁷). The
540 procedure generated 36 IC groups and their associated z-map, reproducible across the
541 repetitions. Among them, 5 groups were identified as artefacts and were excluded, and 1
542 was located in the cerebellum and was excluded too in later analyses. The artefacts were
543 visually identified when the grey matter z-map was spread along the border of the brain
544 mask (typical of motion artefacts, n = 3), or was mainly located in ventricles or along blood
545 vessels (n = 2). The cerebellar RSN was discarded because of known problems with
546 tractography in the cerebellum⁶⁰, to avoid providing the atlas with a white matter map
547 poorly representing the correct connectivity of this region.

548 We thus obtained a total of 30 RSNs, producing the WhiteRest atlas. Each RSN was
549 then named by experts (MJ, VN) according to its anatomical localisation and in reference
550 to AAL^{68,69} and AICHA⁶⁸ atlas. Likewise, the classification of RSNs to a functional domain

551 was done by an expert using the grey matter spatial patterns and estimated functional
552 role of the RSNs presented here, compared to the one from Doucet et al.¹²

553 Note that we applied MICCA on the grey matter maps of the ICs. We used these
554 maps for the clustering as MICCA has been developed and validated to cluster only
555 classical resting-state derived spatial maps (in grey matter space). As each grey matter
556 map is associated with a white matter map (since they are part of the same IC), the
557 procedure still produces paired grey and white matter RSN maps, as presented in the
558 atlas.

559 Overlap analysis and DiscROver

560 To measure the extent of overlaps between RSNs in the white matter, all the maps
561 were thresholded ($z>7$), binarised, and summed, generating a new map with the number
562 of RSN per voxel.

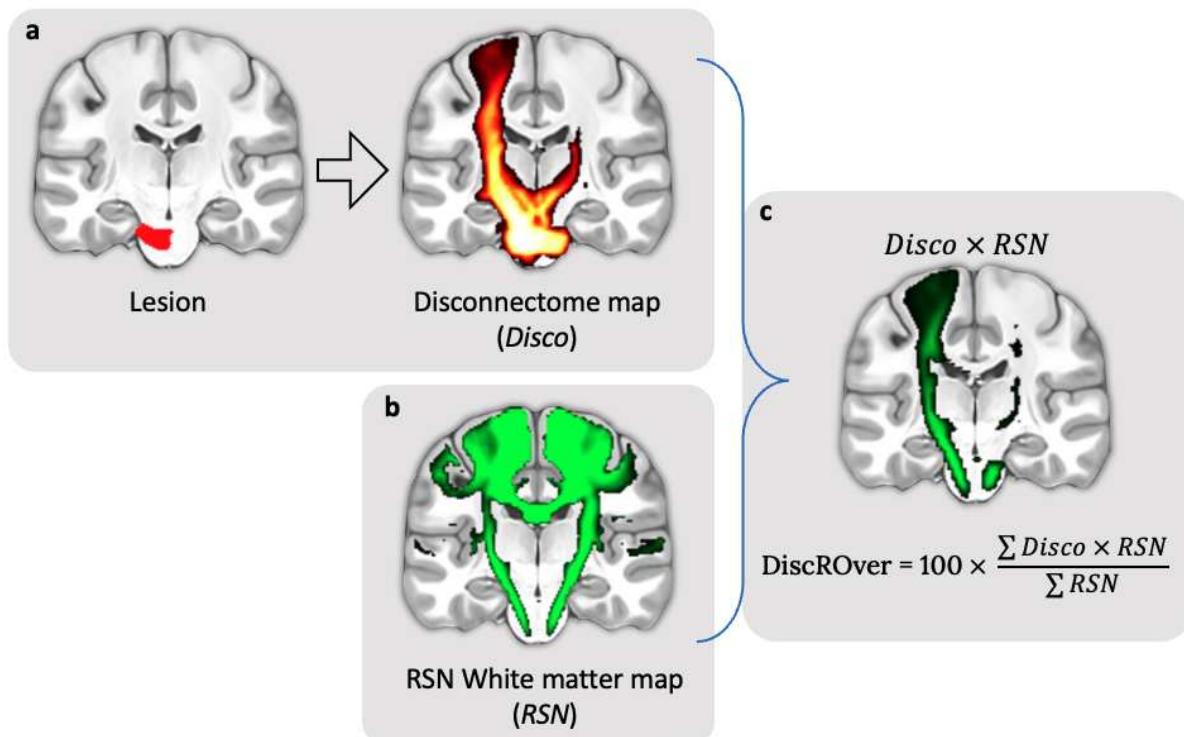
563 Additionally, we provide a new software, the WhiteRest tool, to explore how the
564 white matter is shared between RSNs. It offers “Presence” scores measuring local
565 overlaps of RSNs for a given ROI (see the WhiteRest tool manual in the Sup. Mat.). It also
566 measures the DiscROver score (for Disconnectome-RSN Overlap score), specifically
567 designed to estimate the white matter disruption of RSNs by a lesion. First, the extent of
568 white matter fibres disconnected by the lesion is estimated using the Disconnectome
569 method⁴⁹. This method yields a disconnectome map displaying the probability of
570 structural connectivity between the lesion and each brain voxel (Fig. 7a). Hence, the
571 higher the value on the disconnectome map, the more likely the disruption of
572 connectivity in the voxel due to the lesion. Then, the weighted overlap of the RSN (Fig.
573 7b) with the disconnectome is computed by voxel-wise multiplication of the RSN map and
574 the disconnectome map (Fig. 7c). The DiscROver score is computed as the sum of the
575 values of this weighted overlap map, normalised by the sum of the values in the RSN, and
576 multiplied by 100. With this score, 0 means that the lesion does not impact any white
577 matter voxel of the RSN, and 100 means it impacts the entire RSN.

