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Abstract

Where sufficiently large genome-wide association study (GWAS) samples are not currently available or
feasible, methods that leverage increasing knowledge of the biological function of variants may
illuminate discoveries without increasing sample size. We comprehensively evaluated 18 functional
weighting methods for identifying novel associations. We assessed the performance of these methods
using published results from multiple GWAS waves across each of five complex traits. Although no
method achieved both high sensitivity and positive predictive value (PPV) for any trait, a subset of
methods utilizing pleiotropy and expression quantitative trait loci nominated variants with high PPV
(>75%) for multiple traits. Application of functionally weighting methods to enhance GWAS power for
locus discovery is unlikely to circumvent the need for larger sample sizes in truly underpowered GWAS,
but these results suggest that applying functional weighting to GWAS can accurately nominate
additional novel loci from available samples for follow-up studies.
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Introduction

The genome-wide association study (GWAS) has been widely successful for discovering genetic
loci contributing to complex traits'. Yet, a survey of the GWAS catalog identified 88 traits without
genome-wide significant findings despite theoretically adequate sample size’. Traits with worse than
expected performance even when thousands of cases are available include autism spectrum disorder?,
heart failure*®, major depressive disorder (MDD)®’, and some addictions®**. Increasing sample size to
increase statistical power for discovery is not always practical, as encountered for rare diseases?,
expensive phenotyping®®, phenotypic heterogeneity', hard-to-reach or socially disadvantaged
populations™, and population isolates'®. Our ability to discover trait-associated loci that are ancestry-
specific or subject to gene-environment interaction lags in a field where the overwhelming majority of
GWAS samples are of European ancestry®’. Further, increasing sample size sometimes fails to achieve
the expected gain in significant loci'®.

Attempts to improve the discovery power of GWAS without increasing sample size by
incorporating functional information, defined here as regulatory annotation of variants or evidence of
pleiotropy, is not new™. An evaluation of gene- and pathway-based GWAS methods found low
sensitivity overall for discovery, and that high sensitivity was achieved at the expense of more false
positives”. Methods to combine GWAS summary statistics with additional information to perform in
silico functional follow-up are plentiful’*™> and range from fine-mapping to determining the biological
underpinnings of the variant-trait association. Some authors suggest that a secondary usage of these
methods is to increase the statistical power of GWAS to identify novel loci. Evaluation of the
performance of such methods for locus discovery has been done ad hoc for select methods,* > but to
our knowledge, a comprehensive evaluation of many methods and multiple GWAS traits against
objective criteria has not been published.

To identify suitable method(s) for improving GWAS statistical power to uncover novel loci, we
performed the largest, most comprehensive evaluation of published functional weighting methods to
date: 18 methods applied to multiple waves of GWAS for five diseases and traits. We applied these
methods to publicly available GWAS summary statistics and evaluated their ability to nominate novel
trait-associated loci that were confirmed by a subsequently larger, more powerful GWAS, henceforth
referred to as GWAS1/GWAS2/GWAS3, for the same trait. To represent varying genetic architectures,
phenotypic heterogeneity, and gene regulation by tissue type, we selected three psychiatric traits:
schizophrenia, bipolar disorder, and MDD available from the Psychiatric Genomics Consortium (PGC);
and two blood cell traits: mean platelet volume (MPV) and white blood cell (WBC) counts, available from
the UK Biobank.

Results

We selected 17 published functional weighting methods; we also evaluated a suggestive p-value
threshold of 1x10” as an 18" method (Table 1). Nine methods provided results for individual variants,
and nine provided gene-based results aggregated across variants. When evaluated on a per-variant
basis, the number of potentially novel nominated variants, after excluding statistically significant
variants from GWAS1, ranged from zero to 177,698 in the blood cell traits and zero to 4,147 in the
psychiatric traits (Supplemental Table 4).
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Briefly, we applied each published functional weighting method (Table 1) to genome-wide
summary statistics from each GWAS1 study. Details of additional annotation datasets and statistical
significance thresholds used for each method are described in the Methods and Supplemental Table 1.
To facilitate cross-method comparisons, our primary way to evaluate both variant-based and gene-
based method performance used a +/- 500kb window to define a locus, unless specified otherwise.
Overlapping loci were merged. To exclude the possibility of methods re-discovering loci already
identified as trait-associated in GWAS1, we did not consider loci if they overlapped with a +/- 500kb
window surrounding the top variant of a locus that was genome-wide significant in GWAS1. Each
functionally weighted GWAS1 was then compared to the corresponding GWAS2 of that trait to identify
nominated loci from GWAS1 that overlapped with genome-wide significant loci first identified in
GWAS2. A minimum overlap of 250kb was required. Our scheme for defining classification metrics (True
Positive [TP], etc.), is illustrated in Supplemental Table 3. Qur primary evaluation metrics, Positive
Predictive Value (PPV) and Sensitivity (SN), were derived from these classification metrics.

Global Evaluation

No method had both high SN and PPV (>0.50, Figure 1, Quadrant |). In general, there was an
inverse relationship between SN and PPV (Figure 1). Quadrant IV, with high SN and low PPV, was
dominated by methods providing variant-level results and by the blood cell traits MPV and WBC.
Quadrant ll, with low SN and high PPV, was dominated by eQTL-based methods, which tended to
nominate fewer loci than the variant-level methods (Supplemental Table 5). Exceptions to the pattern of
finding eQTL-level methods in Quadrant Il were MTAG and the weighted eQTL methods. These methods
nominated fewer loci for their respective traits than was typical for other variant-based methods
(Supplemental Table 4).

Quadrant lll of Figure 1, representing low SN and low PPV, included results from all five traits
and a preponderance of MDD, specifically around SN=0 and PPV=0. Only five out of nine methods
nominated any variants for MDD (Supplemental Table 4), which had no significant hits in GWAS1. Like
the variant-based methods, only four out of nine gene-based methods yielded any nominations for
MDD, and none of those overlapped with the GWAS2 hits for MDD, regardless of the evaluation method
used (Supplemental Table 5).

