

Critical-like bistable dynamics in the resting-state human brain

Sheng H. Wang^{1,2,3,4,†}, Gabriele Arnulfo^{1,5}, Vladislav Myrov^{1,4}, Felix Siebenhühner¹, Lino Nobili^{6,7,8}, Michael Breakspear⁹, Satu Palva^{1,10}, J. Matias Palva^{1,4,10,†}

1. Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland.
2. Doctoral Programme Brain & Mind, University of Helsinki, Finland.
3. BioMag laboratory, HUS Medical Imaging Center, Helsinki, Finland.
4. Department of Neuroscience and Biomedical Engineering, Aalto University, Finland.
5. Department of Informatics, Bioengineering, Robotics and System engineering, University of Genoa, Genoa, Italy.
6. Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, University of Genoa, Genoa, Italy.
7. Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
8. Centre of Epilepsy Surgery “C. Munari”, Department of Neuroscience, Niguarda Hospital, Milan, Italy.
9. College of Engineering, Science and Environment; College of Health and Medicine, University of Newcastle, Callaghan, Australia.
10. Centre for Cognitive Neuroimaging, Institute of Neuroscience & Psychology, University of Glasgow, United Kingdom.

† Correspondence should be addressed to: sheng.wang@helsinki.fi
and matias.palva@helsinki.fi

Abstract

Brain activity exhibits scale-free avalanche dynamics and power-law long-range temporal correlations (LRTCs) across the nervous system. This has been thought to reflect “brain criticality”, *i.e.*, brains operating near a critical phase transition between disorder and excessive order. Neuronal activity is, however, metabolically costly and may be constrained by activity-limiting mechanisms and resource depletion, which could make the phase transition discontinuous and bistable. Observations of bistability in awake human brain activity have nonetheless remained scarce and its functional significance unclear. First, using computational modelling where bistable synchronization dynamics emerged through local positive feedback, we found bistability to occur exclusively in a regime of critical-like dynamics. We then assessed bistability *in vivo* with resting-state magnetoencephalography and stereo-encephalography. Bistability was a robust characteristic of cortical oscillations throughout frequency bands from δ (3–7 Hz) to high- γ (100–225 Hz). As predicted by modelling, bistability and LRTCs were positively correlated. Importantly, while moderate levels of bistability were positively correlated with executive functioning, excessive bistability was associated with epileptic pathophysiology and predictive of local epileptogenicity. Critical bistability is thus a salient feature of spontaneous human brain dynamics in awake resting-state and is both functionally and clinically significant. These findings expand the framework of brain criticality and show that critical-like neuronal dynamics *in vivo* involves both continuous and discontinuous phase transitions in a frequency-, neuroanatomy-, and state-dependent manner.

Abbreviations

BiS: bistability index
DFA: the scaling exponent obtained with detrended fluctuation analysis is an estimate of LTRCs
EZ: epileptogenic zone
nEZ: non-EZ, areas outside of the epileptogenic zone
 κ : coupling strength between oscillators in the Kuramoto model
LRTCs: long-range temporal correlations
MEG: magnetoencephalography
 ρ : the strength of the state-dependent noise in the Kuramoto model
R: the order parameter of the Kuramoto model
SEEG: stereo-EEG

1 **Introduction**

2 Since Newton and Leibniz, differential equations have been used to describe natural
3 phenomena that manifest *continuous* and smooth temporal evolution. Nonetheless, this classic
4 approach fails in modelling many dynamics, particularly in biology and neuroscience, that show
5 *discontinuity* and abrupt divergence into discrete states over time^{1,2}. Catastrophic events
6 emerging in complex systems, such as disasters in ecosystems or epileptic seizures in the brain,
7 comprise an important subcategory of discontinuous phenomena and attract inter-disciplinary
8 research to mitigate their detrimental consequences and to identify the underlying
9 mechanisms¹⁻³.

10 Neuronal population oscillations and their synchronization reflect rhythmical fluctuations in
11 cortical excitability and regulate neuronal communication^{4,5}. The “brain criticality hypothesis”
12 posits that the brain, like many complex systems, operate near a “critical” point of a *continuous*
13 transition⁶ between asynchronous and fully synchronous activity⁷⁻¹⁰. Operation near such a
14 critical point endows the system with moderate mean synchronization, emergent power-law
15 spatio-temporal correlations, and many functional benefits such as maximal dynamic range¹¹,
16 communication¹², processing¹³, and representational capacity^{14,15}. Conversely, inadequate or
17 excessive synchrony are incompatible with healthy brain functions^{6,16} and represent coma¹⁷ and
18 seizure-like states¹⁸, respectively.

19 However, the classic brain criticality hypothesis does not offer an explanation to neuronal
20 bistability, *i.e.*, discontinuous transitions between asynchronous and fully synchronous activity.
21 Bistability *per se* is a well known phenomenon in neurophysiological dynamics and is salient, for
22 example, in slow oscillations with up- and down-states observable across scales from intra-
23 cellular^{19,20} to local-field potentials (LFP)^{21,22} in animal brains. In the human brain, while there
24 are several lines of *in vivo* evidence for “critical-like” brain dynamics near a continuous phase
25 transition^{7,8,10,23}, evidence for discontinuous transitions, *i.e.*, bistable criticality, in awake resting-
26 state brain dynamics has remained scarce.

27 Neuronal bistability in awake humans has only been reported by in a single series of
28 electroencephalography (EEG) studies that reported bistable switching of alpha oscillations
29 between putatively quiescent and a hyper-synchronized states²⁴⁻²⁶. Studies of whole-brain
30 cortical activity in resting-state functional magnetic resonance imaging data (fMRI) also suggest
31 spontaneous bistable switching between synchronous and asynchronous, or between integrated
32 and segregated dynamics, respectively^{27,28}. The underlying neuronal activity substrates at these
33 multi-second time scales have, however, remained unclear.

34 Theoretical studies posit that a high degree of bistability is universally indicative of catastrophic
35 shifts^{1,2,29,30}. Hence, even if moderate bistability could characterize healthy brain dynamics, we
36 hypothesize that high bistability in neuronal synchrony would be indicative of a shift from
37 healthy to a pathological regime where neuronal populations abruptly jump between
38 asynchronous and hyper-synchronized, seizure-prone states.

39 In this study, we asked whether awake resting-state human brain exhibits critical-like bistable
40 dynamics. We first used generative modelling to establish how varying degree of bistable

41 dynamics emerges as a consequence of introducing a slow positive local feedback²⁵ that is
42 conceptually equivalent to increasing demands for limited resources³¹. We then analyzed a large
43 body of magnetoencephalography (MEG) and intracerebral stereo-EEG (SEEG) recordings of
44 resting-state human brain activity. In both MEG and SEEG, we found that anatomically and
45 spectrally widespread bistability characterized neuronal oscillations from δ (3–7 Hz) to high- γ
46 (100–225 Hz) frequencies. In MEG, moderate resting-state bistability was correlated positively
47 with executive functions. In SEEG, conversely, excessive resting-state bistability was co-localized
48 with the epileptogenic zone and thereby associated with the pathophysiology underlying
49 epilepsy. Bistable criticality thus constitutes a pervasive and functionally significant feature of
50 awake resting-state brain dynamics.

51 **Results**

52 **State-dependent noise induces bistable criticality *in silico***

53 To assess the emergence of bistability and its relationship with critical-like dynamics, we
54 simulated a variant of the classic Kuramoto model, a simple generative model of synchronization
55 dynamics³² (Supplementary Methods). Briefly, the conventional Kuramoto model has a single
56 control parameter, κ , that defines the coupling strength between neuronal oscillators. Higher κ
57 leads to stronger synchrony among the oscillators that is typically quantified with “order”, R .
58 Here, we introduced a second parameter ρ that scales state-dependent noise via local positive
59 feedback in a manner that is conceptually equivalent to the state-dependency in the stochastic
60 Hopf bifurcation^{25,33,34}, or the slow resource-loading mechanisms leading to self-organized
61 bistability³⁵.

62 At small values of ρ , the model behaved similarly to a conventional critical-like system with a
63 continuous second-order phase transition where a gradual increase of κ results in a monotonic
64 increase of order (Fig 1A). At moderate order, *i.e.*, at the phase transition between low and high
65 order, power-law long-range temporal correlations (LRTCs)³⁶ emerged in model order
66 fluctuations and delineated a critical regime (Fig 1B). Here, LRTCs were quantified using the
67 detrended fluctuation analysis (DFA) of the order time series (Supplementary Methods).

68 With increasing ρ values, the model synchronization dynamics became progressively bistable
69 (Fig 1C) as evidenced by increasing values of the bistability index (BiS), an index of the relative fit
70 of a bimodal versus a unimodal probability distribution (*pdf*) to the time series of squared order
71 (R^2 , comparable to oscillation powers, see Supplementary). We found bistable dynamics
72 exclusively within the critical regime (Fig. 1D). The presence of a bistable/discontinuous
73 transition was also evident in the sudden increase in the order parameter at the critical value
74 and the sharp peak in the DFA in contrast to the continuous transition (Fig 1E–F) and the
75 representative time series (Fig 1H). Bistable dynamics at high ρ values thus likely reflect a first-
76 rather than second-order phase transition. These *in silico* findings show that even in a minimal
77 model, synchronization of oscillators may exhibit a continuum between classic and bistable
78 critical dynamics under the influence of state-dependent noise via local feedback.

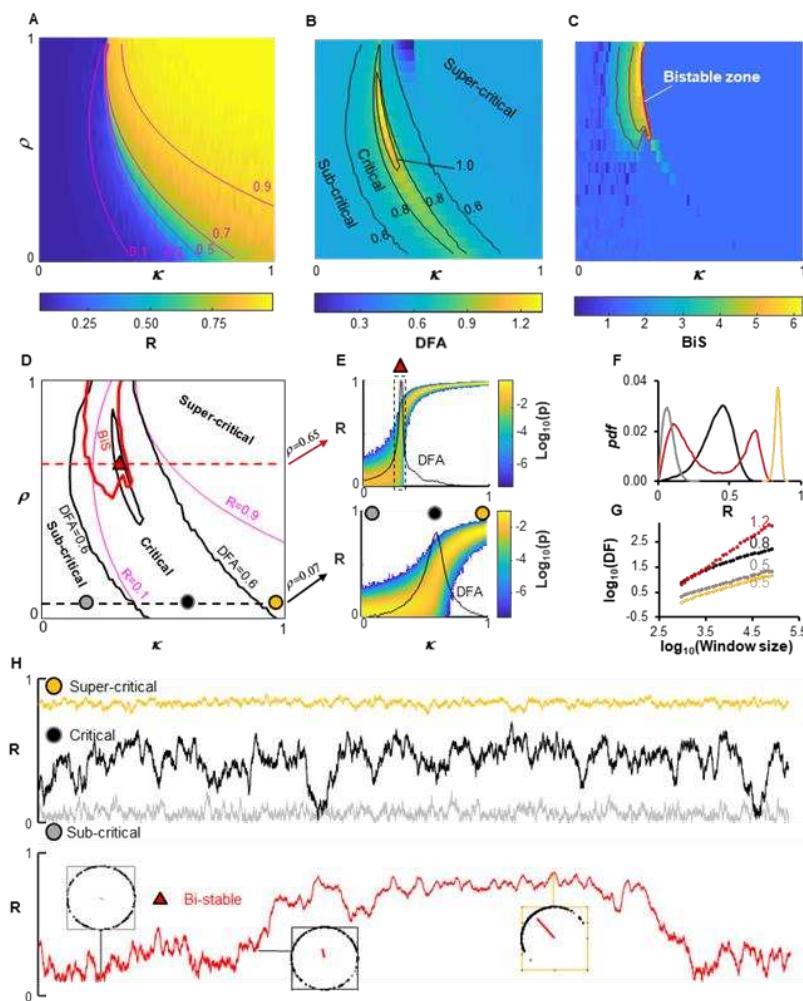


Fig 1. Bistability is caused by elevated state-dependent noise. (A) Kuramoto model order parameter (R), (B) Detrended fluctuation analysis exponent (DFA) – an estimate of LRTC, and (C) Bistability index (BiS) as functions of noise state-dependency (ρ) and the intrinsic control parameter (κ). Each pixel is the mean of 50 independent model realizations. (D) Summary of overlapping regimes based on observation from (B–D), *i.e.*, the classic criticality is associated with small ρ (black dashed line) whereas bistable criticality is caused by mid-to-high degree of ρ (red dashed line); (E) Probability density of R in both normal and bistable criticality is in line with the Hopf bifurcation (see Supplementary). DFA peaks (black line) coincide with the phase transition. (F) Probability density (pdf) and (G) power-law scaling of the DFA fluctuation functions in classic and bistable critical regime marked in (E), colour coded. (H) Exemplary order parameter time series; insets in are the moments of Kuramoto oscillators (black dots) in low-, mid- and high-synch state (red vectors).

79 Bistable criticality characterizes brain dynamics *in vivo*

80 We next assessed the presence of bistability and critical dynamics in meso- and macroscopic
 81 human brain activity in 10-minute resting-state recordings intracranially via stereo-
 82 electroencephalography (SEEG, $N = 64$) and source-reconstructed magnetoencephalography
 83 (MEG, $N = 18$), respectively. We first restricted analysis of the SEEG to neocortical grey matter
 84 contacts outside of the epileptogenic zone (EZ) (Fig 2–4). Although the anatomical sampling
 85 with SEEG is heterogeneous across patients, the present cohort size yielded essentially a full
 86 coverage of the cerebral cortex (Supplementary Fig 2). We estimated LRTCs using DFA and
 87 bistability with BiS for narrow-band SEEG and MEG source amplitude time series that
 88 predominantly reflect local cortical synchronization dynamics.

89 **Bistability is anatomically widespread and spectrally prevalent**

90 Visual inspection of narrow-band MEG and SEEG amplitude time series revealed salient
 91 examples of bistability as intermittent switching between low- and high-amplitude oscillations
 92 (Fig 2 A–B, for examples of model fitting for DFA and BiS estimates see Supplementary Fig 3).
 93 Statistical testing showed that both MEG-source signals and SEEG-electrode-contact LFP signals
 94 exhibited significant ($p < 0.05$, see Supplementary Fig 4) bistability and LRTCs across broad

95 frequencies (Fig 2C–E). MEG showed a peak DFA and BiS estimates in the alpha (~ 11 Hz)
 96 frequency band whereas in SEEG, the BiS peak extended over δ (2–4 Hz), θ (4–7.6 Hz), and α
 97 (10–13 Hz) bands (Fig 2F–G). In SEEG, DFA and BiS estimates were overall stronger and occurred
 98 across more frequencies than in MEG (Fig 2E, F–H).

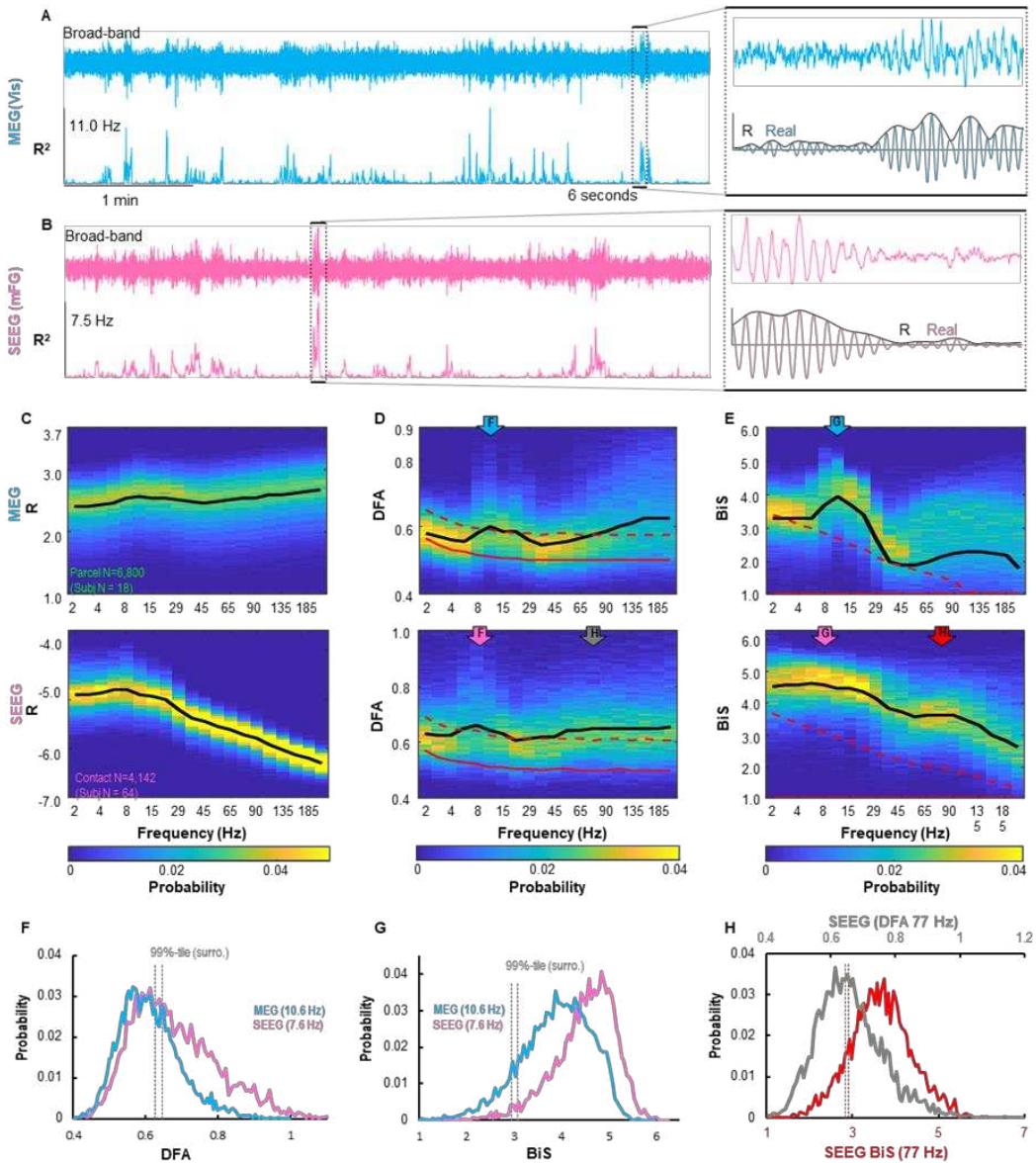


Fig 2. Bistability and LRTCs are robust, large-scale phenomena in MEG and SEEG. (A) Five minutes of broad band (top) and narrow-band filtered (11 Hz bottom) power (R^2) time series from a MEG parcel located in visual area (Vis) in one subject; (B) Comparable output from five minutes of SEEG contact recorded from middle frontal gyrus (mFG) in one patient; insets: evidence of bistability as narrow-band traces switching between “up” and “down” states. (C) Group-level probability (z-axis) distribution of narrow-band (y-axis) mean amplitude (R), (D) DFA exponents, and (E) BiS estimates; data were pooled over all non-EZ SEEG contacts and MEG parcels; subject and contact/parcel number indicated in (C); black lines indicate mean of real data and red dashed lines are 99%-tile of surrogate observation. (F–H) Examples of narrow-band DFA and BiS probability distribution as indicated by colored arrows in (D–E).

