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Abstract 

Brain activity exhibits scale-free avalanche dynamics and power-law long-range temporal 

correlations (LRTCs) across the nervous system. This has been thought to reflect <brain 
criticality=, i.e., brains operating near a critical phase transition between disorder and excessive 

order. Neuronal activity is, however, metabolically costly and may be constrained by activity-

limiting mechanisms and resource depletion, which could make the phase transition 

discontinuous and bistable. Observations of bistability in awake human brain activity have 

nonetheless remained scarce and its functional significance unclear. First, using computational 

modelling where bistable synchronization dynamics emerged through local positive feedback, 

we found bistability to occur exclusively in a regime of critical-like dynamics. We then assessed 

bistability in vivo with resting-state magnetoencephalography and stereo-encephalography. 

Bistability was a robust characteristic of cortical oscillations throughout frequency bands from  

(327 Hz) to high-÷ (1002225 Hz). As predicted by modelling, bistability and LRTCs were positively 

correlated. Importantly, while moderate levels of bistability were positively correlated with 

executive functioning, excessive bistability was associated with epileptic pathophysiology and 

predictive of local epileptogenicity. Critical bistability is thus a salient feature of spontaneous 

human brain dynamics in awake resting-state and is both functionally and clinically significant. 

These findings expand the framework of brain criticality and show that critical-like neuronal 

dynamics in vivo involves both continuous and discontinuous phase transitions in a frequency-, 

neuroanatomy-, and state-dependent manner.  

 

 

 

Abbreviations  

BiS: bistability index  

DFA: the scaling exponent obtained with detrended fluctuation analysis is an estimate of LTRCs 

EZ: epileptogenic zone 

nEZ: non-EZ, areas outside of the epileptogenic zone 

û: coupling strength between oscillators in the Kuramoto model 

LRTCs: long-range temporal correlations  

MEG: magnetoencephalography 

ò: the strength of the state-dependent noise in the Kuramoto model 

R: the order parameter of the Kuramoto model 

SEEG: stereo-EEG 
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Introduction  1 

Since Newton and Leibniz, differential equations have been used to describe natural 2 

phenomena that manifest continuous and smooth temporal evolution. Nonetheless, this classic 3 

approach fails in modelling many dynamics, particularly in biology and neuroscience, that show 4 

discontinuity and abrupt divergence into discrete states over time1,2. Catastrophic events 5 

emerging in complex systems, such as disasters in ecosystems or epileptic seizures in the brain, 6 

comprise an important subcategory of discontinuous phenomena and attract inter-disciplinary 7 

research to mitigate their detrimental consequences and to identify the underlying 8 

mechanisms1–3. 9 

Neuronal population oscillations and their synchronization reflect rhythmical fluctuations in 10 

cortical excitability and regulate neuronal communication4,5. The <brain criticality hypothesis= 11 

posits that the brain, like many complex systems, operate near a <critical= point of a continuous 12 

transition6 between asynchronous and fully synchronous activity7–10. Operation near such a 13 

critical point endows the system with moderate mean synchronization, emergent power-law 14 

spatio-temporal correlations, and many functional benefits such as maximal dynamic range11, 15 

communication12, processing13, and representational capacity14,15. Conversely, inadequate or 16 

excessive synchrony are incompatible with healthy brain functions6,16 and represent coma-17 and 17 

seizure-like states18, respectively.  18 

However, the classic brain criticality hypothesis does not offer an explanation to neuronal 19 

bistability, i.e., discontinuous transitions between asynchronous and fully synchronous activity. 20 

Bistability per se is a well known phenomenon in neurophysiological dynamics and is salient, for 21 

example, in slow oscillations with up- and down-states observable across scales from intra-22 

cellular19,20 to  local-field potentials (LFP)21,22 in animal brains. In the human brain, while there 23 

are several lines of in vivo evidence for <critical-like= brain dynamics near a continuous phase 24 

transition7,8,10,23, evidence for discontinuous transitions, i.e., bistable criticality, in awake resting-25 

state brain dynamics has remained scarce.  26 

Neuronal bistability in awake humans has only been reported by in a single series of 27 

electroencephalography (EEG) studies that reported bistable switching of alpha oscillations 28 

between putatively quiescent and a hyper-synchronized states24–26. Studies of whole-brain 29 

cortical activity in resting-state functional magnetic resonance imaging data (fMRI) also suggest 30 

spontaneous bistable switching between synchronous and asynchronous, or between integrated 31 

and segregated dynamics, respectively27,28. The underlying neuronal activity substrates at these 32 

multi-second time scales have, however, remained unclear.  33 

Theoretical studies posit that a high degree of bistability is universally indicative of catastrophic 34 

shifts1,2,29,30. Hence, even if moderate bistability could characterize healthy brain dynamics, we 35 

hypothesize that high bistability in neuronal synchrony would be indicative of a shift from 36 

healthy to a pathological regime where neuronal populations abruptly jump between 37 

asynchronous and hyper-synchronized, seizure-prone states.  38 

In this study, we asked whether awake resting-state human brain exhibits critical-like bistable 39 

dynamics. We first used generative modelling to establish how varying degree of bistable 40 
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dynamics emerges as a consequence of introducing a slow positive local feedback25 that is 41 

conceptually equivalent to increasing demands for limited resources31. We then analyzed a large 42 

body of magnetoencephalography (MEG) and intracerebral stereo-EEG (SEEG) recordings of 43 

resting-state human brain activity. In both MEG and SEEG, we found that anatomically and 44 

spectrally widespread bistability characterized neuronal oscillations from  (327 Hz) to high-÷ 45 

(1002225 Hz) frequencies. In MEG, moderate resting-state bistability was correlated positively 46 

with executive functions. In SEEG, conversely, excessive resting-state bistability was co-localized 47 

with the epileptogenic zone and thereby associated with the pathophysiology underlying 48 

epilepsy. Bistable criticality thus constitutes a pervasive and functionally significant feature of 49 

awake resting-state brain dynamics.  50 

Results 51 

State-dependent noise induces bistable criticality in silico 52 

To assess the emergence of bistability and its relationship with critical-like dynamics, we 53 

simulated a variant of the classic Kuramoto model, a simple generative model of synchronization 54 

dynamics32 (Supplementary Methods). Briefly, the conventional Kuramoto model has a single 55 

control parameter, û, that defines the coupling strength between neuronal oscillators. Higher û 56 

leads to stronger synchrony among the oscillators that is typically quantified with <order=, R. 57 

Here, we introduced a second parameter ò that scales state-dependent noise via local positive 58 

feedback in a manner that is conceptually equivalent to the state-dependency in the stochastic 59 

Hopf bifurcation25,33,34, or the slow resource-loading mechanisms leading to self-organized 60 

bistability35.  61 

At small values of ò, the model behaved similarly to a conventional critical-like system with a 62 

continuous second-order phase transition where a gradual increase of û results in a monotonic 63 

increase of order (Fig 1A). At moderate order, i.e., at the phase transition between low and high 64 

order, power-law long-range temporal correlations (LRTCs) 36 emerged in model order 65 

fluctuations and delineated a critical regime (Fig 1B).  Here, LRTCs were quantified using the 66 

detrended fluctuation analysis (DFA) of the order time series (Supplementary Methods). 67 

With increasing ò values, the model synchronization dynamics became progressively bistable 68 

(Fig 1C) as evidenced by increasing values of the bistability index (BiS), an index of the relative fit 69 

of a bimodal versus a unimodal probability distribution (pdf) to the time series of squared order 70 

(R2, comparable to oscillation powers, see Supplementary). We found bistable dynamics 71 

exclusively within the critical regime (Fig. 1D). The presence of a bistable/discontinuous 72 

transition was also evident in the sudden increase in the order parameter at the critical value 73 

and the sharp peak in the DFA in contrast to the continuous transition (Fig 1E2F) and the 74 

representative time series (Fig 1H).  Bistable dynamics at high ò values thus likely reflect a first- 75 

rather than second-order phase transition.  These in silico findings show that even in a minimal 76 

model, synchronization of oscillators may exhibit a continuum between classic and bistable 77 

critical dynamics under the influence of state-dependent noise via local feedback.   78 
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Bistable criticality characterizes brain dynamics in vivo 79 

We next assessed the presence of bistability and critical dynamics in meso- and macroscopic 80 

human brain activity in 10-minute resting-state recordings intracranially via stereo-81 

electroencephalography (SEEG, N = 64) and source-reconstructed magnetoencephalography 82 

(MEG, N = 18), respectively. We first restricted analysis of the SEEG to neocortical grey matter 83 

contacts outside of the epileptogenic zone (EZ) (Fig 224).  Although the anatomical sampling 84 

with SEEG is heterogenous across patients, the present cohort size yielded essentially a full 85 

coverage of the cerebral cortex (Supplementary Fig 2). We estimated LRTCs using DFA and 86 

bistability with BiS for narrow-band SEEG and MEG source amplitude time series that 87 

predominantly reflect local cortical synchronization dynamics. 88 

Bistability is anatomically widespread and spectrally prevalent 89 

Visual inspection of narrow-band MEG and SEEG amplitude time series revealed salient 90 

examples of bistability as intermittent switching between low- and high-amplitude oscillations 91 

(Fig 2 A2B, for examples of model fitting for DFA and BiS estimates see Supplementary Fig 3). 92 

Statistical testing showed that both MEG-source signals and SEEG-electrode-contact LFP signals 93 

exhibited significant (p < 0.05, see Supplementary Fig 4) bistability and LRTCs across broad 94 

Fig 1. Bistability is caused by elevated 

state-dependent noise. (A) Kuramoto 

model order parameter (R), (B) 

Detrended fluctuation analysis 

exponent (DFA) – an estimate of LRTC, 

and (C) Bistability index (BiS) as 

functions of noise state-dependency (ò) 

and the intrinsic control parameter (û). 

