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Abstract  

Where sufficiently large genome-wide association study (GWAS) samples are not currently available or 

feasible, methods that leverage increasing knowledge of the biological function of variants may 

illuminate discoveries without increasing sample size. We comprehensively evaluated 18 functional 

weighting methods for identifying novel associations. We assessed the performance of these methods 

using published results from multiple GWAS waves across each of five complex traits. Although no 

method achieved both high sensitivity and positive predictive value (PPV) for any trait, a subset of 

methods utilizing pleiotropy and expression quantitative trait loci nominated variants with high PPV 

(>75%) for multiple traits. Application of functionally weighting methods to enhance GWAS power for 

locus discovery is unlikely to circumvent the need for larger sample sizes in truly underpowered GWAS, 

but these results suggest that applying functional weighting to GWAS can accurately nominate 

additional novel loci from available samples for follow-up studies.  
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Introduction  

The genome-wide association study (GWAS) has been widely successful for discovering genetic 

loci contributing to complex traits
1
. Yet, a survey of the GWAS catalog identified 88 traits without 

genome-wide significant findings despite theoretically adequate sample size
2
. Traits with worse than 

expected performance even when thousands of cases are available include autism spectrum disorder
3
, 

heart failure
4,5

, major depressive disorder (MDD)
6,7

, and some addictions
8–11

. Increasing sample size to 

increase statistical power for discovery is not always practical, as encountered for rare diseases
12

, 

expensive phenotyping
13

, phenotypic heterogeneity
14

, hard-to-reach or socially disadvantaged 

populations
15

, and population isolates
16

. Our ability to discover trait-associated loci that are ancestry-

specific or subject to gene-environment interaction lags in a field where the overwhelming majority of 

GWAS samples are of European ancestry
17

. Further, increasing sample size sometimes fails to achieve 

the expected gain in significant loci
18

. 

Attempts to improve the discovery power of GWAS without increasing sample size by 

incorporating functional information, defined here as regulatory annotation of variants or evidence of 

pleiotropy, is not new
19

. An evaluation of gene- and pathway-based GWAS methods found low 

sensitivity overall for discovery, and that high sensitivity was achieved at the expense of more false 

positives
20

. Methods to combine GWAS summary statistics with additional information to perform in 

silico functional follow-up are plentiful
21–25

 and range from fine-mapping to determining the biological 

underpinnings of the variant-trait association. Some authors suggest that a secondary usage of these 

methods is to increase the statistical power of GWAS to identify novel loci. Evaluation of the 

performance of such methods for locus discovery has been done ad hoc for select methods,
21–23,26

 but to 

our knowledge, a comprehensive evaluation of many methods and multiple GWAS traits against 

objective criteria has not been published.  

To identify suitable method(s) for improving GWAS statistical power to uncover novel loci, we 

performed the largest, most comprehensive evaluation of published functional weighting methods to 

date: 18 methods applied to multiple waves of GWAS for five diseases and traits. We applied these 

methods to publicly available GWAS summary statistics and evaluated their ability to nominate novel 

trait-associated loci that were confirmed by a subsequently larger, more powerful GWAS, henceforth 

referred to as GWAS1/GWAS2/GWAS3, for the same trait. To represent varying genetic architectures, 

phenotypic heterogeneity, and gene regulation by tissue type, we selected three psychiatric traits: 

schizophrenia, bipolar disorder, and MDD available from the Psychiatric Genomics Consortium (PGC); 

and two blood cell traits: mean platelet volume (MPV) and white blood cell (WBC) counts, available from 

the UK Biobank.  

 

Results  

We selected 17 published functional weighting methods; we also evaluated a suggestive p-value 

threshold of 1×10
-5

 as an 18
th

 method (Table 1). Nine methods provided results for individual variants, 

and nine provided gene-based results aggregated across variants. When evaluated on a per-variant 

basis, the number of potentially novel nominated variants, after excluding statistically significant 

variants from GWAS1, ranged from zero to 177,698 in the blood cell traits and zero to 4,147 in the 

psychiatric traits (Supplemental Table 4).  
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 Briefly, we applied each published functional weighting method (Table 1) to genome-wide 

summary statistics from each GWAS1 study. Details of additional annotation datasets and statistical 

significance thresholds used for each method are described in the Methods and Supplemental Table 1. 

To facilitate cross-method comparisons, our primary way to evaluate both variant-based and gene-

based method performance used a +/- 500kb window to define a locus, unless specified otherwise. 

Overlapping loci were merged. To exclude the possibility of methods re-discovering loci already 

identified as trait-associated in GWAS1, we did not consider loci if they overlapped with a +/- 500kb 

window surrounding the top variant of a locus that was genome-wide significant in GWAS1. Each 

functionally weighted GWAS1 was then compared to the corresponding GWAS2 of that trait to identify 

nominated loci from GWAS1 that overlapped with genome-wide significant loci first identified in 

GWAS2. A minimum overlap of 250kb was required. Our scheme for defining classification metrics (True 

Positive [TP], etc.), is illustrated in Supplemental Table 3. Our primary evaluation metrics, Positive 

Predictive Value (PPV) and Sensitivity (SN), were derived from these classification metrics. 

Global Evaluation 

No method had both high SN and PPV (>0.50, Figure 1, Quadrant I). In general, there was an 

inverse relationship between SN and PPV (Figure 1). Quadrant IV, with high SN and low PPV, was 

dominated by methods providing variant-level results and by the blood cell traits MPV and WBC. 

Quadrant II, with low SN and high PPV, was dominated by eQTL-based methods, which tended to 

nominate fewer loci than the variant-level methods (Supplemental Table 5). Exceptions to the pattern of 

finding eQTL-level methods in Quadrant II were MTAG and the weighted eQTL methods. These methods 

nominated fewer loci for their respective traits than was typical for other variant-based methods 

(Supplemental Table 4).  

Quadrant III of Figure 1, representing low SN and low PPV, included results from all five traits 

and a preponderance of MDD, specifically around SN=0 and PPV=0. Only five out of nine methods 

nominated any variants for MDD (Supplemental Table 4), which had no significant hits in GWAS1. Like 

the variant-based methods, only four out of nine gene-based methods yielded any nominations for 

MDD, and none of those overlapped with the GWAS2 hits for MDD, regardless of the evaluation method 

used (Supplemental Table 5).  