99 ***Neuroanatomical structure of bistability and LRTCs***

100 We next characterized the neuroanatomical structure of bistability and inspected its anatomical
101 relationship with LRTCs across frequencies. We first collapsed narrow-band BiS and DFA
102 estimates of MEG parcels (400) and SEEG contacts into a standard atlas of 100 cortical parcels
103 (see Supplementary Fig 4). Next, the neuroanatomical similarity within and between bistability
104 and LRTCs were assessed by computing all-to-all Spearman's correlations between narrow-band
105 parcel BiS and DFA estimates.

106 Both MEG and SEEG showed high anatomical similarity between neighbouring frequencies.
107 Correlations between slow and fast rhythms were negative in MEG (Fig 3 A) and weak in SEEG
108 (Fig 3B). This indicates that regions tended to show bistability and criticality in a cluster of high
109 or low frequencies, but not both. Based on these neuroanatomical similarities (red boxes, Fig 3
110 A–B, see also Supplementary Fig 5–6), we collapsed narrow-band BiS and DFA estimates into
111 θ – α (5.4–11Hz) and γ -band (45–225 Hz) for further analyses (Fig 3C). The partitioning of β
112 (15–30 Hz) band was not consistent and thus was not included (Supplementary Fig 5C).

113 MEG and SEEG cortical maps of θ – α band bistability revealed distinct neuroanatomical features.
114 In MEG, visual (VIS), somatomotor (SM) and dorsal attention network (DAN) (Fig 3 C–D)
115 exhibited greater BiS than expected by chance ($p < 0.05$, two-tailed permutation test, 10^5
116 permutations, not corrected for multiple comparisons, Supplementary Fig 9A–B). SEEG show
117 high BiS in fronto-parietal (FP), ventral attention (VAN), default network (DEF), and limbic (LIM)
118 systems (Fig 3C, E). Although comparable to the values in found in MEG, VIS showed the lowest
119 BiS in SEEG ($p < 0.05$, two-tailed permutation test, 10^5 permutations, not corrected for multiple
120 comparisons, Supplementary Fig 9C–D).

121 A Kruskal-Wallis test for variance among subjects' BiS and DFA estimates within each Yeo system
122 revealed that in SEEG, individuals showed different levels of BiS and DFA estimates between
123 systems (Fig 3F) with bistability greater in DEF, FP, and LIM than in VIS and SM (unpaired t-test,
124 $p < 0.05$, FDR corrected, Supplementary Fig 9 C–D). There was no statistically significant regional
125 variation in MEG data.

126 In both MEG and SEEG, group-average parcel bistability was correlated with LRTCs (Fig 3 G–H,
127 see also Supplementary Fig 7). We validated this analysis in narrow-band frequencies and found
128 the results to converge well (Supplementary Fig 6). To further validate this relationship, we
129 averaged parcel BiS and DFA within subjects for each Yeo system and found that the subject BiS
130 were indeed correlated with their DFA estimates on systems-level (Fig 3I, Supplementary Fig 8).

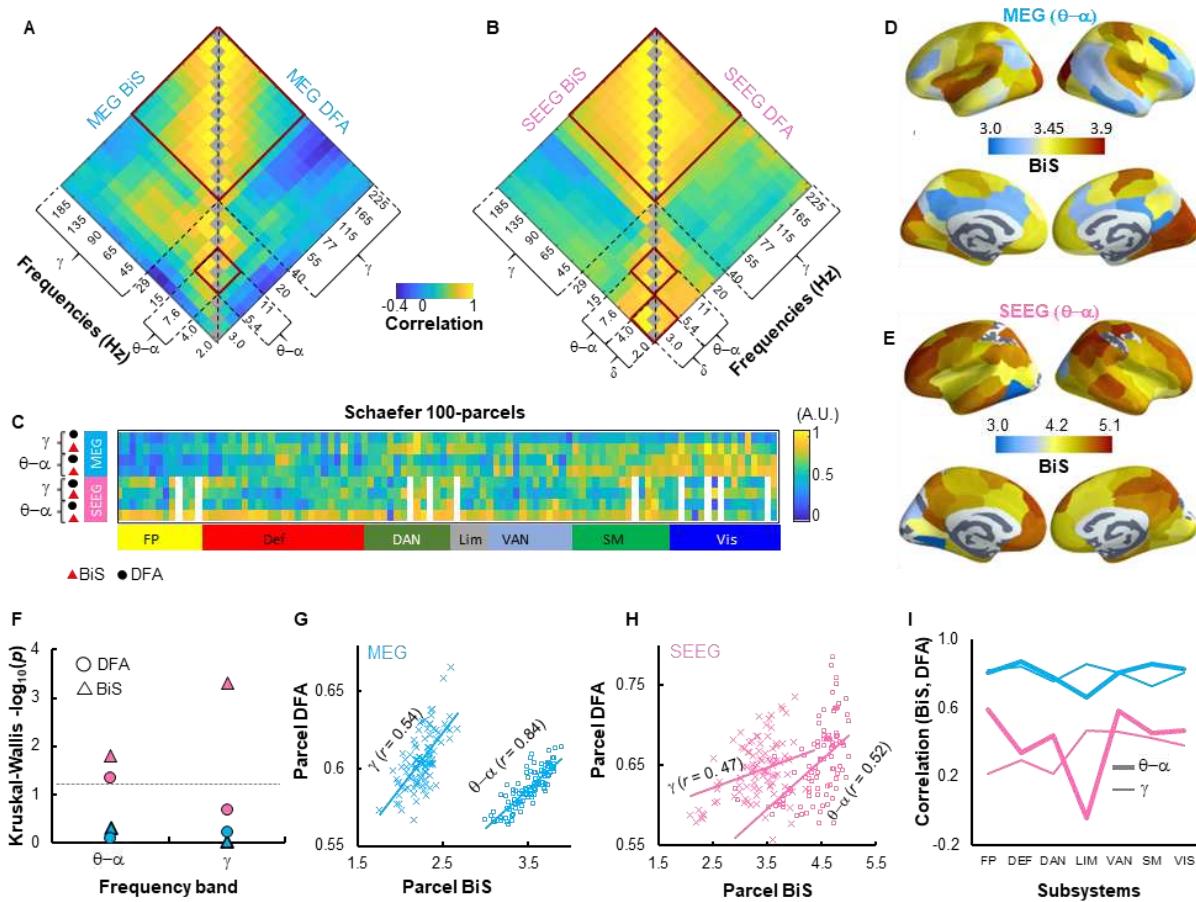


Fig 3. Bistability and LRTC were coexisting, correlated phenomena in MEG and SEEG. Neuroanatomical similarity (Spearman's correlation) between group-average narrow-band BiS and DFA estimates of (A) MEG and (B) SEEG in Schaefer 100-parcel atlas; red boxes indicate frequency clusters showing high similarity. (C) Narrow-band group-averaged estimates were collapsed into $\theta-\alpha$ (5.4–11Hz) and γ (40–225Hz) band based on similarity shown in (A); white-out columns in SEEG data indicate excluded parcels due to insufficient sampling (Supplementary). (D) Parcel-wise MEG group-average $\theta-\alpha$ band BiS estimates presented in the cortex. (E) The same for SEEG group-average $\theta-\alpha$ band BiS estimates. (F) Kruskal-Wallis one-way analysis of variance for group-level differences in DFA and BiS estimates between Yeo systems. Dashed line indicates $-\log_{10}(p \text{ value}) > 1.3$, i.e., $p < 0.05$. Correlations between group-average parcel BiS and DFA estimates in $\theta-\alpha$ (cross) and γ band (circles) in (G) MEG and (H) SEEG, $-\log_{10}(p) > 5$, FDR corrected (Supplementary Fig 7). (I) Spearman's correlations between within-subject-average BiS and DFA estimates in Yeo systems (subject N_{MEG} per system = 18; N_{SEEG} per system = 50 ± 9.4 , range: 36–60, variable SEEG subject N per system due to heterogamous spatial sampling).

132 **Bistability is functionally significant in healthy subjects**

133 We next asked whether bistability and LRTCs would predict individual differences in cognition.
 134 We assessed working memory, attention, and executive functions with neuropsychological tests
 135 (Methods). We averaged the BiS and DFA estimates across the cortical parcels to obtain four
 136 subject-specific neurophysiological estimates: $DFA_{\theta-\alpha}$, DFA_{γ} , $BiS_{\theta-\alpha}$, and BiS_{γ} (Supplementary Fig
 137 10B), and correlated these against neuropsychological test scores. We found that $\theta-\alpha$ band BiS
 138 and DFA estimates were negatively correlated ($p < 0.05$, FDR corrected) with the Zoo Map Test
 139 Execution Time (Fig 4A–D, see also Supplementary Fig 10C–D). Thus the subjects with greater
 140 $\theta-\alpha$ band bistability and stronger LRTCs executed faster in this flexible planning task, which is
 141 well in line with prior observations linking LRTCs with cognitive flexibility³⁷.

142 To inspect the neuro-behavioural correlations in greater anatomical detail, we computed
 143 Spearman's correlations between neuropsychological scores and individual parcel BiS and DFA
 144 estimates. A large fraction of the cortex showed significant neuro-behavioural correlations of
 145 $\theta-\alpha$ band BiS and DFA estimates with the Zoo Map Time test but not with other
 146 neuropsychological scores (Fig 4 E and G, see also Supplementary Fig 10E–F). The correlations of
 147 Zoo Map Time test with DFA estimates were most pronounced in fronto-parietal, limbic,
 148 somatosensory and, and visual areas (Fig 4 F), whereas the correlations with BiS estimates were
 149 widespread across the cortex (Fig 4H).

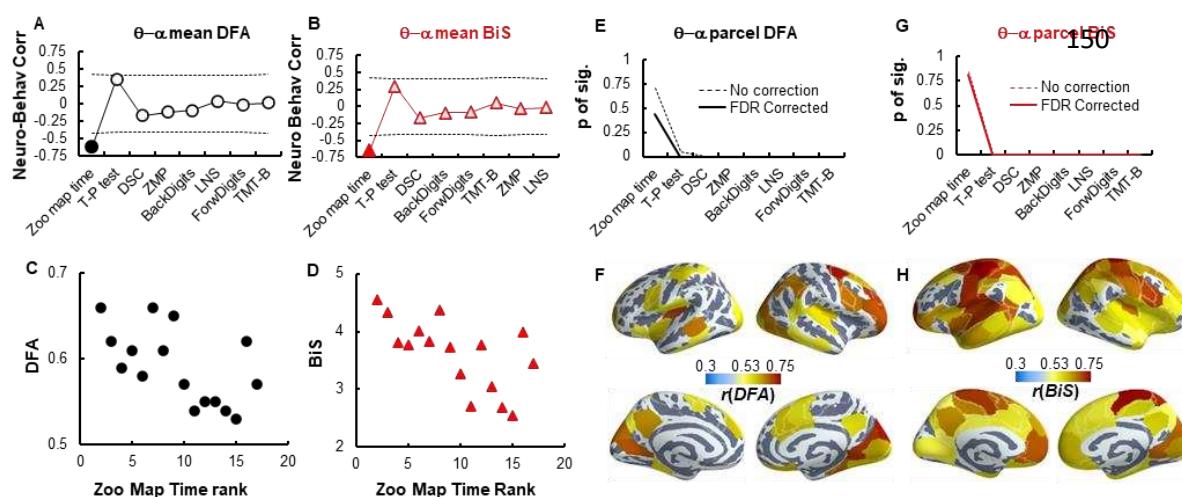


Fig 4. Executive functions were correlated with $\theta-\alpha$ band DFA and BiS estimates in MEG subjects. (A) Spearman correlation between subject neuropsychological test scores and within subject mean parcel $\theta-\alpha$ band DFA and (B) BiS estimates collapsed over parcels; dashed lines indicate 5% and 95%-tile of correlations for surrogate data ($N_{\text{surrogate}} = 10^5$, FDR corrected, p -values see Supplementary Fig 10). (C) Scatter plots showing subject Zoo map time test and corresponding $\theta-\alpha$ band parcel-collapsed DFA and (D) BiS estimates. Each marker in (C–D) stands for one subject. (E) Fraction of significant parcels that showed significant correlation between neuropsychological test scores and individual parcel $\theta-\alpha$ band DFA and (G) BiS Estimates ($p < 0.05$, FDR corrected, details see S.Fig 10). (F) Parcels showing significant correlations between Zoom map time scores and $\theta-\alpha$ band DFA and (H) BiS estimates.

151 **Excessive bistability characterizes the epileptogenic zone**

152 Excessive bistability may predispose complex systems to catastrophic events^{29,38}. Under the
153 influence of strong state-dependent noise, our model demonstrated increased sensitivity to
154 coupling strength (Fig 1E), which suggests that strong bistability could be an early sign of shift
155 towards supercritical hypersynchronization events, *i.e.*, epileptic seizures. We thus asked
156 whether bistability estimated from seizure-free, inter-ictal-activity-free resting-state SEEG
157 recording could be informative about epileptic pathophysiology. In particular, we addressed
158 whether bistability could delineate the epileptogenic zone (EZ) and dissociate EZ signals from
159 signals in nEZ contacts that reflect more healthy forms of brain activity.

160 Representative time series (Fig 5A–B) showed that the EZ contacts did not show conspicuous
161 epileptic inter-ictal events (IIE), and the sparse IIEs were removed from analysis where found
162 (Supplementary Methods). Interestingly, elevated > 80 Hz bistability of the EZ contact was
163 already a visually salient characteristic and stronger in EZ than in a nearby nEZ contact from the
164 same region (DFA, bistability fitting see Supplementary Fig 3 F–J). We assessed bistability and
165 LRTCs in narrow-bands frequencies at the group level for nEZ- versus EZ-electrode contacts (Fig
166 5C–D). Collapsing narrow-band DFA and BiS estimates into broader frequency bands revealed
167 significant differences between nEZ- and EZ-electrode contacts in β - and γ -band BiS estimates
168 with effect sizes of 0.5 and 0.65 (Cohen's d), respectively (Fig 5E). There was also a difference
169 between nEZ- and EZ-electrode contacts in the δ -band DFA exponent with a Cohen's d of 0.2.

170 These group-level findings suggest that both bistability and LRTCs could constitute informative
171 features for classifying nEZ- and EZ-electrode contacts. We thus conducted an EZ-vs-nEZ
172 classification analysis using random forest algorithm³⁹ and with frequency-collapsed BiS and DFA
173 estimates as neuronal features, with the electrode contact location in Yeo systems as an
174 additional feature. The cross-validation for the classification was a 80:20-partition (training:test)
175 with 500 iterations. This revealed a reliable outcome with the area under curve (AUC) for the
176 receiver operating characteristic reaching $AUC = 0.8 \pm 0.002$ (mean \pm std) (Supplementary Fig
177 11C). To identify the most informative components to the classifier, we assessed global and
178 within-subject feature importance with the Shapley Additive exPlanations (SHAP) values⁴⁰. The
179 SHAP values corroborated that γ - and β -band BiS estimates were indeed the most important
180 features, followed by contact location (Yeo system), and δ -band DFA (Fig 5F).

181 Given these encouraging group-level and contact-classification results, we quantified the within-
182 subject accuracy of neuronal bistability in localizing the epileptogenic area. We used leave-one-
183 out validation so that the EZ-vs-nEZ contact classification was performed for each patient with
184 the rest of the patient serving as training data. Additionally, to independently evaluate the
185 contributions of BiS and DFA estimates to classification accuracy, we implemented the
186 classification with four feature sets: DFA alone, BiS alone, combining DFA and BiS (D&B), and
187 combining D&B and SEEG contact location in Yeo systems (D&B(Y)).

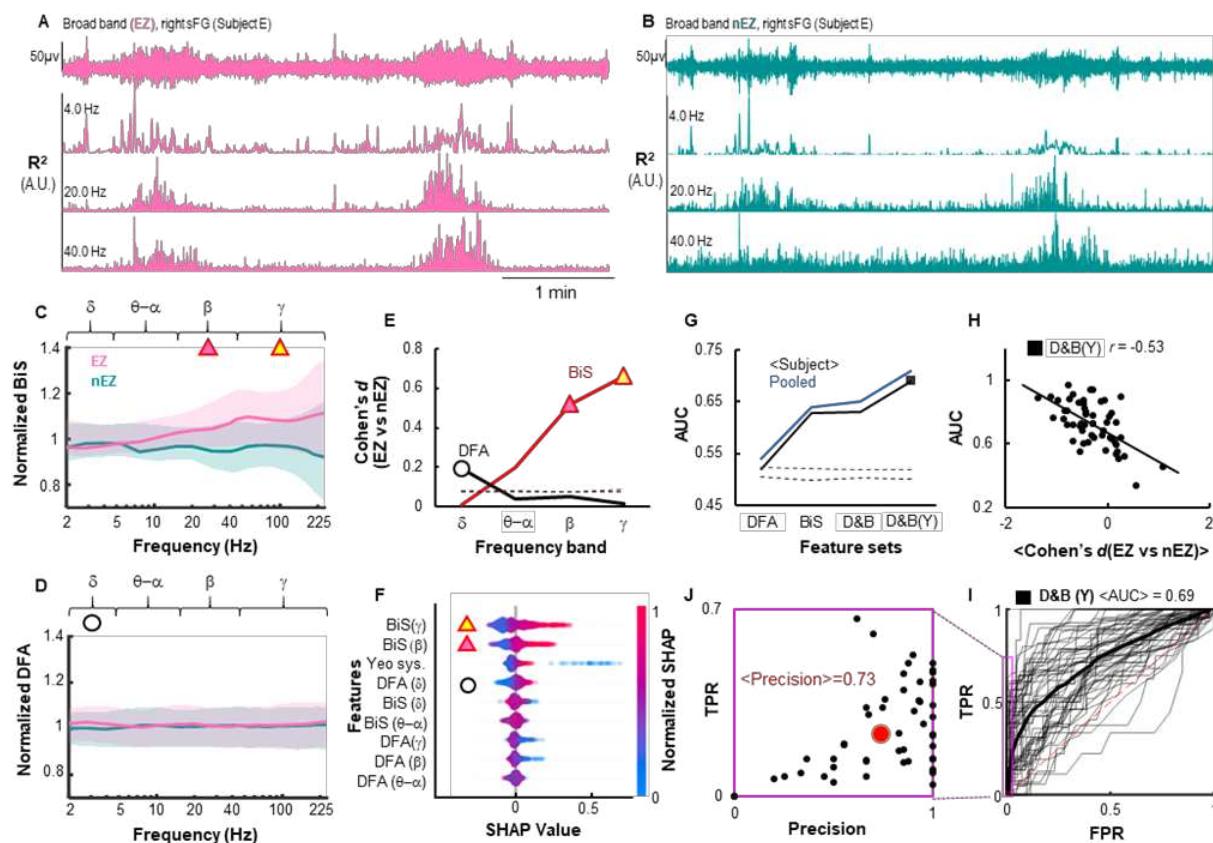


Fig. 5. Bistability showed strong predictive power for pathophysiology. (A–B) Five minutes of broad-band traces and narrow-band power (R^2) time series of an EZ (A) and a nEZ (B) cortical location recorded with two distinct electrode shafts in one subject. Both contacts were 19.7 mm apart within supervisor frontal gyrus (sFG) and were referenced with the same nearest white matter contact (Arnulfo et al., 2015). (C) Average normalized narrow-band BiS and (D) DFA estimates for all EZ (pink) and nEZ contacts (green). Shaded areas indicate 25% and 75%-tile. (E) The effect size of differences between EZ and nEZ contacts in frequency-collapsed BiS (red) and DFA (black). Dashed line indicates 99%-tile observation from surrogate data ($N_{\text{surrogate}}=1000$). (F) Feature importance estimated using SHAP values. (G) The area under curve (AUC) of receiver operating characteristics (ROC) averaged across subjects (black) and the AUC of pooled within-subject classification results (blue) when using (i) DFA alone, (ii) BiS alone, (iii) combining DFA and BiS (D&B), and (iv) D&B plus contact loci in Yeo systems (D&B(Y)). Dashed lines indicate 99%-tile of AUC observed from 1,000 surrogates created independently for each of the four feature sets. (H–J) Post-hoc inspection of results derived using D&B(Y) feature set (the black marker in G). (H) Spearman's correlation ($p < 10^{-6}$, $n=55$) between individual AUC and within-subject mean Cohen's d between EZ and nEZ in band-collapsed DFA and BiS. (I) Receiver operating characteristics of classification within subjects (thin lines) and mean ROC (thick). (J) Within-patient prediction precision as a function of TPR indicated by the magenta box from (I); the red marker indicates the population mean. *Precision = true positive ÷ reported positive*.

