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Abstract

Brain activity exhibits scale-free avalanche dynamics and power-law long-range temporal
correlations (LRTCs) across the nervous system. This has been thought to reflect “brain
criticality”, i.e., brains operating near a critical phase transition between disorder and excessive
order. Neuronal activity is, however, metabolically costly and may be constrained by activity-
limiting mechanisms and resource depletion, which could make the phase transition
discontinuous and bistable. Observations of bistability in awake human brain activity have
nonetheless remained scarce and its functional significance unclear. First, using computational
modelling where bistable synchronization dynamics emerged through local positive feedback,
we found bistability to occur exclusively in a regime of critical-like dynamics. We then assessed
bistability in vivo with resting-state magnetoencephalography and stereo-encephalography.
Bistability was a robust characteristic of cortical oscillations throughout frequency bands from &
(3—7 Hz) to high-y (100—225 Hz). As predicted by modelling, bistability and LRTCs were positively
correlated. Importantly, while moderate levels of bistability were positively correlated with
executive functioning, excessive bistability was associated with epileptic pathophysiology and
predictive of local epileptogenicity. Critical bistability is thus a salient feature of spontaneous
human brain dynamics in awake resting-state and is both functionally and clinically significant.
These findings expand the framework of brain criticality and show that critical-like neuronal
dynamics in vivo involves both continuous and discontinuous phase transitions in a frequency-,
neuroanatomy-, and state-dependent manner.

Abbreviations

BiS: bistability index

DFA: the scaling exponent obtained with detrended fluctuation analysis is an estimate of LTRCs
EZ: epileptogenic zone

nEZ: non-EZ, areas outside of the epileptogenic zone

x: coupling strength between oscillators in the Kuramoto model
LRTCs: long-range temporal correlations

MEG: magnetoencephalography

p: the strength of the state-dependent noise in the Kuramoto model
R: the order parameter of the Kuramoto model

SEEG: stereo-EEG
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Introduction

Since Newton and Leibniz, differential equations have been used to describe natural
phenomena that manifest continuous and smooth temporal evolution. Nonetheless, this classic
approach fails in modelling many dynamics, particularly in biology and neuroscience, that show
discontinuity and abrupt divergence into discrete states over timel?. Catastrophic events
emerging in complex systems, such as disasters in ecosystems or epileptic seizures in the brain,
comprise an important subcategory of discontinuous phenomena and attract inter-disciplinary
research to mitigate their detrimental consequences and to identify the underlying
mechanisms'™3,

OCoOoONOOULLEA,WN -

10  Neuronal population oscillations and their synchronization reflect rhythmical fluctuations in
11  cortical excitability and regulate neuronal communication*>. The “brain criticality hypothesis”
12 posits that the brain, like many complex systems, operate near a “critical” point of a continuous
13 transition® between asynchronous and fully synchronous activity’*°. Operation near such a
14  critical point endows the system with moderate mean synchronization, emergent power-law
15  spatio-temporal correlations, and many functional benefits such as maximal dynamic range'?,
16  communication'?, processing®®, and representational capacity’*!>. Conversely, inadequate or
17  excessive synchrony are incompatible with healthy brain functions®! and represent coma-'” and
18  seizure-like states'®, respectively.

19 However, the classic brain criticality hypothesis does not offer an explanation to neuronal
20  bistability, i.e., discontinuous transitions between asynchronous and fully synchronous activity.
21 Bistability per se is a well known phenomenon in neurophysiological dynamics and is salient, for
22 example, in slow oscillations with up- and down-states observable across scales from intra-
23 cellular®®?® to local-field potentials (LFP)?%?2 in animal brains. In the human brain, while there
24 are several lines of in vivo evidence for “critical-like” brain dynamics near a continuous phase
25  transition”®1%23 evidence for discontinuous transitions, i.e., bistable criticality, in awake resting-
26  state brain dynamics has remained scarce.

27 Neuronal bistability in awake humans has only been reported by in a single series of
28  electroencephalography (EEG) studies that reported bistable switching of alpha oscillations
29  between putatively quiescent and a hyper-synchronized states** 2. Studies of whole-brain
30  cortical activity in resting-state functional magnetic resonance imaging data (fMRI) also suggest
31  spontaneous bistable switching between synchronous and asynchronous, or between integrated
32  and segregated dynamics, respectively?”?®. The underlying neuronal activity substrates at these
33 multi-second time scales have, however, remained unclear.