Each pixel is the mean of 50 

independent model realizations. (D) 

Summary of overlapping regimes based 

on observation from (B2D), i.e., the 

classic criticality is associated with small 

ò (black dashed line) whereas bistable 

criticality is caused by mid-to-high 

degree of ò (red dashed line); (E) 

Probability density of R in both normal 

and bistable criticality is in line with the 

Hopf bifurcation (see Supplementary). 

DFA peaks (black line) coincide with the 

phase transition. (F) Probability density 

(pdf) and (G) power-law scaling of the 

DFA fluctuation functions in classic and 

bistable critical regime marked in (E), 

colour coded. (H) Exemplary order 

parameter time series; insets in are the 

moments of Kuramoto oscillators (black 

dots) in low-, mid- and high-synch state 

(red vectors). 
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frequencies (Fig 2C2E).  MEG showed a peak DFA and BiS estimates in the alpha (~11 Hz) 95 

frequency band whereas in SEEG, the BiS peak extended over  (224 Hz), ñ (427.6 Hz), and ñ 96 

(10213 Hz) bands (Fig 2F2G). In SEEG, DFA and BiS estimates were overall stronger and occurred 97 

across more frequencies than in MEG (Fig 2E, F2H).    98 

Fig 2. Bistability and LRTCs are robust, large-scale phenomena in MEG and SEEG. (A) Five minutes of 

broad band (top) and narrow-band filtered (11 Hz bottom) power (R2) time series from a MEG parcel 

located in visual area (Vis) in one subject; (B) Comparable output from five minutes of SEEG contact 

recorded from middle frontal gyrus (mFG) in one patient; insets: evidence of bistability as narrow-

band traces switching between <up= and <down= states. (C) Group-level probability (z-axis) 

distribution of narrow-band (y-axis) mean amplitude (R), (D) DFA exponents, and (E) BiS estimates; 

data were pooled over all non-EZ SEEG contacts and MEG parcels; subject and contact/parcel number 

indicated in (C); black lines indicate mean of real data and red dashed lines are 99%-tile of surrogate 

observation. (F2H) Examples of narrow-band DFA and BiS probability distribution as indicated by 

colored arrows in (D2E). 
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Neuroanatomical structure of bistability and LRTCs  99 

We next characterized the neuroanatomical structure of bistability and inspected its anatomical 100 

relationship with LRTCs across frequencies. We first collapsed narrow-band BiS and DFA 101 

estimates of MEG parcels (400) and SEEG contacts into a standard atlas of 100 cortical parcels 102 

(see Supplementary Fig 4). Next, the neuroanatomical similarity within and between bistability 103 

and LRTCs were assessed by computing all-to-all Spearman’s correlations between narrow-band 104 

parcel BiS and DFA estimates.  105 

Both MEG and SEEG showed high anatomical similarity between neighbouring frequencies. 106 

Correlations between slow and fast rhythms were negative in MEG (Fig 3 A) and weak in SEEG 107 

(Fig 3B). This indicates that regions tended to show bistability and criticality in a cluster of high 108 

or low frequencies, but not both. Based on these neuroanatomical similarities (red boxes, Fig 3 109 

A2B, see also Supplementary Fig 526), we collapsed narrow-band BiS and DFA estimates into 110 

ñ2ñ (5.4–11Hz) and ÷-band (452225 Hz) for further analyses (Fig 3C). The partitioning of ò 111 

(15230 Hz) band was not consistent and thus was not included (Supplementary Fig 5C). 112 

MEG and SEEG cortical maps of ñ2ñ band bistability revealed distinct neuroanatomical features. 113 

In MEG, visual (VIS), somatomotor (SM) and dorsal attention network (DAN) (Fig 3 C2D) 114 

exhibited greater BiS than expected by chance (p<0.05, two-tailed permutation test, 105 115 

permutations, not corrected for multiple comparisons, Supplementary Fig 9A2B). SEEG show 116 

high BiS in fronto-parietal (FP), ventral attention (VAN), default network (DEF), and limbic (LIM) 117 

systems (Fig 3C, E). Although comparable to the values in found in MEG, VIS showed the lowest 118 

BiS in SEEG (p<0.05, two-tailed permutation test, 105 permutations, not corrected for multiple 119 

comparisons, Supplementary Fig 9C2D).  120 

A Kruskal-Wallis test for variance among subjects’ BiS and DFA estimates within each Yeo system 121 

revealed that in SEEG, individuals showed different levels of BiS and DFA estimates between 122 

systems (Fig 3F) with bistability greater in DEF, FP, and LIM than in VIS and SM (unpaired t-test, 123 

p < 0.05, FDR corrected, Supplementary Fig9 C2D). There was no statistically significant regional 124 

variation in MEG data. 125 

In both MEG and SEEG, group-average parcel bistability was correlated with LRTCs (Fig 3 G2H, 126 

see also Supplementary Fig 7). We validated this analysis in narrow-band frequencies and found 127 

the results to converge well (Supplementary Fig 6). To further validate this relationship, we 128 

averaged parcel BiS and DFA within subjects for each Yeo system and found that the subject BiS 129 

were indeed correlated with their DFA estimates on systems-level (Fig 3I, Supplementary Fig 8).   130 
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 131 

Fig 3. Bistability and LRTC were coexisting, correlated phenomena in MEG and SEEG.  Neuroanatomical 

similarity (Spearman’s correlation) between group-average narrow-band BiS and DFA estimates of (A) 

MEG and (B) SEEG in Schaefer 100-parcel atlas; red boxes indicate frequency clusters showing high 

similarity. (C) Narrow-band group-averaged estimates were collapsed into ñ2ñ (5.4211Hz) and ÷ 

(402225Hz) band based on similarity shown in (A); white-out columns in SEEG data indicate excluded 

parcels due to insufficient sampling (Supplementary). (D) Parcel-wise MEG group-average ñ2ñ band BiS 

estimates presented in the cortex. (E) The same for SEEG group-average ñ2ñ band BiS estimates. (F) 

Kruskal-Wallis one-way analysis of variance for group-level differences in DFA and BiS estimates between 

Yeo systems. Dashed line indicates –log10(p value) > 1.3, i.e., p<0.05. Correlations between group-average 

parcel BiS and DFA estimates in ñ2ñ (cross) and ÷ band (circles) in (G) MEG and (H) SEEG, 2log10(p) > 5, 

FDR corrected (Supplementary Fig 7). (I) Spearman’s correlations between within-subject-average BiS and 

DFA estimates in Yeo systems (subject NMEG per system =18; NSEEG per system = 50±9.4, range: 36260, 

variable SEEG subject N per system due to heterogamous spatial sampling). 
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Bistability is functionally significant in healthy subjects 132 

We next asked whether bistability and LRTCs would predict individual differences in cognition. 133 

We assessed working memory, attention, and executive functions with neuropsychological tests 134 

(Methods). We averaged the BiS and DFA estimates across the cortical parcels to obtain four 135 

subject-specific neurophysiological estimates: DFAñ2ñ, DFA÷, BiSñ2ñ, and BiS÷ (Supplementary Fig 136 

10B), and correlated these against neuropsychological test scores. We found that ñ2ñ band BiS 137 

and DFA estimates were negatively correlated (p < 0.05, FDR corrected) with the Zoo Map Test 138 

Execution Time (Fig 4A2D, see also Supplementary Fig 10C2D). Thus the subjects with greater 139 

ñ2ñ band bistability and stronger LRTCs executed faster in this flexible planning task, which is 140 

well in line with prior observations linking LRTCs with cognitive flexibility37.  141 

To inspect the neuro-behavioural correlations in greater anatomical detail, we computed 142 

Spearman’s correlations between neuropsychological scores and individual parcel BiS and DFA 143 

estimates. A large fraction of the cortex showed significant neuro-behavioural correlations of 144 

ñ2ñ band BiS and DFA estimates with the Zoo Map Time test but not with other 145 

neuropsychological scores (Fig 4 E and G, see also Supplementary Fig 10E2F). The correlations of 146 

Zoo Map Time test with DFA estimates were most pronounced in fronto-parietal, limbic, 147 

somatosensory and, and visual areas (Fig 4 F), whereas the correlations with BiS estimates were 148 

widespread across the cortex (Fig 4H).  149 

  150 

Fig 4. Executive functions were correlated with ñ2ñ band DFA and BiS estimates in MEG subjects. (A) 

Spearman correlation between subject neuropsychological test scores and within subject mean parcel 

ñ2ñ band DFA and (B) BiS estimates collapsed over parcels; dashed lines indicate 5% and 95%-tile of 

correlations for surrogate data (Nsurrogate = 105, FDR corrected, p-values see Supplementary Fig 10). (C) 

Scatter plots showing subject Zoo map time test and corresponding ñ2ñ band parcel-collapsed DFA and 

(D) BiS estimates. Each marker in (C2D) stands for one subject. (E) Fraction of significant parcels that 

showed significant correlation between neuropsychological test scores and individual parcel ñ2ñ band 

DFA and (G) BiS Estimates (p<0.05, FDR corrected, details see S.Fig 10). (F) Parcels showing significant 

correlations between Zoom map time scores and ñ2ñ band DFA and (H) BiS estimates. 
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Excessive bistability characterizes the epileptogenic zone 151 