188 Overall, the within-subject classification accuracy for EZ contacts was higher than chance level
 189 across all feature combinations (Fig 5G). Classification with all features yielded the best
 190 performance at an average AUC of 0.7 ± 0.14 (Black marker, Fig 5G). BiS alone yielded a greater
 191 AUC than DFA alone. Including the contact-brain system as an additional feature to D&B

192 increased the AUC by 0.06. The subject AUC values were correlated with the subject-specific
193 differences in DFA and BiS estimates between EZ and nEZ ($r=-0.53$, $p < 10^{-6}$) (Fig 5H) and were
194 not affected by either the total numbers of contacts, EZ contacts, nor the ratio of EZ and nEZ
195 contacts (Pearson's correlation coefficient, $r = -0.06$, $p = 0.66$; $r = -0.07$, $p = 0.61$; $r = -0.09$, $p =$
196 0.50; respectively). Finally, the classifier yielded an average precision of 0.74 ± 0.30 (mean \pm
197 SD). While the true positive rate was 0.24 ± 0.17 , the false-positive rate was only 0.03 ± 0.03 (Fig
198 5G and H), which shows that most EZ contacts identified with the bistability-based classification
199 were correct even though the classifier did not identify all true EZ contacts.

200 **Discussion**

201 We found here that bistable criticality is a pervasive characteristic of human brain activity and is
202 both functionally significant in healthy brain dynamics and clinically informative as a putative
203 pathophysiological mechanism in epilepsy. In a generative model of synchronization dynamics
204 with positive feedback, bistability occurred exclusively within a critical-like regime. In both MEG
205 and SEEG, we found significant bistability and LRTCs in spontaneous amplitude fluctuations of
206 cortical oscillations widely across the neocortex and from δ - (2–4 Hz) to γ - (40–225 Hz)
207 frequency bands. Moreover, as predicted by the model, bistability was positively correlated with
208 LRTCs. As key evidence for functional significance, resting-state bistability was a trait-like
209 predictor⁴¹ of healthy cognitive performance in MEG and clearly associated with epileptogenic
210 pathophysiology in SEEG. These findings indicate that bistable criticality is an important novel
211 facet of large-scale brain dynamics in both healthy and diseased human brain. Moreover, these
212 observations strongly suggest that the brain criticality framework—currently focused on
213 continuous phase transitions—should be expanded to include both continuous and
214 discontinuous phase transitions (see Supplementary Theory).

215 In the model, we found bistability to occur exclusively within the critical regime so that the level
216 of bistability increased monotonically with increasing positive feedback ρ . This state-dependent
217 feedback thus acted as a continuous control parameter for shifting the model between a
218 continuous and a discontinuous phase transition, at low or high levels of feedback, respectively.
219 In both MEG and SEEG, band-collapsed θ – α (5.4–11 Hz) and γ (40–225 Hz) frequency cortical BiS
220 and DFA estimates were correlated on group average level (see Fig 3 G–H) and among
221 individuals within functional systems (see Fig 3I). These widespread correlations collectively
222 suggest that a gradient from “low LRTCs and weakly bistable” to “high LRTCs and strongly
223 bistable” is a systematic characteristic of the human brain dynamics.

224 A positive feedback loop is thought to be a generic mechanism^{31,35,42–44} leading to bistability in a
225 wide range of modeled and real-world complex systems including the canonical sand-pile
226 model³⁵ and its variations⁴², ecosystems^{29,45}, gene regulatory networks^{25,46,47}, intra-cellular
227 signaling^{48,49}, and network models of spiking neurons^{31,50}. In our model, the positive local
228 feedback was implemented as state-dependent phase noise^{25,34}. Three mechanisms have been
229 proposed to account for feedback and state-dependency in microscopic neuronal dynamics⁵¹,
230 whereas the exact neuronal mechanism for meso- and macroscopic state-dependency remains
231 unclear. We postulate that the state-dependency be a slowly fluctuating physiological
232 parameter conceivably reflecting the cortical excitability and corresponding resource
233 demand^{31,50,52}.

234 Bistable dynamics, in general, could be associated a dichotomy of both beneficial and
235 detrimental outcomes. Organisms can operate in bistable mode that is thought to reflect a
236 dynamic motif favourable to adaptation and survival^{25,46,49,53}. However, a high degree of
237 bistability characterizes many complex systems prone to catastrophic shifts^{43,44} such as sudden
238 violent vibrations in aerodynamic systems⁵⁴, irrevocable environmental changes^{29,55,56}, wars and
239 conflicts⁵⁷. In healthy MEG subjects, BiS and DFA were correlated, and higher θ - α band BiS and
240 DFA estimates predicted better cognitive performance. In the SEEG from epileptic patients,
241 excessive β - and γ -band BiS, but not DFA, characterized EZ (see Fig 5E-F), which suggests a
242 functional gradient wherein moderate bistability reflect functional advantages but high degree
243 of bistability be a sign of pathological hyper-excitability; this pathological bistability could be
244 associated with hyper-excitability, excessive synchrony, high resource demands, and likely
245 subsequent oxidative stress and tissue damage⁵⁸. This speculation is in accordance with
246 biophysical models of seizures that suggest a crucial role of a discontinuous transition (a sub-
247 critical Hopf bifurcation)^{25,33} in generalized seizures^{52,53}.

248 With invasive SEEG, we found consistent and accurate performance of the BiS estimates in EZ
249 localization, which suggests a great potential for broader clinical utility, e.g., using non-invasive
250 MEG or EEG. Future work could exploit the presence of widespread bistability to large-scale
251 biophysical models of neural dynamics, building on the analytic link between the simplified
252 model employed here and physiologically derived neural mass and mean field models. Whereas
253 the simple model yields dynamical insights, the large-scale biophysical models are crucial for
254 understanding biological mechanisms³³, including those that describe seizure propagation in
255 individual patient brain networks⁵⁹.

256 Materials and Methods

257 The canonical Hopf bifurcation

258 The canonical model of sub- or supercritical bifurcation is²⁵:

$$259 \dot{r} = -r^5 + \lambda r^3 + \beta r + \eta[(1 - \rho)\zeta_a(t) + \rho r\zeta_m(t)], \quad (1)$$

260 where \dot{r} is the time derivative of a local neuronal activity r (a real number); λ is the shape
261 parameter and β the bifurcation parameter; η scales the overall influence of noise; where $\zeta_a(t)$
262 and $\zeta_m(t)$ are additive and state-dependent noise respectively, and they are two uncorrelated
263 Wiener processes; the parameter ρ weights the influence of state-dependent noise. Different
264 combinations of λ and β result in either super-critical or sub-critical bifurcation (details in²⁵),
265 which are associated with continuous or discontinuous (or second- or first-order) phase
266 transition, respectively^{23,35,60}. When r described the amplitude of a two-dimensional system
267 with phase θ , then (eq. 1) describes a Normal form stochastic Hopf bifurcation.

268 The Kuramoto model

269 We studied first- and second-order phase transitions in a Kuramoto model with a modified noise
270 term. The Kuramoto model is a generative model that can be used for studying the collective
271 behaviours of a number of interconnected phase oscillators due to weak interactions^{32,61}. In a

272 Kuramoto model, the dynamics of each oscillator i is a scalar phase time series θ_i ($\theta \in 0:2\pi$),
273 coupled into a population ensemble $\boldsymbol{\theta}$ as,

274
$$\dot{\theta}_i = \omega_i + K_i + Z_i, \quad (2)$$

275 where, for any oscillator i , $\dot{\theta}_i$ is the rotation of its phase θ_i ; ω_i is the natural (uncoupled)
276 frequency of i ; $K_i = K_i(\boldsymbol{\theta})$ the coupling between i and the rest oscillators of the ensemble, and
277 Z_i is a stochastic term. The degree of synchrony of the ensemble (*i.e.*, order parameter or mean
278 field) is the outcome of tripartite competition for controlling the collective behaviours of all
279 oscillators: ω_i and Z_i are desynchronizing factors whereas K_i is the synchronizing factor. Here,
280 ω_i follows a normal distribution with mean of zero (Hz), meaning without loss of generality, the
281 system can be observed on a rotating phase plan with arbitrary angular velocity. In the classic
282 model, the coupling term K_i is defined as the i -th oscillator adjusts its phase according to
283 interactions with all other oscillators in the system through a pair-wise phase interaction
284 function:

285
$$K_i = \frac{\kappa}{N} \sum_{j=1}^N \sin(\theta_i - \theta_j), \quad (3)$$

286 here, κ is a scalar number representing coupling strength, $N = 200$ is the number of oscillators in
287 the ensemble. For simplicity, here we used a fully coupled network to avoid other families of
288 emerging dynamics due to nodal or network structural disorders, *e.g.*, Griffiths phase^{62,63}. In
289 addition, we found that with a Gaussian nodal-weight distribution, the model behaved
290 identically to the fully coupled networks. We modified the noise term in line with the Hopf
291 bifurcation (*eq.* 1) as:

292
$$Z_i = \eta[(1 - \rho)\zeta_a(t) + \rho(R_{MAX} - R)\zeta_m(t)], \quad (4)$$

293 here, $\zeta_a(t)$ and $\zeta_m(t)$ are additive and multiplicative noise, respectively – as described in (*eq.* 1),
294 however, in (*eq.* 4) $\zeta_a(t)$ and $\zeta_m(t)$ are uncorrelated and independent Gaussian phase noise
295 with zero mean and unit variance; ρ scales the influence of $\zeta_m(t)$; note that the 2 bracketed
296 terms are offset (*i.e.*, $(1 - \rho)$ and ρ) such that their combined effect stays approximately
297 constant in magnitude; R_{MAX} is the maximal order the population can reach (*e.g.*, slightly below
298 1 due to the presence of noise) and R is the current mean field (a scalar) that quantifies the
299 degree of synchrony of the population at time t ,

300
$$R(t) = \left| \frac{1}{N} \sum_{n=1}^N e^{\theta_n(t)} \right| \quad (5)$$

301 when viewing R from the complex phase plan, it essentially is the centroid vector of the
302 population phase distribution: if the whole population is in full synchrony, $R = R_{MAX} \rightarrow 1$; when
303 there is no synchrony, $R \rightarrow 0$ (see insets, Fig 1H).

304 **MEG recording and subjects**

305 We recorded 10 minutes resting-state magnetoencephalographic (MEG) data from 18 subjects
306 (11 males, 31.7 ± 10.5 , mean \pm std, years of age) at the BioMag Laboratory, HUS Medical Imaging
307 Center, Helsinki Finland. Subjects were seated in a dimly lit room and instructed to focus on a
308 cross on the screen in front of them. Recordings were carried out at Meilahti hospital in Helsinki

309 (detailed in Supp. Material). All subjects were screened for neurological conditions. The study
310 protocol for MEG and MRI data obtained at the University of Helsinki was approved by the
311 Coordinating Ethical Committee of Helsinki University Central Hospital (HUCH) (ID
312 290/13/03/2013) and was performed according to the Declaration of Helsinki.

313 We also assessed working memory, attention, and executive functions in these subjects with a
314 battery of neuropsychological tests. These included (see Fig 4 x-axis): Zoo Map Time, Toulouse-
315 Pieron test (TP), Digit Symbol Coding test, Zoo Map Plan, Digit Span forward and backward
316 (BackDigits and ForwDigits, respectively), Letter-Number Sequencing (LNS), Trail Making Test
317 parts A and B (TMT-A, TMT-B). Some subjects had missing/invalid behavioural scores, and we
318 studied the neuro-behavioural correlations with dataset that at least had 16 valid subjects'
319 scores.

320 **SEEG recording and subjects**

321 We acquired 10 minutes of uninterrupted, seizure-free resting-state brain activity with eyes
322 closed from 64 drug resistant focal epilepsy patients (28 females, 30.1 ± 9.1 , mean \pm SD, years of
323 age, see Supplementary Table 1) undergoing pre-surgical assessments (detailed in Supp.
324 Material). The subjects gave written informed consent for participation in research studies. The
325 study protocol for SEEG, computerized tomography (CT), and MRI data obtained in the La
326 Niguarda Hospital were approved by the ethical committee of the Niguarda "Ca Granda"
327 Hospital, Milan (ID 939), Italy, and was performed according to the Declaration of Helsinki.

328 Prior to surgery, medical doctors identified epileptogenic and seizure propagation zone by visual
329 analysis of the SEEG traces ^{64,65}. Epileptogenic areas (generators) are the region of interest that
330 are necessary and sufficient for the origin and early organization of the epileptic activities ⁶⁶.
331 SEEG contacts recorded from such generators often show low voltage fast discharge or spike
332 and wave events at seizure onset. Seizure propagation areas (receivers) are recruited during
333 seizure propagation, but they do not initialize seizures ^{59,67}. Contacts recorded from receivers
334 show delayed, rhythmic modifications after seizure initiation in the generators. It is common to
335 see regions demonstrating both generator and receiver dynamics, thus they were identified as
336 generator-receiver. In this study, we refer to generator, receiver, and generator-receiver
337 collectively as epileptogenic zone (EZ) to distinguish them from those that were tentatively
338 identified as healthy non-EZ regions (nEZ).

339 References

- 340 1. Thom, R. *Structural Stability and Morphogenesis*. (CRC Press, 1972).
- 341 2. Zeeman, E. C. *Catastrophe Theory*. *Sci. Am.* (1976).
- 342 3. Sornette, D. *Dragon-Kings, Black Swans and the Prediction of Crises*. *Int. J. Terrasp. Sci. Eng.* **2**, 1–18 (2009).
- 343 4. Uhlhaas, P. J. et al. Neural synchrony in cortical networks: History, concept and current status. *Front. Integr. Neurosci.* **3**, (2009).
- 344 5. Fries, P. A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. *Trends Cogn. Sci.* **9**, 474–480 (2005).
- 345 6. Chialvo, D. R. Emergent complex neural dynamics. *Nat. Phys.* **6**, 744–750 (2010).
- 346 7. Palva, S. & Palva, J. M. Roles of Brain Criticality and Multiscale Oscillations in Temporal Predictions for Sensorimotor Processing. *Trends Neurosci.* **41**, 729–743 (2018).
- 347 8. Beggs, J. M. & Timme, N. Being critical of criticality in the brain. *Front. Physiol.* (2012).
- 348 9. Muñoz, M. A. Colloquium: Criticality and dynamical scaling in living systems. *Rev. Mod. Phys.* **90**, (2018).
- 349 10. Wilting, J. & Priesemann, V. 25 years of criticality in neuroscience — established results, open
- 350 11. Kinouchi, O. & Copelli, M. Optimal dynamical range of excitable networks at criticality. *Nat. Phys.* **2**, 348–352 (2006).
- 351 12. Shew, W. L., Yang, H., Yu, S., Roy, R. & Plenz, D. Information capacity and transmission are
- 352 13. Boedecker, J., Obst, O., Lizier, J. T., Mayer, N. M. & Asada, M. Information processing in echo state
- 353 14. Bertschinger, N. & Natschläger, T. Real-Time Computation at the Edge of Chaos in Recurrent Neural
- 354 15. Shriki, O. & Yellin, D. Optimal Information Representation and Criticality in an Adaptive Sensory
- 355 16. Zimmern, V. Why Brain Criticality Is Clinically Relevant: A Scoping Review. *Front. Neural Circuits*
- 356 17. Liu, X., Ward, B. D., Binder, J. R., Li, S. J. & Hudetz, A. G. Scale-free functional connectivity of the
- 357 18. Cerf, R., El Ouasdad, E. H. & Kahane, P. Criticality and synchrony of fluctuations in rhythmical brain
- 358 19. Wilson, H. R. & Cowan, J. D. Excitatory and Inhibitory Interactions in Localized Populations of Model
- 359 20. Wilson, C. Up and down states. *Scholarpedia* **3**, 1410 (2008).
- 360 21. Steriade, M., Nunez, A. & Amzica, F. A novel slow (< 1 Hz) oscillation of neocortical neurons in
- 361 22. Holcman, D. & Tsodyks, M. The emergence of Up and Down states in cortical networks. *PLoS*
- 362 23. Cocchi, L., Gollo, L. L., Zalesky, A. & Breakspear, M. Criticality in the brain: A synthesis of
- 363 24. Roberts, J. A., Boonstra, T. W. & Breakspear, M. The heavy tail of the human brain. *Current Opinion in*
- 364 25. Freyer, F., Roberts, J. A., Ritter, P. & Breakspear, M. A Canonical Model of Multistability and Scale-
- 365 26. Freyer, F., Aquino, K., Robinson, P. A., Ritter, P. & Breakspear, M. Bistability and Non-Gaussian
- 366 27. Hansen, E. C. A., Battaglia, D., Spiegler, A., Deco, G. & Jirsa, V. K. Functional connectivity dynamics:
- 367 28. Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L. & Breakspear, M. Time-resolved resting-state brain

391 29. networks. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 10341–10346 (2014).