578 The complete computation of the DiscROver score is summarised in Equation 1:

$$579 DiscROver(RSN, Disco) = 100 \times \frac{\sum_{v \in RSN} Z_{RSN}(v) \times P_{Disco}(v)}{\sum_{v \in RSN} Z_{RSN}(v)} \quad (1)$$

580 With “RSN” representing the atlas white matter Z-map of a given RSN, with its voxel
581 values annotated as “ $Z_{RSN}(v)$ ”, and “Disco” the disconnectome map of a lesion, with its voxel
582 values annotated as “ $P_{Disco}(v)$ ”.

583



584

585 **Figure 7.** Steps for the computation of the DiscROver score. **a** - Lesion mask (left) and
586 associated disconnectome (right). **b** - RSN map used for the DiscROver score
587 computation. **c** - Visual representation of the weighted overlap, and computation of the
588 DiscROver score. Disco: Disconnectome map; RSN: Resting-state network map.

589

590 Stroke data analysis

591 To validate our WhiteRest atlas, we used the WhiteRest tool to link stroke lesions with
592 RSNs. We first selected 4 RSNs for which we were confident we could identify a specific
593 cognitive function: we chose the somatomotor networks of the right (RSN 08) and left
594 (RSN 09) hand, the language production network (RSN 20), and the language network
595 comprehension (RSN 25). The DiscROver score of the 131 lesions was computed for each
596 of these 4 RSNs.

597 Each RSN was paired according to their putative function with one of the 3 studied
598 cognitive deficits: The somatomotor network of the right-hand with the right upper-limb
599 motor control deficit; the somatomotor network of the left-hand with the left upper-limb
600 motor control deficit; and the language production and language comprehension
601 networks both with the language deficit.

602 Because each deficit was associated with multiple clinical scores, we ran a principal
603 component analysis (PCA) on each group of clinical scores and projected the scores on
604 each corresponding first principal component. The “MotorL deficit” score was generated
605 using the 7 clinical scores for left upper-limb motor control deficit. The “MotorR deficit”
606 score was generated using the 7 clinical scores for right upper-limb motor control deficit.
607 And the “Language deficit” score was generated using the 7 clinical scores for language
608 deficit. Additional details on those three sets of scores are available in the supplementary
609 methods. The PCA-derived scores for each cognitive deficit were normalised between 0
610 and 1, with 0 corresponding to the minimum deficit and 1 to the maximum deficit in the
611 data. This dimensionality reduction step allowed us to capture most of the variance in
612 the data (i.e., the difference in clinical symptoms between patients) while limiting the
613 study of each cognitive deficit to one variable: MotorL, MotorR, and Language deficit
614 scores respectively, explained 95%, 91%, and 74% of the variance of their clinical scores.
615 Finally, for each RSN-deficit pair, the DiscROver scores of all the patients were plotted
616 against the associated PCA-derived score, with the linear fit and coefficient of
617 determination (R^2). Note that the DiscROver scores for the language production network
618 and the language comprehension network were plotted against the same Language
619 deficit score.