We provide representative Manhattan plots® to illustrate the performance of two functional
weighting methods for the high PPV (MTAG, Figure 2a-b) and high SN (LSMM, Figure 2c-d) scenarios,
respectively. When comparing the variants nominated by MTAG for SCZ1, using BPD1 as the pleiotropic
trait, relative to both waves of the SCZ GWAS, the nominated variants of MTAG clustered around
established “peaks”, including some that are just below the genome-wide significance threshold in
GWASL1 (Figure 2a). Some of these variants (e.g., see Chromosomes 3 and 12) are in loci that become
significant in GWAS?2 (Figure 2b), contributing to the high PPV of this method-trait combination, while
others fall below even the suggestive threshold in GWAS2 (e.g., see Chromosome 7). However, these
particular non-significant nominated variants are within 500 kb of the novel GWAS?2 top hit
(Supplemental Table 4).

LSMM with global FDR nominated 3,395 more variants for SCZ than MTAG, resulting in high SN
(Supplemental Table 4). In contrast to MTAG, a striking proportion of these nominated variants
exhibited a sharp decrease in significance from GWAS1 (Figure 2c) to GWAS2 (Figure 2d), contributing to
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the low variant-based PPV under both FDR options for LSMM; the PPV also remained low in the locus-
based evaluation (Supplemental Table 4).

Figure 3 illustrates the performance of gene-based methods. To provide parity in evaluating
nominated genes, we calculated gene-based p-values using a modification of MAGMA (see Methods).
The gene-based methods nominated fewer loci than the variant-based methods. For both EUGENE and
SMR, which were applied using Brain eMETA cohort annotations, nominated genes tended to have
higher MAGMA p-values (Figure 3a and 3c) but lower p-values in GWAS2 (Figure 3b and 3d).

Top Method for Positive Predictive Value

Focusing on the ability of methods to accurately nominate loci that were truly trait-associated
but inadequately powered for detection in GWAS1, we compared PPV across all traits (Table 2). When
multiple databases were applied to a functional weighting method, we chose its highest PPV to carry
forward for overall evaluation. Any method ties were all assigned the lowest rank, and methods that
failed to nominate any variants/eQTL/genes were ranked lower (NA) than methods with a PPV of 0%.
Overall, the best-performing method was MTAG?’, even after a sensitivity analysis excluding the MDD
rankings. This ranking was made despite MTAG failing to nominate any variants for MPV (Supplemental
Table 4). The best-performing method for MPV alone was TWAS/FUSION, which failed to nominate any
loci for MDD.

Consistency of True Associations Nominated Across Methods

We evaluated whether loci nominated by multiple methods are more likely to be TP, as running the
same summary statistics through multiple methods is cheaper than conducting a larger GWAS. In
general, this was an effective strategy. For example, eight methods was the minimum number necessary
to achieve PPV > 50% (Supplemental Table 8) for three out of the five traits. For MPV, we did not see a
monotonic increase in PPV with larger numbers of nominating methods, and for MDD, only two
methods successfully nominated any TP loci. We examined combinations of functional weighting
methods to determine if there existed an ensemble set that consistently achieved PPV > 50% across
traits (Supplemental Figure 4). Across SCZ, BPD, MPV, and WBC, the methods GenoCanyon and LSMM
were common to all method ensembles with a minimum of six methods; however, the inclusion of one
or both of these methods does not preclude a false positive (FP). None of the ensemble sets could be
used to reliably nominate TPs across traits.

Evaluating False Positives

Some loci nominated by the functional weighting methods and labeled as FP by our definition may
be truly associated with the trait but remain undiscovered in GWAS2. As a sensitivity analysis, we used
GWAS3 waves and calculated the PPV of the nominated loci after removing findings from GWAS1,
similar to our primary analysis approach. Figure 4 shows the SN and PPV of the functional weighting
methods for the three psychiatric traits based on their GWAS3 waves. GWAS3 were not available for the
blood cell traits MPV and WBC. Like Figure 1, no methods appeared in Quadrant I. In general, PPV was
higher and SN was lower when using GWAS3, compared to using GWAS2, as the gold standard. A
substantial number of the method-trait combinations remained in Quadrant Ill with low SN and PPV.
Supplemental Table 7 shows that no methods had a worse PPV when GWAS3 was used as the gold
standard rather than GWAS2. An improved PPV when compared to the larger GWAS3 is expected when
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additional nominated loci are trait-associated. For BPD and MDD, most methods with any successful
nominations still had PPV <50% when compared to GWAS3. For the variant-based methods, only MTAG
outperformed the approach of simply using a suggestive p-value threshold in the original GWAS1 when
using either GWAS2 or GWAS3 as the gold standard for both SCZ and BPD (Supplemental Table 7).

Evaluating the Stringency of Genome-wide Significance

The evaluated methods do not employ a consistent strategy for multiple testing correction or
determination of statistical significance. We used a Bonferroni correction based on the number of valid
test statistics for methods that calculated a p-value but did not provide a prespecified significance
threshold. To evaluate whether this conservative approach hampered our ability to detect trait-
associated loci, we performed a sensitivity analysis by calculating a local FDR and using a g-value of 0.05
as the threshold for statistical significance for those methods previously subjected to a Bonferroni
correction. Results were largely unchanged (Supplemental Figure 2), except for a substantial drop for
MTAG and JEPEG, which had achieved perfect PPV with some traits when using the Bonferroni
correction.

Evaluating the Amount of Overlap

We evaluated the impact of our primary choice for defining a minimum overlap (250kb)
between nominated loci and gold standard loci. We performed a sensitivity analysis utilizing different
minimum overlaps of one base, 500kb, and 750kb. In general, we found a slight reduction in SN and PPV
with increasing size of the required overlap for all five traits (Supplemental Figure 3a-3e). However, we
did not find that our results, particularly our high PPV method-trait combinations, were dependent on
overlap size.