392 29. Villa Martín, P., Bonachela, J. A., Levin, S. A. & Muñoz, M. A. Eluding catastrophic shifts. *Proc. Natl.*
393 *Acad. Sci.* **112**, E1828–E1836 (2015).

394 30. Agu, M. & Teramachi, Y. Prediction of catastrophes in bistable systems using externally applied
395 random force. *J. Appl. Phys.* **49**, 3645–3648 (1978).

396 31. di Santo, S., Villegas, P., Burioni, R. & Muñoz, M. A. Landau–Ginzburg theory of cortex dynamics:
397 Scale-free avalanches emerge at the edge of synchronization. *Proc. Natl. Acad. Sci.* **115**, E1356–E1365
398 (2018).

399 32. Breakspear, M., Heitmann, S. & Daffertshofer, A. Generative Models of Cortical Oscillations:
400 Neurobiological Implications of the Kuramoto Model. *Front. Hum. Neurosci.* (2010).

401 33. Breakspear, M. Dynamic models of large-scale brain activity. *Nature Neuroscience* (2017).

402 34. Izhikevich, E. M. *Dynamical systems in neuroscience: the geometry of excitability and bursting.* (MIT
403 Press, 2007).

404 35. Di Santo, S., Burioni, R., Vezzani, A. & Muñoz, M. A. Self-Organized Bistability Associated with
405 First-Order Phase Transitions. *Phys. Rev. Lett.* (2016).

406 36. Linkenkaer-Hansen, K., Nikouline, V. V., Matias Palva, J. & Ilmoniemi, R. J. Long-Range Temporal
407 Correlations and Scaling Behavior in Human Brain Oscillations. *J. Neurosci.* (2001).

408 37. Simola, J., Zhigalov, A., Morales-Muñoz, I., Palva, J. M. & Palva, S. Critical dynamics of endogenous
409 fluctuations predict cognitive flexibility in the Go/NoGo task. *Sci. Rep.* **7**, (2017).

410 38. Pal, M., Pal, A. K., Ghosh, S. & Bose, I. Early signatures of regime shifts in gene expression dynamics.
411 *Phys. Biol.* **10**, 036010 (2013).

412 39. Breiman, L. Random Forests. in *Machine Learning* vol. 45 5–32 (Kluwer Academic Publishers, 2001).

413 40. Lundberg, S. M., Allen, P. G. & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. in
414 *Conference on Neural Information Processing Systems (NIPS)* 31st (2017).

415 41. Palva, J. M. et al. Neuronal long-range temporal correlations and avalanche dynamics are correlated
416 with behavioral scaling laws. *Proc. Natl. Acad. Sci.* (2013).

417 42. Buendía, V., di Santo, S., Bonachela, J. A. & Muñoz, M. A. Feedback Mechanisms for Self-
418 Organization to the Edge of a Phase Transition. *Frontiers in Physics* vol. 8 (2020).

419 43. Hugo, H. L. D., Oriá, M., Sornette, D., Ott, E. & Gauthier, D. J. Predictability and suppression of
420 extreme events in a chaotic system. *Phys. Rev. Lett.* **111**, 1–5 (2013).

421 44. Sornette, D. & Ouillon, G. Dragon-kings Mechanisms, statistical methods and empirical evidence. *Eur.*
422 *Phys. J. Spec. Top.* **205**, 1–26 (2012).

423 45. Kéfi, S., Rietkerk, M., van Baalen, M. & Loreau, M. Local facilitation, bistability and transitions in arid
424 ecosystems. *Theor. Popul. Biol.* **71**, 367–379 (2007).

425 46. Dubnau, D. & Losick, R. Bistability in bacteria. *Mol. Microbiol.* **61**, 564–572 (2006).

426 47. Kuwahara, H. & Soyer, O. S. Bistability in feedback circuits as a byproduct of evolution of evolvability.
427 *Mol. Syst. Biol.* **8**, (2012).

428 48. Mitrophanov, A. Y. & Groisman, E. A. Positive feedback in cellular control systems. (2008).

429 49. Bednarz, M., Halliday, J. A., Herman, C. & Golding, I. Revisiting bistability in the lysis/lysogeny
430 circuit of bacteriophage lambda. *PLoS One* **9**, (2014).

431 50. Cowan, J. D., Neuman, J. & van Drongelen, W. Wilson–Cowan Equations for Neocortical Dynamics. *J.*
432 *Math. Neurosci.* **6**, 1–24 (2016).

433 51. Doiron, B., Litwin-Kumar, A., Rosenbaum, R., Ocker, G. K. & JosiC, K. The mechanics of state-
434 dependent neural correlations. *Nature Neuroscience* vol. 19 383–393 (2016).

435 52. Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I. & Bernard, C. On the nature of seizure
436 dynamics. *Brain* (2014).

437 53. Breakspear, M. et al. A unifying explanation of primary generalized seizures through nonlinear brain
438 modeling and bifurcation analysis. *Cereb. Cortex* (2006).

439 54. Qi, X. & Zhongke, S. Bifurcation analysis and stability design for aircraft longitudinal motion with high
440 angle of attack. *Chinese J. Aeronaut.* **28**, 250–259 (2015).

441 55. Boerlijst, M. C., Oudman, T. & de Roos, A. M. Catastrophic Collapse Can Occur without Early
442 Warning: Examples of Silent Catastrophes in Structured Ecological Models. *PLoS One* **8**, (2013).

443 56. Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. *Nature* **486**, 52–58 (2012).

444 57. Díaz, F. A. Inequality, Social Protests and Civil War. *OASIS* 25–39 (2017).

445 58. Salim, S. Oxidative stress and the central nervous system. *Journal of Pharmacology and Experimental Therapeutics* vol. 360 201–205 (2017).

447 59. Proix, T., Bartolomei, F., Guye, M. & Jirsa, V. K. Individual brain structure and modelling predict seizure propagation. *Brain* (2017).

449 60. Kim, S., Park, S. H. & Ryu, C. S. Noise-enhanced multistability in coupled oscillator systems. *Phys. Rev. Lett.* **78**, 1616–1619 (1997).

451 61. Rodrigues, F. A., Peron, T. K. D. M., Ji, P. & Kurths, J. The Kuramoto model in complex networks. *Physics Reports* (2016).

453 62. Moretti, P. & Muñoz, M. A. Griffiths phases and the stretching of criticality in brain networks. *Nat. Commun.* (2013).

455 63. Muñoz, M. A., Juhász, R., Castellano, C. & Ódor, G. Griffiths phases on complex networks. *Phys. Rev. Lett.* (2010).

457 64. Cardinale, F. et al. Stereoelectroencephalography: Surgical methodology, safety, and stereotactic application accuracy in 500 procedures. *Neurosurgery* (2013).

459 65. Cossu, M. et al. Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures. *Neurosurgery* **70**–**6**–**18**, 706–18 (2005).

461 66. Luders, H., Engel, J. J. & Munari, C. General principles. in *Surgical Treatment of the Epilepsies*. 2nd ed. 137–153 (Raven Press, 1993).

463 67. Bartolomei, F., Guye, M. & Wendling, F. Abnormal binding and disruption in large scale networks involved in human partial seizures. *EPJ Nonlinear Biomed. Phys.* (2013).

465 68. Taulu, S. & Simola, J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. *Phys. Med. Biol.* **51**, 1759–1768 (2006).

467 69. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J. M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. *Comput. Intell. Neurosci.* **2011**, (2011).

469 70. Schaefer, A. et al. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. *Cereb. Cortex* **28**, 3095–3114 (2017).

471 71. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. *J. Neurophysiol.* **106**, 1125–1165 (2011).

473 72. Hämäläinen, M. S. R. & Ilmoniemi, R. J. Interpreting magnetic fields of the brain: minimum norm estimates. *Med. Biol. Eng. Comput.* **32**, 35–42 (1994).

475 73. Hamalainen, M. S. & Sarvas, J. Realistic Conductivity Geometry Model of the Human Head for Interpretation of Neuromagnetic Data. *IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING* vol. 36 (1989).

478 74. Korhonen, O., Palva, S. & Palva, J. M. Sparse weightings for collapsing inverse solutions to cortical parcellations optimize M/EEG source reconstruction accuracy. *J. Neurosci. Methods* **226**, 147–160 (2014).

481 75. Fischl, B. et al. Neurotechnique Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. *Neuron* **33**, 341–355 (2002).

483 76. Arnulfo, G., Hirvonen, J., Nobili, L., Palva, S. & Palva, J. M. Phase and amplitude correlations in resting-state activity in human stereotactical EEG recordings. *Neuroimage* 114–127 (2015).

485 77. Arnulfo, G., Narizzano, M., Cardinale, F., Fato, M. M. & Palva, J. M. Automatic segmentation of deep intracerebral electrodes in computed tomography scans. *BMC Bioinformatics* 16: 99 (2015).

487 78. Monto, S., Vanhatalo, S., Holmes, M. D. & Palva, J. M. Epileptogenic neocortical networks are revealed by abnormal temporal dynamics in seizure-free subdural EEG. *Cereb. Cortex* **17**, 1386–1393 (2007).

490 79. Eke, A. et al. Physiological time series: Distinguishing fractal noises from motions. *Pflugers Arch. Eur. J. Physiol.* (2000).

492 80. Poil, S.-S., Hardstone, R., Mansvelder, H. D. & Linkenkaer-Hansen, K. Critical-State Dynamics of Avalanches and Oscillations Jointly Emerge from Balanced Excitation/Inhibition in Neuronal Networks. *J. Neurosci.* (2012).

495 81. Ihlen, E. A. F. Introduction to multifractal detrended fluctuation analysis in Matlab. *Front. Physiol.* (2012).

497 82. Hardstone, R. et al. Detrended fluctuation analysis: A scale-free view on neuronal oscillations. *Front. Physiol.* (2012).

499 83. Wit, E., van den Heuvel, E. & Romeijn, J. W. 'All models are wrong.': An introduction to model
500 uncertainty. *Stat. Neerl.* (2012).

501 84. Lancaster, G., Iatsenko, D., Pidde, A., Ticcinelli, V. & Stefanovska, A. Surrogate data for hypothesis
502 testing of physical systems. *Physics Reports* vol. 748 1–60 (2018).

503 85. Sokal, R. & Michener, C. A statistical method for evaluating systematic relationships. *Univ. Kansas Sci.*
504 *Bull.* **38**, 1409–1438 (1958).

505 86. Hastie, T., Tibshirani, R. & Friedman, J. *The Elements of Statistical Learning Data Mining, Inference,*
506 *and Prediction.* (Springer, 2009).

507 87. Wilting, J. & Priesemann, V. Between Perfectly Critical and Fully Irregular: A Reverberating Model
508 Captures and Predicts Cortical Spike Propagation. *Cereb. Cortex* **29**, 2759–2770 (2019).

509 88. Bonachela, J. A. & Muñoz, M. A. Self-organization without conservation: True or just apparent scale-
510 invariance? *J. Stat. Mech. Theory Exp.* **2009**, (2009).

511 89. Bonachela, J. A., De Franciscis, S., Torres, J. J. & Muñoz, M. A. Self-organization without conservation:
512 Are neuronal avalanches generically critical? *J. Stat. Mech. Theory Exp.* **2010**, (2010).

513 90. Cowan, J. D., Neuman, J. & van Drongelen, W. *Self-Organized Criticality and Near-Criticality in*
514 *Neural Networks.* in *Criticality in Neural Systems* 465 (Wiley-VCH, 2014).

515 91. Bak, P., Tang, C. & Wiesenfeld, K. Self-Organized Criticality: An Explanation of 1/f Noise. *Phys. Rev.*
516 *Lett.* **59**, 381 (1987).

517 92. Mandelbrot, B. Self-affinity and fractal dimension. in *Physica Scripta* 257–260 (1985).

518 93. Mandelbrot, B. B. & Van Ness, J. W. Fractional Brownian Motions, Fractional Noises and
519 Applications. *SIAM Rev.* (1968).

520 94. Kinouchi, O., Brochini, L., Costa, A. A., Campos, J. G. F. & Copelli, M. Stochastic oscillations and
521 dragon king avalanches in self-organized quasi-critical systems. *Sci. Rep.* **9**, (2019).

522 95. Grinstein, G. Generic scale invariance and self-organized criticality. in *Scale Invariance, Interfaces, and*
523 *Non-Equilibrium Dynamics* 261–293 (1995).

524 96. Drossel, B., Clar, S. & Schwabl, P. Exact Results for the One-Dimensional Self-Organized Critical
525 Forest-Fire Model. vol. 71.

526 97. Levina, A., Herrmann, J. M. & Geisel, T. Dynamical synapses causing self-organized criticality in
527 neural networks. *Nat. Phys.* **3**, 857–860 (2007).

528 98. Herculano-Houzel, S. Scaling of brain metabolism with a fixed energy budget per neuron: Implications
529 for neuronal activity, plasticity and evolution. *PLoS One* **6**, (2011).

530 99. Kuzawa, C. W. et al. Metabolic costs and evolutionary implications of human brain development. *Proc.*
531 *Natl. Acad. Sci. U. S. A.* **111**, 13010–13015 (2014).

532 100. Roh, E. & Kim, M. S. Brain regulation of energy metabolism. *Endocrinology and Metabolism* vol. 31
533 519–524 (2016).

534 101. Ikeda, K. & Bekkers, J. M. Counting the number of releasable synaptic vesicles in a presynaptic
535 terminal. (2009).

536 102. Markram, H. & Tsodyks, M. Redistribution of synaptic efficacy between pyramidal neurons. *Nature*
537 807–10 (1996).

538 103. Tsodyks, M. V. & Markram, H. The neural code between neocortical pyramidal neurons depends on
539 neurotransmitter release probability. *Proc. Natl. Acad. Sci. U. S. A.* **94**, 719–723 (1997).

540 104. Robinson, P. A., Rennie, C. J. & Rowe, D. L. Dynamics of large-scale brain activity in normal arousal
541 states and epileptic seizures. *Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top.* **65**, 9
542 (2002).

543 105. Protachevicz, P. R. et al. Bistable firing pattern in a neural network model. *Front. Comput. Neurosci.*
544 **13**, (2019).

545 106. Lundstrom, B. N., Boly, M., Duckrow, R., Zaveri, H. P. & Blumenfeld, H. Slowing less than 1 Hz is
546 decreased near the seizure onset zone. *Sci. Rep.* **9**, (2019).

547 107. Englot, D. J. et al. Impaired consciousness in temporal lobe seizures: Role of cortical slow activity.
548 *Brain* **133**, 3764–3777 (2010).

549 108. Arnulfo, G. et al. Long-range phase synchronization of high-frequency oscillations in human cortex.
550 *Nat. Commun.* **11**, (2020).

551 109. Freyer, F. et al. Biophysical Mechanisms of Multistability in Resting-State Cortical Rhythms. *J.*
552 *Neurosci.* (2011).

553 **Acknowledgements**

554 We would like to thank our Italian collaborators from the Centre of Epilepsy Surgery “C. Munari”
555 at Niguarda Hospital, in particular Annalisa Rubino and Dr. Francesco Cardinale, for their
556 support. We thank Drs. James Roberts for sharing code, and Serena di Santo, Stewart Heitmann,
557 and Alexander Zhigalov for insightful discussions.

558 **Funding:**

559 The Academy of Finland SA 266402, 303933, and SA 325404 (SP)
560 The Academy of Finland SA 253130 and 296304 (JMP)

561 **Author contributions:**

562 Conceptualization: SHW, JMP
563 Funding acquisition: JMP, SP
564 Supervision: JMP
565 Methodology: SHW, MB, JMP
566 Software: SHW, MB, VM
567 Formal analysis: SHW
568 Resources: LN, GA
569 Data Curation: GA, FS
570 Visualization: SHW
571 Writing - Original Draft: SHW, JMP, MB, and SP

572 **Competing Interest Statement:**

573 All authors declare no competing interests. The funders had no role in study design, data
574 acquisition, analyses, decision to publish, and preparation of the manuscript.

575 **Data and materials availability:**

576 Raw data and patient details cannot be shared due to Italian governing laws and Ethical
577 Committee restrictions. Intermediate data, final processed data, and all code that support the
578 findings of this study are available from the corresponding authors upon reasonable request.

579

Supplementary Materials

580

Bistable critical dynamics in the resting-state human brain

581

Sheng H. Wang, Gabriele Arnulfo, Vladislav Myrov, Felix Siebenhühner, Lino
582 Nobili, Michael Breakspear, Satu Palva, J. Matias Palva

583

sheng.wang@helsinki.fi

584

584 This PDF file includes:

585

Supplementary Methods

586

Supplementary materials

587

Figs. S1 to S11

588

Tables S1

589

589 **Supplementary methods**

590

MEG data acquisition

591

A 306-channel MEG system (204 planar gradiometers and 102 magnetometers) with a Vectorview-Triux (Elekta-Neuromag) was used to record 10 minutes eyes-open resting-state brain activity from 18 healthy adult subjects at the BioMag Laboratory (HUS Medical Imaging Center, Helsinki Finland). For cortical surface reconstruction, T1-weighted anatomical MRI scans were obtained at a resolution of 1x1x1 mm with a 1.5 T MRI scanner (Siemens, Germany). This study was approved by the ethical committee of Helsinki University Central hospital and was performed according to the Declaration of Helsinki. Written informed consent was obtained from each subject prior to the experiment.

599

MEG data preprocessing and filtering

600

The Maxfilter software with temporal signal space separation (tSSS) (Elekta Neuromag Ltd., Finland) was used to suppress extra-cranial noise in sensors and to interpolate bad channels⁶⁸. Independent component analysis (Matlab Fieldtrip toolbox, <http://fieldtrip.fcdonders.nl>) was next used to identify and remove components that were correlated with ocular (identified using the EOG signal), heart-beat (identified using the magnetometer signal as a reference) or muscle artefacts⁶⁹. The FreeSurfer software (<http://surfer.nmr.mgh.harvard.edu/>) was used for subject MEG sources reconstruction, volumetric segmentation of MRI data, surface reconstruction, flattening, cortical parcellation, and neuroanatomical labeling with the Schaefer-2017 atlas⁷⁰. Each of the Schaefer-parcel belongs to a functional system⁷¹ which informed later systems-level analysis.