620

621 Visualisation

622 The 3D z-maps presented in figures 1-4 were generated using Surf Ice
623 (<https://www.nitrc.org/projects/surface/>), with the default mni152_2009 brain volume
624 as the background template. The 2D brain slices of figures 5 and 7 were displayed on a
625 standard template in MRIcron (<https://www.nitrc.org/projects/mricron>). Each white
626 matter map was masked to remove the grey matter part of the volume and improve
627 readability. The mask used corresponded to voxels defined as white matter in at least 10%

628 of the 150 participants, according to the parcellation provided with the HCP datasets. In
629 figure 5, the RSN count was saturated at 14 on the displayed map to improve readability,
630 as only a handful of voxels presented higher values.

631

632 Statistics and Reproducibility

633 In the stroke analysis, the relationship between neurobehavioral deficits and the RSN
634 DiscROver scores was measured by Pearson's correlation and linear fit. The statistical
635 significance of the correlation was measured using the dedicated function from the Scipy
636 Python

library:

637 <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html>

638 The confidence intervals (CI) of figure 6 represent the 95% CI estimated with 1000
639 bootstrap resamples of the data, using the “regplot” function from the Seaborn Python
640 library:

641 <https://seaborn.pydata.org/generated/seaborn.regplot.html>

642 Acknowledgements

643 We thank the University of Bordeaux and CNRS for the infrastructural support. This
644 project has received funding from the European Research Council (ERC) under the
645 European Union's Horizon 2020 research and innovation programme (grant agreement
646 No. 818521; MTS), the Marie Skłodowska-Curie grant agreement No. 101028551 (SJF,
647 PERSONALISED) and the Donders Mohrmann Fellowship No. 2401515 (SJF,
648 NEUROVARIABILITY).

649

650 Part of the computing was done thanks to the computing facilities MCIA (Mésocentre de
651 Calcul Intensif Aquitain) of the University of Bordeaux and of the Université de Pau et
652 des Pays de l'Adour.

653 Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal
654 Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH
655 Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by
656 the McDonnell Center for Systems Neuroscience at Washington University.

657 Author contributions

658 V.N. designed the study, implemented the methods, performed the analyses, and wrote
659 the manuscript. S.J.F wrote the manuscript and reviewed the neuroimaging data. L.P.
660 revised the manuscript. L.T. performed analyses and revised the manuscript, M.C. revised
661 the manuscript. M.T.S. co-supervised the study and wrote the manuscript. Marc Joliot
662 co-supervised the study, helped design the study and wrote the manuscript.

663 Competing interests

664 No competing interests.

665 Data availability

666 The WhiteRest atlas (non-thresholded maps) is freely available on Neurovault.org, with
667 both the grey matter maps (<https://identifiers.org/neurovault.collection:11937>) and the
668 white matter maps (<https://identifiers.org/neurovault.collection:11895>). All fMRI
669 acquisitions are available on the HCP website (<https://db.humanconnectome.org/>).

670 Code availability

671 The WhiteRest module is open-source and freely available as part of the
672 Functionnectome software, which can be found at <http://www.bcbilab.com> or directly
673 downloaded from <https://github.com/NotaCS/Functionnectome>. The MICCA
674 algorithm is also open source and can be freely downloaded from
675 <https://www.gin.cnrs.fr/fr/ouils/micca/> or directly on the permanent repository
676 <https://zenodo.org/record/5837556> (DOI: 10.5281/zenodo.5837556).

677 References

678 1. Ogawa, S., Lee, T. M., Kay, A. R. & Tank, D. W. Brain magnetic resonance imaging
679 with contrast dependent on blood oxygenation. *Proc. Natl. Acad. Sci. U. S. A.* **87**,

680 9868–9872 (1990).

681 2. Smith, S. M. *et al.* Correspondence of the brain's functional architecture during
682 activation and rest. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 13040–13045 (2009).

683 3. Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the
684 motor cortex of resting human brain using echo-planar MRI. *Magn. Reson. Med.* **34**,
685 537–541 (1995).

686 4. Fox, M. D. *et al.* The human brain is intrinsically organised into dynamic,
687 anticorrelated functional networks. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 9673–9678
688 (2005).