Discussion

Our comprehensive, multi-method evaluation presents scenarios where functional weighting
methods might prove helpful in expanding the number of novel loci uncovered by GWAS in lieu of
increased sample size. None of the eighteen methods achieved both high PPV and high SN, which would
have been the ideal result: nominating a substantial proportion of TP loci that would be found in the
next GWAS wave without nominating excessive FP loci. Instead, our evaluation demonstrated that the
use of functional weighting methods presents a tradeoff between high SN and high PPV. MTAG*’ had
the best performance overall with respect to PPV, and LSMM with respect to SN.

When comparing functional weighting GWAS results to standard GWAS results from larger
sample sizes as the gold standard, the PPV for many method-trait combinations exceeded 50%,
indicating that most nominations were trait-associated by the standard defined here. For BPD and SCZ,
where GWAS1 were adequately powered to detect genome-wide significant associations, most eQTL-
based methods were able to consistently nominate TP loci when compared to GWAS3 as the gold
standard; however, SN decreased across method-trait combinations, indicating that functional
weighting GWAS methods combined with contemporaneous annotation databases were unable to
identify a correspondingly large fraction of the trait-associated variants that can be captured with a
larger GWAS sample size incorporating tens of thousands of additional cases. For SCZ, functionally
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weighted GWAS applied to SCZ1 uncovered 74.7% of the novel loci found in SCZ2, which dropped to
58.1% of the novel loci found in SCZ3.

If the goal is high-confidence nominations, then there is little additional cost to applying
multiple functional weighting methods using publicly available annotation data. Our findings did not
show an ideal ensemble approach, whereby nominations that intersected a subset of specific methods
subsequently became genome-wide significant in later GWAS waves. Instead, for traits that had
relatively few genome-wide significant loci identified in GWAS1, we found that increasing the number of
functional weighting methods increased the PPV of those nominations. An ensemble approach may be
achievable in the future as functional annotation data in disease-relevant tissues and cell types expands,
enabling a comparison of methods with more complete annotations across the genome.

Applying functional weighting methods for the discovery of novel loci and variants carries
important considerations. First, applying these methods to a GWAS in the “dead zone” of statistical
power'?, where no genome-wide significant loci have been identified using standard GWAS, may not
provide a reliable approach to find trait-associated variants. Using MDD as an example, only a minority
of the tested methods were able to nominate any novel loci for MDD, and few nominated variants were
significant in MDD2 (Supplemental Tables 4,5) or MDD3 (Supplemental Table 7). This difficultly in
nominating TP loci for MDD suggests that functional annotation is unlikely to overcome insufficient
statistical power for GWAS with sample sizes that are far below what is needed to identify robust
genome-wide significant loci. For these situations, increasing the GWAS sample size is ideal®>**%.
However, if a second, contemporaneous GWAS of a highly pleiotropic trait is available, applying
pleiotropy-based methods such as MTAG or GPA may provide an alternative approach. Although
identifying the minimum required SNP-based genetic correlation is beyond the scope of this analysis, we
note that SCZ and MDD have a SNP genetic correlation ranging from 0.34-0.51, depending on the
study®>**. It is also worth considering that while improvements in trans-ethnic GWAS methods boost
discovery power>, uncovering ancestry-specific loci will require investments to increase the sample size
of either the ancestry-specific GWAS or the ancestry-specific functional database®**,

Second, by using a distance-based locus definition, we could not evaluate whether the
nomination captured the putative causal variant or gene identified in GWAS2. For example, MTAG and
fgwas successfully nominated the HLA region as associated with MDD. As is typical with findings located
in this region, more work is necessary to identify the causal mechanism for the association between HLA
and MDD; initial work by the PGC noted that the C4A and C4B genes were unlikely to be causal for
MDD?®, although these genes were functionally characterized as potentially causal for SCZ*. Subsequent
fine-mapping of the classical MHC region by the PGC also did not support variation in C4 genes to be the
source of the MDD association®’, though an eQTL-based analysis identified C4A as a candidate risk gene
for MDD*. The extended HLA region was confirmed in a subsequent GWAS of MDD, though with a
different lead SNP?2. In our study, MTAG used pleiotropy to find what is likely a true association between
the extended HLA region and MDD earlier than it could be discovered with the MDD GWAS1 sample
size, but this is likely driven by linkage disequilibrium in the region, rather than genuinely shared
pleiotropy between causal genes®’.

Third, our study focused on comparing three categories of methods: annotation, pleiotropy, and
eQTL. These three categories represent some of the most popular and long-standing methods,
collectively with >3,000 citations as of September 2021. Other categories of functional genomic
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annotation exist, such as methylation®” and protein®® QTLs, and were beyond the scope of the present
analysis; we expect that their performance would not substantially differ from the methods evaluated
here, but we cannot account for significant GWAS?2 loci acting through other mechanisms whose
functional annotations were not evaluated here. Other mechanisms may explain some of the low SN,
but PPV would be unaffected.

Fourth, our definition of “gold standard” using GWAS2 hits assumes that all novel discoveries in
GWAS2 are TPs. In the modern GWAS era with independent replication as a best practice, this
assumption likely holds for most loci and their variants. By evaluating variants and their broad flanking
regions, our approach minimized FNs and FPs caused by changes in lead variants for a given locus across
GWAS waves and equalized the playing field for variant- and eQTL/gene-based methods, allowing for
simultaneous comparison.

Fifth, our definition of a FP depended on the sample size of GWAS2. Variants or loci nominated
by functional weighting methods could be classified as FP when compared against the gold standard of
GWAS2, but it is possible that they represent TP associations that GWAS2 remained underpowered to
detect. By performing a sensitivity analysis using recently published GWAS3 as our gold standard for the
three psychiatric traits, we confirmed that a portion of the genome classified as FP in our primary
analysis, with GWAS?2 as the gold standard, were trait-associated. In a real-world application, the ability
to arrive at this conclusion would require either substantial laboratory follow-up or an increase in GWAS
sample size of 2—4 times to bridge the gap between GWAS2 and GWAS3, using the psychiatric traits as
representative sample sizes.