610

The MNE software package was used to create head conductivity models and cortically constrained source models with 5000-7500 sources per subject and for the MEG-MRI co-registration and for the preparation of the forward and inverse operators^{72,73}. For each MEG

613 subject, a cortical parcellation of 400 Schaefer-parcels was obtained using reconstruction-
614 accuracy optimized source-vertex-to-parcel collapsing method⁷⁴. The broadband time series of
615 these parcels were then filtered into narrow-band time series using a bank of 20 Morlet filters
616 with $m = 5$ and log-linearly spaced center frequencies ranging from 2 to 225 Hz. For group-level
617 analyses, subject DFA and BiS estimates were morphed from 400 Schaefer-parcels into 100
618 Schaefer-parcels.

619 ***SEEG data acquisition***

620 Resting-state brain activity from 64 drug resistant focal epilepsy patients (28 females, 30.1 ± 9.1 ,
621 mean \pm SD, years of age, see S.Table 1) was acquired as monopolar local field potentials (LFPs)
622 from brain tissue with platinum-iridium, multi-lead electrodes using a 192-channel SEEG
623 amplifier system (NIHON-KOHDEN NEUROFAX-110) at 1 kHz sampling rate. Each penetrating
624 electrode shaft has 8 to 15 contacts, and the contacts were 2 mm long, 0.8 mm thick and had an
625 inter-contact border-to-border distance of 1.5 mm (DIXI medical, Besancon, France). The
626 anatomical positions and amounts of electrodes varied according to surgical requirements⁶⁴. On
627 average, each subject had 17 ± 3 (mean \pm standard deviation) shafts (range 9-23) with a total of
628 153 ± 20 electrode contacts (range 122-184, left hemisphere: 66 ± 54 , right hemisphere: 47 ± 55
629 contacts, grey-matter contacts: 110 ± 25). The subjects gave written informed consent for
630 participation in research studies and for publication of their data. This study was approved by
631 the ethical committee (ID 939) of the Niguarda “Ca’ Granda” Hospital, Milan, and was
632 performed according to the Declaration of Helsinki.

633 ***SEEG preprocessing and filtering***

634 Cortical parcels were extracted from pre-surgically scanned T1 MRI 3D-FFE (used for surgical
635 planning) using the Freesurfer package⁷⁵. A novel nearest-white-matter referencing scheme (its
636 merits discussed in⁷⁶) was employed for referencing the monopolar SEEG LFP signals. An
637 automated SEEG-electrode localization method was next used to assign each SEEG contact to a
638 cortical parcel of Schaefer 100-parcel atlas with sub-millimeter accuracy⁷⁷. The SEEG electrodes
639 were implanted to probe the suspected epileptogenic zones (EZ) while inevitably passing
640 through healthy cortical structures. Contacts located at EZ are known to pick up frequent inter-
641 ictal spikes and generate abnormally large DFA⁷⁸. Therefore, EZ contacts and contacts recorded
642 from subcortical regions such as thalamus, hippocampus and basal ganglia were excluded from
643 analysis.

644 Nevertheless, inter-ictal events (IIE) such as spikes can be occasionally observed at non-EZ
645 locations in some subjects during rests. These IIE are characterized by high-amplitude fast
646 temporal dynamics as well as by widespread spatial diffusion, which need to be excluded to
647 avoid bias to DFA and BiS estimates. We followed approach used in to identify such IIEs. Briefly,
648 each SEEG contact broad-band signal was partitioned into non-overlapping windows of 500 ms
649 in length; a window was tagged as “spiky” and discarded from LRTCs and bistability analyses
650 when at least 3 consecutive samples exceeding 7 times the standard deviation above the
651 channel mean amplitude. Last, narrow-band frequency amplitude time series was obtained by
652 convoluting the broad-band SEEG contact time series with Morlet wavelets that were identical
653 to that of MEG data.

654 **Estimating LRTCs using detrend fluctuation analysis**

655 LRTCs in 1D time series can be assessed with several metrics ⁷⁹, and in this study, linear detrend
656 fluctuation analysis (DFA) was used to assess specifically how fast the overall root mean square
657 of local fluctuations grows with increasing sampling period ^{36,80}. An estimated DFA exponent
658 reflects the finite-size power-law scaling in narrow-band amplitude fluctuations based on the
659 assumption that the gradual evolution of a mono-fractal process time series would result in a
660 normal distribution where the fluctuation can be captured by the second order statistical
661 moments such as variance ⁸¹. The computation of DFA briefly as follows (for rationales and
662 technical details of the algorithm see ⁸²):

- 663 1) The signal profile (\mathbf{X}) of a signal was computed by computing the cumulative sum of a
664 demeaned narrow-band amplitude of a MEG parcel or SEEG contact time series.
- 665 2) A vector of window widths (\mathbf{T}) was defined in which the widths were linearly spaced on
666 \log_{10} scale between 10 and 90 seconds. The same scaling range was used across
667 frequencies and for both MEG and SEEG, *i.e.*, identical vector of \mathbf{T} . The lower boundary of
668 10 s was set to safely avoid high non-stationarity and the filter artifacts, *i.e.*, 20 cycles of
669 the slowest rhythm of 2 Hz; the upper bound of 90 s was 15% of total sample of the
670 resting-state recording.
- 671 3) For each window width $t \in \mathbf{T}$, \mathbf{X} was partitioned into an array of temporal windows in
672 which each window was of length t and with 25% overlap between windows $W(t)$.
 - 673 a. For each window $w \in W(t)$, detrended signal $\mathbf{w}_{detrend}$ was obtained by removing
674 the linear trend, *i.e.*, subtracting the least-squares fit of samples of w from the
675 samples of w , and then obtained the root mean square of $\mathbf{w}_{detrend}$ ($RMS(\mathbf{w}_{detrend})$).
 - 676 b. Finally, $F(t)$, the detrended fluctuation of window size t , was obtained by
677 computing the mean of $RMS(\mathbf{w}_{detrend})$.
- 678 4) By repeating step (3) for all window lengths of \mathbf{T} defined in step (2), \mathbf{F} , a vector of $F(t)$, $t \in \mathbf{T}$,
679 was obtained. The DFA exponent is the slope of the trend line of \mathbf{F} as a function of \mathbf{T}
680 on log-log scale (Supplementary Fig 3 G, J).

681 **Estimating bistability index (BiS)**

682 The BiS index of a power time series (R^2) derives from model comparison between a bimodal or
683 unimodal fit of its probability distribution function (pdf); a large BiS means that the observed pdf
684 is better described as bimodal, and when $BiS \rightarrow 0$ the pdf is better described as unimodal. We
685 followed the approach used in ^{24,25} to compute BiS. First, to find the pdf of power time series R^2 ,
686 the empirical R^2 was partitioned into 200 equal-distance bins and the number of observations in
687 each bin was tallied. Next, maximum likelihood estimate (MLE) was used to fit a single-
688 exponential function (*i.e.*, the square of a Gaussian process follows an exponential pdf):

689
$$P_x(x) = \gamma e^{-\gamma x} \quad (1)$$

690 and a bi-exponential function:

691
$$P_x(x) = \delta \gamma_1 e^{-\gamma_1 x} - (1 - \delta) \gamma_2 e^{-\gamma_2 x} \quad (2)$$

692 where γ_1 and γ_2 are two exponents and δ is the weighting factor.

693 Next, the Bayesian information criterion (BIC) was computed for the single- and bi-exponential
694 fitting:

695 $BIC = \ln(n)k - 2\ln(\hat{L})$ (3)

696 where n is the number of samples; \hat{L} is the likelihood function; k is the number of parameters: k
697 = 1 for single-exponential BIC_{Exp} and k = 3 for bi-exponential model BIC_{biE} . Thus BIC imposes a
698 penalty to model complexity of the bi-exponential model ⁸³ because it has two more degrees of
699 freedom (second exponents and the weight δ) than the single exponential model.

700 Last, the BiS estimate is computed as the \log_{10} transform of difference between the two BIC
701 estimates as

702 $dBIC = BIC_{Exp} - BIC_{biE}$ (4)

703 $BiS = \log_{10}(dBIC), \text{ if } dBIC > 0,$

704 $BiS = 0, \text{ if } dBIC \leq 0$

705 Thus, a better model yields a small BIC value, and BiS will be large if the bi-exponential model is
706 a more likely model for the observed power time series (Supplementary Fig 3 F, I).

707 **Constructing surrogate data**

708 To determine the chance level observations of DFA and BiS in null hypothesis data, *i.e.*, without
709 embedded non-linear critical-like structures but with the same power spectrum as the real
710 physiological signals ⁸⁴, phase randomized Fourier transform surrogates of the broad-band time
711 series was constructed for each MEG parcel and SEEG contact, $N_{MEG} = 6,800$ and $N_{SEEG} = 4,142$
712 (Supplementary Fig. 4). The surrogate broad-band data were filtered into narrow-band data and
713 their DFA and BiS estimates were subsequently computed. Thus, the real observation can be
714 compared against the significance thresholds that were derived from the probability distribution
715 of the surrogate data across frequencies (Fig. 2).

716 **Morphing MEG and SEEG data into a standard atlas**

717 The MEG and SEEG group-level analyses were conducted in a 100-parcel standardized Schaefer
718 atlas ⁷⁰. The group-level MEG data were obtained in two steps (top, Supplementary Fig 4). First,
719 narrow-band DFA and BiS estimates were computed within subjects using a finer parcellation of
720 400-parcel, and the resulting estimates were morphed into 100-parcel within subjects by
721 averaging children parcels; group level cortical maps were next obtained by collapsing subjects'
722 100-parcel metrics.

723 Due to the variability in electrode location and other constraints in SEEG subjects, the morphing
724 was done and verified differently. First, narrow-band DFA and BiS estimates of individual SEEG
725 contacts were morphed directly into the Schaefer 100-parcel atlas (bottom, Supplementary Fig 4).
726 The resulting group-level parcel estimates were thus heterogeneous in terms of sampling. For
727 example, one parcel may contain observations from a varying number of electrodes and/or
728 subjects. Hence, the group-level estimate of each parcel was the median of all observations, and
729 the estimate for each of the seven Yeo sub-systems was the median of its constituent parcels.
730 Furthermore, only the parcels ($n=90$) sampled by at least 3 subjects and 10 SEEG contacts were
731 kept for group-level analysis. The group mean parcel metrics (Supplementary Fig. 5B) were
732 identical to that of raw data (overlay curves, Fig. 2D–E) thus confirming that heterogeneous

733 SEEG sampling (Supplementary Fig. 2 and Supplementary Fig.4) did not bias the parcel-level
734 metrics.

735 ***Clustering narrow-band frequency data***

736 Frequency clustering analyses were conducted to reduce redundancy and for better
737 interpretability of the narrow-band data (20 frequencies \times DFA/BiS \times 100 parcels). Spearman's
738 rank correlation coefficients were computed between the group-level DFA/BiS estimates of 100-
739 parcel for all pairs of frequencies. This resulted in a set of 20×20 adjacency matrices ($A_{f1,f2}$)
740 representing the cortical topological similarity between frequencies. Next, the similarity matrix
741 $A_{f1,f2}$ was partitioned using the unweighted pair group method with arithmetic mean algorithm
742⁸⁵, an agglomerative hierarchical clustering method, to obtain frequency clusters. The algorithm
743 first builds a hierarchical tree through an iterative procedure to represent the distance between
744 pairs of objects in $A_{f1,f2}$ (Supplementary Fig. 5C). In each iteration, two objects p and q with
745 nearest distance $d(p, q)$ were merged into a cluster, and p and q can be either an element from
746 $A_{f1,f2}$ or a cluster of elements from $A_{f1,f2}$; The distance function is defined as:

747
$$d(p, q) = \frac{1}{n_p n_q} \sum_{x \in p} \sum_{y \in q} d(x, y), \quad (5)$$

748 where n_p and n_q are the number of elements in p and q respectively, $d(x, y)$ is the distance
749 between x, y , and x, y are matrix elements from $A_{f1,f2}$. The hierarchical tree was then used to
750 partition the elements from $A_{f1,f2}$ into separated clusters, *e.g.*, if the height of p is close to the
751 height of q , then their constituent elements are similar and therefore could be considered as a
752 cluster (dashed boxes in Supplementary Fig. 5C, and solid boxes in Supplementary Fig. 5D).

753 ***Classifying pathophysiological SEEG contacts***

754 The group-level frequency clustering analysis revealed that much of the narrow-band data were
755 topologically correlated (Fig. 3). Hence, for the classification task, twenty narrow-band metrics
756 were also collapsed into four frequency clusters as δ , $\theta-\alpha$, β , and γ band (Fig. 5A). As subjects
757 varied greatly in their DFA and BiS estimates, band-collapsed data was normalized within
758 subjects as $[X\text{-median}(X)] / \text{max}(X\text{-median}(X))$, and thereby the differences between EZ and nEZ
759 within subjects remained. The effect size of differences between band-collapsed and normalized
760 DFA and BiS estimates were assessed with Cohen's d and compared with the 99%-tile of Cohen's
761 d observed from 1,000 EZ-nEZ label-shuffled surrogate data (Fig. 5C).

762 The feature importance of these neuronal estimates were assessed with the SHapley Additive
763 exPlanations (SHAP) values⁴⁰. In addition to the neuronal scores, the contact location in Yeo
764 systems was also included as an additional feature (Fig. 4D). The SHAP values is a generic metric
765 to explain any tree-based model by explicating the local and global interpretability of features,
766 which advances the transparency that conventional classifications approaches lack of. For
767 solving the EZ-classification problem, the non-parametric random-forest method⁸⁶ was
768 employed. The random-forest algorithm is a machine learning method uses bootstrapped
769 training dataset and combines the simplicity of decision trees with extended flexibility to handle
770 new data⁸⁶. The random-forest method allows multiple target class-labels (*e.g.*, nEZ plus three
771 distinct EZ subtypes) over binary classifiers, and here the primary interest was to separate EZ
772 and nEZ contacts.

773 **Supplementary materials**

774 ***Theory: continuous and discontinuous phase transition in the brain***

775 The classic Brain Criticality framework hypothesizes that, across the brain, neurons operate in a
776 regime of continuous transitions between asynchronous and hyper-synchronous activity, which
777 resembles the phase transition seen in numerous complex systems and is commonly known as
778 the “critical point” or a “critical region”^{7–10,23,87}. Recent theoretical research suggests that the
779 brains could rather be a “quasi-critical” than a “true critical” system^{50,88–90}. True criticality arises
780 in idealized systems where energy is conserved and, with a small and constant drive, the system
781 self-organizes into dynamics with one critical point⁹¹. True criticality is characterized by a
782 continuous (second-order) phase transition between disorder and order³⁵. At the
783 phenomenological level, the ensuing critical dynamics are characterized by stationary fractional-
784 Gaussian statistics⁷⁹ and the emergence of spatial⁹², temporal⁹³, and spatio-temporal power-
785 law behaviour^{88,91}.

786 On the other hand, quasi-critical systems^{42,87,94} differ categorically from the true critical systems
787 by energy dissipation, as exemplified by forest fires and earthquakes^{95,96}. The loss of energy in
788 quasi-critical systems requires a “loading” mechanism to keep them from becoming quiescent.
789 Simulations suggest that quasi-critical systems require external fine tuning to operate near the
790 critical point^{89,97}. The brain is energetically expensive, accounting for ~20% of the human energy
791 consumption in adults⁹⁸ and of up to ~66% in children⁹⁹ with many physiological mechanisms
792 serving energy replenishment and metabolic regulation¹⁰⁰. In addition to glucose metabolism
793 *per se*, the notion of “loading” mechanisms also encompasses resources and mechanisms that
794 limit neuronal activity levels, for example synaptic vesicle depletion¹⁰¹ and post-synaptic
795 depression^{102,103}, respectively.

796 Theoretical studies show that neuronal systems with resource-consuming activity and slow
797 resource loading^{19,31,50,90} may indeed exhibit dynamics with a discontinuous (first-order) phase
798 transition when resource demands exceed the loading capacity. This gives rise to spontaneous
799 neuronal *bistability*^{50,90}. For example, in computational models of local populations operating
800 near a marginally stable critical point³⁴, excitatory neurons exhibit bistable firing rates when
801 resource demands are high^{50,90}. Likewise, in networks of such populations, the balance of
802 resource depletion and recovery^{102,103} determines the switching between continuous and
803 bistable transitions³¹.

804 ***Slow state-dependent noise ρ controls fast mean field***

805 When investigating the behaviours in Kuramoto model (Fig 1), ρ and κ were held as constant
806 values (eq. 4), which reflect that both variables fluctuate at a much slower rate than the
807 population order R . The variable ρ is a key parameter that controls the degree of bistability in R
808 time series. Under the influence of a weak ρ (eq. 4), the Kuramoto model could demonstrate
809 dynamics resembling that of a *supercritical* stochastic Hopf bifurcation^{25,34} which is also
810 controlled by a weak ρ (eq. 1). Specifically, by gradually increasing κ , a subcritical Kuramoto
811 ensemble would reach a critical point, where the subcritical fixed point (quiescent state) loses
812 stability and a smooth transition to a critical phase takes place. The time course of R in this
813 classic critical scenario follows a Gaussian distribution^{24–26}.

814 On the other hand, when the Kuramoto model is controlled by a high ρ , the ensemble would
815 express bistable criticality in R that resembles the dynamics of a *subcritical* stochastic Hopf
816 bifurcation. In this scenario, a seemingly quiescent ensemble suddenly shows supercritical
817 hypersynchrony – before the quiescent fixed-point loses stability following further increases in
818 κ . Thereby, the time course of R is characterized as bimodal, supporting erratic switching
819 between low and high activity modes. Our modeling results confirmed this prediction. When ρ is
820 held at high value, the pdf of R as a function of κ (the colour plot in top panel, Fig. 1E) coincides
821 with the prediction of the first order phase transition with a moderate width of bistable regime
822 (top, Supplementary Fig. 1A) – as comparing to theoretical possibility of a much wider bistable
823 regime^{25,35}. When ρ is held at low value (bottom, Fig 1E), the model dynamics accords with the
824 prediction of supercritical Hopf bifurcation as the classic criticality^{7,23}. When the coupling is too
825 strong, the ensemble only dwells on the supercritical state of hypersynchrony. To better
826 demonstrate the effect of ρ on R , we also simulated slowly fluctuating ρ with κ held constant
827 and found that various waveforms of ρ can result in rich bistable dynamics in R , even when the
828 temporal average of ρ was approximately the same (Supplementary Fig. 1B).

829 The model shows high degree of bistability under the influence of strong state-dependent noise,
830 which results in a tendency to stay in either an up-state or a down-state thus avoiding moderate
831 level of synchrony as expected in the classic criticality models. This up state corresponds to
832 resource-demanding large amplitude oscillations (limit cycle), which eventually leads to
833 depletion and ensuing returning of a low amplitude, subcritical down-state fixed point attractor
834 for recovery. On the extreme spectrum of such bifurcation and the underlying slow variable is
835 epileptic seizure^{52,53,104}.