We provide representative Manhattan plots36 to illustrate the performance of two functional 

weighting methods for the high PPV (MTAG, Figure 2a-b) and high SN (LSMM, Figure 2c-d) scenarios, 

respectively. When comparing the variants nominated by MTAG for SCZ1, using BPD1 as the pleiotropic 

trait, relative to both waves of the SCZ GWAS, the nominated variants of MTAG clustered around 

established “peaks”, including some that are just below the genome-wide significance threshold in 

GWAS1 (Figure 2a). Some of these variants (e.g., see Chromosomes 3 and 12) are in loci that become 

significant in GWAS2 (Figure 2b), contributing to the high PPV of this method-trait combination, while 

others fall below even the suggestive threshold in GWAS2 (e.g., see Chromosome 7). However, these 

particular non-significant nominated variants are within 500 kb of the novel GWAS2 top hit 

(Supplemental Table 4).  

LSMM with global FDR nominated 3,395 more variants for SCZ than MTAG, resulting in high SN 

(Supplemental Table 4). In contrast to MTAG, a striking proportion of these nominated variants 

exhibited a sharp decrease in significance from GWAS1 (Figure 2c) to GWAS2 (Figure 2d), contributing to 
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the low variant-based PPV under both FDR options for LSMM; the PPV also remained low in the locus-

based evaluation (Supplemental Table 4). 

Figure 3 illustrates the performance of gene-based methods. To provide parity in evaluating 

nominated genes, we calculated gene-based p-values using a modification of MAGMA (see Methods). 

The gene-based methods nominated fewer loci than the variant-based methods. For both EUGENE and 

SMR, which were applied using Brain eMETA cohort annotations, nominated genes tended to have 

higher MAGMA p-values (Figure 3a and 3c) but lower p-values in GWAS2 (Figure 3b and 3d).  

Top Method for Positive Predictive Value 

Focusing on the ability of methods to accurately nominate loci that were truly trait-associated 

but inadequately powered for detection in GWAS1, we compared PPV across all traits (Table 2). When 

multiple databases were applied to a functional weighting method, we chose its highest PPV to carry 

forward for overall evaluation. Any method ties were all assigned the lowest rank, and methods that 

failed to nominate any variants/eQTL/genes were ranked lower (NA) than methods with a PPV of 0%. 

Overall, the best-performing method was MTAG
27

, even after a sensitivity analysis excluding the MDD 

rankings. This ranking was made despite MTAG failing to nominate any variants for MPV (Supplemental 

Table 4). The best-performing method for MPV alone was TWAS/FUSION, which failed to nominate any 

loci for MDD.  

Consistency of True Associations Nominated Across Methods 

We evaluated whether loci nominated by multiple methods are more likely to be TP, as running the 

same summary statistics through multiple methods is cheaper than conducting a larger GWAS. In 

general, this was an effective strategy. For example, eight methods was the minimum number necessary 

to achieve PPV > 50% (Supplemental Table 8) for three out of the five traits. For MPV, we did not see a 

monotonic increase in PPV with larger numbers of nominating methods, and for MDD, only two 

methods successfully nominated any TP loci. We examined combinations of functional weighting 

methods to determine if there existed an ensemble set that consistently achieved PPV > 50% across 

traits (Supplemental Figure 4). Across SCZ, BPD, MPV, and WBC, the methods GenoCanyon and LSMM 

were common to all method ensembles with a minimum of six methods; however, the inclusion of one 

or both of these methods does not preclude a false positive (FP). None of the ensemble sets could be 

used to reliably nominate TPs across traits.  

Evaluating False Positives 

Some loci nominated by the functional weighting methods and labeled as FP by our definition may 

be truly associated with the trait but remain undiscovered in GWAS2. As a sensitivity analysis, we used 

GWAS3 waves and calculated the PPV of the nominated loci after removing findings from GWAS1, 

similar to our primary analysis approach. Figure 4 shows the SN and PPV of the functional weighting 

methods for the three psychiatric traits based on their GWAS3 waves. GWAS3 were not available for the 

blood cell traits MPV and WBC. Like Figure 1, no methods appeared in Quadrant I. In general, PPV was 

higher and SN was lower when using GWAS3, compared to using GWAS2, as the gold standard. A 

substantial number of the method-trait combinations remained in Quadrant III with low SN and PPV. 

Supplemental Table 7 shows that no methods had a worse PPV when GWAS3 was used as the gold 

standard rather than GWAS2. An improved PPV when compared to the larger GWAS3 is expected when 
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additional nominated loci are trait-associated. For BPD and MDD, most methods with any successful 

nominations still had PPV <50% when compared to GWAS3. For the variant-based methods, only MTAG 

outperformed the approach of simply using a suggestive p-value threshold in the original GWAS1 when 

using either GWAS2 or GWAS3 as the gold standard for both SCZ and BPD (Supplemental Table 7).  

Evaluating the Stringency of Genome-wide Significance  

The evaluated methods do not employ a consistent strategy for multiple testing correction or 

determination of statistical significance. We used a Bonferroni correction based on the number of valid 

test statistics for methods that calculated a p-value but did not provide a prespecified significance 

threshold. To evaluate whether this conservative approach hampered our ability to detect trait-

associated loci, we performed a sensitivity analysis by calculating a local FDR and using a q-value of 0.05 

as the threshold for statistical significance for those methods previously subjected to a Bonferroni 

correction. Results were largely unchanged (Supplemental Figure 2), except for a substantial drop for 

MTAG and JEPEG, which had achieved perfect PPV with some traits when using the Bonferroni 

correction.  

Evaluating the Amount of Overlap 

 We evaluated the impact of our primary choice for defining a minimum overlap (250kb) 

between nominated loci and gold standard loci. We performed a sensitivity analysis utilizing different 

minimum overlaps of one base, 500kb, and 750kb. In general, we found a slight reduction in SN and PPV 

with increasing size of the required overlap for all five traits (Supplemental Figure 3a-3e). However, we 

did not find that our results, particularly our high PPV method-trait combinations, were dependent on 

overlap size.  