689 5. Beckmann, C. F., DeLuca, M., Devlin, J. T. & Smith, S. M. Investigations into resting-
690 state connectivity using independent component analysis. *Philos. Trans. R. Soc.
691 Lond. B Biol. Sci.* **360**, 1001–1013 (2005).

692 6. Damoiseaux, J. S. *et al.* Consistent resting-state networks across healthy subjects.
693 *Proc. Natl. Acad. Sci. U. S. A.* **103**, 13848–13853 (2006).

694 7. Agosta, F. *et al.* Resting state fMRI in Alzheimer's disease: beyond the default mode
695 network. *Neurobiol. Aging* **33**, 1564–1578 (2012).

696 8. Mohammadi, B. *et al.* Changes of resting state brain networks in amyotrophic lateral
697 sclerosis. *Exp. Neurol.* **217**, 147–153 (2009).

698 9. Orliac, F. *et al.* Links among resting-state default-mode network, salience network,
699 and symptomatology in schizophrenia. *Schizophr. Res.* **148**, 74–80 (2013).

700 10. Lee, M. H., Smyser, C. D. & Shimony, J. S. Resting-state fMRI: a review of methods
701 and clinical applications. *AJNR Am. J. Neuroradiol.* **34**, 1866–1872 (2013).

702 11. van den Heuvel, M. P. & Hulshoff Pol, H. E. Exploring the brain network: a review on
703 resting-state fMRI functional connectivity. *Eur. Neuropsychopharmacol.* **20**, 519–534
704 (2010).

705 12. Doucet, G. *et al.* Brain activity at rest: a multiscale hierarchical functional
706 organisation. *J. Neurophysiol.* **105**, 2753–2763 (2011).

707 13. Calhoun, V. D., Kiehl, K. A. & Pearlson, G. D. Modulation of temporally coherent
708 brain networks estimated using ICA at rest and during cognitive tasks. *Hum. Brain
709 Mapp.* **29**, 828–838 (2008).

710 14. Jutten, C. & Herault, J. Blind separation of sources, part I: An adaptive algorithm
711 based on neuromimetic architecture. *Signal Processing* **24**, 1–10 (1991).

712 15. Stejskal, E. O. & Tanner, J. E. Spin diffusion measurements: Spin echoes in the
713 presence of a time-dependent field gradient. *J. Chem. Phys.* **42**, 288–292 (1965).

714 16. Jeurissen, B., Descoteaux, M., Mori, S. & Leemans, A. Diffusion MRI fiber
715 tractography of the brain. *NMR Biomed.* **32**, e3785 (2019).

716 17. Catani, M. & de Schotten, M. T. Atlas of Human Brain Connections. Preprint at
717 <https://doi.org/10.1093/med/9780199541164.001.0001> (2012).

718 18. Parker, G. J. M., Haroon, H. A. & Wheeler-Kingshott, C. A. M. A framework for a
719 streamline-based probabilistic index of connectivity (PiCo) using a structural
720 interpretation of MRI diffusion measurements. *J. Magn. Reson. Imaging* **18**, 242–254
721 (2003).

722 19. Girard, G., Whittingstall, K., Deriche, R. & Descoteaux, M. Towards quantitative
723 connectivity analysis: reducing tractography biases. *Neuroimage* **98**, 266–278 (2014).

724 20. Hermundstad, A. M. *et al.* Structural foundations of resting-state and task-based
725 functional connectivity in the human brain. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 6169–
726 6174 (2013).

727 21. Honey, C. J. *et al.* Predicting human resting-state functional connectivity from
728 structural connectivity. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 2035–2040 (2009).

729 22. Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional

730 connectivity reflects structural connectivity in the default mode network. *Cereb. Cortex* **19**, 72–78 (2009).

732 23. Khalsa, S., Mayhew, S. D., Chechlacz, M., Bagary, M. & Bagshaw, A. P. The structural
733 and functional connectivity of the posterior cingulate cortex: comparison between
734 deterministic and probabilistic tractography for the investigation of structure-
735 function relationships. *Neuroimage* **102 Pt 1**, 118–127 (2014).

736 24. Alves, P. N. et al. An improved neuroanatomical model of the default-mode network
737 reconciles previous neuroimaging and neuropathological findings. *Commun Biol* **2**,
738 370 (2019).