34  Theoretical studies posit that a high degree of bistability is universally indicative of catastrophic
35  shifts¥*?93% Hence, even if moderate bistability could characterize healthy brain dynamics, we
36  hypothesize that high bistability in neuronal synchrony would be indicative of a shift from
37 healthy to a pathological regime where neuronal populations abruptly jump between
38 asynchronous and hyper-synchronized, seizure-prone states.

39 In this study, we asked whether awake resting-state human brain exhibits critical-like bistable
40 dynamics. We first used generative modelling to establish how varying degree of bistable
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41 dynamics emerges as a consequence of introducing a slow positive local feedback? that is
42  conceptually equivalent to increasing demands for limited resources®!. We then analyzed a large
43  body of magnetoencephalography (MEG) and intracerebral stereo-EEG (SEEG) recordings of
44 resting-state human brain activity. In both MEG and SEEG, we found that anatomically and
45 spectrally widespread bistability characterized neuronal oscillations from & (3—7 Hz) to high-y
46 (100-225 Hz) frequencies. In MEG, moderate resting-state bistability was correlated positively
47  with executive functions. In SEEG, conversely, excessive resting-state bistability was co-localized
48  with the epileptogenic zone and thereby associated with the pathophysiology underlying
49 epilepsy. Bistable criticality thus constitutes a pervasive and functionally significant feature of
50  awake resting-state brain dynamics.

51 Results

52  State-dependent noise induces bistable criticality in silico

53 To assess the emergence of bistability and its relationship with critical-like dynamics, we
54  simulated a variant of the classic Kuramoto model, a simple generative model of synchronization
55  dynamics®? (Supplementary Methods). Briefly, the conventional Kuramoto model has a single
56  control parameter, x, that defines the coupling strength between neuronal oscillators. Higher x
57 leads to stronger synchrony among the oscillators that is typically quantified with “order”, R.
58  Here, we introduced a second parameter p that scales state-dependent noise via local positive
59 feedback in a manner that is conceptually equivalent to the state-dependency in the stochastic
60  Hopf bifurcation®**3%, or the slow resource-loading mechanisms leading to self-organized
61  bistability®®.

62 At small values of p, the model behaved similarly to a conventional critical-like system with a
63  continuous second-order phase transition where a gradual increase of x results in a monotonic
64  increase of order (Fig 1A). At moderate order, i.e., at the phase transition between low and high
65 order, power-law long-range temporal correlations (LRTCs) 3¢ emerged in model order
66  fluctuations and delineated a critical regime (Fig 1B). Here, LRTCs were quantified using the
67  detrended fluctuation analysis (DFA) of the order time series (Supplementary Methods).

68  With increasing p values, the model synchronization dynamics became progressively bistable
69  (Fig 1C) as evidenced by increasing values of the bistability index (BiS), an index of the relative fit
70  of a bimodal versus a unimodal probability distribution (pdf) to the time series of squared order
71  (R? comparable to oscillation powers, see Supplementary). We found bistable dynamics
72 exclusively within the critical regime (Fig. 1D). The presence of a bistable/discontinuous
73  transition was also evident in the sudden increase in the order parameter at the critical value
74  and the sharp peak in the DFA in contrast to the continuous transition (Fig 1E—F) and the
75  representative time series (Fig 1H). Bistable dynamics at high p values thus likely reflect a first-
76  rather than second-order phase transition. These in silico findings show that even in a minimal
77  model, synchronization of oscillators may exhibit a continuum between classic and bistable
78  critical dynamics under the influence of state-dependent noise via local feedback.
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79  Bistable criticality characterizes brain dynamics in vivo

80  We next assessed the presence of bistability and critical dynamics in meso- and macroscopic
81 human brain activity in 10-minute resting-state recordings intracranially via stereo-
82  electroencephalography (SEEG, N = 64) and source-reconstructed magnetoencephalography
83 (MEG, N = 18), respectively. We first restricted analysis of the SEEG to neocortical grey matter
84  contacts outside of the epileptogenic zone (EZ) (Fig 2—4). Although the anatomical sampling
85  with SEEG is heterogenous across patients, the present cohort size yielded essentially a full
86  coverage of the cerebral cortex (Supplementary Fig 2). We estimated LRTCs using DFA and
87  bistability with BiS for narrow-band SEEG and MEG source amplitude time series that
88  predominantly reflect local cortical synchronization dynamics.