Excessive bistability may predispose complex systems to catastrophic events29,38. Under the 152 

influence of strong state-dependent noise, our model demonstrated increased sensitivity to 153 

coupling strength (Fig 1E), which suggests that strong bistability could be an early sign of shift 154 

towards supercritical hypersynchronization events, i.e., epileptic seizures. We thus asked 155 

whether bistability estimated from seizure-free, inter-ictal-activity-free resting-state SEEG 156 

recording could be informative about epileptic pathophysiology. In particular, we addressed 157 

whether bistability could delineate the epileptogenic zone (EZ) and dissociate EZ signals from 158 

signals in nEZ contacts that reflect more healthy forms of brain activity.  159 

Representative time series (Fig 5A2B) showed that the EZ contacts did not show conspicuous 160 

epileptic inter-ictal events (IIE), and the sparse IIEs were removed from analysis where found 161 

(Supplementary Methods). Interestingly, elevated > 80 Hz bistability of the EZ contact was 162 

already a visually salient characteristic and stronger in EZ than in a nearby nEZ contact from the 163 

same region (DFA, bistability fitting see Supplementary Fig 3 F2J). We assessed bistability and 164 

LRTCs in narrow-bands frequencies at the group level for nEZ- versus EZ-electrode contacts (Fig 165 

5C2D). Collapsing narrow-band DFA and BiS estimates into broader frequency bands revealed 166 

significant differences between nEZ- and EZ-electrode contacts in ò- and ÷-band BiS estimates 167 

with effect sizes of 0.5 and 0.65 (Cohen’s d), respectively (Fig 5E). There was also a difference 168 

between nEZ- and EZ-electrode contacts in the -band DFA exponent with a Cohen’s d of 0.2. 169 

These group-level findings suggest that both bistability and LRTCs could constitute informative 170 

features for classifying nEZ- and EZ-electrode contacts. We thus conducted an EZ-vs-nEZ 171 

classification analysis using random forest algorithm39 and with frequency-collapsed BiS and DFA 172 

estimates as neuronal features, with the electrode contact location in Yeo systems as an 173 

additional feature. The cross-validation for the classification was a 80:20-partition (training:test) 174 

with 500 iterations. This revealed a reliable outcome with the area under curve (AUC) for the 175 

receiver operating characteristic reaching AUC = 0.8 ± 0.002 (mean ± std) (Supplementary Fig 176 

11C). To identify the most informative components to the classifier, we assessed global and 177 

within-subject feature importance with the Shapley Additive exPlanations (SHAP) values40. The 178 

SHAP values corroborated that ÷- and ò-band BiS estimates were indeed the most important 179 

features, followed by contact location (Yeo system), and -band DFA (Fig 5F).   180 

Given these encouraging group-level and contact-classification results, we quantified the within-181 

subject accuracy of neuronal bistability in localizing the epileptogenic area. We used leave-one-182 

out validation so that the EZ-vs-nEZ contact classification was performed for each patient with 183 

the rest of the patient serving as training data. Additionally, to independently evaluate the 184 

contributions of BiS and DFA estimates to classification accuracy, we implemented the 185 

classification with four feature sets: DFA alone, BiS alone, combining DFA and BiS (D&B), and 186 

combining D&B and SEEG contact location in Yeo systems (D&B(Y)).  187 
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Overall, the within-subject classification accuracy for EZ contacts was higher than chance level 188 

across all feature combinations (Fig 5G). Classification with all features yielded the best 189 

performance at an average AUC of 0.7±0.14 (Black marker, Fig 5G).  BiS alone yielded a greater 190 

AUC than DFA alone. Including the contact-brain system as an additional feature to D&B 191 

Fig 5. Bistability showed strong predictive power for pathophysiology. (A2B) Five minutes of broad-

band traces and narrow-band power (R2) time series of an EZ (A) and a nEZ (B) cortical location recorded 

with two distinct electrode shafts in one subject. Both contacts were 19.7 mm apart within supervisor 

frontal gyrus (sFG) and were referenced with the same nearest white matter contact (Arnulfo et al., 

2015). (C) Average normalized narrow-band BiS and (D) DFA estimates for all EZ (pink) and nEZ contacts 

(green). Shaded areas indicate 25% and 75%-tile. (E) The effect size of differences between EZ and nEZ 

contacts in frequency-collapsed BiS (red) and DFA (black). Dashed line indicates 99%-tile observation 

from surrogate data (Nsurrogate=1000). (F) Feature importance estimated using SHAP values. (G) The area 

under curve (AUC) of receiver operating characteristics (ROC) averaged across subjects (black) and the 

AUC of pooled within-subject classification results (blue) when using (i) DFA alone, (ii) BiS alone, (iii) 

combining DFA and BiS (D&B), and (iv) D&B plus contact loci in Yeo systems (D&B(Y)). Dashed lines 

indicate 99%-tile of AUC observed from 1,000 surrogates created independently for each of the four 

feature sets. (H2J) Post-hoc inspection of results derived using D&B(Y) feature set (the black marker in G). 

(H) Spearman’s correlation (p < 10-6, n=55) between individual AUC and within-subject mean Cohen’s d 

between EZ and nEZ in band-collapsed DFA and BiS. (I) Receiver operating characteristics of classification 

within subjects (thin lines) and mean ROC (thick).  (J) Within-patient prediction precision as a function of 

TPR indicated by the magenta box from (I); the red marker indicates the population mean. Precision = 

true positive ÷ reported positive. 
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increased the AUC by 0.06. The subject AUC values were correlated with the subject-specific 192 

differences in DFA and BiS estimates between EZ and nEZ (r=-0.53, p < 10-6) (Fig 5H) and were 193 

not affected by either the total numbers of contacts, EZ contacts, nor the ratio of EZ and nEZ 194 

contacts (Pearson’s correlation coefficient, r = -0.06, p = 0.66; r = -0.07, p = 0.61; r = -0.09, p = 195 

0.50; respectively).  Finally, the classifier yielded an average precision of 0.74 ± 0.30 (mean ± 196 

SD). While the true positive rate was 0.24 ± 0.17, the false-positive rate was only 0.03 ± 0.03 (Fig 197 

5G and H), which shows that most EZ contacts identified with the bistability-based classification 198 

were correct even though the classifier did not identify all true EZ contacts. 199 

Discussion 200 

We found here that bistable criticality is a pervasive characteristic of human brain activity and is 201 

both functionally significant in healthy brain dynamics and clinically informative as a putative 202 

pathophysiological mechanism in epilepsy. In a generative model of synchronization dynamics 203 

with positive feedback, bistability occurred exclusively within a critical-like regime. In both MEG 204 

and SEEG, we found significant bistability and LRTCs in spontaneous amplitude fluctuations of 205 

cortical oscillations widely across the neocortex and from - (224 Hz) to ÷- (402225 Hz) 206 

frequency bands. Moreover, as predicted by the model, bistability was positively correlated with 207 

LRTCs. As key evidence for functional significance, resting-state bistability was a trait-like 208 

predictor41 of healthy cognitive performance in MEG and clearly associated with epileptogenic 209 

pathophysiology in SEEG. These findings indicate that bistable criticality is an important novel 210 

facet of large-scale brain dynamics in both healthy and diseased human brain. Moreover, these 211 

observations strongly suggest that the brain criticality framework—currently focused on 212 

continuous phase transitions—should be expanded to include both continuous and 213 

discontinuous phase transitions (see Supplementary Theory). 214 

In the model, we found bistability to occur exclusively within the critical regime so that the level 215 

of bistability increased monotonically with increasing positive feedback ò. This state-dependent 216 

feedback thus acted as a continuous control parameter for shifting the model between a 217 

continuous and a discontinuous phase transition, at low or high levels of feedback, respectively.  218 

In both MEG and SEEG, band-collapsed ñ2ñ (5.4211 Hz) and ÷ (402225 Hz) frequency cortical BiS 219 

and DFA estimates were correlated on group average level (see Fig 3 G2H) and among 220 

individuals within functional systems (see Fig 3I). These widespread correlations collectively 221 

suggest that a gradient from <low LRTCs and weakly bistable= to <high LRTCs and strongly 222 

bistable= is a systematic characteristic of the human brain dynamics.  223 

A positive feedback loop is thought to be a generic mechanism31,35,42–44 leading to bistability in a 224 

wide range of modeled and real-world complex systems including the canonical sand-pile 225 

model35 and its variations42, ecosystems29,45, gene regulatory networks25,46,47, intra-cellular 226 

signaling48,49, and network models of spiking neurons31,50. In our model, the positive local 227 

feedback was implemented as state-dependent phase noise25,34.  Three mechanisms have been 228 

proposed to account for feedback and state-dependency in microscopic neuronal dynamics51, 229 

whereas the exact neuronal mechanism for meso- and macroscopic state-dependency remains 230 

unclear. We postulate that the state-dependency be a slowly fluctuating physiological 231 

parameter conceivably reflecting the cortical excitability and corresponding resource 232 

demand31,50,52.  233 
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Bistable dynamics, in general, could be associated a dichotomy of both beneficial and 234 

detrimental outcomes. Organisms can operate in bistable mode that is thought to reflect a 235 

dynamic motif favourable to adaptation and survival25,46,49,53. However, a high degree of 236 

bistability characterizes many complex systems prone to catastrophic shifts43,44 such as sudden 237 

violent vibrations in aerodynamic systems54, irrevocable environmental changes29,55,56, wars and 238 

conflicts57.  In healthy MEG subjects, BiS and DFA were correlated, and higher ñ2ñ band BiS and 239 