 

Discussion  

Our comprehensive, multi-method evaluation presents scenarios where functional weighting 

methods might prove helpful in expanding the number of novel loci uncovered by GWAS in lieu of 

increased sample size. None of the eighteen methods achieved both high PPV and high SN, which would 

have been the ideal result: nominating a substantial proportion of TP loci that would be found in the 

next GWAS wave without nominating excessive FP loci. Instead, our evaluation demonstrated that the 

use of functional weighting methods presents a tradeoff between high SN and high PPV. MTAG
27

 had 

the best performance overall with respect to PPV, and LSMM with respect to SN.  

When comparing functional weighting GWAS results to standard GWAS results from larger 

sample sizes as the gold standard, the PPV for many method-trait combinations exceeded 50%, 

indicating that most nominations were trait-associated by the standard defined here. For BPD and SCZ, 

where GWAS1 were adequately powered to detect genome-wide significant associations, most eQTL-

based methods were able to consistently nominate TP loci when compared to GWAS3 as the gold 

standard; however, SN decreased across method-trait combinations, indicating that functional 

weighting GWAS methods combined with contemporaneous annotation databases were unable to 

identify a correspondingly large fraction of the trait-associated variants that can be captured with a 

larger GWAS sample size incorporating tens of thousands of additional cases. For SCZ, functionally 
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weighted GWAS applied to SCZ1 uncovered 74.7% of the novel loci found in SCZ2, which dropped to 

58.1% of the novel loci found in SCZ3.  

If the goal is high-confidence nominations, then there is little additional cost to applying 

multiple functional weighting methods using publicly available annotation data. Our findings did not 

show an ideal ensemble approach, whereby nominations that intersected a subset of specific methods 

subsequently became genome-wide significant in later GWAS waves. Instead, for traits that had 

relatively few genome-wide significant loci identified in GWAS1, we found that increasing the number of 

functional weighting methods increased the PPV of those nominations. An ensemble approach may be 

achievable in the future as functional annotation data in disease-relevant tissues and cell types expands, 

enabling a comparison of methods with more complete annotations across the genome.   

Applying functional weighting methods for the discovery of novel loci and variants carries 

important considerations. First, applying these methods to a GWAS in the “dead zone” of statistical 

power
18

, where no genome-wide significant loci have been identified using standard GWAS, may not 

provide a reliable approach to find trait-associated variants. Using MDD as an example, only a minority 

of the tested methods were able to nominate any novel loci for MDD, and few nominated variants were 

significant in MDD2 (Supplemental Tables 4,5) or MDD3 (Supplemental Table 7). This difficultly in 

nominating TP loci for MDD suggests that functional annotation is unlikely to overcome insufficient 

statistical power for GWAS with sample sizes that are far below what is needed to identify robust 

genome-wide significant loci. For these situations, increasing the GWAS sample size is ideal
6,28,29

. 

However, if a second, contemporaneous GWAS of a highly pleiotropic trait is available, applying 

pleiotropy-based methods such as MTAG or GPA may provide an alternative approach. Although 

identifying the minimum required SNP-based genetic correlation is beyond the scope of this analysis, we 

note that SCZ and MDD have a SNP genetic correlation ranging from 0.34–0.51, depending on the 

study
6,30,31,32

. It is also worth considering that while improvements in trans-ethnic GWAS methods boost 

discovery power
33

, uncovering ancestry-specific loci will require investments to increase the sample size 

of either the ancestry-specific GWAS or the ancestry-specific functional database
34,35

.  

Second, by using a distance-based locus definition, we could not evaluate whether the 

nomination captured the putative causal variant or gene identified in GWAS2. For example, MTAG and 

fgwas successfully nominated the HLA region as associated with MDD. As is typical with findings located 

in this region, more work is necessary to identify the causal mechanism for the association between HLA 

and MDD; initial work by the PGC noted that the C4A and C4B genes were unlikely to be causal for 

MDD
6
, although these genes were functionally characterized as potentially causal for SCZ

36
. Subsequent 

fine-mapping of the classical MHC region by the PGC also did not support variation in C4 genes to be the 

source of the MDD association
37

, though an eQTL-based analysis identified C4A as a candidate risk gene 

for MDD
38

. The extended HLA region was confirmed in a subsequent GWAS of MDD, though with a 

different lead SNP
28

. In our study, MTAG used pleiotropy to find what is likely a true association between 

the extended HLA region and MDD earlier than it could be discovered with the MDD GWAS1 sample 

size, but this is likely driven by linkage disequilibrium in the region, rather than genuinely shared 

pleiotropy between causal genes
37

.  

Third, our study focused on comparing three categories of methods: annotation, pleiotropy, and 

eQTL. These three categories represent some of the most popular and long-standing methods, 

collectively with >3,000 citations as of September 2021. Other categories of functional genomic 
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annotation exist, such as methylation
22

 and protein
23

 QTLs, and were beyond the scope of the present 

analysis; we expect that their performance would not substantially differ from the methods evaluated 

here, but we cannot account for significant GWAS2 loci acting through other mechanisms whose 

functional annotations were not evaluated here. Other mechanisms may explain some of the low SN, 

but PPV would be unaffected.  

Fourth, our definition of “gold standard” using GWAS2 hits assumes that all novel discoveries in 

GWAS2 are TPs. In the modern GWAS era with independent replication as a best practice, this 

assumption likely holds for most loci and their variants. By evaluating variants and their broad flanking 

regions, our approach minimized FNs and FPs caused by changes in lead variants for a given locus across 

GWAS waves and equalized the playing field for variant- and eQTL/gene-based methods, allowing for 

simultaneous comparison.  

Fifth, our definition of a FP depended on the sample size of GWAS2. Variants or loci nominated 

by functional weighting methods could be classified as FP when compared against the gold standard of 

GWAS2, but it is possible that they represent TP associations that GWAS2 remained underpowered to 

detect. By performing a sensitivity analysis using recently published GWAS3 as our gold standard for the 

three psychiatric traits, we confirmed that a portion of the genome classified as FP in our primary 

analysis, with GWAS2 as the gold standard, were trait-associated. In a real-world application, the ability 

to arrive at this conclusion would require either substantial laboratory follow-up or an increase in GWAS 

sample size of 2–4 times to bridge the gap between GWAS2 and GWAS3, using the psychiatric traits as 

representative sample sizes.   