836 **SEEG cortical sampling statistics**

837 Preprocessing of the SEEG data yielded 7,019 SEEG contacts in various cortical and subcortical
838 gray matter locations (Supplementary Fig. 2A). For investigating the LRTCs and bistability of
839 cortical dynamics that were tentatively considered as normal, contacts recorded from
840 subcortical structures and epileptogenic zones were excluded. Contacts with more than 2.5%
841 samples identified as “spiky” were also excluded (Supplementary Fig. 2A–B, see suppl.
842 Methods). Thereby, 3/7 of available contacts were excluded, and in the resulted 4,142 contacts,
843 a small fraction cannot be reliably assign a parcel by the segmentation software⁷⁷ and therefore
844 were also excluded. This resulted in 4,122 contacts (66.8 ± 24.5 per patient, range: 4 to 123) for
845 analyses. Although the cortical sampling was heterogeneous across patients, with 4,124 cortical
846 nEZ contacts, we were able to cover 90 out of the 100 Schaefer parcels with each parcel
847 sampled by at least 3 subjects and 10 contacts (see also Supplementary Fig 2C–D).

848 **Narrow-band DFA and BiS estimates in MEG and SEEG**

849 SEEG and MEG demonstrated differentiated spectral peaks and magnitude of DFA and BiS
850 estimates (Fig 2). We speculated that these discrepancies between SEEG and MEG might be
851 attributable to two factors (or the combination of both):

852 First, it was due to different brain states in healthy vs epileptic brains. High degree of
853 bistability has been suggested as an early sign of shift to catastrophic events in ecosystems²⁹,
854 considering the likely universal nature of bistability^{31,35}, high bistability outside of the visual
855 system (e.g., default model and limbic systems) in SEEG data could be a sign of transition to

856 catastrophic events (*i.e.*, seizures) in the epileptic brain. It could be a great clinical interest to
857 further this line of work to find solutions to reverse high bistability to mildly bistability or
858 smooth phase transitions (*e.g.*, dampening) for eluding the catastrophic events in the brain¹⁰⁵.
859 Moreover, epilepsy is known to affect brain rhythms especially the δ and θ band synchrony
860^{106,107}, which might be an explanation to the presence of high bistability in slow rhythms below α
861 band in SEEG.

862 Second, mesoscopic SEEG recording is able to pick up highly local signals and thus more
863 sensitive to specificity such as difference between functional systems, which MEG is unable to
864 SEEG signals is highly localized to the sampled tissue surrounding the electrode contacts (2mm
865 in length) and minimally affected by signal mixing¹⁰⁸, whereas MEG sensors are at least several
866 centimeters away from the cortex, and its signals are therefore the linear summation of
867 unknown number of cortical sources. According to the central limit theorem, even though
868 individual processes are non-Gaussian, the linear combination of multiple such processes will
869 appear Gaussian.

870 ***Topological similarity between LRTCs and bistability***

871 As a preliminary inspection of topological similarity, all-to-all correlations were computed
872 indiscriminately between group-level parcel DFA and BiS estimates, between MEG and SEEG,
873 and across all frequencies. Within metrics, well delineated clusters of a slow and a fast
874 frequency band were observed (along diagonal, Supplementary Fig. 6). There were positive
875 correlations between DFA and BiS in both MEG and SEEG data, and some negative correlations
876 between MEG and SEEG. The frequency-collapsed θ - α and γ -band DFA and BiS estimates were
877 next inspected (Fig. 3C). The similarity between band-clustered cortical maps of 100 Schaefer
878 parcels (Supplementary Fig. 7) converged with narrow-band observation (Supplementary Fig. 6).
879 On systems-level (Supplementary Fig. 8), subjects' band-clustered DFA and BiS were correlated
880 in almost all functional systems except for SEEG θ - α band limbic system (Spearman's rank
881 correlation, $p < 0.01$).

882 ***Anatomical specificity of bistability and LRTCs***

883 While there were no systems-wise differences in MEG, SEEG θ - α band BiS and DFA estimates, γ
884 band DFA estimates between Yeo functional systems were different (Kruskal-Wallis test, $p <$
885 0.05, Fig. 3F).

886 In MEG, the mean θ - α and γ -band DFA and BiS estimates of Yeo systems appeared similar (thick
887 black lines, Supplementary Fig. 9A–B), confirming high correlations between DFA and BiS
888 estimates observed in both group and systems-level in individuals (Supplementary Fig. 7–8,
889 respectively). With these source-modeled MEG data, we replicated θ - α band resting-state
890 bistability in visual areas that was reported previously in EEG sensors^{26,109}. Furthermore, the
891 visual (VIS) and somatosensory (SM) systems showed higher BiS and DFA, whereas fronto-
892 parietal (FP) and default-model (DEF) systems showed lower BiS and DFA estimates than the
893 null-hypothesis observations (line plots, Supplementary Fig 9A). The surrogate data of no
894 systems-wise differences were constructed by shuffling Yeo system labels of the parcels. In MEG
895 γ -band, DFA estimates were similar in magnitude to that of θ - α band, but BiS estimates were
896 about half of the magnitude of θ - α band. In particular, the dorsal-attention (DAN) and the
897 limbic (LIM) systems showed the highest γ -band DFA, whereas VIS had the lowest DFA. There
898 were no differences in DFA and BiS estimates between Yeo systems (Wilcoxon's signed-rank

899 test, alpha@0.05, FDR corrected) confirming the negative findings of the Kruskal-Wallis tests
900 (Fig. 3F).

901 In SEEG, the θ - α and γ band mean DFA and BiS estimates of Yeo systems appeared different
902 (Supplementary Fig. 9 C–D), which confirmed low correlations in group and systems-level in
903 individuals (Supplementary Fig. 7 & 8). Although visual systems in SEEG and MEG data were
904 comparable in θ - α band BiS and DFA estimates, in SEEG, the visual system showed lowest
905 θ - α band BiS and DFA estimates.

906 The post-hoc tests (unpaired t-test, $p < 0.05$, FRD corrected) for between-system differences in
907 DFA and BiS estimates (see also Fig. 3F) revealed that DAN showed higher θ - α band DFA, FP and
908 DEF showed higher θ - α band BiS, ventral-attention (VAN) showed lower γ band BiS than most
909 of other systems (interaction matrices, Supplementary Fig. 9 C–D). On the other hand, the VIS
910 and VAN show low DFA estimates. System-wise difference in DFA was only observed between
911 LIM and VAN, which validates the negative finding of systems' effect on mean DFA (γ band pink
912 dot in Fig 3F). On the other hand, the VIS, DAN, and LIM system showed high γ band BiS
913 estimates, and VAN and FP systems have low BiS estimates. The VIS system had highest γ band
914 BiS estimates.

915 ***Classifying epileptogenic zones (EZ)***

916 Across subjects, there was large variability in the number of EZ contacts, *i.e.*, the target variables
917 of the classifier (Supplementary Fig. 11A). To ensure there were enough data for the classifier
918 within subjects, a selection criterion was imposed such that each patient should have at least
919 five EZ and five nEZ contacts (red dashed lines, Supplementary Fig. 11A) and at least a total of 30
920 contacts. Thus, 55 subjects met these criteria and were selected for the classification analysis.
921 On average, each subject had 28.5 ± 17.0 (mean, std) EZ and 66.4 ± 21.2 nEZ, and on population
922 the ratio of EZ:nEZ = 1/2.3 with some variability across Yeo systems, among which subcritical
923 contacts were ten times more likely to be EZ than nEZ (Supplementary Fig. 11B).

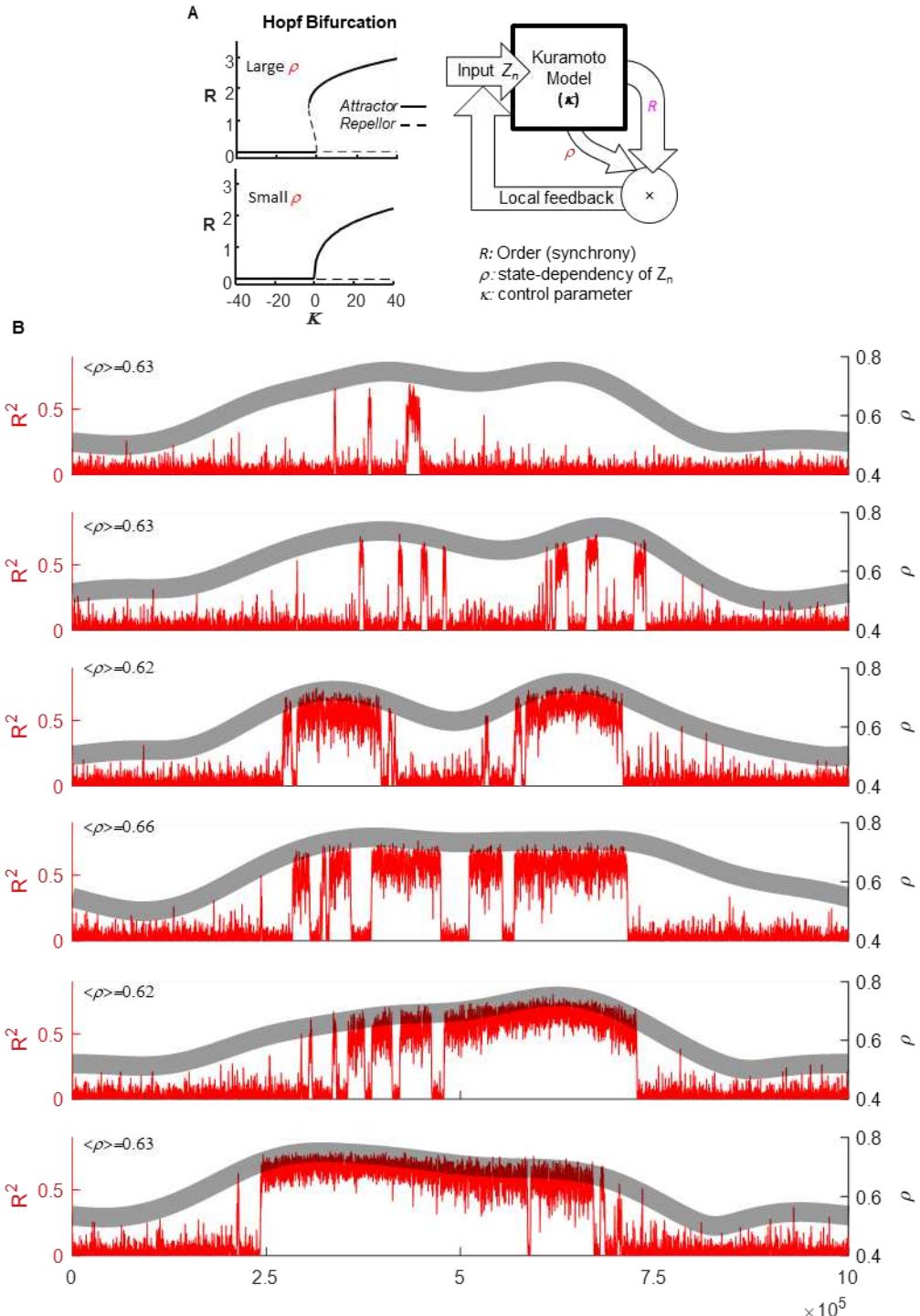
924 On population level, between EZ and nEZ contacts, several bands showed differences in
925 normalized DFA and BiS estimates (Fig. 5A–C). However, we were more interested in classifying
926 EZ contacts in individuals. As a liability check, we classified pooled individual contacts using all
927 nine features, *i.e.*, δ , θ - α , β , and γ band DFA and BiS estimates plus SEEG contact loci in Yeo
928 systems. The classification was performed using the random forest algorithm³⁹ with a total of
929 5,217 contacts from 55 patients (Supplementary Fig. 11B) with randomly split 20% and 80% as
930 testing and training set, respectively. The analysis of the receiver operating characteristics (ROC)
931 of classification outcome revealed an area under the curve (AUC) of 0.8, and thus confirming
932 useful information among these features for within individual classification.

933 Global and local feature importance to the random forest classifier were next assessed with
934 SHAP values. The results supported the hypotheses that γ - and β -band BiS, contact-locus and δ -
935 band DFA were indeed the most important features to tell EZ apart from nEZ contacts (Fig. 5D).
936 To better understand the impact of the features on the classification outcome, the within-
937 subject EZ classifications were carried out with four incremental feature sets as using *i*) DFA
938 alone, *ii*) BiS alone, *iii*) combining DFA and BiS, *iv*) combining DFA, BiS, and contact-locus in Yeo
939 systems.

940 The overall classification outcome was variable across Yeo systems and classifying EZ contacts in
941 limbic systems yielded best outcome (large AUC, Supplementary Fig. 11 D). Using DFA alone, the
942 algorithm performed poorly (gray line, Supplementary Fig. 11E). The individual subject ROC
943 curves showed large variability (Supplementary Fig. 11 F–I), and overall combining DFA, BiS, and
944 contact-locus yielded best outcome (black curve, Supplementary Fig. 11J). Last, the mean AUC of
945 ROC in Yeo systems (Supplementary Fig. 11E) and in individual patients (Supplementary Fig. 11J)
946 were compared against 1,000 label-shuffled surrogate data (Fig. 5E).

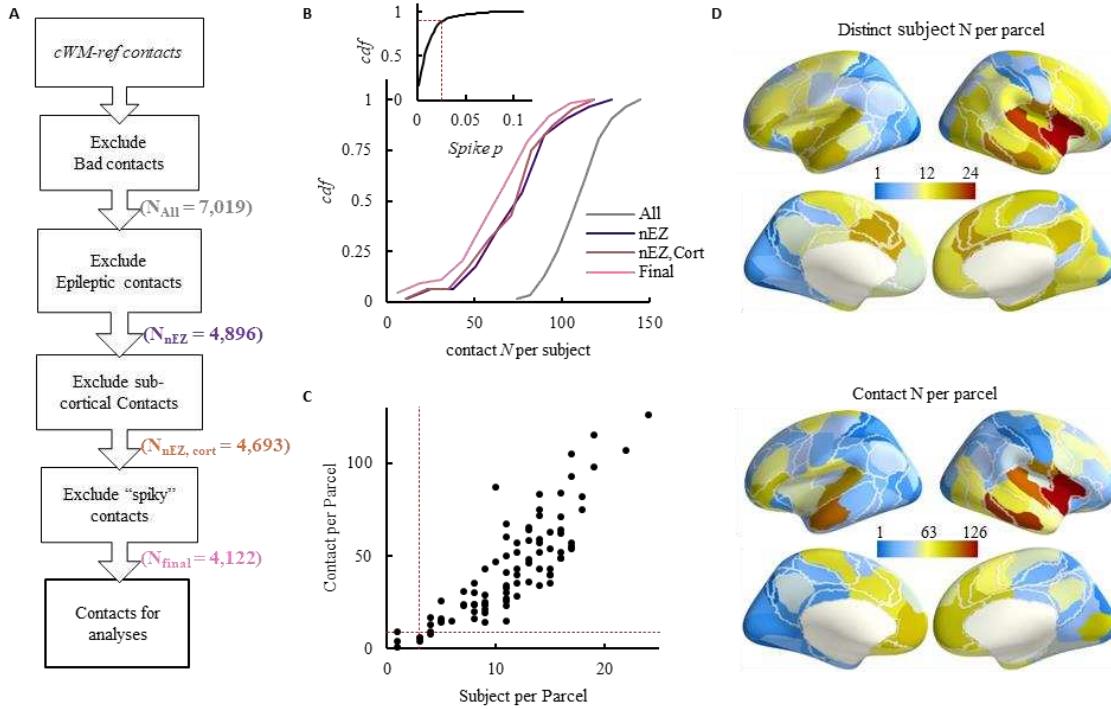
947 **Supplementary (S.) Figs**

948 **Supplementary Fig. 1**



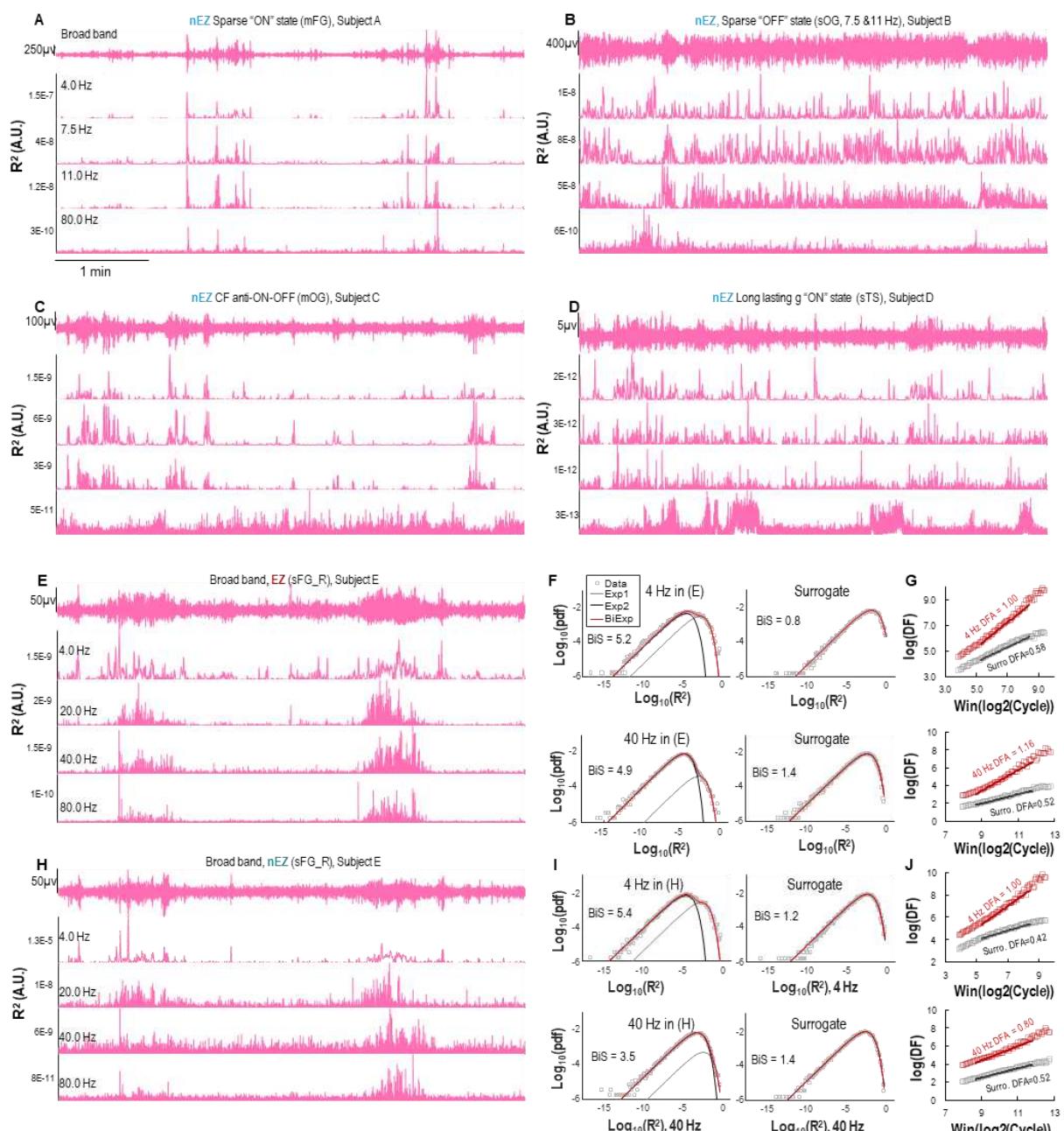
949 **Fluctuations at two different time-scale in Kuramoto Model.** (A) With coupling strength (κ) held
 950 constant and just below the critical point (see Fig 1), slow fluctuations in ρ (the thick gray band) result in
 951 (B) diverse patterns of bistability in the fast fluctuating mean field of the Kuramoto model (red).