DFA estimates predicted better cognitive performance. In the SEEG from epileptic patients, 240 

excessive ò- and ÷-band BiS, but not DFA, characterized EZ (see Fig 5E2F), which suggests a 241 

functional gradient wherein moderate bistability reflect functional advantages but high degree 242 

of bistability be a sign of pathological hyper-excitability; this pathological bistability could be 243 

associated with hyper-excitability, excessive synchrony, high resource demands, and likely 244 

subsequent oxidative stress and tissue damage58. This speculation is in accordance with 245 

biophysical models of seizures that suggest a crucial role of a discontinuous transition (a sub-246 

critical Hopf bifurcation)25,33 in generalized seizures52,53.  247 

With invasive SEEG, we found consistent and accurate performance of the BiS estimates in EZ 248 

localization, which suggests a great potential for broader clinical utility, e.g., using non-invasive 249 

MEG or EEG. Future work could exploit the presence of widespread bistability to large-scale 250 

biophysical models of neural dynamics, building on the analytic link between the simplified 251 

model employed here and physiologically derived neural mass and mean field models. Whereas 252 

the simple model yields dynamical insights, the large-scale biophysical models are crucial for 253 

understanding biological mechanisms33, including those that describe seizure propagation in 254 

individual patient brain networks59. 255 

Materials and Methods 256 

The canonical Hopf bifurcation 257 

The canonical model of sub- or supercritical bifurcation is 25: 258 ÿ̇ = 2ÿ5 + üÿ3 + �ÿ + Ā[(1 2 �)ÿ�(�) + �ÿÿÿ(�)] , (1) 259 

where ÿ̇ is the time derivative of a local neuronal activity r (a real number); ü is the shape 260 

parameter and ò the bifurcation parameter; ø scales the overall influence of noise; where ÿ�(�) 261 

and ÿÿ(�) are additive and state-dependent noise respectively, and they are two uncorrelated 262 

Wiener processes; the parameter ò weights the influence of state-dependent noise. Different 263 

combinations of ü and ò result in either super-critical or sub-critical bifurcation (details in 25 ), 264 

which are associated with continuous or discontinuous (or second- or first-order) phase 265 

transition, respectively 23,35,60.  When r described the amplitude of a two-dimensional system 266 

with phase ā, then (eq. 1) describes a Normal form stochastic Hopf bifurcation. 267 

The Kuramoto model 268 

We studied first- and second-order phase transitions in a Kuramoto model with a modified noise 269 

term. The Kuramoto model is a generative model that can be used for studying the collective 270 

behaviours of a number of interconnected phase oscillators due to weak interactions 32,61. In a 271 
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Kuramoto model, the dynamics of each oscillator i is a scalar phase time series āÿ  (ā ∈ 0:2ð), 272 

coupled into a population ensemble � as, 273 ā̇ÿ = �ÿ + ÿÿ + �ÿ  ,     (2) 274 

where, for any oscillator i,  ā̇ÿ  is the rotation of its phase āÿ; �ÿ  is the natural (uncoupled) 275 

frequency of i; ÿÿ = ÿÿ(�) the coupling between i and the rest oscillators of the ensemble, and 276 �ÿ  is a stochastic term. The degree of synchrony of the ensemble (i.e., order parameter or mean 277 

field) is the outcome of tripartite competition for controlling the collective behaviours of all 278 

oscillators: �ÿ  and �ÿ   are desynchronizing factors whereas ÿÿ  is the synchronizing factor. Here, 279 �ÿ  follows a normal distribution with mean of zero (Hz), meaning without loss of generality, the 280 

system can be observed on a rotating phase plan with arbitrary angular velocity. In the classic 281 

model, the coupling term ÿÿ  is defined as the i-th oscillator adjusts its phase according to 282 

interactions with all other oscillators in the system through a pair-wise phase interaction 283 

function: 284  ÿÿ = �þ 3 sin (āÿ 2 āĀ)þĀ=1 ,    (3)  285 

here, � is a scalar number representing coupling strength, N =200 is the number of oscillators in 286 

the ensemble. For simplicity, here we used a fully coupled network to avoid other families of 287 

emerging dynamics due to nodal or network structural disorders, e.g., Griffiths phase 62,63. In 288 

addition, we found that with a Gaussian nodal-weight distribution, the model behaved 289 

identically to the fully coupled networks. We modified the noise term in line with the Hopf 290 

bifurcation (eq. 1) as:  291 �ÿ = Ā[(1 2 ò)ÿa (t)+ ò(�ý�� 2 R) ÿÿ(�)],   (4)  292 

here, ÿ�(�) and ÿÿ(�) are additive and multiplicative noise, respectively – as described in (eq. 1), 293 

however, in (eq. 4) ÿ�(�) and ÿÿ(�) are uncorrelated and independent Gaussian phase noise 294 

with zero mean and unit variance; ò scales the influence of ÿÿ(�); note that the 2 bracketed 295 

terms are offset (i.e., (1 2 ò) and ò ) such that their combined effect stays approximately 296 

constant in magnitude; �ý��  is the maximal order the population can reach (e.g., slightly below 297 

1 due to the presence of noise) and R is the current mean field (a scalar) that quantifies the 298 

degree of synchrony of the population at time t,  299 

  �(�) = |1þ 3 þ��(�)þĀ=1 |     (5) 300 

when viewing � from the complex phase plan, it essentially is the centroid vector of the 301 

population phase distribution: if the whole population is in full synchrony, �= �ý��   →1; when 302 

there is no synchrony, R → 0 (see insets, Fig 1H).   303 

MEG recording and subjects  304 

We recorded 10 minutes resting-state magnetoencephalographic (MEG) data from 18 subjects 305 

(11 males, 31.7±10.5, mean ± std, yeas of age) at the BioMag Laboratory, HUS Medical Imaging 306 

Center, Helsinki Finland. Subjects were seated in a dimly lit room and instructed to focus on a 307 

cross on the screen in front of them. Recordings were carried out at Meilahti hospital in Helsinki 308 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2022. ; https://doi.org/10.1101/2022.01.09.475554doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.09.475554
http://creativecommons.org/licenses/by-nc/4.0/


 

 

15 

 

(detailed in Supp. Material). All subjects were screened for neurological conditions. The study 309 

protocol for MEG and MRI data obtained at the University of Helsinki was approved by the 310 

Coordinating Ethical Committee of Helsinki University Central Hospital (HUCH) (ID 311 

290/13/03/2013) and was performed according to the Declaration of Helsinki. 312 

We also assessed working memory, attention, and executive functions in these subjects with a 313 

battery of neuropsychological tests. These included (see Fig 4 x-axis): Zoo Map Time, Toulouse-314 

Pieron test (TP), Digit Symbol Coding test, Zoo Map Plan, Digit Span forward and backward 315 

(BackDigits and ForwDigits, respectively), Letter-Number Sequencing (LNS), Trail Making Test 316 

parts A and B (TMT-A, TMT-B). Some subjects had missing/invalid behavioural scores, and we 317 

studied the neuro-behavioural correlations with dataset that at least had 16 valid subjects’ 318 

scores.  319 

SEEG recording and subjects 320 

We acquired 10 minutes of uninterrupted, seizure-free resting-state brain activity with eyes 321 

closed from 64 drug resistant focal epilepsy patients (28 females, 30.1±9.1, mean±SD, yeas of 322 

age, see Supplementary Table 1) undergoing pre-surgical assessments (detailed in Supp. 323 

Material). The subjects gave written informed consent for participation in research studies. The 324 

study protocol for SEEG, computerized tomography (CT), and MRI data obtained in the La 325 

Niguarda Hospital were approved by the ethical committee of the Niguarda <Ca Granda= 326 

Hospital, Milan (ID 939), Italy, and was performed according to the Declaration of Helsinki.  327 

Prior to surgery, medical doctors identified epileptogenic and seizure propagation zone by visual 328 

analysis of the SEEG traces 64,65.  Epileptogenic areas (generators) are the region of interest that 329 

are necessary and sufficient for the origin and early organization of the epileptic activities 66. 330 

SEEG contacts recorded from such generators often show low voltage fast discharge or spike 331 

and wave events at seizure onset.  Seizure propagation areas (receivers) are recruited during 332 

seizure propagation, but they do not initialize seizures 59,67. Contacts recorded from receivers 333 

show delayed, rhythmic modifications after seizure initiation in the generators. It is common to 334 

see regions demonstrating both generator and receiver dynamics, thus they were identified as 335 

generator-receiver. In this study, we refer to generator, receiver, and generator-receiver 336 

collectively as epileptogenic zone (EZ) to distinguish them from those that were tentatively 337 

identified as healthy non-EZ regions (nEZ).  338 
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Supplementary methods  589 

MEG data acquisition 590 

A 306-channel MEG system (204 planar gradiometers and 102 magnetometers) with a 591 

Vectorview-Triux (Elekta-Neuromag) was used to record 10 minutes eyes-open resting-state 592 

brain activity from 18 healthy adult subjects at the BioMag Laboratory (HUS Medical Imaging 593 

Center, Helsinki Finland). For cortical surface reconstruction, T1-weighted anatomical MRI scans 594 

were obtained at a resolution of 1x1x1 mm with a 1.5 T MRI scanner (Siemens, Germany). This 595 

study was approved by the ethical committee of Helsinki University Central hospital and was 596 

performed according to the Declaration of Helsinki. Written informed consent was obtained 597 

from each subject prior to the experiment.  598 

MEG data preprocessing and filtering  599 

The Maxfilter software with temporal signal space separation (tSSS) (Elekta Neuromag Ltd., 600 