Functional annotation databases continue to expand and contribute broadly to understanding 

human biology and uncovering causal underpinnings of variant-trait associations. Although functionally 

weighting GWAS is not a substitute for pursuing large samples for well-powered GWAS, these summary 

statistics-focused methods can be a cost-efficient approach to discovery. Our results show that no 

method applied systematically across five traits produced both high SN and high PPV. However, when 

focused on either high SN or high PPV, functional weighting GWAS methods boost statistical power 

where larger sample sizes are not feasible and the currently available GWAS has generated at least some 

genome-wide significant loci for the trait of interest. Greater tolerance for FPs can be endured by a 

research pipeline incorporating inexpensive, high-throughput, and/or in silico steps, while a pipeline 

intended to move GWAS nominations into model organisms may require more confidence that the 

nominated loci are truly trait-associated. Functional weighted GWAS results can generate leads for 

follow-up studies of the genetic drivers of complex traits with a reasonable likelihood of being true, 

particularly for associations that come through multiple methods.  

 

Methods   

1. Method Selection   

We reviewed the published literature through February 2020 to identify methods that met the following 

criteria:   

1. Categorized as a) annotation-based; b) pleiotropy-based; or c) eQTL-based   

2. Utilized GWAS summary statistics, as opposed to individual-level genotype data   

3. Implemented using freely-available software or packages.   
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4. Provided either method-specific annotation or eQTL files for use with the method, or were 

amenable to use with publicly available annotation datasets (e.g., GTEx
39

)   

5. Originally proposed primary or secondary usage included the discovery of novel trait-associated 

variants, genes, eQTL, or loci.   

We found 17 functional weighting methods that met our inclusion criteria. We also evaluated the 

performance of a “suggestive” p-value threshold, defined as 5×10-8 < p < 1×10-5 to illustrate the tradeoffs 

of simply choosing a more liberal p-value cutoff, without the addition of any functional weighting 

information. The full list of 18 methods evaluated in the present analysis is presented in Table 1. These 

methods varied in their determination of significant trait associations. For methods that listed specific 

threshold values for test statistics, we used those thresholds. For methods whose test statistics were p-

values and whose authors did not provide a significance threshold, we used a Bonferroni correction on 

the number of valid p-values output by the method. Details for significant trait association 

determinations for each method are detailed below and in Supplemental Table 1.   

  

Suggestive  

For all traits, we considered “suggestive” variants as those with p-values < 1×10-5 and ≥ 5×10-8. 

To define suggestive loci, we defined a region +/- 500 kilobases surrounding the variant with the 

smallest suggestive p-value, and collapsed regions that overlapped by any amount into a single locus.   

  

GenoCanyon   

We downloaded the prediction scores for the human genome smoothed over 10-kilobase 

segments
40

 (zhaocenter.org/GenoCanyon_Downloads.html) and applied them to each of the five 

GWAS1 using the signal prioritization software GenoWAP
41

. We used the recommended posterior 

probability of 0.50 to define statistical significance.   

  

GenoSkyline   

We downloaded tissue-specific functional 

predictions
42

 (http://genocanyon.med.yale.edu/GenoSkyline) based on the Roadmap Epigenomics 

Project (Roadmap) for whole blood and brain tissue and applied them to the blood traits and psychiatric 

traits, respectively, using the signal prioritization software GenoWAP
41

. We used the recommended 

posterior probability of 0.50 to define statistical significance.   

  

Weighted eQTL   

Following the method of Li et al.
43

, we calculated both binary and general eQTL-based weights 

for all five traits. In each case, we set α = 0.05 and power = 0.6. For binary weights, the parameter M was 

the number of included variants in each GWAS1, respectively, and ε was calculated as the percentage 

of eSNPs, defined as those with significant eQTL associations in the relevant tissue. We used the 

significant GTEx v7 Brain Nucleus Accumbens for PGC traits and the significant GTEx v7 Whole Blood for 

blood cell traits. Weights were then normalized and applied to the downloaded p-values. Statistical 

significance was defined as pweighted < 5×10-8.   

The general eQTL weight was calculated as √(-log10peQTL) for eSNPs and 1 for all others, 

where eSNPs are defined as above. Weights were then normalized and applied to the downloaded p-

values. Statistical significance was defined as pweighted < 5×10-8. The parameters α, power, and M were also 

defined as above.   

  

GPA   

Genetic analysis incorporating Pleiotropy and Annotation
44

 (GPA) was performed using pairwise 

comparisons between two traits of interest. For each pair of traits, we matched variants on hg19 
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chromosome and position. In the case of duplicate variants, the variant with the smaller p-value was 

retained. We performed GPA with both global and local FDR strategies using a cutoff of 0.05 in both 

cases to determine statistical significance.   

For each of the three PGC traits, we used as pleiotropic traits the remaining two PGC traits. For 

blood cell traits, we used the second blood cell trait as a pleiotropic trait for the first. Additionally, we 

used SCZ1
45

, BMI
46

, height
47

, and two GWAS for HDL
48,49

. FDR cutoffs were defined as above in all cases.   

  

MTAG   

Multi-Trait Analysis of Genome-wide association summary statistics (MTAG
27

) was performed 

using pairwise comparisons between two traits of interest. For all traits, we used the subset of 

downloaded variants with valid rsIDs and allele frequencies in the downloaded GWAS1 summary 

statistics.  Statistical significance was defined as pMTAG < 5×10-8. For each of the three PGC traits, we used 

as pleiotropic traits the remaining two PGC traits. For blood cell traits, we used the second blood cell 

trait as a pleiotropic trait for the first. Additionally, we used SCZ1
45

, BMI
46

, height
47

, and two GWAS for 

HDL
48,49

.   

  

fgwas   

We combined fgwas
26

 with eQTL results from GTEx
39

 as the annotation 

database. Our eQTL dataset of choice was the significant eQTL dataset for expression in the 

Nucleus Accumbens from GTEx, v7 for PGC traits and the significant GTEx v7 Whole Blood eQTL 

dataset for blood cell traits. Each significant eQTL was defined as a “segment”. All GWAS1 variants 

whose position fell within the start and end positions
50

 of a significant eQTL were assigned to that 

segment. Variants that remained unassigned to any segment were excluded, along with variants having 

missing allele frequencies or odds ratios of zero in the downloaded summary statistics. If more than one 

variant was localized to the same position in GWAS1, the variant with the smallest p-value was retained. 

We used the default likelihood penalty of 0.2 to run fgwas. Statistical significance was defined as a PPA > 

0.9.   