952 **Supplementary Fig. 2**



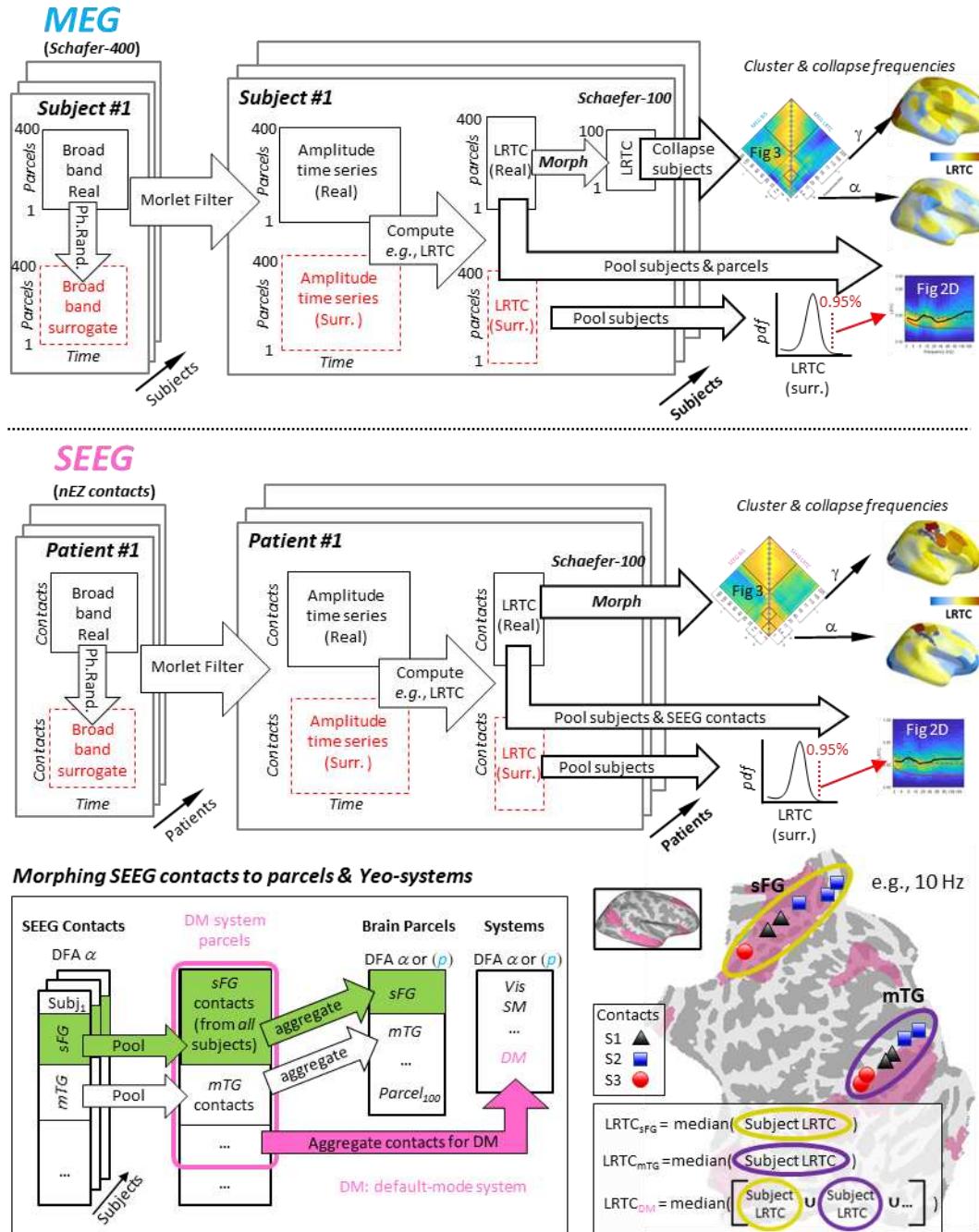
953 **SEEG electrode selection criteria and population sampling statistics.** (A) SEEG contact selection
 954 criteria, in brackets are the number of contacts after a specific criterion was applied. (B) The cumulative
 955 distribution function (*cdf*) of contact number per subject after specific criteria were applied; colour code is
 956 the same as in (A); inset is the *cdf* of spike samples out of 10 min resting from 4,693 SEEG contacts, red
 957 dashed line indicates the threshold in box 5 in (A). (C) Contact number as a function of number of distinct
 958 subjects per parcel (after morphing SEEG contacts into Schaefer 100-parcels); one marker represents one
 959 Schaefer 100-parcicle, red dashed lines are exclusion criteria, *i.e.*, at least 3 subjects and 10 contacts per
 960 parcel. (D) Visualization of distinct subject number and SEEG contact number per Schaefer parcel as
 961 shown in (C). cWM-ref: closest white-matter contact reference scheme (Arnulfo et al., 2015).

962 **Supplementary Fig. 3**



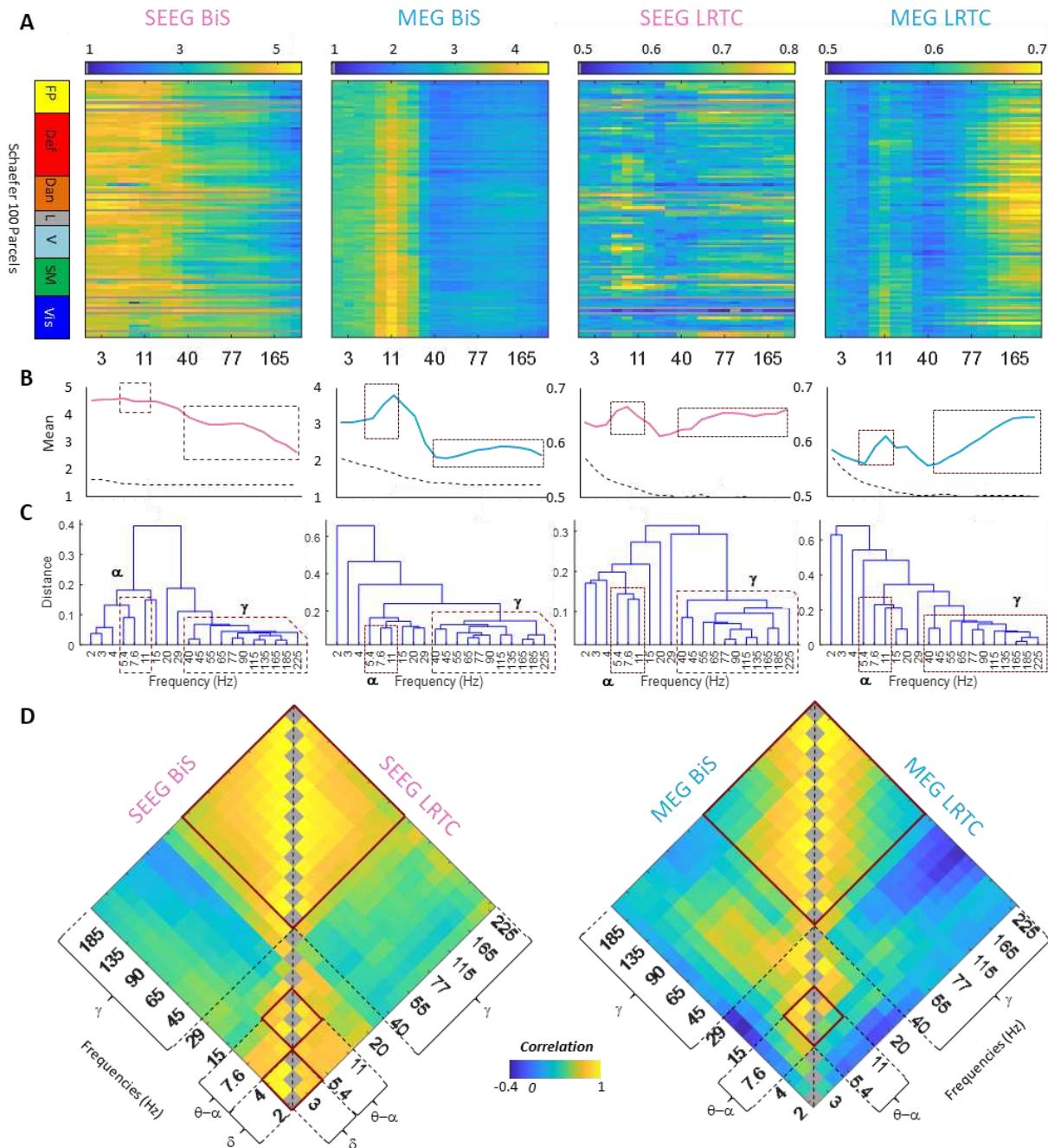
963 **SEEG time series, bistability and DFA fitting.** (A–D) Examples of bistability in nEZ SEEG contact signals
964 from four distinct subjects. mFG: middle frontal gyrus; sOG: superior occipital gyrus; mOG: middle occipital
965 gyrus; sTS: superior temporal sulcus. (E–J) Examples of bistable time series and model fitting of an EZ (E) and
966 a nEZ (H) contact. These two contact locations were 19.7 mm apart and recorded with two distinct electrodes
967 from the superior frontal gyrus (sFG) and were referenced with the same nearest white matter contact (Arnulfo et
968 al., 2015). (F) Examples of bi-exponential model fitting for BiS estimates and (G) DFA power-law fitting of 4
969 Hz and 40 Hz narrow-band real and surrogate time series of the EZ contact from (E). (I) Bi-exponential fitting
970 and (J) DFA power-law fitting of 4 Hz and 40 Hz narrow-band real and surrogate time series of the nEZ contact
971 from (H). The DFA fitting plot reads as, when the observation window size doubles (by narrow-band cycle
972 length – irrespective of frequency), the detrended fluctuation increase by a constant rate of $\text{log}(\text{DF})$.

973 **Supplementary Fig. 4**



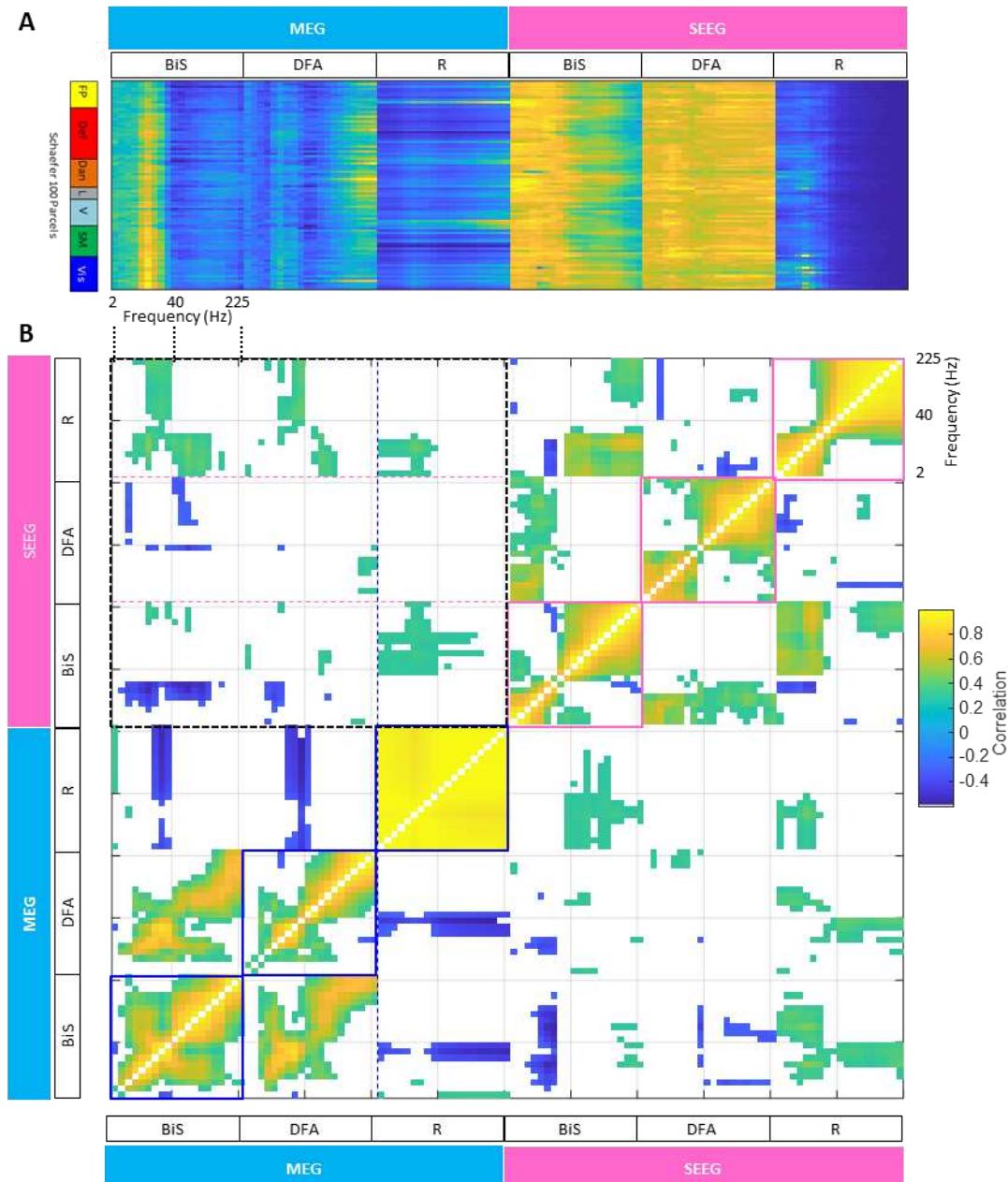
974 Analysis pipeline for MEG and SEEG data, respectively.

975 *Supplementary Fig. 5*



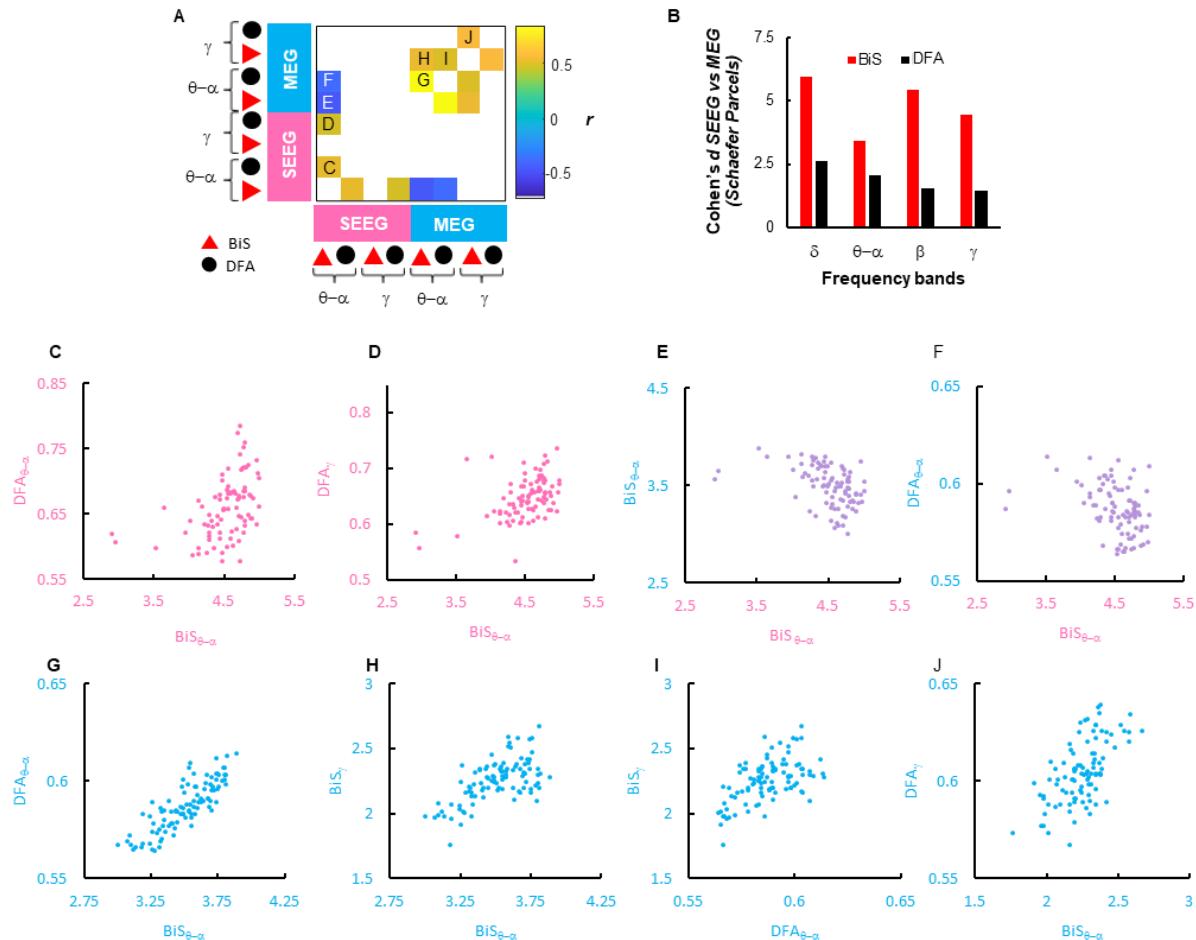
976 **The cortical origins of DFA and BiS are similar between neighbouring frequencies but different**
 977 **between slow and fast rhythms demarcated at 40 Hz.** (A) BiS and DFA of each Schaefer parcel (y axis)
 978 observed at narrow-band frequency (x axis) ranging from 2 to 225 Hz for SEEG and MEG data. The 10
 979 gray-out rows are the excluded SEEG parcels due to under sampling. (B) Parcel mean across frequencies
 980 of real data (solid lines) and surrogate (dashed lines). (C) The distance between each frequency's spatial
 981 similarity. (A–C) share the same x -axis (Frequency); (D) Cross-frequency adjacency matrices of
 982 topological similarity, the same as Fig 3A; correlation is the Spearman's r between Schaefer Atlas parcels'
 983 DFA or BiS of two different frequencies.