739 25. Tarun, A., Behjat, H., Bolton, T., Abramian, D. & Van De Ville, D. Structural mediation
740 of human brain activity revealed by white-matter interpolation of fMRI. *Neuroimage*
741 **213**, 116718 (2020).

742 26. van den Heuvel, M. P., Mandl, R. C. W., Kahn, R. S. & Hulshoff Pol, H. E. Functionally
743 linked resting-state networks reflect the underlying structural connectivity
744 architecture of the human brain. *Hum. Brain Mapp.* **30**, 3127–3141 (2009).

745 27. Calamante, F. et al. Track-weighted functional connectivity (TW-FC): a tool for
746 characterising the structural-functional connections in the brain. *Neuroimage* **70**,
747 199–210 (2013).

748 28. Figley, T. D., Bhullar, N., Courtney, S. M. & Figley, C. R. Probabilistic atlases of
749 default mode, executive control and salience network white matter tracts: an fMRI-
750 guided diffusion tensor imaging and tractography study. *Front. Hum. Neurosci.* **9**,
751 585 (2015).

752 29. O’Muircheartaigh, J. & Jbabdi, S. Concurrent white matter bundles and grey matter
753 networks using independent component analysis. *Neuroimage* **170**, 296–306 (2018).

754 30. Nozais, V., Forkel, S. J., Foulon, C., Petit, L. & Thiebaut de Schotten, M.

755 Functionnectome as a framework to analyse the contribution of brain circuits to
756 fMRI. *Commun Biol* **4**, 1035 (2021).

757 31. Nozais, V. NotaCS/Functionnectome: First official release. (Zenodo, 2021).
758 doi:10.5281/ZENODO.5078062.

759 32. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview.
760 *Neuroimage* **80**, 62–79 (2013).

761 33. Naveau, M. et al. A novel group ICA approach based on multi-scale individual
762 component clustering. Application to a large sample of fMRI data. *Neuroinformatics*
763 **10**, 269–285 (2012).

764 34. Raichle, M. E. The brain's default mode network. *Annu. Rev. Neurosci.* **38**, 433–447
765 (2015).

766 35. Corbetta, M. et al. Common behavioral clusters and subcortical anatomy in stroke.
767 *Neuron* **85**, 927–941 (2015).

768 36. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. *Nature*
769 **536**, 171–178 (2016).

770 37. Basile, G. A. et al. White matter substrates of functional connectivity dynamics in
771 the human brain. *Neuroimage* **258**, 119391 (2022).

772 38. Figley, T. D. et al. Probabilistic White Matter Atlases of Human Auditory, Basal
773 Ganglia, Language, Precuneus, Sensorimotor, Visual and Visuospatial Networks.
774 *Front. Hum. Neurosci.* **11**, 306 (2017).

775 39. Peer, M., Nitzan, M., Bick, A. S., Levin, N. & Arzy, S. Evidence for Functional
776 Networks within the Human Brain's White Matter. *J. Neurosci.* **37**, 6394–6407 (2017).

777 40. Huang, Y. et al. Detection of functional networks within white matter using
778 independent component analysis. *Neuroimage* **222**, 117278 (2020).

779 41. Wang, P. et al. Structural and functional connectivity mapping of the human corpus

780 callosum organisation with white-matter functional networks. *Neuroimage* **227**,
781 117642 (2021).

782 42. Wang, P. *et al.* White Matter Functional Connectivity in Resting-State fMRI:
783 Robustness, Reliability, and Relationships to Gray Matter. *Cereb. Cortex* **32**, 1547–
784 1559 (2022).

785 43. Ojemann, J. G. *et al.* Anatomic localisation and quantitative analysis of gradient
786 refocused echo-planar fMRI susceptibility artifacts. *Neuroimage* **6**, 156–167 (1997).

787 44. Nozais, V. *et al.* Deep Learning-based Classification of Resting-state fMRI
788 Independent-component Analysis. *Neuroinformatics* (2021) doi:10.1007/s12021-021-
789 09514-x.

790 45. Horn, A., Ostwald, D., Reisert, M. & Blankenburg, F. The structural-functional
791 connectome and the default mode network of the human brain. *Neuroimage* **102 Pt**
792 **1**, 142–151 (2014).