Finland) was used to suppress extra-cranial noise in sensors and to interpolate bad channels 68. 601 

Independent component analysis (Matlab Fieldtrip toolbox, http://fieldtrip.fcdonders.nl) was 602 

next used to identify and remove components that were correlated with ocular (identified using 603 

the EOG signal), heart-beat (identified using the magnetometer signal as a reference) or muscle 604 

artefacts 69. The FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/) was used for subject 605 

MEG sources reconstruction, volumetric segmentation of MRI data, surface reconstruction, 606 

flattening, cortical parcellation, and neuroanatomical labeling with the Schaefer-2017 atlas 70. 607 

Each of the Schaefer-parcel belongs to a functional system 71 which informed later systems-level 608 

analysis.  609 

The MNE software package  was used to create head conductivity models and cortically 610 

constrained source models with 5000-7500 sources per subject and for the MEG-MRI co-611 

registration and for the preparation of the forward and inverse operators 72,73.  For each MEG 612 
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subject, a cortical parcellation of 400 Schaefer-parcels was obtained using reconstruction-613 

accuracy optimized source-vertex-to-parcel collapsing method 74. The broadband time series of 614 

these parcels were then filtered into narrow-band time series using a bank of 20 Morlet filters 615 

with m = 5 and log-linearly spaced center frequencies ranging from 2 to 225 Hz.  For group-level 616 

analyses, subject DFA and BiS estimates were morphed from 400 Schaefer-parcels into 100 617 

Schaefer-parcels.  618 

SEEG data acquisition  619 

Resting-state brain activity from 64 drug resistant focal epilepsy patients (28 females, 30.1±9.1, 620 

mean±SD, yeas of age, see S.Table 1) was acquired as monopolar local field potentials (LFPs) 621 

from brain tissue with platinum-iridium, multi-lead electrodes using a 192-channel SEEG 622 

amplifier system (NIHON-KOHDEN NEUROFAX-110) at 1 kHz sampling rate. Each penetrating 623 

electrode shaft has 8 to 15 contacts, and the contacts were 2 mm long, 0.8 mm thick and had an 624 

inter-contact border-to-border distance of 1.5 mm (DIXI medical, Besancon, France). The 625 

anatomical positions and amounts of electrodes varied according to surgical requirements 64. On 626 

average, each subject had 17 ± 3 (mean ± standard deviation) shafts (range 9-23) with a total of 627 

153 ± 20 electrode contacts (range 122-184, left hemisphere: 66 ± 54, right hemisphere:  47 ± 55 628 

contacts, grey-matter contacts: 110±25). The subjects gave written informed consent for 629 

participation in research studies and for publication of their data. This study was approved by 630 

the ethical committee (ID 939) of the Niguarda <Ca’ Granda= Hospital, Milan, and was 631 

performed according to the Declaration of Helsinki.   632 

SEEG preprocessing and filtering 633 

Cortical parcels were extracted from pre-surgically scanned T1 MRI 3D-FFE (used for surgical 634 

planning) using the Freesurfer package 75. A novel nearest-white-matter referencing scheme (its 635 

merits discussed in 76 was employed for referencing the monopolar SEEG LFP signals. An 636 

automated SEEG-electrode localization method was next used to assign each SEEG contact to a 637 

cortical parcel of Schaefer 100-parcel atlas with sub-millimeter accuracy 77. The SEEG electrodes 638 

were implanted to probe the suspected epileptogenic zones (EZ) while inevitably passing 639 

through healthy cortical structures. Contacts located at EZ are known to pick up frequent inter-640 

ictal spikes and generate abnormally large DFA 78. Therefore, EZ contacts and contacts recorded 641 

from subcortical regions such as thalamus, hippocampus and basal ganglia were excluded from 642 

analysis.  643 

Nevertheless, inter-ictal events (IIE) such as spikes can be occasionally observed at non-EZ 644 

locations in some subjects during rests. These IIE are characterized by high-amplitude fast 645 

temporal dynamics as well as by widespread spatial diffusion, which need to be excluded to 646 

avoid bias to DFA and BiS estimates. We followed approach used in to identify such IIEs. Briefly, 647 

each SEEG contact broad-band signal was partitioned into non-overlapping windows of 500 ms 648 

in length; a window was tagged as <spiky= and discarded from LRTCs and bistability analyses 649 

when at least 3 consecutive samples exceeding 7 times the standard deviation above the 650 

channel mean amplitude. Last, narrow-band frequency amplitude time series was obtained by 651 

convoluting the broad-band SEEG contact time series with Morlet wavelets that were identical 652 

to that of MEG data. 653 
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Estimating LRTCs using detrend fluctuation analysis 654 

LRTCs in 1D time series can be assessed with several metrics 79, and in this study, linear detrend 655 

fluctuation analysis (DFA) was used to assess specifically how fast the overall root mean square 656 

of local fluctuations grows with increasing sampling period 36,80. An estimated DFA exponent 657 

reflects the finite-size power-law scaling in narrow-band amplitude fluctuations based on the 658 

assumption that the gradual evolution of a mono-fractal process time series would result in a 659 

normal distribution where the fluctuation can be captured by the second order statistical 660 

moments such as variance 81.  The computation of DFA briefly as follows (for rationales and 661 

technical details of the algorithm see 82): 662 

1) The signal profile (X) of a signal was computed by computing the cumulative sum of a 663 

demeaned narrow-band amplitude of a MEG parcel or SEEG contact time series.  664 

2) A vector of window widths (T) was defined in which the widths were linearly spaced on 665 

log10 scale between 10 and 90 seconds. The same scaling range was used across 666 

frequencies and for both MEG and SEEG, i.e, identical vector of T. The lower boundary of 667 

10 s was set to safely avoid high non-stationarity and the filter artifacts, i.e., 20 cycles of 668 

the slowest rhythm of 2 Hz; the upper bound of 90 s was 15% of total sample of the 669 

resting-state recording. 670 

3) For each window width t∈T, X was partitioned into an array of temporal windows in 671 

which each window was of length t and with 25% overlap between windows W(t). 672 

a.  For each window w∈W(t), detrended signal wdetrend was obtained by removing 673 

the linear trend, i.e., subtracting the least-squares fit of samples of w from the 674 

samples of w, and then obtained the root mean square of wdetrend (RMS(wdetrend )). 675 

b. Finally, F(t), the detrended fluctuation of window size t, was obtained by 676 

computing the mean of RMS(wdetrend ). 677 

4) By repeating step (3) for all window lengths of T defined in step (2), F, a vector of F(t), t678 

∈T, was obtained. The DFA exponent is the slope of the trend line of F as a function of T 679 

on log-log scale (Supplementary Fig 3 G, J). 680 

Estimating bistability index (BiS) 681 

The BiS index of a power time series (R2) derives from model comparison between a bimodal or 682 

unimodal fit of its probability distribution function (pdf); a large BiS means that the observed pdf 683 

is better described as bimodal, and when BiS → 0 the pdf is better described as unimodal.  We 684 

followed the approach used in 24,25 to compute BiS. First, to find the pdf of power time series R2, 685 

the empirical R2 was partitioned into 200 equal-distance bins and the number of observations in 686 

each bin was tallied. Next, maximum likelihood estimate (MLE) was used to fit a single-687 

exponential function (i.e., the square of a Gaussian process follows an exponential pdf): 688 

 ��(ý) = ÷þ2÷�       (1) 689 

and a bi-exponential function: 690  ��(ý) = ÷1þ2÷1� 2 (1 2 )÷2þ2÷2�    (2) 691 

where ÷1 and ÷2 are two exponents and  is the weighting factor.   692 

Next, the Bayesian information criterion (BIC) was computed for the single- and bi-exponential 693 

fitting: 694 
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ý�þ =  þ�(�)ý –  2þ�(Ā̂)      (3) 695 

where n is the number of samples; Ā̂ is the likelihood function; k is the number of parameters: k 696 

= 1 for single-exponential BICExp and k = 3 for bi-exponential model BICbiE. Thus BIC imposes a 697 

penalty to model complexity of the bi-exponential model 83 because it has two more degrees of 698 

freedom (second exponents and the weight ) than the single exponential model.   699 

Last, the BiS estimate is computed as the log10 transform of difference between the two BIC 700 

estimates as  701 

dBIC = BICExp - BICbiE      (4) 702 

BiS = log10(dBIC), if dBIC > 0, 703 

BiS = 0, if dBIC ≤ 0 704 

Thus, a better model yields a small BIC value, and BiS will be large if the bi-exponential model is 705 

a more likely model for the observed power time series (Supplementary Fig 3 F, I). 706 

Constructing surrogate data 707 

To determine the chance level observations of DFA and BiS in null hypothesis data, i.e., without 708 

embedded non-linear critical-like structures but with the same power spectrum as the real 709 

physiological signals 84, phase randomized Fourier transform surrogates of the broad-band time 710 

series was constructed for each MEG parcel and SEEG contact, NMEG = 6,800 and NSEEG = 4,142 711 