89  Bistability is anatomically widespread and spectrally prevalent

90  Visual inspection of narrow-band MEG and SEEG amplitude time series revealed salient
91 examples of bistability as intermittent switching between low- and high-amplitude oscillations
92  (Fig 2 A-B, for examples of model fitting for DFA and BiS estimates see Supplementary Fig 3).
93  Statistical testing showed that both MEG-source signals and SEEG-electrode-contact LFP signals
94  exhibited significant (p < 0.05, see Supplementary Fig 4) bistability and LRTCs across broad
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95 frequencies (Fig 2C—E). MEG showed a peak DFA and BiS estimates in the alpha (~11 Hz)
96 frequency band whereas in SEEG, the BiS peak extended over & (2—4 Hz), 0 (4-7.6 Hz), and o
97  (10-13 Hz) bands (Fig 2F—G). In SEEG, DFA and BiS estimates were overall stronger and occurred
98  across more frequencies than in MEG (Fig 2E, F—H).
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Fig 2. Bistability and LRTCs are robust, large-scale phenomena in MEG and SEEG. (A) Five minutes of
broad band (top) and narrow-band filtered (11 Hz bottom) power (R?) time series from a MEG parcel
located in visual area (Vis) in one subject; (B) Comparable output from five minutes of SEEG contact
recorded from middle frontal gyrus (mFG) in one patient; insets: evidence of bistability as narrow-
band traces switching between “up” and “down” states. (C) Group-level probability (z-axis)
distribution of narrow-band (y-axis) mean amplitude (R), (D) DFA exponents, and (E) BiS estimates;
data were pooled over all non-EZ SEEG contacts and MEG parcels; subject and contact/parcel number
indicated in (C); black lines indicate mean of real data and red dashed lines are 99%-tile of surrogate
observation. (F-H) Examples of narrow-band DFA and BiS probability distribution as indicated by
colored arrows in (D—E).
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99  Neuroanatomical structure of bistability and LRTCs

100  We next characterized the neuroanatomical structure of bistability and inspected its anatomical
101 relationship with LRTCs across frequencies. We first collapsed narrow-band BiS and DFA
102 estimates of MEG parcels (400) and SEEG contacts into a standard atlas of 100 cortical parcels
103  (see Supplementary Fig 4). Next, the neuroanatomical similarity within and between bistability
104  and LRTCs were assessed by computing all-to-all Spearman’s correlations between narrow-band
105  parcel BiS and DFA estimates.

106  Both MEG and SEEG showed high anatomical similarity between neighbouring frequencies.
107  Correlations between slow and fast rhythms were negative in MEG (Fig 3 A) and weak in SEEG
108  (Fig 3B). This indicates that regions tended to show bistability and criticality in a cluster of high
109 or low frequencies, but not both. Based on these neuroanatomical similarities (red boxes, Fig 3
110  A-B, see also Supplementary Fig 5-6), we collapsed narrow-band BiS and DFA estimates into
111 6—a (5.4-11Hz) and y-band (45-225 Hz) for further analyses (Fig 3C). The partitioning of 3
112  (15-30 Hz) band was not consistent and thus was not included (Supplementary Fig 5C).

113 MEG and SEEG cortical maps of 6—a. band bistability revealed distinct neuroanatomical features.
114  In MEG, visual (VIS), somatomotor (SM) and dorsal attention network (DAN) (Fig 3 C-D)
115  exhibited greater BiS than expected by chance (p<0.05, two-tailed permutation test, 10°
116  permutations, not corrected for multiple comparisons, Supplementary Fig 9A—B). SEEG show
117  high BiS in fronto-parietal (FP), ventral attention (VAN), default network (DEF), and limbic (LIM)
118  systems (Fig 3C, E). Although comparable to the values in found in MEG, VIS showed the lowest
119 BiS in SEEG (p<0.05, two-tailed permutation test, 10° permutations, not corrected for multiple
120  comparisons, Supplementary Fig 9C-D).