793 46. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven
794 attention in the brain. *Nat. Rev. Neurosci.* **3**, 201–215 (2002).

795 47. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous
796 neuronal activity distinguishes human dorsal and ventral attention systems. *Proc.*
797 *Natl. Acad. Sci. U. S. A.* **103**, 10046–10051 (2006).

798 48. Allan, P. G. *et al.* Parcellation-based tractographic modeling of the dorsal attention
799 network. *Brain Behav.* **9**, e01365 (2019).

800 49. Foulon, C. *et al.* Advanced lesion symptom mapping analyses and implementation as
801 BCBtoolkit. *Gigascience* **7**, 1–17 (2018).

802 50. Griffis, J. C., Metcalf, N. V., Corbetta, M. & Shulman, G. L. Damage to the shortest
803 structural paths between brain regions is associated with disruptions of resting-
804 state functional connectivity after stroke. *Neuroimage* **210**, 116589 (2020).

805 51. Thiebaut de Schotten, M., Foulon, C. & Nachev, P. Brain disconnections link
806 structural connectivity with function and behaviour. *Nat. Commun.* **11**, 5094 (2020).

807 52. Park, C.-H. et al. Longitudinal changes of resting-state functional connectivity
808 during motor recovery after stroke. *Stroke* **42**, 1357–1362 (2011).

809 53. Griffis, J. C., Metcalf, N. V., Corbetta, M. & Shulman, G. L. Structural disconnections
810 explain brain network dysfunction after stroke. *Cell Rep.* **28**, 2527–2540.e9 (2019).

811 54. Li, S. et al. Altered resting-state functional and white matter tract connectivity in
812 stroke patients with dysphagia. *Neurorehabil. Neural Repair* **28**, 260–272 (2014).

813 55. Ding, J.-R. et al. Altered connectivity patterns among resting state networks in
814 patients with ischemic white matter lesions. *Brain Imaging Behav.* **12**, 1239–1250
815 (2018).

816 56. Branco, P. et al. Resting-State Functional Magnetic Resonance Imaging for
817 Language Preoperative Planning. *Front. Hum. Neurosci.* **10**, 11 (2016).

818 57. Lesion-Symptom Mapping: From Single Cases to the Human Disconnectome. 142–
819 154 (2022).

820 58. Talozzi, L. et al. Latent disconnectome prediction of long-term cognitive symptoms
821 in stroke. *Brain* (in press).

822 59. Bowren, M. et al. Post-stroke outcomes predicted from multivariate lesion-
823 behaviour and lesion network mapping. *Brain* **145**, 1338–1353 (2022).

824 60. Catani, M. From hodology to function. *Brain: a journal of neurology* vol. 130 602–605
825 (2007).

826 61. Rheault, F., Poulin, P., Valcourt Caron, A., St-Onge, E. & Descoteaux, M. Common
827 misconceptions, hidden biases and modern challenges of dMRI tractography. *J.*
828 *Neural Eng.* **17**, 011001 (2020).

829 62. Uğurbil, K. et al. Pushing spatial and temporal resolution for functional and diffusion

830 MRI in the Human Connectome Project. *Neuroimage* **80**, 80–104 (2013).

831 63. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human

832 Connectome Project. *Neuroimage* **80**, 105–124 (2013).

833 64. Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J. & Turner, R. Movement-

834 Related effects in fMRI time-series. *Magnetic Resonance in Medicine* vol. 35 346–355

835 Preprint at <https://doi.org/10.1002/mrm.1910350312> (1996).

836 65. Smith, S. M. et al. Advances in functional and structural MR image analysis and

837 implementation as FSL. *Neuroimage* **23 Suppl 1**, S208–19 (2004).

838 66. Minka, T. Automatic choice of dimensionality for PCA. *Adv. Neural Inf. Process. Syst.*

839 **13**, 598–604 (2000).

840 67. Himberg, J., Hyvärinen, A. & Esposito, F. Validating the independent components of

841 neuroimaging time series via clustering and visualisation. *Neuroimage* **22**, 1214–1222

842 (2004).

843 68. Joliot, M. et al. AICHA: An atlas of intrinsic connectivity of homotopic areas. *J.*

844 *Neurosci. Methods* **254**, 46–59 (2015).

845 69. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM

846 using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.

847 *Neuroimage* **15**, 273–289 (2002).

848

849

850