  

Naïve   

We applied the functional-weighted GWAS method described by Sveinbjornsson, et al.
51

, 

dubbed here the “naïve” method. This method relies on an annotation classification for each variant 

into one of four categories, where each category has a Bonferroni-adjusted family-wise error weight 

reflecting the likelihood of protein function alterations caused by that variant. The categories and p-

value thresholds are loss-of-function (p < 5.5×10-7), moderate impact (p < 1.1×10-7), low impact (p < 

1.0×10-8), and other (p < 1.7×10-9). We annotated GWAS1 summary statistics using SnpEff software
52

 and 

applied the aforementioned p-value cutoffs according to the annotation category to determine 

statistical significance.       

  

  

LSMM  

We performed latent sparse mixed model (LSMM
53

) following the example annotations of the 

method authors, requiring three sets of input: variants and p-values from GWAS summary statistics, 

ANNOVAR
54

, and GenoSkylinePlus
55

 using annotations from the original source. We downloaded the 

hg19 annotations from the ANNOVAR website and used the dbSNP147 database to annotate GWAS1 

variants. Annotations were then collapsed into nine categories: downstream, exonic, intergenic, 

intronic, ncRNA/exonic, ncRNA/intronic, upstream, 3’UTR, and 5’UTR, with each variant assigned a value 

of 0 or 1 to denote category membership.   
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COLOC   

For PGC traits, our colocalization
25

 dataset of choice was the significant eQTL dataset for 

expression in the Nucleus Accumbensfrom GTEx, v7
39

. We defined a region to test for colocalized signal 

as +/- 200 kilobases upstream and downstream from start and stop positions of a single eQTL probe, and 

included all GWAS1 SNPs contained within that region. This was repeated for all eQTL probes available 

in the downloaded dataset.   

For blood cell traits, we repeated the same procedure using the significant Whole Blood GTEx v7 

dataset
39

. For all GWAS1, evidence of statistically significant colocalization was defined as an 

Approximate Bayes Factor greater than 0.75.   

  

ENLOC   

We performed the fastENLOC implementation of the ENLOC method
56

. We downloaded the 

multi-tissue eQTL annotation derived from GTEx v8
57

 hg38 position and provided European LD definition 

file (https://github.com/xqwen/fastenloc/). We then used LiftOver
58

 to convert all five GWAS1 from 

hg19 to hg38 genomic coordinates. We applied the Nucleus Accumbens eQTL dataset For PGC 

traits and the Whole Blood eQTL dataset for blood cell traits.   

  

EUGENE   

For all traits, we used the subset of downloaded variants with valid rsIDs as GWAS1. We 

downloaded the required input datasets for gene position from the EUGENE website
59

, 

grouped GTEx brain tissues as the eQTL data for the PGC traits
39

, and grouped whole blood eQTL data 

for the blood cell traits
39,60,61

 after performing additional quality control on the whole blood eQTL data 

to remove discrepant rsIDs. We used Satterthwaite’s approximation to calculate the gene-based 

summary statistics
62

. We then estimated the FDR thresholds using EUGENE and identified the p-value 

threshold closest to the FDR threshold of 0.05 to determine statistical significance (Supplemental Table 

1).   

  

JEPEG   

We downloaded the SNP annotation data (v0.2.0) and reference panel (1000 Genomes EUR 

Phase 1 Release 3)
63

 from the JEPEG website (https://dleelab.github.io/jepeg/). For all traits, we used 

the subset of downloaded variants with valid rsIDs. For blood cell traits, in the case of duplicate rsIDs, 

we retained the variant with the smaller p-value. Statistical significance of the results was determined 

by a Bonferroni correction applied to the JEPEG p-value.   

  

MOLOC
25

  

For PGC traits, our colocalization dataset of choice was the significant eQTL dataset for 

expression in the Nucleus Accumbens from GTEx, v7
39

. The methylation dataset used for PGC traits was 

downloaded from the processed data available on the GEO data repository at accession number 

GSE74193 and reflects the identification of meQTLs in the prefrontal cortex of 191 schizophrenia 

patients and 335 controls without psychiatric illness
64

. We defined a region to test for colocalized signal 

as +/- 200 kilobases upstream and downstream from start and stop positions of a single eQTL probe, and 

included all GWAS1 SNPs and meQTL probes contained within that region. This was repeated for all 

eQTL probes available in the downloaded dataset.   

For blood cell traits, we repeated the same procedure using the significant Whole Blood GTEx v7 

dataset. The methylation dataset used for blood cell traits was the methylation QTL results from the 

ALSPAC Accessible Resource for Integrated Epigenomics Studies (ARIES)
65

 at the middle-aged timepoint 

(https://data.bris.ac.uk/data/dataset/r9bxayo5mmk510dczq6golkmb).   
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Sherlock   

Only variants with valid rsIDs were submitted to Sherlock for each GWAS. For the PGC traits, the 

Sherlock-provided eQTL data was chosen as GTEx v7 Brain – Nucleus accumbens. Sample sizes from 

Supplemental Table 2 were used, and disease prevalence was taken as 0.5% for schizophrenia
66

, 1% for 

bipolar disorder
67

, and 15% for major depressive disorder
68

. For the UK Biobank traits, the Sherlock-

provided eQTL data was chosen as GTEx v7 Whole Blood, and the sample sizes from Supplemental Table 

2 were entered for sample size. As Sherlock output is sometimes presented as a gene symbol 

and sometimes as an Ensembl gene ID (ENSG), we used the GENCODE annotations
50

 to match gene 

symbols to Ensembl IDs and evaluated the overlap with our gold standards using Ensembl IDs.   

  

SMR  

For all GWAS1 inputs, we used the subset of downloaded variants with valid rsIDs and valid 

allele frequencies. Formatted eQTL data were downloaded from the SMR website 

(https://cnsgenomics.com/software/smr/#DataResource). For PGC traits, we evaluated the performance 

of SMR using three different eQTL datasets: GTEx v7 data from the Brain Nucleus Accumbens
39

, the 

“lite” version of the GTEx v7 data from the Brain Nucleus Accumbens, and the Brain-eMeta eQTL 

data
69

 derived from a meta-analysis of GTEx brain, Common Mind Consortium
70

, and ROSMAP 

consortium
71

 studies. For UK Biobank traits, we evaluated the performance of SMR using the GTEx v7 

data from Whole Blood
39

, both full and “lite” versions. For all datasets, we evaluated with and without 

the requirement for a Heidi p-value of < 0.05 to exclude trait-eQTL associations due to pleiotropy.   