Functional annotation databases continue to expand and contribute broadly to understanding
human biology and uncovering causal underpinnings of variant-trait associations. Although functionally
weighting GWAS is not a substitute for pursuing large samples for well-powered GWAS, these summary
statistics-focused methods can be a cost-efficient approach to discovery. Our results show that no
method applied systematically across five traits produced both high SN and high PPV. However, when
focused on either high SN or high PPV, functional weighting GWAS methods boost statistical power
where larger sample sizes are not feasible and the currently available GWAS has generated at least some
genome-wide significant loci for the trait of interest. Greater tolerance for FPs can be endured by a
research pipeline incorporating inexpensive, high-throughput, and/or in silico steps, while a pipeline
intended to move GWAS nominations into model organisms may require more confidence that the
nominated loci are truly trait-associated. Functional weighted GWAS results can generate leads for
follow-up studies of the genetic drivers of complex traits with a reasonable likelihood of being true,
particularly for associations that come through multiple methods.

Methods

1. Method Selection
We reviewed the published literature through February 2020 to identify methods that met the following
criteria:

1. Categorized as a) annotation-based; b) pleiotropy-based; or c) eQTL-based

2. Utilized GWAS summary statistics, as opposed to individual-level genotype data

3. Implemented using freely-available software or packages.
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4. Provided either method-specific annotation or eQTL files for use with the method, or were

amenable to use with publicly available annotation datasets (e.g., GTEx*®)

5. Originally proposed primary or secondary usage included the discovery of novel trait-associated

variants, genes, eQTL, or loci.
We found 17 functional weighting methods that met our inclusion criteria. We also evaluated the
performance of a “suggestive” p-value threshold, defined as 5x10® < p < 1x10° to illustrate the tradeoffs
of simply choosing a more liberal p-value cutoff, without the addition of any functional weighting
information. The full list of 18 methods evaluated in the present analysis is presented in Table 1. These
methods varied in their determination of significant trait associations. For methods that listed specific
threshold values for test statistics, we used those thresholds. For methods whose test statistics were p-
values and whose authors did not provide a significance threshold, we used a Bonferroni correction on
the number of valid p-values output by the method. Details for significant trait association
determinations for each method are detailed below and in Supplemental Table 1.

Suggestive

For all traits, we considered “suggestive” variants as those with p-values < 1x10° and = 5x10°%.
To define suggestive loci, we defined a region +/- 500 kilobases surrounding the variant with the
smallest suggestive p-value, and collapsed regions that overlapped by any amount into a single locus.

GenoCanyon

We downloaded the prediction scores for the human genome smoothed over 10-kilobase
segments*® (zhaocenter.org/GenoCanyon_Downloads.html) and applied them to each of the five
GWAST1 using the signal prioritization software GenoWAP*'. We used the recommended posterior
probability of 0.50 to define statistical significance.

GenoSkyline

We downloaded tissue-specific functional
predictions* (http://genocanyon.med.yale.edu/GenoSkyline) based on the Roadmap Epigenomics
Project (Roadmap) for whole blood and brain tissue and applied them to the blood traits and psychiatric
traits, respectively, using the signal prioritization software GenoWAP*'. We used the recommended
posterior probability of 0.50 to define statistical significance.

Weighted eQTL

Following the method of Li et al.”, we calculated both binary and general eQTL-based weights
for all five traits. In each case, we set a = 0.05 and power = 0.6. For binary weights, the parameter M was
the number of included variants in each GWAS1, respectively, and € was calculated as the percentage
of eSNPs, defined as those with significant eQTL associations in the relevant tissue. We used the
significant GTEx v7 Brain Nucleus Accumbens for PGC traits and the significant GTEx v7 Whole Blood for
blood cell traits. Weights were then normalized and applied to the downloaded p-values. Statistical
significance was defined as Pueigntes < 5x10%.

The general eQTL weight was calculated as V(-logi.p.on) for eSNPs and 1 for all others,
where eSNPs are defined as above. Weights were then normalized and applied to the downloaded p-
values. Statistical significance was defined as puegnes < 5x10%. The parameters a, power, and M were also
defined as above.

43
l.

GPA
Genetic analysis incorporating Pleiotropy and Annotation®* (GPA) was performed using pairwise
comparisons between two traits of interest. For each pair of traits, we matched variants on hg19
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chromosome and position. In the case of duplicate variants, the variant with the smaller p-value was
retained. We performed GPA with both global and local FDR strategies using a cutoff of 0.05 in both
cases to determine statistical significance.

For each of the three PGC traits, we used as pleiotropic traits the remaining two PGC traits. For
blood cell traits, we used the second blood cell trait as a pleiotropic trait for the first. Additionally, we
used SCZ1*, BMI*, height*’, and two GWAS for HDL***. FDR cutoffs were defined as above in all cases.

MTAG

Multi-Trait Analysis of Genome-wide association summary statistics (MTAG>’) was performed
using pairwise comparisons between two traits of interest. For all traits, we used the subset of
downloaded variants with valid rsIDs and allele frequencies in the downloaded GWAS1 summary
statistics. Statistical significance was defined as pumns < 5x10%. For each of the three PGC traits, we used
as pleiotropic traits the remaining two PGC traits. For blood cell traits, we used the second blood cell
trait as a pleiotropic trait for the first. Additionally, we used SCZ1*, BMI*, height*’, and two GWAS for
HDL48'49.

fgwas

We combined fgwas®® with eQTL results from GTEx’® as the annotation
database. Qur eQTL dataset of choice was the significant eQTL dataset for expression in the
Nucleus Accumbens from GTEx, v7 for PGC traits and the significant GTEx v7 Whole Blood eQTL
dataset for blood cell traits. Each significant eQTL was defined as a “segment”. All GWAS1 variants
whose position fell within the start and end positions™ of a significant eQTL were assigned to that
segment. Variants that remained unassigned to any segment were excluded, along with variants having
missing allele frequencies or odds ratios of zero in the downloaded summary statistics. If more than one
variant was localized to the same position in GWAS1, the variant with the smallest p-value was retained.
We used the default likelihood penalty of 0.2 to run fgwas. Statistical significance was defined as a PPA >
0.9.