984 **Supplementary Fig. 6**



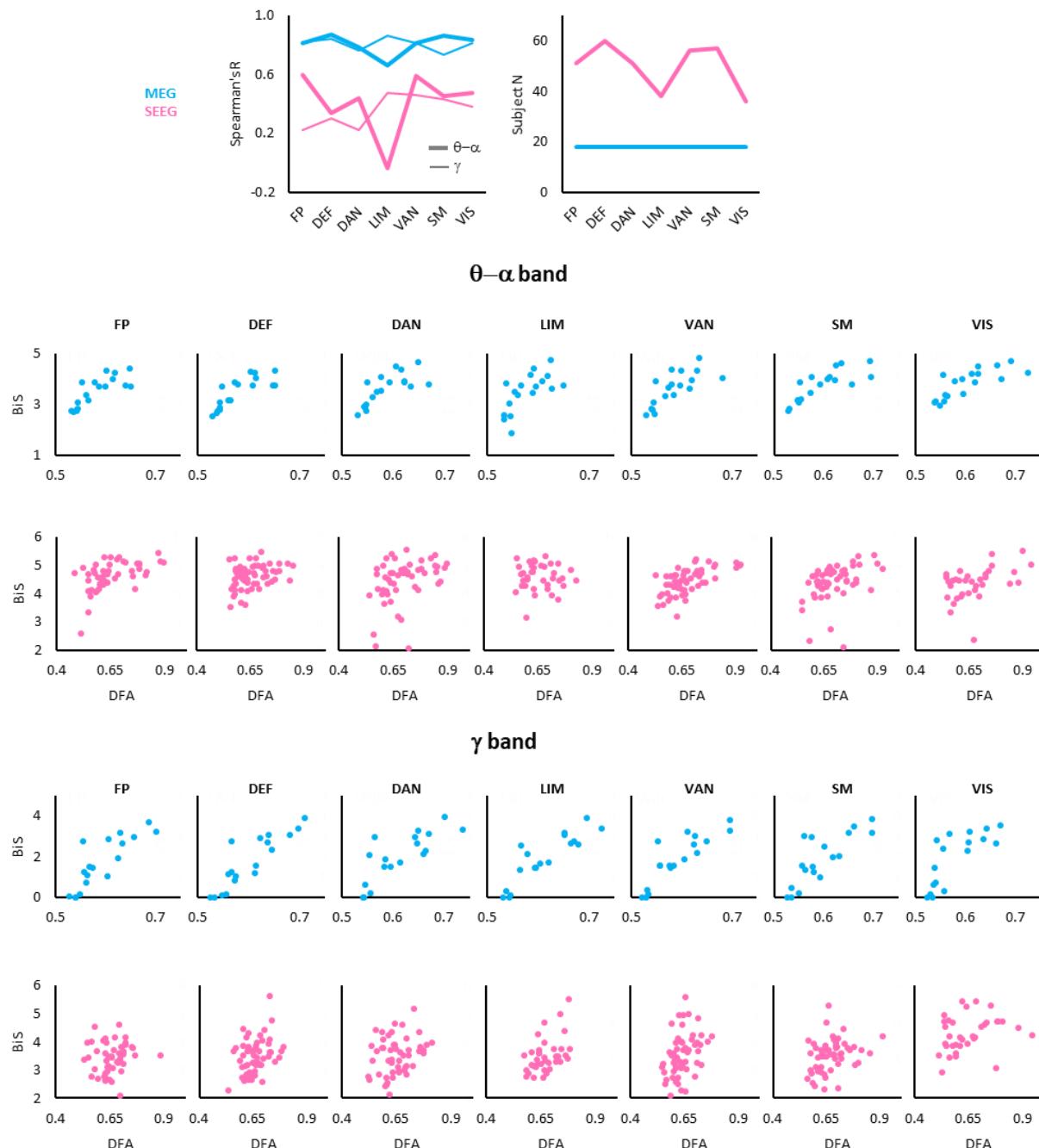
985 **All-to-all cross correlations between frequencies, metrics and datasets.** (A) Normalized group-level
 986 Schaefer 100-parcel metrics afo frequencies. Normalization $y = (x(i)-\min(x)) / (\max(x)-\min(x))$. (B) All-to-
 987 all topological correlations between R, DFA, and BiS and between MEG and SEEG data (Spearman's rank
 988 order r , $p>0.01$, not controlled for FDR).

989 **Supplementary Fig. 7**



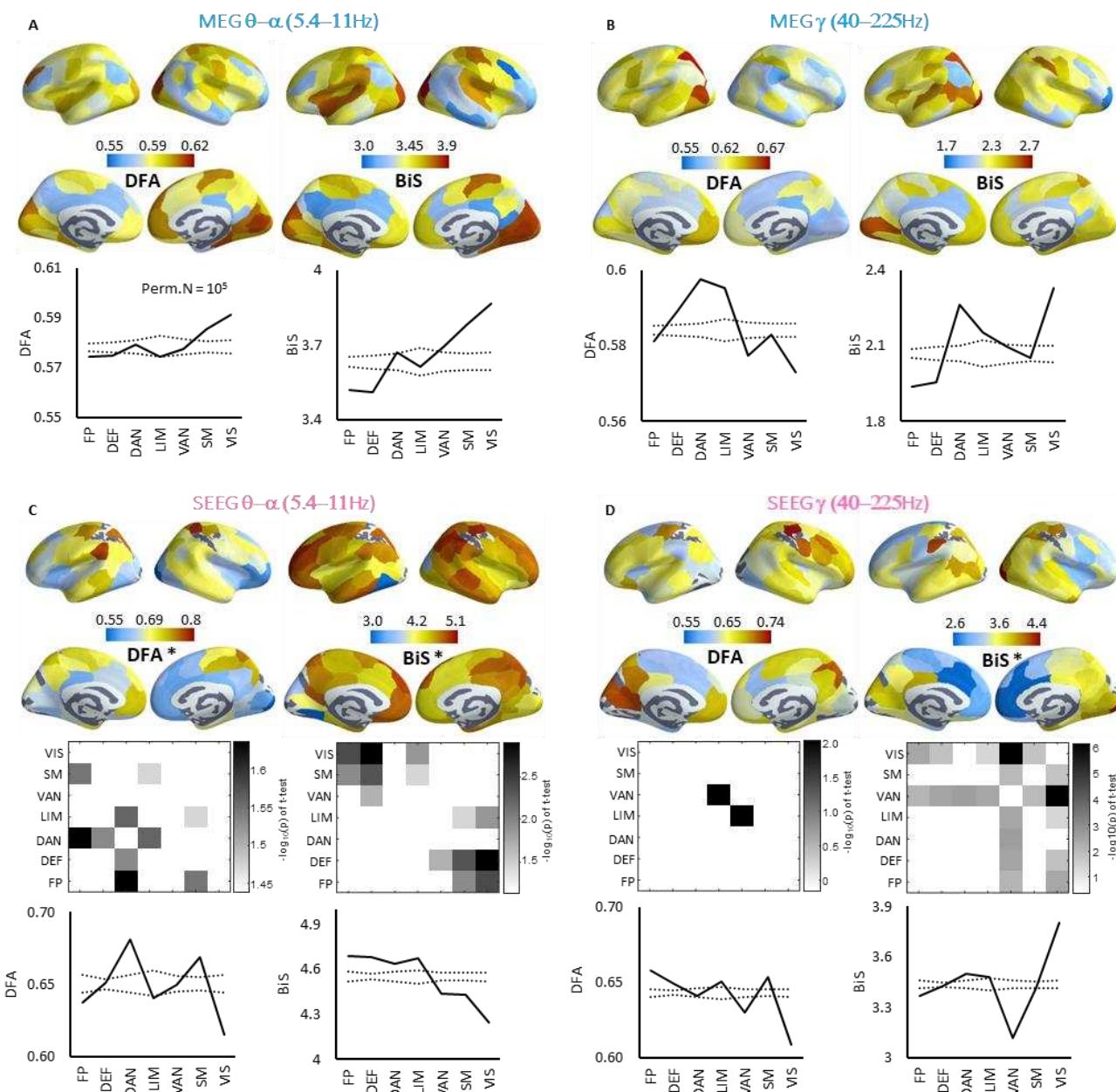
990 **DFA and BiS estimates correlated in MEG and SEEG cortical parcels.** (A) The adjacency matrix of
991 significant Spearman's correlation between band-collapsed DFA and BiS ($p < 10^{-6}$, FDR corrected). (B)
992 The effect size of the differences between DFA and BiS of MEG and SEEG data in Schaefer parcels
993 ($n=90$, due to exclusion of 10 SEEG parcels). (C–J) Scatter plots showing correlation between DFA
994 and BiS estimates in band-clustered all-to-all correlation matrix (top); each data point corresponds to
995 the group average metrics in one Schaefer 100-parcel ($N_{MEG}=100$; $N_{SEEG}=90$).

996 **Supplementary Fig. 8**



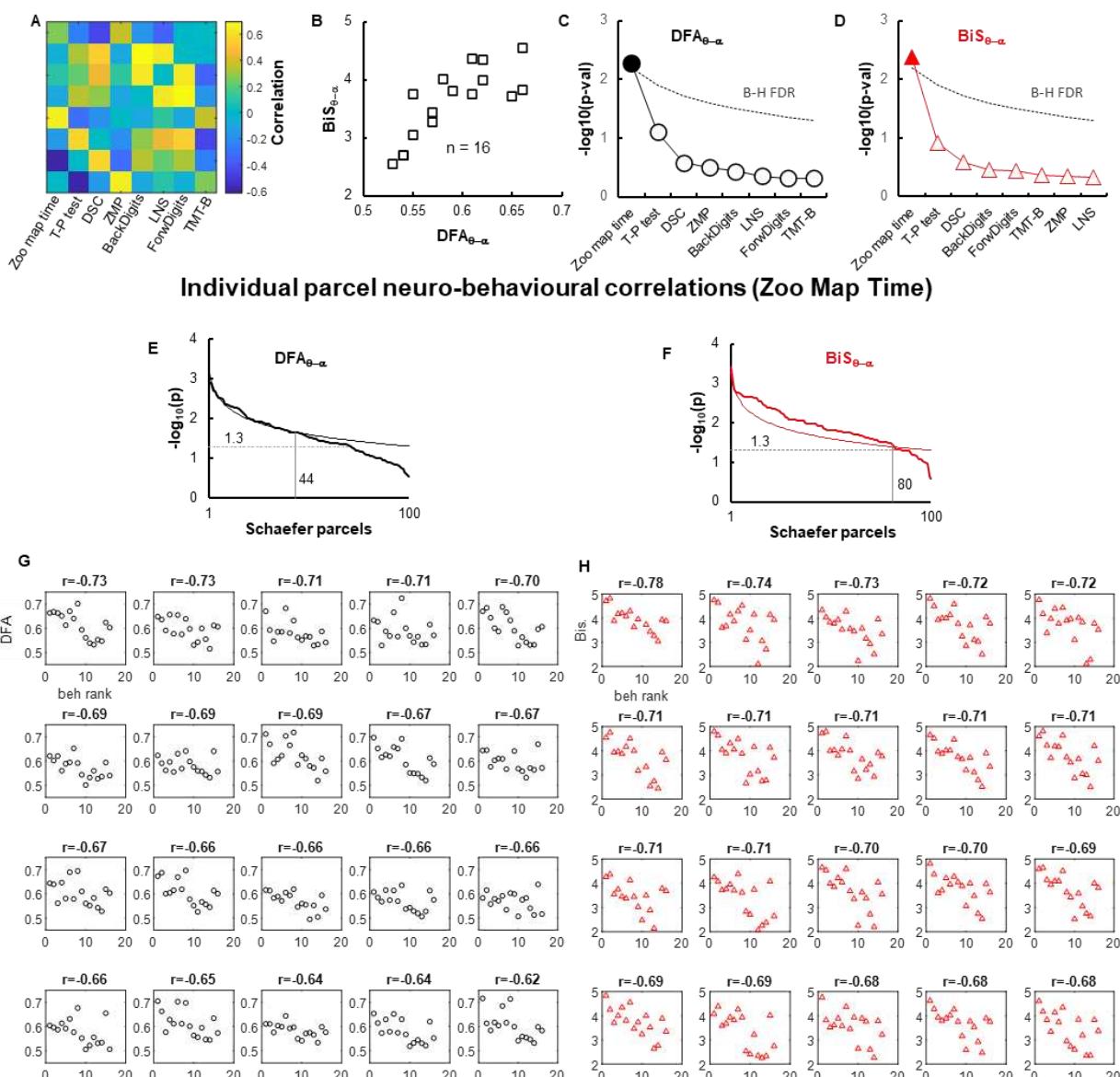
997 **DFA and BiS are correlated in MEG and SEEG subsystems.** Top left panel is from Fig 3H; top right is
 998 the number of subjects observed in each Yeo system: MEG N=18, and SEEG N=50±9, range: 36–60,
 999 variable subject N per system in SEEG due to heterogeneous spatial sampling. In scatter plots, each dot
 1000 corresponds to the observation from one subject.

1001 **Supplementary Fig. 9**



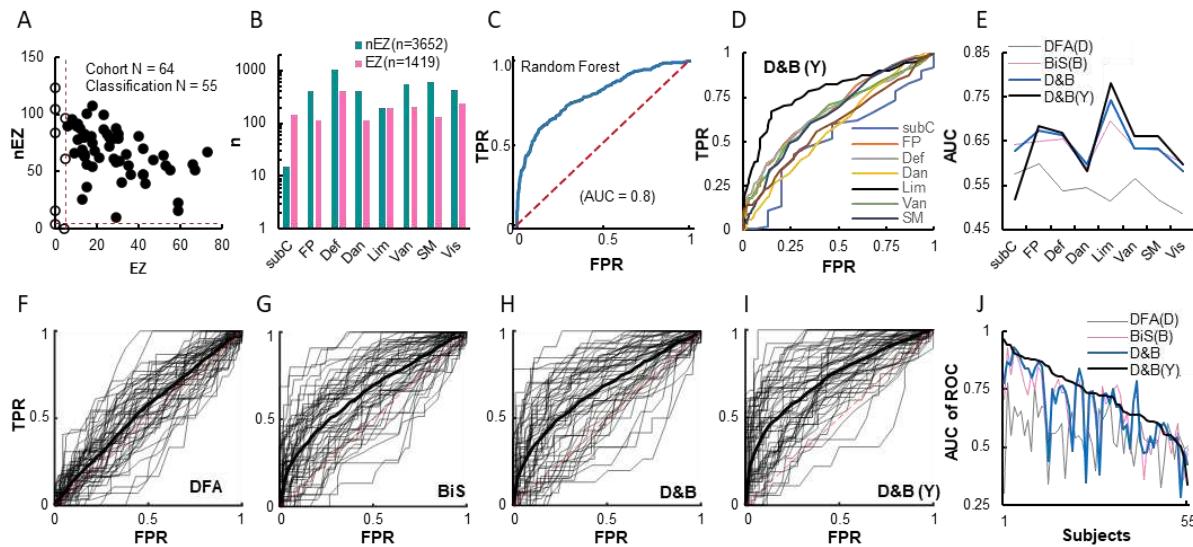
1002 **Systems-level differences and anatomical localization of DFA and BiS.** These are post hoc tests for
 1003 differences in DFA and BiS between Yeo systems (Fig 3I). (A–D) Neuro-anatomical localization of
 1004 frequency-collapsed BiS and DFA; marker (*) in colour-bar label indicates significant differences between
 1005 systems (Fig 3I). The line plots below the brains are median DFA/BiS of Yeo systems, dashed lines are
 1006 5%- and 95%-tile of permutation median ($N_{\text{permutation}} = 10^5$). The adjacency matrices are the significant –
 1007 $-\log_{10}(p)$ values of pairwise tests for between-system differences (SEEG: unpaired t-test; MEG: Wilcoxon's
 1008 signed-rank test, $p < 0.05$, FDR corrected).

1009 *Supplementary Fig. 10*



Behaviourally relevant DFA and BiS in MEG. (A) Left: percentage of parcels showed significant correlation between executive function score (normalized zoom map time) and parcel DFA and BiS; right: θ - α band BiS as a function of DFA. (B) The behavioural correlations (primary y-axis) and probability of parcels showing significant correlations (secondary y-axis) on functional systems-level (corrected for FDR). (C) Top row: cortical maps of behavioural correlations; bottom row: subject neuronal estimates as a function of executive score from exemplary regions of interest where each marker is the observation from one subject (C-D) The corresponding p values of correlation tests in Fig 4A and C, respectively; dashed lines indicate FDR (Benjamini-Hochberg procedure with FDR at 0.05 for 8 neuropsychological scores) adjusted p values for eight neuropsychological tests. (E) Sorted p -values (thick line) of individual parcel behavioural correlation for θ - α band DFA and (F) BiS estimates. Thin lines indicate Benjamini-Hochberg procedure with FDR at 0.05 adjusted p values. (G) Examples of parcel-level behavioural correlations to Zoom map time rank for a-band DFAs and (H) θ - α band BiS estimates, where each marker indicates one subject.

1023 **Supplementary Fig. 11**



1024 **Classification of EZ and nEZ SEEG contacts (both cortical and subcortical) using band clustered
1025 DFA and BiS estimates. (A)** Number of EZ and nEZ contacts in each subject; solid dots indicate subjects
1026 who met selection criteria for classification analysis; red dashed lines indicate selection criterion: each
1027 subject must have great than five EZ and nEZ contacts. **(B)** EZ and nEZ contacts located in Yeo's systems
1028 and subcortical (subC) regions, data pooled over 55 subjects from (A). **(C)** An example of the receiver
1029 operator curve (ROC) of preliminary population-level classification using all contacts and all features with
1030 randomly split test and train set (20% and 80%, respectively); TPR: true positive rate; FPR: false positive
1031 rate; AUC: area under the ROC curve. **(D–J)** Leave-one(subject)-out classification results using random
1032 forest algorithm. **(D)** The ROC of each subsystem, classification with the full feature set, D&B(Y). **(E)** The
1033 AUC yielded from classification using DFA only, BiS estimates only, combining DFA and BiS (D&B), and
1034 full feature set D&B(Y), *i.e.*, DFA, BiS and SEEG contact loci. **(F–I)**: individual (thin lines) and group
1035 average ROC (thick) yielded from classification using varying feature sets. **(J)** The AUC of ROCs shown
1036 in (F–J), subjects were sorted by the area under the ROC curve of D&B (Y) feature set.