  

TWAS  

For all GWAS1 inputs, we used the subset of downloaded variants with valid rsIDs. We 

downloaded reference LD data for the 1000 Genomes EUR samples provided by the Broad 

Institute Alkes Group (https://data.broadinstitute.org/alkesgroup/FUSION/). We downloaded 

(https://gusevlab.org/projects/fusion/) and applied pre-computed gene expression weights for GTEx v7 

Brain Nucleus Accumbens for PGC traits and Whole Blood for blood traits
39

.   

  

UTMOST   

For all GWAS1 inputs, we used the subset of downloaded variants with valid rsIDs. We used the 

pre-calculated covariance matrices using the 44 GTEx v7
39

 tissues (https://github.com/Joker-

Jerome/UTMOST). For all five GWAS1, we evaluated the full cross-tissue expression UTMOST 

results. We additionally evaluated the single-tissue UTMOST output for the Nucleus Accumbens for PGC 

traits and Whole Blood for blood traits.   

  

2. Model Trait Selection   

We evaluated the performance of the functional weighting methods using five traits that have 

published GWAS with publicly available summary statistics. We deliberately chose early phase 

GWAS (which we refer to as GWAS1) for each trait to allow for validation of results in subsequent GWAS 

for the traits (referred to as GWAS2 and/or GWAS3). We evaluated three traits with summary statistics 

available from the Psychiatric Genomics Consortium (PGC): schizophrenia
45

 (SCZ), bipolar 

disorder
72

 (BPD), and major depressive disorder
14

 (MDD). We also evaluated two blood cell traits 

examined in the UK Biobank, mean platelet volume (MPV) and white blood cell count (WBC)
73

, as 

examples of traits with a larger explained heritability, many genome-wide significant loci, minimal 

heterogeneity in phenotyping, and comprehensive tissue-specific functional annotations. Additional 

details of the GWAS used to test the functional weighting methods are presented in Supplemental Table 

1. 
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We used Liftover
74

 to convert the GWAS of the psychiatric traits from hg18 to hg19. For MPV, p-

values were truncated at 7.41×10-323, due to the extremely small p-values not being read into R (v3.6.0).   

3. Definition of a Gold Standard   

For comparison to each GWAS1, we used as our “gold standard” a larger, more powerful GWAS, 

hereafter referred to collectively as GWAS2, performed on the same trait and by the same consortium 

to reduce variability in findings due to differences in trait definition, analytic strategies, or recruitment 

of study participants (Supplemental Table 2). Our gold standard “hits” for each GWAS2 were defined as 

those variants meeting the standard genome-wide significance threshold of 5×10-8. We defined a 

significant locus as the region extending +/- 500 kilobases from the variant with the smallest p-value. 

Additional variants with genome-wide significant p-values within this region were included within the 

locus of the lead variant. This procedure was repeated in a stepwise fashion until all genome-wide 

significant variants were captured. As a final step, overlapping one-megabase intervals were combined 

into a single locus, and the extended HLA region was defined as the region spanning from base pair 

25,000,000 to 35,000,000 on chromosome 6.   

4. Exclusion of Significant GWAS1 Hits   

All GWAS1 contained statistically significant loci except for MDD (Supplemental Table 2). To avoid 

giving credit to the functional weighting methods for “re-discovering” these significant loci, we excluded 

them from evaluation after applying the functional weighting method to GWAS1. We defined a 

significant locus in GWAS1 as the region extending +/- 500 kilobases from the variant with the smallest 

p-value. Additional variants with genome-wide significant p-values within this region were included 

within the locus of the variant of the smallest p-value. This procedure was repeated in a stepwise 

fashion until all genome-wide significant variants were accounted for. As a final step, overlapping one-

megabase intervals were combined into a single locus and the extended HLA region was defined as 

above.   

To exclude GWAS1 hits from the set of GWAS2 “gold standard” hits available for discovery, we used 

the GenomicRanges R package
75

 to remove from GWAS2 any loci with any degree of overlap with the 

defined GWAS1 significant loci.   

5. Evaluation Metrics   

Because we focused on method performance to discover novel GWAS hits, our evaluations were 

based on calculating sensitivity (SN), positive predictive value (PPV), and the F1 score (F1, the harmonic 

mean of SN and PPV). Definitions can be found in Supplemental Table 3. Because variants with non-

significant p-values in GWAS1 may be truly associated with the trait, but GWAS1 was not statistically 

powerful enough to uncover their associations, we avoided evaluation metrics that depend on the 

definition of a TN.   

6. Evaluation of Variant-Level Methods   

Nine functional weighting methods, including the use of a suggestive p-value threshold, provided 

results for individual genetic variants (Table 1). To evaluate the performance of these nine methods on a 

per-variant level, TP variants were defined as those with matching chromosome and position that were 

both genome-wide significant in GWAS2 and nominated as significant by the functional weighting 

method either by the threshold specified by the method or, if no threshold was explicitly stated, by a 

Bonferroni multiple testing-corrected threshold (Supplemental Table 1). To exclude variants that were 

statistically significant in GWAS1, we excluded variants within the +/- 500kb boundaries of GWAS1 hits 

defined above (Methods Section 4).   

Because the functional weighting methods cannot account for secondary signals and some do not 

account for linkage disequilibrium, we also calculated SN, PPV, and F1 using a locus-based definition of 

statistical significance. In this evaluation, we defined each locus in the same manner as we identified 

GWAS1 significant hits (Methods Section 4). A TP was defined as an overlap of at least 250kb in the 1 MB 

flanking window of a top locus in GWAS2, as defined above, and a +/- 500kb window of a variant 
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nominated by a functional weighting method. A FP was defined as a +/- 500kb window nominated by a 

functional weighting method with less than 250kb overlap among any GWAS2 loci. A FN was defined as 

a GWAS2 locus with less than 250kb overlap with any locus nominated by the functional weighting 

method being evaluated. This locus-to-locus comparison was performed assessing any degree of overlap 

between the gold standard GWAS2 loci, excluding the significant GWAS1 loci, and the loci calculated 

from the results of the functionally weighted GWAS1 using the GenomicRanges package
75

 in R.   