Naive

We applied the functional-weighted GWAS method described by Sveinbjornsson, et al.”?,
dubbed here the “naive” method. This method relies on an annotation classification for each variant
into one of four categories, where each category has a Bonferroni-adjusted family-wise error weight
reflecting the likelihood of protein function alterations caused by that variant. The categories and p-
value thresholds are loss-of-function (p < 5.5x107), moderate impact (p < 1.1x107), low impact (p <
1.0x10%), and other (p < 1.7x10°). We annotated GWAS1 summary statistics using SnpEff software® and
applied the aforementioned p-value cutoffs according to the annotation category to determine
statistical significance.

LSMM

We performed latent sparse mixed model (LSMM>?) following the example annotations of the
method authors, requiring three sets of input: variants and p-values from GWAS summary statistics,
ANNOVAR™, and GenoSkylinePlus™ using annotations from the original source. We downloaded the
hgl9 annotations from the ANNOVAR website and used the dbSNP147 database to annotate GWAS1
variants. Annotations were then collapsed into nine categories: downstream, exonic, intergenic,
intronic, ncRNA/exonic, ncRNA/intronic, upstream, 3'UTR, and 5’UTR, with each variant assigned a value
of 0 or 1 to denote category membership.
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coLoc

For PGC traits, our colocalization® dataset of choice was the significant eQTL dataset for
expression in the Nucleus Accumbensfrom GTEx, v7*°. We defined a region to test for colocalized signal
as +/- 200 kilobases upstream and downstream from start and stop positions of a single eQTL probe, and
included all GWAS1 SNPs contained within that region. This was repeated for all eQTL probes available
in the downloaded dataset.

For blood cell traits, we repeated the same procedure using the significant Whole Blood GTEx v7
dataset™. For all GWAS1, evidence of statistically significant colocalization was defined as an
Approximate Bayes Factor greater than 0.75.

ENLOC

We performed the fastENLOC implementation of the ENLOC method™. We downloaded the
multi-tissue eQTL annotation derived from GTEx v8°’ hg38 position and provided European LD definition
file (https://github.com/xqwen/fastenloc/). We then used LiftOver>® to convert all five GWAS1 from
hg19 to hg38 genomic coordinates. We applied the Nucleus Accumbens eQTL dataset For PGC
traits and the Whole Blood eQTL dataset for blood cell traits.

EUGENE

For all traits, we used the subset of downloaded variants with valid rsIDs as GWAS1. We
downloaded the required input datasets for gene position from the EUGENE website™,
grouped GTEx brain tissues as the eQTL data for the PGC traits®®, and grouped whole blood eQTL data
for the blood cell traits*>®%®! after performing additional quality control on the whole blood eQTL data
to remove discrepant rsIDs. We used Satterthwaite’s approximation to calculate the gene-based
summary statistics®*. We then estimated the FDR thresholds using EUGENE and identified the p-value
threshold closest to the FDR threshold of 0.05 to determine statistical significance (Supplemental Table
1).

JEPEG

We downloaded the SNP annotation data (v0.2.0) and reference panel (1000 Genomes EUR
Phase 1 Release 3)® from the JEPEG website (https://dleelab.github.io/jepeg/). For all traits, we used
the subset of downloaded variants with valid rsIDs. For blood cell traits, in the case of duplicate rsIDs,
we retained the variant with the smaller p-value. Statistical significance of the results was determined
by a Bonferroni correction applied to the JEPEG p-value.

MOLOC?

For PGC traits, our colocalization dataset of choice was the significant eQTL dataset for
expression in the Nucleus Accumbens from GTEx, v7*°. The methylation dataset used for PGC traits was
downloaded from the processed data available on the GEO data repository at accession number
GSE74193 and reflects the identification of meQTLs in the prefrontal cortex of 191 schizophrenia
patients and 335 controls without psychiatric illness®*. We defined a region to test for colocalized signal
as +/- 200 kilobases upstream and downstream from start and stop positions of a single eQTL probe, and
included all GWAS1 SNPs and meQTL probes contained within that region. This was repeated for all
eQTL probes available in the downloaded dataset.

For blood cell traits, we repeated the same procedure using the significant Whole Blood GTEx v7
dataset. The methylation dataset used for blood cell traits was the methylation QTL results from the
ALSPAC Accessible Resource for Integrated Epigenomics Studies (ARIES)® at the middle-aged timepoint
(https://data.bris.ac.uk/data/dataset/r9bxayo5mmk510dczg6golkmb).
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Sherlock

Only variants with valid rsIDs were submitted to Sherlock for each GWAS. For the PGC traits, the
Sherlock-provided eQTL data was chosen as GTEx v7 Brain — Nucleus accumbens. Sample sizes from
Supplemental Table 2 were used, and disease prevalence was taken as 0.5% for schizophrenia®®, 1% for
bipolar disorder®”, and 15% for major depressive disorder®. For the UK Biobank traits, the Sherlock-
provided eQTL data was chosen as GTEx v7 Whole Blood, and the sample sizes from Supplemental Table
2 were entered for sample size. As Sherlock output is sometimes presented as a gene symbol
and sometimes as an Ensembl gene ID (ENSG), we used the GENCODE annotations™ to match gene
symbols to Ensembl IDs and evaluated the overlap with our gold standards using Ensembl IDs.