121 A Kruskal-Wallis test for variance among subjects’ BiS and DFA estimates within each Yeo system
122 revealed that in SEEG, individuals showed different levels of BiS and DFA estimates between
123 systems (Fig 3F) with bistability greater in DEF, FP, and LIM than in VIS and SM (unpaired t-test,
124  p < 0.05, FDR corrected, Supplementary Fig9 C—D). There was no statistically significant regional
125  variation in MEG data.

126  In both MEG and SEEG, group-average parcel bistability was correlated with LRTCs (Fig 3 G—H,
127  see also Supplementary Fig 7). We validated this analysis in narrow-band frequencies and found
128  the results to converge well (Supplementary Fig 6). To further validate this relationship, we
129  averaged parcel BiS and DFA within subjects for each Yeo system and found that the subject BiS
130  were indeed correlated with their DFA estimates on systems-level (Fig 31, Supplementary Fig 8).
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Fig 3. Bistability and LRTC were coexisting, correlated phenomena in MEG and SEEG. Neuroanatomical
similarity (Spearman’s correlation) between group-average narrow-band BiS and DFA estimates of (A)
MEG and (B) SEEG in Schaefer 100-parcel atlas; red boxes indicate frequency clusters showing high
similarity. (C) Narrow-band group-averaged estimates were collapsed into 6-a (5.4-11Hz) and y
(40-225Hz) band based on similarity shown in (A); white-out columns in SEEG data indicate excluded
parcels due to insufficient sampling (Supplementary). (D) Parcel-wise MEG group-average 6—a band BiS
estimates presented in the cortex. (E) The same for SEEG group-average 06—a band BiS estimates. (F)
Kruskal-Wallis one-way analysis of variance for group-level differences in DFA and BiS estimates between
Yeo systems. Dashed line indicates —logio(p value) > 1.3, i.e., p<0.05. Correlations between group-average
parcel BiS and DFA estimates in 0—a (cross) and y band (circles) in (G) MEG and (H) SEEG, —log10(p) > 5,
FDR corrected (Supplementary Fig 7). (I) Spearman’s correlations between within-subject-average BiS and
DFA estimates in Yeo systems (subject Nwves per system =18; Nseeg per system = 5019.4, range: 36—60,
variable SEEG subject N per system due to heterogamous spatial sampling).
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132  Bistability is functionally significant in healthy subjects

133  We next asked whether bistability and LRTCs would predict individual differences in cognition.
134  We assessed working memory, attention, and executive functions with neuropsychological tests
135  (Methods). We averaged the BiS and DFA estimates across the cortical parcels to obtain four
136  subject-specific neurophysiological estimates: DFAg—,, DFA,, BiSo—s, and BiS, (Supplementary Fig
137 10B), and correlated these against neuropsychological test scores. We found that 6—a band BiS
138  and DFA estimates were negatively correlated (p < 0.05, FDR corrected) with the Zoo Map Test
139 Execution Time (Fig 4A-D, see also Supplementary Fig 10C—D). Thus the subjects with greater
140 ©6—o band bistability and stronger LRTCs executed faster in this flexible planning task, which is
141  wellin line with prior observations linking LRTCs with cognitive flexibility*’.

142  To inspect the neuro-behavioural correlations in greater anatomical detail, we computed
143  Spearman’s correlations between neuropsychological scores and individual parcel BiS and DFA
144  estimates. A large fraction of the cortex showed significant neuro-behavioural correlations of
145 O—oa band BiS and DFA estimates with the Zoo Map Time test but not with other
146  neuropsychological scores (Fig 4 E and G, see also Supplementary Fig 10E—F). The correlations of
147  Zoo Map Time test with DFA estimates were most pronounced in fronto-parietal, limbic,
148 somatosensory and, and visual areas (Fig 4 F), whereas the correlations with BiS estimates were
149  widespread across the cortex (Fig 4H).
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Fig 4. Executive functions were correlated with 8—c band DFA and BiS estimates in MEG subjects. (A)
Spearman correlation between subject neuropsychological test scores and within subject mean parcel
6—a. band DFA and (B) BiS estimates collapsed over parcels; dashed lines indicate 5% and 95%-tile of
correlations for surrogate data (Nsurogate = 10°, FDR corrected, p-values see Supplementary Fig 10). (C)
Scatter plots showing subject Zoo map time test and corresponding 6—a band parcel-collapsed DFA and
(D) BiS estimates. Each marker in (C—D) stands for one subject. (E) Fraction of significant parcels that
showed significant correlation between neuropsychological test scores and individual parcel 6—a band
DFA and (G) BiS Estimates (p<0.05, FDR corrected, details see S.Fig 10). (F) Parcels showing significant
correlations between Zoom map time scores and 6—a band DFA and (H) BiS estimates.
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151  Excessive bistability characterizes the epileptogenic zone