7. Evaluation of eQTL-Level Methods   

To comparably evaluate methods that yield results on the level of eQTL or gene, we calculated 

transcript- or gene-based p-values using MAGMA
76

. As most of the eQTL data used in these comparisons 

came from GTEx, we downloaded and used their GENCODE annotations
50

 for transcript/gene names and 

genomic locations. Statistical significance for GWAS2 was determined at a GWAS-specific Bonferroni 

correction to the MAGMA p-value after excluding eQTL-based gene results that did not yield a MAGMA 

p-value.   

For methods that did not provide a significance threshold, we first excluded any results that did not 

result in a valid statistic, then performed a Bonferroni correction based on the number of remaining 

tests. To exclude established significant loci from GWAS1, we excluded nominated transcripts/genes 

where the midpoint of the genomic location was within +/- 500kb of the GWAS1 loci, defined above 

(Methods Section 4).   

For MAGMA-based evaluations, TP, FP, and FN were determined by matching either the Ensembl ID 

or gene symbol, depending on what was used by the particular functional weighting method 

(Supplemental Table 1), to the output of our modified MAGMA analysis to each GWAS2. A TP was 

defined as an eQTL/gene that was nominated as significant by the functional weighting method and 

identified as statistically significant by MAGMA as described above. FP and FN were defined 

analogously, and we calculated SN, PPV, and F1.  

We also conducted locus-based evaluations in two other ways. The first was to use the 

boundaries of the nominated eQTL/gene, either defined by the functional weighting method when 

provided or the GENCODE annotation boundaries used to generate the MAGMA p-values (Supplemental 

Table 1). The second approach was to define the locus boundaries for a functionally weighted 

eQTL/gene as +/- 500kb from the midpoint of the previously stated boundaries. To avoid possible 

double-counting, we merged overlapping eQTL/genes into a single locus. Loci were determined in a 

similar fashion as before (Methods Section 4) using the midpoint of the GENCODE-defined start and end 

positions, with no truncation at the ends of chromosomes or centromeres, with the exception of 

EUGENE, where we used the chromosome and position defined by EUGENE output.   

We performed a locus-to-locus comparison by looking for a minimum of 250kb of overlap when 

nominations were defined as +/- 500kb from the midpoint, and 2500 bases of overlap when 

nominations were defined by the start and end positions using the GENCODE annotation boundaries 

between the gold standard loci calculated from GWAS2 (Methods Section 3) and the loci calculated from 

the results of the functionally weighted GWAS1 using the GenomicRanges package
75

 in R.   

8. Generation of UpSet Plots   

To identify an optimal ensemble approach, we examined the overlap among nominations across 

functional weighting methods for each trait by generating UpSet plots. Plots were generated using 

the ComplexUpset package 
77,78

 in R. To construct the UpSet plot, for each trait, functional weighting 

GWAS methods were ordered from largest to smallest number of nominated loci, defined using +/- 

500kb from either the top variant or gene midpoint. For methods with multiple options, the top 

performing option was selected based on largest PPV. A matrix of nominated loci vs 

the fwGWAS methods was created in a stepwise fashion. The method nominating the largest number of 

novel loci was populated first, and then each of its nominated loci was tested for overlap of at least 250 

kilobases with loci nominated by all other methods and these overlaps populated the matrix. For each 
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subsequent functional weighting GWAS method, only nominated loci that had not been found to 

overlap with loci from previously examined methods were added to the matrix. These new additions 

were then checked for overlap with all remaining method nominations, and all methods nominating a 

new locus were noted on the matrix.   

9. Application of 18 Functional Weighting Methods to Model Traits   

Full details of the application of each functional weighting method can be found in the Supplemental 

Methods, with details of significance cutoffs and functional databases presented in Supplemental Table 

1. Briefly, we used the default inputs, external databases, and statistical significance cutoffs 

recommended by the method developers to the full extent that they were provided. When statistical 

significance cutoffs were not provided, we applied a standard threshold of either a Bonferroni-corrected 

p-value or a false discovery rate cutoff of 0.05, as appropriate for the statistics calculated by the 

functional weighting method.   

For the choice of functional database to use with each method, our default was to use a 

preformatted database provided by the method developers (e.g., TWAS/FUSION). When 

multiple databases were made available (e.g., SMR), we chose the largest database representing a tissue 

type appropriate to the model trait being evaluated.    

When no functional database was made available by the method authors (e.g., COLOC), we used 

the statistically significant GTEx v7 nucleus accumbens data downloaded from the GTEx data portal to 

apply the functional weighting methods to the three psychiatric traits
79–81

 and the corresponding 

statistically significant GTEx v7 whole blood data for the two blood cell traits
39

.  

We investigated the performance of the pleiotropy-based methods GPA and MTAG in each 

psychiatric trait using contemporaneous GWAS of the other two psychiatric traits. For the blood cell 

traits, we used a variety of potentially omnigenetic traits: SCZ
45

, HDL cholesterol
48,49

, BMI
46

, height
47

, and 

the other blood cell trait
73

.    

10. Sensitivity Analyses   

To determine whether the 250kb overlap between a nomination and a novel GWAS2 locus 

impacted our results, we tested overlaps of 1 base, 500kb, and 750kb, used to replace the +/- 500kb 

and Ensembl locus definitions.   

We investigated whether a less stringent cutoff resulted in better performance by applying an 

FDR significance cutoff for those methods (suggestive, MTAG, Weighted eQTL, JEPEG, TWAS/FUSION, 

and UTMOST) for which we used a Bonferroni multiple testing correction. The FDR correction was 

implemented using the fdrtool R package
82

 and a cutoff of q < 0.05 was used to determine statistical 

significance.   