SMR

For all GWAS1 inputs, we used the subset of downloaded variants with valid rsIDs and valid
allele frequencies. Formatted eQTL data were downloaded from the SMR website
(https://cnsgenomics.com/software/smr/#DataResource). For PGC traits, we evaluated the performance
of SMR using three different eQTL datasets: GTEx v7 data from the Brain Nucleus Accumbens®, the
“lite” version of the GTEx v7 data from the Brain Nucleus Accumbens, and the Brain-eMeta eQTL
data® derived from a meta-analysis of GTEx brain, Common Mind Consortium’®, and ROSMAP
consortium’? studies. For UK Biobank traits, we evaluated the performance of SMR using the GTEx v7
data from Whole Blood*, both full and “lite” versions. For all datasets, we evaluated with and without
the requirement for a Heidi p-value of < 0.05 to exclude trait-eQTL associations due to pleiotropy.

TWAS

For all GWAS1 inputs, we used the subset of downloaded variants with valid rsIDs. We
downloaded reference LD data for the 1000 Genomes EUR samples provided by the Broad
Institute Alkes Group (https://data.broadinstitute.org/alkesgroup/FUSION/). We downloaded
(https://gusevlab.org/projects/fusion/) and applied pre-computed gene expression weights for GTEx v7
Brain Nucleus Accumbens for PGC traits and Whole Blood for blood traits>°.

UTMOST

For all GWASI1 inputs, we used the subset of downloaded variants with valid rsIDs. We used the
pre-calculated covariance matrices using the 44 GTEx v7*° tissues (https://github.com/Joker-
Jerome/UTMOST). For all five GWAS1, we evaluated the full cross-tissue expression UTMOST
results. We additionally evaluated the single-tissue UTMOST output for the Nucleus Accumbens for PGC
traits and Whole Blood for blood traits.

2. Model Trait Selection

We evaluated the performance of the functional weighting methods using five traits that have
published GWAS with publicly available summary statistics. We deliberately chose early phase
GWAS (which we refer to as GWAS1) for each trait to allow for validation of results in subsequent GWAS
for the traits (referred to as GWAS2 and/or GWAS3). We evaluated three traits with summary statistics
available from the Psychiatric Genomics Consortium (PGC): schizophrenia® (SCZ), bipolar
disorder’® (BPD), and major depressive disorder'* (MDD). We also evaluated two blood cell traits
examined in the UK Biobank, mean platelet volume (MPV) and white blood cell count (WBC)”, as
examples of traits with a larger explained heritability, many genome-wide significant loci, minimal
heterogeneity in phenotyping, and comprehensive tissue-specific functional annotations. Additional
details of the GWAS used to test the functional weighting methods are presented in Supplemental Table
1.
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We used Liftover’® to convert the GWAS of the psychiatric traits from hg18 to hgl19. For MPV, p-
values were truncated at 7.41x10°%, due to the extremely small p-values not being read into R (v3.6.0).

3. Definition of a Gold Standard

For comparison to each GWAS1, we used as our “gold standard” a larger, more powerful GWAS,
hereafter referred to collectively as GWAS2, performed on the same trait and by the same consortium
to reduce variability in findings due to differences in trait definition, analytic strategies, or recruitment
of study participants (Supplemental Table 2). Our gold standard “hits” for each GWAS2 were defined as
those variants meeting the standard genome-wide significance threshold of 5x10%. We defined a
significant locus as the region extending +/- 500 kilobases from the variant with the smallest p-value.
Additional variants with genome-wide significant p-values within this region were included within the
locus of the lead variant. This procedure was repeated in a stepwise fashion until all genome-wide
significant variants were captured. As a final step, overlapping one-megabase intervals were combined
into a single locus, and the extended HLA region was defined as the region spanning from base pair
25,000,000 to 35,000,000 on chromosome 6.

4. Exclusion of Significant GWAS1 Hits

All GWASI1 contained statistically significant loci except for MDD (Supplemental Table 2). To avoid
giving credit to the functional weighting methods for “re-discovering” these significant loci, we excluded
them from evaluation after applying the functional weighting method to GWAS1. We defined a
significant locus in GWAS1 as the region extending +/- 500 kilobases from the variant with the smallest
p-value. Additional variants with genome-wide significant p-values within this region were included
within the locus of the variant of the smallest p-value. This procedure was repeated in a stepwise
fashion until all genome-wide significant variants were accounted for. As a final step, overlapping one-
megabase intervals were combined into a single locus and the extended HLA region was defined as
above.

To exclude GWAS1 hits from the set of GWAS2 “gold standard” hits available for discovery, we used
the GenomicRanges R package’® to remove from GWAS2 any loci with any degree of overlap with the
defined GWAS1 significant loci.

5. Evaluation Metrics

Because we focused on method performance to discover novel GWAS hits, our evaluations were
based on calculating sensitivity (SN), positive predictive value (PPV), and the F1 score (F1, the harmonic
mean of SN and PPV). Definitions can be found in Supplemental Table 3. Because variants with non-
significant p-values in GWAS1 may be truly associated with the trait, but GWAS1 was not statistically
powerful enough to uncover their associations, we avoided evaluation metrics that depend on the
definition of a TN.

6. Evaluation of Variant-Level Methods

Nine functional weighting methods, including the use of a suggestive p-value threshold, provided
results for individual genetic variants (Table 1). To evaluate the performance of these nine methods on a
per-variant level, TP variants were defined as those with matching chromosome and position that were
both genome-wide significant in GWAS2 and nominated as significant by the functional weighting
method either by the threshold specified by the method or, if no threshold was explicitly stated, by a
Bonferroni multiple testing-corrected threshold (Supplemental Table 1). To exclude variants that were
statistically significant in GWAS1, we excluded variants within the +/- 500kb boundaries of GWAS1 hits
defined above (Methods Section 4).

Because the functional weighting methods cannot account for secondary signals and some do not
account for linkage disequilibrium, we also calculated SN, PPV, and F1 using a locus-based definition of
statistical significance. In this evaluation, we defined each locus in the same manner as we identified
GWAS1 significant hits (Methods Section 4). A TP was defined as an overlap of at least 250kb in the 1 MB
flanking window of a top locus in GWAS2, as defined above, and a +/- 500kb window of a variant
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nominated by a functional weighting method. A FP was defined as a +/- 500kb window nominated by a
functional weighting method with less than 250kb overlap among any GWAS2 loci. A FN was defined as
a GWAS?2 locus with less than 250kb overlap with any locus nominated by the functional weighting
method being evaluated. This locus-to-locus comparison was performed assessing any degree of overlap
between the gold standard GWAS?2 loci, excluding the significant GWAS1 loci, and the loci calculated
from the results of the functionally weighted GWAS1 using the GenomicRanges package” in R.