152  Excessive bistability may predispose complex systems to catastrophic events?>3%. Under the
153 influence of strong state-dependent noise, our model demonstrated increased sensitivity to
154  coupling strength (Fig 1E), which suggests that strong bistability could be an early sign of shift
155  towards supercritical hypersynchronization events, i.e., epileptic seizures. We thus asked
156  whether bistability estimated from seizure-free, inter-ictal-activity-free resting-state SEEG
157 recording could be informative about epileptic pathophysiology. In particular, we addressed
158  whether bistability could delineate the epileptogenic zone (EZ) and dissociate EZ signals from
159 signals in nEZ contacts that reflect more healthy forms of brain activity.

160  Representative time series (Fig 5SA—B) showed that the EZ contacts did not show conspicuous
161  epileptic inter-ictal events (lIE), and the sparse IIEs were removed from analysis where found
162  (Supplementary Methods). Interestingly, elevated > 80 Hz bistability of the EZ contact was
163  already a visually salient characteristic and stronger in EZ than in a nearby nEZ contact from the
164  same region (DFA, bistability fitting see Supplementary Fig 3 F—J). We assessed bistability and
165 LRTCs in narrow-bands frequencies at the group level for nEZ- versus EZ-electrode contacts (Fig
166  5C-D). Collapsing narrow-band DFA and BiS estimates into broader frequency bands revealed
167  significant differences between nEZ- and EZ-electrode contacts in B- and y-band BiS estimates
168  with effect sizes of 0.5 and 0.65 (Cohen’s d), respectively (Fig 5E). There was also a difference
169  between nEZ- and EZ-electrode contacts in the 8-band DFA exponent with a Cohen’s d of 0.2.

170  These group-level findings suggest that both bistability and LRTCs could constitute informative
171  features for classifying nEZ- and EZ-electrode contacts. We thus conducted an EZ-vs-nEZ
172 classification analysis using random forest algorithm?®® and with frequency-collapsed BiS and DFA
173 estimates as neuronal features, with the electrode contact location in Yeo systems as an
174  additional feature. The cross-validation for the classification was a 80:20-partition (training:test)
175  with 500 iterations. This revealed a reliable outcome with the area under curve (AUC) for the
176  receiver operating characteristic reaching AUC = 0.8 £ 0.002 (mean * std) (Supplementary Fig
177 11C). To identify the most informative components to the classifier, we assessed global and
178  within-subject feature importance with the Shapley Additive exPlanations (SHAP) values®. The
179  SHAP values corroborated that y- and B-band BiS estimates were indeed the most important
180 features, followed by contact location (Yeo system), and &-band DFA (Fig 5F).