We sought to determine the accuracy of our FP definition by using wave 3 GWAS, hereafter 

referred to as GWAS3, recently released by the PGC for the three psychiatric traits. Known loci from 

GWAS1 were excluded as described above.   
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Figure 1. Scatterplot of the relationship between sensitivity (SN; proportion of loci that are significant exclusively in the 

second wave GWAS [GWAS2] that are also nominated by a given method when applied to GWAS1) and positive 

predictive value (PPV; proportion of all nominated loci by a given method when applied to GWAS1 that are also 

significant exclusively in GWAS2) for all method-trait combinations whose results contained at least one gene or locus 

that was nominated as trait-associated by each method, respectively, after excluding loci identified in GWAS1. SN and 

PPV were calculated using the +/- 500kb locus-based evaluation and requiring a minimum overlap of 250kb between 

nominated loci and GWAS2 significant loci. Horizontal and vertical lines denote PPV and SN of 50%, respectively.  
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MTAG-SCZ1-nominated variants in SCZ1    MTAG-SCZ1-nominated variants in SCZ2 

  

 

(a) (b) 

 

 

     LSMM-SCZ1-nominated variants in SCZ1    LSMM-SCZ1-nominated variants in SCZ2 

 

    (c)       (d) 

Figure 2. Manhattan plots of schizophrenia GWAS waves 1 (SCZ1; a and c) and 2(SCZ2; b and d) with the variants 

nominated by MTAG (a and b) using bipolar disorder GWAS wave 1 (BPD1) as the pleiotropic trait and the LSMM method 

using a global FDR (LSMM) (c and d) highlighted in green. P-values were derived from the publicly available downloads of 

SCZ1 and SCZ2 provided by the Psychiatric Genomics Consortium, respectively. These plots include the full 

downloadable GWAS summary statistics for both SCZ GWAS waves, without excluding significant GWAS1 regions.  
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SMR-SCZ1-nominated variants in SCZ1     SMR-SCZ1-nominated variants in SCZ2 

 

 

 

 

 

 

 

 

 

 

 

 

      (c)       (d) 

Figure 3. Manhattan plots of schizophrenia GWAS waves 1 (SCZ1; a and c) and 2 (SCZ2; b and d) with the variants 

nominated by the EUGENE (a and b) and SMR (c and d) methods using Brain eMETA cohort annotations (SMR2) 

highlighted in green. P-values were derived from applying MAGMA to SCZ1 and SCZ2, respectively. These plots include 

the full downloadable GWAS summary statistics for both SCZ GWAS waves, without excluding significant GWAS1 

regions.  
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Figure 4. Scatterplot of the relationship between sensitivity (SN) and positive predictive value (PPV) for method-

psychiatric trait combinations that return nominated variants. SN and PPV were calculated using +/- 500kb overlap 

criteria and compared to GWAS3 as the gold standard. Horizontal and vertical lines denote SN and PPV of 50%, 

respectively. 
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Table 1. Description of functional weighting methods 

Method Name Classification Level Citation Significance Threshold 

Suggestive NA Variant NA p < 1e-5

GenoCanyon10K annotation Variant Lu, et al. Sci Rep 2015 Prediction Score > 0.5

GenoSkyline annotation Variant Lu, et al. PLoS Genetics 2017 Prediction Score > 0.5

Naïve annotation Variant Sveinbjornsson, et al. 2016 Annotation-based threshold

LSMM annotation Variant Ming, et al. Bioinformatics 2018 FDR < 0.05

GPA pleiotropy Variant Chung, et al. PLoS Genetics 2014 FDR < 0.05

MTAG pleiotropy Variant Turley, et al. Nature Genetics 2018 p < 5e-8

fGWAS eQTL Variant Pickrell. AJHG 2014 PPA > 0.9

Weighted eQTL eQTL Variant Li, et al. Front Genet 2013 p < 5e-8

COLOC eQTL eQTL Giambartolomei, et al. PLoS Genetics 2014 Approximate Bayes Factor > 0.75

MOLOC eQTL eQTL Giambartolomei, et al. Bioinformatics 2018 Posterior Probability > 0.80 

Jepeg eQTL eQTL Lee, et al. Bioinformatics 2014 Bonferroni-adjusted Jepeg p-value

Sherlock eQTL eQTL He, et al. AJHG 2013 Log Bayes Factor >= 4.0

SMR eQTL eQTL Zhu, et al. Nature Genetics 2016 FDR q-value < 0.05; Heidi p-value < 0.05

TWAS/FUSION eQTL eQTL Gusev, et al. 2016 Bonferroni-adjusted TWAS p-value

fastENLOC eQTL eQTL Wen, et al. PLoS Genetics 2017 RCP >= 0.50 

EUGENE eQTL eQTL Ferreira, et al. JACI 2017 p-value corresponding to largest FDR < 0.05

UTMOST eQTL eQTL Hu, et al. Nat Genet 2019 Bonferroni-adjusted UTMOST p-value
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Method Best PPV Rank Best PPV Rank Best PPV Rank Best PPV Rank Best PPV Rank

Median 

Rank

Median 

Rank 

excluding 

MDD

Suggestive 0.286 6 0.000 9 0.455 7 0.204 11 0.349 9 9 8

Weighted eQTL NA 18 NA 18 NA 18 0.333 3 0.667 2 18 3

fgwas 0.143 10 0.077 2 0.190 13 0.302 4 0.250 14 10 9

GenoSkyline 0.083 12 NA 18 0.273 11 0.220 9 0.250 14 12 10

GenoCanyon 0.079 13 0.000 9 0.196 12 0.200 12 0.207 16 12 12

GPA 0.231 7 0.000 9 0.275 10 0.256 6 0.335 10 9 8

MTAG 0.571 1 1.000 1 1.000 2 NA 18 1.000 1 1 2

Naïve NA 18 NA 18 NA 18 NA 18 NA 18 18 18

LSMM 0.185 9 NA 18 0.181 14 0.214 10 0.225 15 14 12

Jepeg 0.333 5 NA 18 1.000 2 0.000 15 0.375 7 7 5

TWAS/FUSION 0.500 3 NA 18 0.500 6 0.400 1 0.368 8 6 4

EUGENE 0.500 3 NA 18 0.400 8 0.255 7 0.282 12 8 8

SMR (best performing) NA 18 NA 18 0.000 15 0.143 14 0.400 6 15 14

COLOC 0.200 8 0.000 9 0.600 4 0.250 8 0.566 3 8 4

UTMOST- (best result) 0.333 5 0.000 9 0.500 6 0.320 5 0.300 11 6 6

Sherlock 0.182 11 0.000 9 0.286 9 0.379 2 0.538 4 9 3

fastENLOC NA 18 NA 18 NA 18 NA 18 NA 18 18 18

moloc 0.000 14 0.000 9 0.667 3 0.182 13 0.500 5 9 4

Ties between methods resolved using the Olympic method. 

Table 2. Ranking of all methods by best performing PPV, as measured by locus (+/- 500kb)

BPD MDD SCZ MPV WBC
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