(Supplementary Fig. 4). The surrogate broad-band data were filtered into narrow-band data and 712 

their DFA and BiS estimates were subsequently computed. Thus, the real observation can be 713 

compared against the significance thresholds that were derived from the probability distribution 714 

of the surrogate data across frequencies (Fig. 2). 715 

Morphing MEG and SEEG data into a standard atlas 716 

The MEG and SEEG group-level analyses were conducted in a 100-parcel standardized Schaefer 717 

atlas 70. The group-level MEG data were obtained in two steps (top, Supplementary Fig 4). First, 718 

narrow-band DFA and BiS estimates were computed within subjects using a finer parcellation of 719 

400-parcel, and the resulting estimates were morphed into 100-parcel within subjects by 720 

averaging children parcels; group level cortical maps were next obtained by collapsing subjects’ 721 

100-parcel metrics.  722 

Due to the variability in electrode location and other constraints in SEEG subjects, the morphing 723 

was done and verified differently. First, narrow-band DFA and BiS estimates of individual SEEG 724 

contacts were morphed directly into the Schafer 100-parcel atlas (bottom, Supplementary Fig 4). 725 

The resulting group-level parcel estimates were thus heterogeneous in terms of sampling. For 726 

example, one parcel may contain observations from a varying number of electrodes and/or 727 

subjects. Hence, the group-level estimate of each parcel was the median of all observations, and 728 

the estimate for each of the seven Yeo sub-systems was the median of its constituent parcels. 729 

Furthermore, only the parcels (n=90) sampled by at least 3 subjects and 10 SEEG contacts were 730 

kept for group-level analysis. The group mean parcel metrics (Supplementary Fig. 5B) were 731 

identical to that of raw data (overlay curves, Fig. 2D2E) thus confirming that heterogeneous 732 
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SEEG sampling (Supplementary Fig. 2 and Supplementary Fig.4) did not bias the parcel-level 733 

metrics. 734 

Clustering narrow-band frequency data  735 

Frequency clustering analyses were conducted to reduce redundancy and for better 736 

interpretability of the narrow-band data (20 frequencies × DFA/BiS × 100 parcels). Spearman’s 737 

rank correlation coefficients were computed between the group-level DFA/BiS estimates of 100-738 

parcel for all pairs of frequencies. This resulted in a set of 20 × 20 adjacency matrices (Af1,f2) 739 

representing the cortical topological similarity between frequencies. Next, the similarity matrix 740 

Af1,f2 was partitioned using the unweighted pair group method with arithmetic mean algorithm 741 
85, an agglomerative hierarchical clustering method, to obtain frequency clusters. The algorithm 742 

first builds a hierarchical tree through an iterative procedure to represent the distance between 743 

pairs of objects in Af1,f2 (Supplementary Fig. 5C). In each iteration, two objects p and q with 744 

nearest distance d(p, q) were merged into a cluster, and p and q can be either an element from 745 

Af1,f2 or a cluster of elements from Af1,f2; The distance function is defined as: 746 

 ý(ý, þ) = 1ĀýĀþ ∑ ∑ ý(ý, þ)y∈q�∈p ,    (5) 747 

where �ý  and �þ  are the number of elements in p and q respectively, d(x, y) is the distance 748 

between x, y, and x, y are matrix elements from Af1,f2.  The hierarchical tree was then used to 749 

partition the elements from Af1,f2 into separated clusters, e.g., if the height of p is close to the 750 

height of q, then their constituent elements are similar and therefore could be considered as a 751 

cluster (dashed boxes in Supplementary Fig. 5C, and solid boxes in Supplementary Fig. 5D).  752 

Classifying pathophysiological SEEG contacts 753 

The group-level frequency clustering analysis revealed that much of the narrow-band data were 754 

topologically correlated (Fig. 3). Hence, for the classification task, twenty narrow-band metrics 755 

were also collapsed into four frequency clusters as , ñ2ñ, ò, and ÷ band (Fig. 5A). As subjects 756 

varied greatly in their DFA and BiS estimates, band-collapsed data was normalized within 757 

subjects as [X-median(X))./max(X-median(X)], and thereby the differences between EZ and nEZ 758 

within subjects remained. The effect size of differences between band-collapsed and normalized 759 

DFA and BiS estimates were assessed with Cohen’s d and compared with the 99%-tile of Cohen’s 760 

d observed from 1,000 EZ-nEZ label-shuffled surrogate data (Fig. 5C). 761 

The feature importance of these neuronal estimates were assessed with the SHapley Additive 762 

exPlanations (SHAP) values40. In addition to the neuronal scores, the contact location in Yeo 763 

systems was also included as an additional feature (Fig. 4D).  The SHAP values is a generic metric 764 

to explain any tree-based model by explicating the local and global interpretability of features, 765 

which advances the transparency that conventional classifications approaches lack of. For 766 

solving the EZ-classification problem, the non-parametric random-forest method86 was 767 

employed. The random-forest algorithm is a machine learning method uses bootstrapped 768 

training dataset and combines the simplicity of decision trees with extended flexibility to handle 769 

new data86.  The random-forest method allows multiple target class-labels (e.g., nEZ plus three 770 

distinct EZ subtypes) over binary classifiers, and here the primary interest was to separate EZ 771 

and nEZ contacts. 772 
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Supplementary materials 773 

Theory: continuous and discontinuous phase transition in the brain 774 

The classic Brain Criticality framework hypothesizes that, across the brain, neurons operate in a 775 

regime of continuous transitions between asynchronous and hyper-synchronous activity, which 776 

resembles the phase transition seen in numerous complex systems and is commonly known as 777 

the <critical point= or a <critical region=7–10,23,87. Recent theoretical research suggests that the 778 

brains could rather be a <quasi-critical= than a <true critical= system50,88–90. True criticality arises 779 

in idealized systems where energy is conserved and, with a small and constant drive, the system 780 

self-organizes into dynamics with one critical point91. True criticality is characterized by a 781 

continuous (second-order) phase transition between disorder and order35. At the 782 

phenomenological level, the ensuing critical dynamics are characterized by stationary fractional-783 

Gaussian statistics79 and the emergence of spatial 92, temporal 93, and spatio-temporal power-784 

law behaviour88,91.   785 

On the other hand, quasi-critical systems42,87,94 differ categorically from the true critical systems 786 

by energy dissipation, as exemplified by forest fires and earthquakes95,96. The loss of energy in 787 

quasi-critical systems requires a <loading= mechanism to keep them from becoming quiescent. 788 

Simulations suggest that quasi-critical systems require external fine tuning to operate near the 789 

critical point89,97. The brain is energetically expensive, accounting for ~20% of the human energy 790 

consumption in adults98 and of up to ~66% in children99 with many physiological mechanisms 791 

serving energy replenishment and metabolic regulation100. In addition to glucose metabolism 792 

per se, the notion of <loading= mechanisms also encompasses resources and mechanisms that 793 

limit neuronal activity levels, for example synaptic vesicle depletion101 and post-synaptic 794 

depression102,103, respectively.  795 

Theoretical studies show that neuronal systems with resource-consuming activity and slow 796 

resource loading19,31,50,90 may indeed exhibit dynamics with a discontinuous (first-order) phase 797 

transition when resource demands exceed the loading capacity. This gives rise to spontaneous 798 

neuronal bistability50,90. For example, in computational models of local populations operating 799 

near a marginally stable critical point34, excitatory neurons exhibit bistable firing rates when 800 

resource demands are high50,90. Likewise, in networks of such populations, the balance of 801 

resource depletion and recovery102,103 determines the switching between continuous and 802 

bistable transitions31.  803 

Slow state-dependent noise ò controls fast mean field 804 

When investigating the behaviours in Kuramoto model (Fig 1), ò and û were held as constant 805 

values (eq. 4), which reflect that both variables fluctuate at a much slower rate than the 806 

population order R. The variable ò is a key parameter that controls the degree of bistability in R 807 

time series. Under the influence of a weak ò (eq. 4), the Kuramoto model could demonstrate 808 

dynamics resembling that of a supercritical stochastic Hopf bifurcation25,34 which is also 809 

controlled by a weak ò (eqþ ). Specifically, by gradually increasing û, a subcritical Kuramoto 810 

ensemble would reach a critical point, where the subcritical fixed point (quiescent state) loses 811 

stability and a smooth transition to a critical phase takes place. The time course of R in this 812 

classic critical scenario follows a Gaussian distribution24–26. 813 
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On the other hand, when the Kuramoto model is controlled by a high ò, the ensemble would 814 

express bistable criticality in R that resembles the dynamics of a subcritical stochastic Hopf 815 

bifurcation. In this scenario, a seemingly quiescent ensemble suddenly shows supercritical 816 

hypersynchrony – before the quiescent fixed-point loses stability following further increases in 817 

û. Thereby, the time course of R is characterized as bimodal, supporting erratic switching 818 

between low and high activity modes. Our modeling results confirmed this prediction. When ò is 819 

held at high value, the pdf of R as a function of û (the colour plot in top panel, Fig. 1E) coincides 820 

with the prediction of the first order phase transition with a moderate width of bistable regime 821 