7. Evaluation of eQTL-Level Methods

To comparably evaluate methods that yield results on the level of eQTL or gene, we calculated
transcript- or gene-based p-values using MAGMA’®. As most of the eQTL data used in these comparisons
came from GTEx, we downloaded and used their GENCODE annotations™ for transcript/gene names and
genomic locations. Statistical significance for GWAS2 was determined at a GWAS-specific Bonferroni
correction to the MAGMA p-value after excluding eQTL-based gene results that did not yield a MAGMA
p-value.

For methods that did not provide a significance threshold, we first excluded any results that did not
result in a valid statistic, then performed a Bonferroni correction based on the number of remaining
tests. To exclude established significant loci from GWAS1, we excluded nominated transcripts/genes
where the midpoint of the genomic location was within +/- 500kb of the GWAS1 loci, defined above
(Methods Section 4).

For MAGMA-based evaluations, TP, FP, and FN were determined by matching either the Ensembl ID
or gene symbol, depending on what was used by the particular functional weighting method
(Supplemental Table 1), to the output of our modified MAGMA analysis to each GWAS2. A TP was
defined as an eQTL/gene that was nominated as significant by the functional weighting method and
identified as statistically significant by MAGMA as described above. FP and FN were defined
analogously, and we calculated SN, PPV, and F1.

We also conducted locus-based evaluations in two other ways. The first was to use the
boundaries of the nominated eQTL/gene, either defined by the functional weighting method when
provided or the GENCODE annotation boundaries used to generate the MAGMA p-values (Supplemental
Table 1). The second approach was to define the locus boundaries for a functionally weighted
eQTL/gene as +/- 500kb from the midpoint of the previously stated boundaries. To avoid possible
double-counting, we merged overlapping eQTL/genes into a single locus. Loci were determined in a
similar fashion as before (Methods Section 4) using the midpoint of the GENCODE-defined start and end
positions, with no truncation at the ends of chromosomes or centromeres, with the exception of
EUGENE, where we used the chromosome and position defined by EUGENE output.

We performed a locus-to-locus comparison by looking for a minimum of 250kb of overlap when
nominations were defined as +/- 500kb from the midpoint, and 2500 bases of overlap when
nominations were defined by the start and end positions using the GENCODE annotation boundaries
between the gold standard loci calculated from GWAS2 (Methods Section 3) and the loci calculated from
the results of the functionally weighted GWAS1 using the GenomicRanges package’ in R.

8. Generation of UpSet Plots

To identify an optimal ensemble approach, we examined the overlap among nominations across
functional weighting methods for each trait by generating UpSet plots. Plots were generated using
the ComplexUpset package "2 in R. To construct the UpSet plot, for each trait, functional weighting
GWAS methods were ordered from largest to smallest number of nominated loci, defined using +/-
500kb from either the top variant or gene midpoint. For methods with multiple options, the top
performing option was selected based on largest PPV. A matrix of nominated loci vs
the fwGWAS methods was created in a stepwise fashion. The method nominating the largest number of
novel loci was populated first, and then each of its nominated loci was tested for overlap of at least 250
kilobases with loci nominated by all other methods and these overlaps populated the matrix. For each
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subsequent functional weighting GWAS method, only nominated loci that had not been found to
overlap with loci from previously examined methods were added to the matrix. These new additions
were then checked for overlap with all remaining method nominations, and all methods nominating a
new locus were noted on the matrix.

9. Application of 18 Functional Weighting Methods to Model Traits

Full details of the application of each functional weighting method can be found in the Supplemental
Methods, with details of significance cutoffs and functional databases presented in Supplemental Table
1. Briefly, we used the default inputs, external databases, and statistical significance cutoffs
recommended by the method developers to the full extent that they were provided. When statistical
significance cutoffs were not provided, we applied a standard threshold of either a Bonferroni-corrected
p-value or a false discovery rate cutoff of 0.05, as appropriate for the statistics calculated by the
functional weighting method.

For the choice of functional database to use with each method, our default was to use a
preformatted database provided by the method developers (e.g., TWAS/FUSION). When
multiple databases were made available (e.g., SMR), we chose the largest database representing a tissue
type appropriate to the model trait being evaluated.

When no functional database was made available by the method authors (e.g., COLOC), we used
the statistically significant GTEx v7 nucleus accumbens data downloaded from the GTEx data portal to
apply the functional weighting methods to the three psychiatric traits’>®" and the corresponding
statistically significant GTEx v7 whole blood data for the two blood cell traits™.

We investigated the performance of the pleiotropy-based methods GPA and MTAG in each
psychiatric trait using contemporaneous GWAS of the other two psychiatric traits. For the blood cell
traits, we used a variety of potentially omnigenetic traits: SCZ**, HDL cholesterol*®*°, BMI*®, height*’, and
the other blood cell trait”.

10. Sensitivity Analyses

To determine whether the 250kb overlap between a nomination and a novel GWAS2 locus
impacted our results, we tested overlaps of 1 base, 500kb, and 750kb, used to replace the +/- 500kb
and Ensembl locus definitions.

We investigated whether a less stringent cutoff resulted in better performance by applying an
FDR significance cutoff for those methods (suggestive, MTAG, Weighted eQTL, JEPEG, TWAS/FUSION,
and UTMOST) for which we used a Bonferroni multiple testing correction. The FDR correction was
implemented using the fdrtool R package® and a cutoff of g < 0.05 was used to determine statistical
significance.