(top, Supplementary Fig. 1A) – as comparing to theoretical possibility of a much wider bistable 822 

regime 25,35.  When ò is held at low value (bottom, Fig 1E), the model dynamics accords with the 823 

prediction of supercritical Hopf bifurcation as the classic criticality 7,23.  When the coupling is too 824 

strong, the ensemble only dwells on the supercritical state of hypersynchrony. To better 825 

demonstrate the effect of ò on R, we also simulated slowly fluctuating ò with û held constant 826 

and found that various waveforms of ò can result in rich bistable dynamics in R, even when the 827 

temporal average of ò was approximately the same (Supplementary Fig. 1B). 828 

The model shows high degree of bistability under the influence of strong state-dependent noise, 829 

which results in a tendency to stay in either an up-state or a down-state thus avoiding moderate 830 

level of synchrony as expected in the classic criticality models. This up state corresponds to 831 

resource-demanding large amplitude oscillations (limit cycle), which eventually leads to 832 

depletion and ensuing returning of a low amplitude, subcritical down-state fixed point attractor 833 

for recovery. On the extreme spectrum of such bifurcation and the underlying slow variable is 834 

epileptic seizure 52,53,104.   835 

SEEG cortical sampling statistics 836 

Preprocessing of the SEEG data yielded 7,019 SEEG contacts in various cortical and subcortical 837 

gray matter locations (Supplementary Fig. 2A).  For investigating the LRTCs and bistability of 838 

cortical dynamics that were tentatively considered as normal, contacts recorded from 839 

subcortical structures and epileptogenic zones were excluded. Contacts with more than 2.5% 840 

samples identified as <spiky= were also excluded (Supplementary Fig. 2A2B, see suppl. 841 

Methods). Thereby, 3/7 of available contacts were excluded, and in the resulted 4,142 contacts, 842 

a small fraction cannot be reliably assign a parcel by the segmentation software 77 and therefore 843 

were also excluded. This resulted in 4,122 contacts (66.8 ± 24.5 per patient, range: 4 to 123) for 844 

analyses. Although the cortical sampling was heterogeneous across patients, with 4,124 cortical 845 

nEZ contacts, we were able to cover 90 out of the 100 Schaefer parcels with each parcel 846 

sampled by at least 3 subjects and 10 contacts (see also Supplementary Fig 2C2D). 847 

Narrow-band DFA and BiS estimates in MEG and SEEG 848 

SEEG and MEG demonstrated differentiated spectral peaks and magnitude of DFA and BiS 849 

estimates (Fig 2). We speculated that these discrepancies between SEEG and MEG might be 850 

attributable to two factors (or the combination of both):  851 

First, it was due to different brain states in healthy vs epileptic brains. High degree of 852 

bistability has been suggested as an early sign of shift to catastrophic events in ecosystems 29, 853 

considering the likely universal nature of bistability 31,35, high bistability outside of the visual 854 

system (e.g., default model and limbic systems) in SEEG data could be a sign of transition to 855 
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catastrophic events (i.e., seizures) in the epileptic brain. It could be a great clinical interest to 856 

further this line of work to find solutions to reverse high bistability to mildly bistability or 857 

smooth phase transitions (e.g., dampening) for eluding the catastrophic events in the brain 105. 858 

Moreover, epilepsy is known to affect brain rhythms especially the  and ñ band synchrony 859 
106,107, which might be an explanation to the presence of high bistability in slow rhythms below ñ 860 

band in SEEG.  861 

Second, mesoscopic SEEG recording is able to pick up highly local signals and thus more 862 

sensitive to specificity such as difference between functional systems, which MEG is unable to 863 

SEEG signals is highly localized to the sampled tissue surrounding the electrode contacts (2mm 864 

in length) and minimally affected by signal mixing 108, whereas MEG sensors are at least several 865 

centimeters away from the cortex, and its signals are therefore the linear summation of 866 

unknown number of cortical sources. According to the central limit theorem, even though 867 

individual processes are non-Gaussian, the linear combination of multiple such processes will 868 

appear Gaussian.  869 

Topological similarity between LRTCs and bistability 870 

As a preliminary inspection of topological similarity, all-to-all correlations were computed 871 

indiscriminately between group-level parcel DFA and BiS estimates, between MEG and SEEG, 872 

and across all frequencies. Within metrics, well delineated clusters of a slow and a fast 873 

frequency band were observed (along diagonal, Supplementary Fig. 6). There were positive 874 

correlations between DFA and BiS in both MEG and SEEG data, and some negative correlations 875 

between MEG and SEEG. The frequency-collapsed ñ2ñ and ÷-band DFA and BiS estimates were 876 

next inspected (Fig. 3C). The similarity between band-clustered cortical maps of 100 Schaefer 877 

parcels (Supplementary Fig. 7) converged with narrow-band observation (Supplementary Fig. 6).   878 

On systems-level (Supplementary Fig. 8), subjects’ band-clustered DFA and BiS were correlated 879 

in almost all functional systems except for SEEG ñ2ñ band limbic system (Spearman’s rank 880 

correlation, p < 0.01).  881 

Anatomical specificity of bistability and LRTCs  882 

While there were no systems-wise differences in MEG, SEEG ñ2ñ band BiS and DFA estimates, ÷ 883 

band DFA estimates between Yeo functional systems were different (Kruskal-Wallis test, p < 884 

0.05, Fig. 3F).  885 

In MEG, the mean ñ2ñ and ÷-band DFA and BiS estimates of Yeo systems appeared similar (thick 886 

black lines, Supplementary Fig. 9A2B), confirming high correlations between DFA and BiS 887 

estimates observed in both group and systems-level in individuals (Supplementary Fig. 728, 888 

respectively).  With these source-modeled MEG data, we replicated ñ2ñ band resting-state 889 

bistability in visual areas that was reported previously in EEG sensors 26,109. Furthermore, the 890 

visual (VIS) and somatosensory (SM) systems showed higher BiS and DFA, whereas fronto-891 

parietal (FP) and default-model (DEF) systems showed lower BiS and DFA estimates than the 892 

null-hypothesis observations (line plots, Supplementary Fig 9A). The surrogate data of no 893 

systems-wise differences were constructed by shuffling Yeo system labels of the parcels. In MEG 894 

÷-band, DFA estimates were similar in magnitude to that of ñ2ñ band, but BiS estimates were 895 

about half of the magnitude of ñ2ñ band. In particular, the dorsal-attention (DAN) and the 896 

limbic (LIM) systems showed the highest ÷-band DFA, whereas VIS had the lowest DFA.  There 897 

were no differences in DFA and BiS estimates between Yeo systems (Wilcoxon’s signed-rank 898 
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test, alpha@0.05, FDR corrected) confirming the negative findings of the Kruskal-Wallis tests 899 

(Fig. 3F).  900 

In SEEG, the ñ2ñ and ÷ band mean DFA and BiS estimates of Yeo systems appeared different 901 

(Supplementary Fig. 9 C2D), which confirmed low correlations in group and systems-level in 902 

individuals (Supplementary Fig. 7 & 8). Although visual systems in SEEG and MEG data were 903 

comparable in ñ2ñ band BiS and DFA estimates, in SEEG, the visual system showed lowest 904 

ñ2ñ band BiS and DFA estimates.  905 

The post-hoc tests (unpaired t-test, p < 0.05, FRD corrected) for between-system differences in 906 

DFA and BiS estimates (see also Fig. 3F) revealed that DAN showed higher ñ2ñ band DFA, FP and 907 

DEF showed higher ñ2ñ band BiS, ventral-attention (VAN) showed lower ÷ band BiS than most 908 

of other systems (interaction matrices, Supplementary Fig. 9 C2D).  On the other hand, the VIS 909 

and VAN show low DFA estimates. System-wise difference in DFA was only observed between 910 

LIM and VAN, which validates the negative finding of systems’ effect on mean DFA (÷ band pink 911 

dot in Fig 3F).  On the other hand, the VIS, DAN, and LIM system showed high ÷ band BiS 912 

estimates, and VAN and FP systems have low BiS estimates.  The VIS system had highest ÷ band 913 

BiS estimates.  914 

Classifying epileptogenic zones (EZ) 915 

Across subjects, there was large variability in the number of EZ contacts, i.e., the target variables 916 

of the classifier (Supplementary Fig. 11A). To ensure there were enough data for the classifier 917 

within subjects, a selection criterion was imposed such that each patient should have at least 918 

five EZ and five nEZ contacts (red dashed lines, Supplementary Fig. 11A) and at least a total of 30 919 

contacts. Thus, 55 subjects met these criteria and were selected for the classification analysis. 920 

On average, each subject had 28.5±17.0 (mean, std) EZ and 66.4 ±21.2 nEZ, and on population 921 

the ratio of EZ:nEZ = 1/2.3 with some variability across Yeo systems, among which subcritical 922 

contacts were ten times more likely to be EZ than nEZ (Supplementary Fig. 11B).  923 

On population level, between EZ and nEZ contacts, several bands showed differences in 924 

normalized DFA and BiS estimates (Fig. 5A2C). However, we were more interested in classifying 925 

EZ contacts in individuals. As a liability check, we classified pooled individual contacts using all 926 

nine features, i.e., , ñ2ñ, ò, and ÷ band DFA and BiS estimates plus SEEG contact loci in Yeo 927 

systems. The classification was performed using the random forest algorithm39 with a total of 928 

5,217 contacts from 55 patients (Supplementary Fig. 11B) with randomly split 20% and 80% as 929 

testing and training set, respectively. The analysis of the receiver operating characteristics (ROC) 930 

of classification outcome revealed an area under the curve (AUC) of 0.8, and thus confirming 931 

useful information among these features for within individual classification. 932 

Global and local feature importance to the random forest classifier were next assessed with 933 

SHAP values. The results supported the hypotheses that ÷- and ò-band BiS, contact-locus and -934 

band DFA were indeed the most important features to tell EZ apart from nEZ contacts (Fig. 5D).  935 

To better understand the impact of the features on the classification outcome, the within-936 

subject EZ classifications were carried out with four incremental feature sets as using i) DFA 937 

alone, ii) BiS alone, iii) combing DFA and BiS, iv) combing DFA, BiS, and contact-locus in Yeo 938 

systems.   939 
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The overall classification outcome was variable across Yeo systems and classifying EZ contacts in 940 

limbic systems yielded best outcome (large AUC, Supplementary Fig. 11 D). Using DFA alone, the 941 

algorithm performed poorly (gray line, Supplementary Fig. 11E).  The individual subject ROC 942 

curves showed large variability (Supplementary Fig. 11 F2I), and overall combing DFA, BiS, and 943 

contact-locus yielded best outcome (black curve, Supplementary Fig. 11J). Last, the mean AUC of 944 

ROC in Yeo systems (Supplementary Fig. 11E) and in individual patients (Supplementary Fig. 11J) 945 

were compared against 1,000 label-shuffled surrogate data (Fig. 5E).  946 
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Supplementary (S.) Figs  947 

Supplementary Fig. 1 948 

Fluctuations at two different time-scale in Kuramoto Model. (A) With coupling strength (û) held 949 

constant and just below the critical point (see Fig 1), slow fluctuations in ò (the thick gray band) result in 950 
(B) diverse patterns of bistability in the fast fluctuating mean field of the Kuramoto model (red).  951 
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Supplementary Fig. 2 952 

SEEG electrode selection criteria and population sampling statistics. (A) SEEG contact selection 953 
criteria, in brackets are the number of contacts after a specific criterion was applied. (B) The cumulative 954 
distribution function (cdf) of contact number per subject after specific criteria were applied; colour code is 955 
the same as in (A); inset is the cdf of spike samples out of 10 min resting from 4,693 SEEG contacts, red 956 
dashed line indicates the threshold in box 5 in (A). (C) Contact number as a function of number of distinct 957 
subjects per parcel (after morphing SEEG contacts into Schaefer 100-parcels); one marker represents one 958 
Schaefer 100-parcle, red dashed lines are exclusion criteria, i.e., at least 3 subjects and 10 contacts per 959 
parcel. (D) Visualization of distinct subject number and SEEG contact number per Schaefer parcel as 960 
shown in (C). cWM-ref: closest white-matter contact reference scheme (Arnulfo et al., 2015). 961 
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Supplementary Fig. 3 962 

SEEG time series, bistability and DFA fitting. (A2D) Examples of bistability in nEZ SEEG contact signals 963 
from four distinct subjects. mFG: middle frontal gyrus; sOG: superior occipital gyrus; mOG: middle occipital 964 
gyrus; sTS: superior temporal sulcus. (E2J) Examples of bistable time series and model fitting of an EZ (E) and 965 
a nEZ (H) contact. These two contact locations were 19.7 mm apart and recorded with two distinct electrodes 966 
from the superior frontal gyrus (sFG) and were referenced with the same nearest white matter contact (Arnulfo et 967 
al., 2015). (F) Examples of bi-exponential model fitting for BiS estimates and (G) DFA power-law fitting of 4 968 
Hz and 40 Hz narrow-band real and surrogate time series of the EZ contact from (E). (I) Bi-exponential fitting 969 
and (J) DFA power-law fitting of 4 Hz and 40 Hz narrow-band real and surrogate time series of the nEZ contact 970 
from (H). The DFA fitting plot reads as, when the observation window size doubles (by narrow-band cycle 971 
length 3 irrespective of frequency), the detrended fluctuation increase by a constant rate of log(DF). 972 
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Supplementary Fig. 4 973 

Analysis pipeline for MEG and SEEG data, respectively.  974 
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Supplementary Fig. 5 975 

The cortical origins of DFA and BiS are similar between neighbouring frequencies but different 976 
between slow and fast rhythms demarcated at 40 Hz. (A) BiS and DFA of each Schaefer parcel (y axis) 977 
observed at narrow-band frequency (x axis) ranging from 2 to 225 Hz for SEEG and MEG data. The 10 978 
gray-out rows are the excluded SEEG parcels due to under sampling.  (B) Parcel mean across frequencies 979 
of real data (solid lines) and surrogate (dashed lines). (C) The distance between each frequency’s spatial 980 
similarity. (A2C) share the same x-axis (Frequency); (D) Cross-frequency adjacency matrices of 981 
topological similarity, the same as Fig 3A; correlation is the Spearman’s r between Schaefer Atlas parcels’ 982 
DFA or BiS of two different frequencies. 983 
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Supplementary Fig. 6 984 

All-to-all cross correlations between frequencies, metrics and datasets. (A) Normalized group-level 985 
Schaefer 100-parcel metrics afo frequencies. Normalization y = (x(i)-min(x)) /(max(x)- min(x)). (B) All-to-986 
all topological correlations between R, DFA, and BiS and between MEG and SEEG data (Spearman’s rank 987 
order r, p>0.01, not controlled for FDR).  988 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 10, 2022. ; https://doi.org/10.1101/2022.01.09.475554doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.09.475554
http://creativecommons.org/licenses/by-nc/4.0/


 

 

37 

 

Supplementary Fig. 7 989 

DFA and BiS estimates correlated in MEG and SEEG cortical parcels. (A)The adjacency matrix of 990 
significant Spearman’s correlation between band-collapsed DFA and BiS (p < 10-6, FDR corrected).  (B) 991 
The effect size of the differences between DFA and BiS of MEG and SEEG data in Schaefer parcels 992 
(n=90, due to exclusion of 10 SEEG parcels). (C2J) Scatter plots showing correlation between DFA 993 
and BiS estimates in band-clustered all-to-all correlation matrix (top); each data point corresponds to 994 
the group average metrics in one Schaefer 100-parcel (NMEG=100; NSEEG = 90). 995 
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Supplementary Fig. 8 996 

DFA and BiS are correlated in MEG and SEEG subsystems. Top left panel is from Fig 3H; top right is 997 
the number of subjects observed in each Yeo system: MEG N=18, and SEEG N=50±9, range: 36260, 998 
variable subject N per system in SEEG due to heterogeneous spatial sampling. In scatter plots, each dot 999 
corresponds to the observation from one subject.  1000 
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Supplementary Fig. 9 1001 

Systems-level differences and anatomical localization of DFA and BiS.  These are post hoc tests for 1002 
differences in DFA and BiS between Yeo systems (Fig 3I). (A2D) Neuro-anatomical localization of 1003 
frequency-collapsed BiS and DFA; marker (*) in colour-bar label indicates significant differences between 1004 
systems (Fig 3I). The line plots below the brains are median DFA/BiS of Yeo systems, dashed lines are 1005 
5%- and 95%-tile of permutation median (Npermutation = 105). The adjacency matrices are the significant 31006 
log10(p) values of pairwise tests for between-system differences (SEEG: unpaired t-test; MEG: Wilcoxon’s 1007 
signed-rank test, p<0.05, FDR corrected).  1008 
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Supplementary Fig. 10 1009 

Behaviourally relevant DFA and BiS in MEG.  (A) Left: percentage of parcels showed significant 1010 
correlation between executive function score (normalized zoo map time) and parcel DFA and BiS; right: 1011 
ñ2ñ band BiS as a function of DFA. (B) The behavioural correlations (primary y-axis) and probability of 1012 
parcels showing significant correlations (secondary y-axis) on functional systems-level (corrected for FDR). 1013 
(C) Top row: cortical maps of behavioural correlations; bottom row: subject neuronal estimates as a 1014 
function of executive score from exemplary regions of interest where each marker is the observation from 1015 
one subject (C2D) The corresponding p values of correlation tests in Fig 4A and C, respectively; dashed 1016 
lines indicate FDR (Benjamini-Hochberg procedure with FDR at 0.05 for 8 neuropsychological scores) 1017 
adjusted p values for eight neuropsychological tests. (E) Sorted p-values (thick line) of individual parcel 1018 
behavioural correlation for ñ2ñ band DFA and (F) BiS estimates. Thin lines indicate Benjamini-Hochberg 1019 
procedure with FDR at 0.05 adjusted p values. (G) Examples of parcel-level behavioural correlations to 1020 
Zoom map time rank for a-band DFAs and (H) ñ2ñ band BiS estimates, where each marker indicates one 1021 
subject. 1022 
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Supplementary Fig. 11 1023 

Classification of EZ and nEZ SEEG contacts (both cortical and subcortical) using band clustered 1024 
DFA and BiS estimates. (A) Number of EZ and nEZ contacts in each subject; solid dots indicate subjects 1025 
who met selection criteria for classification analysis; red dashed lines indicate selection criterion: each 1026 
subject must have great than five EZ and nEZ contacts. (B) EZ and nEZ contacts located in Yeo’s systems 1027 
and subcortical (subC) regions, data pooled over 55 subjects from (A). (C) An example of the receiver 1028 
operator curve (ROC) of preliminary population-level classification using all contacts and all features with 1029 
randomly split test and train set (20% and 80%, respectively); TPR: true positive rate; FPR: false positive 1030 
rate; AUC: area under the ROC curve. (D2J) Leave-one(subject)-out classification results using random 1031 
forest algorithm. (D) The ROC of each subsystem, classification with the full feature set, D&B(Y). (E) The 1032 
AUC yielded from classification using DFA only, BiS estimates only, combining DFA and BiS (D&B), and 1033 
full feature set D&B(Y), i.e., DFA, BiS and SEEG contact loci. (F2I): individual (thin lines) and group 1034 
average ROC (thick) yielded from classification using varying feature sets. (J) The AUC of ROCs shown 1035 
in (F2J), subjects were sorted by the area under the ROC curve of D&B (Y) feature set. 1036 
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