We sought to determine the accuracy of our FP definition by using wave 3 GWAS, hereafter
referred to as GWAS3, recently released by the PGC for the three psychiatric traits. Known loci from
GWAS1 were excluded as described above.
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Figure 1. Scatterplot of the relationship between sensitivity (SN; proportion of loci that are significant exclusively in the
second wave GWAS [GWAS2] that are also nominated by a given method when applied to GWAS1) and positive
predictive value (PPV; proportion of all nominated loci by a given method when applied to GWAS1 that are also
significant exclusively in GWAS2) for all method-trait combinations whose results contained at least one gene or locus
that was nominated as trait-associated by each method, respectively, after excluding loci identified in GWAS1. SN and
PPV were calculated using the +/- 500kb locus-based evaluation and requiring a minimum overlap of 250kb between

nominated loci and GWAS?2 significant loci. Horizontal and vertical lines denote PPV and SN of 50%, respectively.
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Figure 2. Manhattan plots of schizophrenia GWAS waves 1 (SCZ1; a and c) and 2(SCZ2; b and d) with the variants
nominated by MTAG (a and b) using bipolar disorder GWAS wave 1 (BPD1) as the pleiotropic trait and the LSMM method
using a global FDR (LSMM) (c and d) highlighted in green. P-values were derived from the publicly available downloads of
SCZ1 and SCZ2 provided by the Psychiatric Genomics Consortium, respectively. These plots include the full
downloadable GWAS summary statistics for both SCZ GWAS waves, without excluding significant GWAS1 regions.
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Figure 3. Manhattan plots of schizophrenia GWAS waves 1 (SCZ1; a and c) and 2 (SCZ2; b and d) with the variants
nominated by the EUGENE (a and b) and SMR (c and d) methods using Brain eMETA cohort annotations (SMR2)
highlighted in green. P-values were derived from applying MAGMA to SCZ1 and SCZ2, respectively. These plots include
the full downloadable GWAS summary statistics for both SCZ GWAS waves, without excluding significant GWAS1
regions.
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Table 1. Description of functional weighting methods

Method Name Classification Level Citation Significance Threshold

Suggestive NA Variant NA p<le-5

GenoCanyonl10K annotation  Variant Lu, et al. Sci Rep 2015 Prediction Score > 0.5

GenoSkyline annotation  Variant Lu, et al. PLoS Genetics 2017 Prediction Score >0.5

Naive annotation  Variant Sveinbjornsson, et al. 2016 Annotation-based threshold

LSMM annotation  Variant Ming, et al. Bioinformatics 2018 FDR <0.05

GPA pleiotropy  Variant Chung, et al. PLoS Genetics 2014 FDR <0.05

MTAG pleiotropy  Variant Turley, et al. Nature Genetics 2018 p < 5e-8

fGWAS eQTL Variant Pickrell. AJHG 2014 PPA>0.9

Weighted eQTL eQTL Variant Li, et al. Front Genet 2013 p < 5e-8

CcoLocC eQTL eQTL Giambartolomei, et al. PLoS Genetics 2014 Approximate Bayes Factor >0.75
MOLOC eQTL eQTL Giambartolomei, et al. Bioinformatics 2018 Posterior Probability >0.80

Jepeg eQTL eQTL Lee, et al. Bioinformatics 2014 Bonferroni-adjusted Jepeg p-value
Sherlock eQTL eQTL He, etal. AJHG 2013 Log Bayes Factor >=4.0

SMR eQTL eQTL Zhu, etal. Nature Genetics 2016 FDR g-value <0.05; Heidi p-value <0.05
TWAS/FUSION eQTL eQTL Gusev, et al. 2016 Bonferroni-adjusted TWAS p-value
fastENLOC eQTL eQTL Wen, et al. PLoS Genetics 2017 RCP >=0.50

EUGENE eQTL eQTL Ferreira, etal. JACI 2017 p-value corresponding to largest FDR < 0.05
UTMOST eQTL eQTL Hu, et al. Nat Genet 2019 Bonferroni-adjusted UTMOST p-value
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Table 2. Ranking of all methods by best performing PPV, as measured by locus (+/- 500kb)

BPD MDD SCz MPV WBC
Median
Rank
Median excluding

Method BestPPV  Rank |BestPPV  Rank |BestPPV Rank |BestPPV  Rank [BestPPV  Rank Rank MDD
Suggestive 0.286 6 0.000 9 0.455 7 0.204 11 0.349 9 9 8
Weighted eQTL NA 18 NA 18 NA 18 0.333 3 0.667 2 18 3
fgwas 0.143 10 0.077 2 0.190 13 0.302 4 0.250 14 10 9
GenoSkyline 0.083 12 NA 18 0.273 11 0.220 9 0.250 14 12 10
GenoCanyon 0.079 13 0.000 9 0.196 12 0.200 12 0.207 16 12 12
GPA 0.231 7 0.000 9 0.275 10 0.256 6 0.335 10 9 8
MTAG 0.571 1 1.000 1 1.000 2 NA 18 1.000 1 1 2
Naive NA 18 NA 18 NA 18 NA 18 NA 18 18 18
LSMM 0.185 9 NA 18 0.181 14 0.214 10 0.225 15 14 12
Jepeg 0.333 5 NA 18 1.000 2 0.000 15 0.375 7 7 5
TWAS/FUSION 0.500 3 NA 18 0.500 6 0.400 1 0.368 8 6 4
EUGENE 0.500 3 NA 18 0.400 8 0.255 7 0.282 12 8 8
SMR (best performing) NA 18 NA 18 0.000 15 0.143 14 0.400 6 15 14
coLoc 0.200 8 0.000 9 0.600 4 0.250 8 0.566 3 8 4
UTMOST- (best result) 0.333 5 0.000 9 0.500 6 0.320 5 0.300 11 6 6
Sherlock 0.182 11 0.000 9 0.286 9 0.379 2 0.538 4 9 3
fastENLOC NA 18 NA 18 NA 18 NA 18 NA 18 18 18
moloc 0.000 14 0.000 9 0.667 3 0.182 13 0.500 5 9 4

Ties between methods resolved using the Olympic method.
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