181  Given these encouraging group-level and contact-classification results, we quantified the within-
182  subject accuracy of neuronal bistability in localizing the epileptogenic area. We used leave-one-
183  out validation so that the EZ-vs-nEZ contact classification was performed for each patient with
184  the rest of the patient serving as training data. Additionally, to independently evaluate the
185  contributions of BiS and DFA estimates to classification accuracy, we implemented the
186 classification with four feature sets: DFA alone, BiS alone, combining DFA and BiS (D&B), and
187  combining D&B and SEEG contact location in Yeo systems (D&B(Y)).
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Fig 5. Bistability showed strong predictive power for pathophysiology. (A-B) Five minutes of broad-
band traces and narrow-band power (R?) time series of an EZ (A) and a nEZ (B) cortical location recorded
with two distinct electrode shafts in one subject. Both contacts were 19.7 mm apart within supervisor
frontal gyrus (sFG) and were referenced with the same nearest white matter contact (Arnulfo et al.,
2015). (C) Average normalized narrow-band BiS and (D) DFA estimates for all EZ (pink) and nEZ contacts
(green). Shaded areas indicate 25% and 75%-tile. (E) The effect size of differences between EZ and nEZ
contacts in frequency-collapsed BiS (red) and DFA (black). Dashed line indicates 99%-tile observation
from surrogate data (Nsurrogate=1000). (F) Feature importance estimated using SHAP values. (G) The area
under curve (AUC) of receiver operating characteristics (ROC) averaged across subjects (black) and the
AUC of pooled within-subject classification results (blue) when using (/) DFA alone, (ii) BiS alone, (iii)
combining DFA and BiS (D&B), and (iv) D&B plus contact loci in Yeo systems (D&B(Y)). Dashed lines
indicate 99%-tile of AUC observed from 1,000 surrogates created independently for each of the four
feature sets. (H-J) Post-hoc inspection of results derived using D&B(Y) feature set (the black marker in G).
(H) Spearman’s correlation (p < 10°%, n=55) between individual AUC and within-subject mean Cohen’s d
between EZ and nEZ in band-collapsed DFA and BiS. (I) Receiver operating characteristics of classification
within subjects (thin lines) and mean ROC (thick). (J) Within-patient prediction precision as a function of
TPR indicated by the magenta box from (l); the red marker indicates the population mean. Precision =
true positive + reported positive.

188  Overall, the within-subject classification accuracy for EZ contacts was higher than chance level
189  across all feature combinations (Fig 5G). Classification with all features yielded the best
190 performance at an average AUC of 0.7+0.14 (Black marker, Fig 5G). BiS alone yielded a greater
191  AUC than DFA alone. Including the contact-brain system as an additional feature to D&B
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192 increased the AUC by 0.06. The subject AUC values were correlated with the subject-specific
193 differences in DFA and BiS estimates between EZ and nEZ (r=-0.53, p < 10°) (Fig 5H) and were
194 not affected by either the total numbers of contacts, EZ contacts, nor the ratio of EZ and nEZ
195 contacts (Pearson’s correlation coefficient, r = -0.06, p = 0.66; r = -0.07, p = 0.61; r = -0.09, p =
196  0.50; respectively). Finally, the classifier yielded an average precision of 0.74 + 0.30 (mean *
197  SD). While the true positive rate was 0.24 + 0.17, the false-positive rate was only 0.03 + 0.03 (Fig
198  5G and H), which shows that most EZ contacts identified with the bistability-based classification
199  were correct even though the classifier did not identify all true EZ contacts.

200 Discussion

201  We found here that bistable criticality is a pervasive characteristic of human brain activity and is
202  both functionally significant in healthy brain dynamics and clinically informative as a putative
203  pathophysiological mechanism in epilepsy. In a generative model of synchronization dynamics
204  with positive feedback, bistability occurred exclusively within a critical-like regime. In both MEG
205  and SEEG, we found significant bistability and LRTCs in spontaneous amplitude fluctuations of
206  cortical oscillations widely across the neocortex and from 0- (2—4 Hz) to y- (40-225 Hz)
207  frequency bands. Moreover, as predicted by the model, bistability was positively correlated with
208 LRTCs. As key evidence for functional significance, resting-state bistability was a trait-like
209  predictor*! of healthy cognitive performance in MEG and clearly associated with epileptogenic
210  pathophysiology in SEEG. These findings indicate that bistable criticality is an important novel
211  facet of large-scale brain dynamics in both healthy and diseased human brain. Moreover, these
212  observations strongly suggest that the brain criticality framework—currently focused on
213 continuous phase transitions—should be expanded to include both continuous and
214  discontinuous phase transitions (see Supplementary Theory).

215 In the model, we found bistability to occur exclusively within the critical regime so that the level
216  of bistability increased monotonically with increasing positive feedback p. This state-dependent
217  feedback thus acted as a continuous control parameter for shifting the model between a
218  continuous and a discontinuous phase transition, at low or high levels of feedback, respectively.
219 In both MEG and SEEG, band-collapsed 6—a. (5.4—11 Hz) and y (40-225 Hz) frequency cortical BiS
220 and DFA estimates were correlated on group average level (see Fig 3 G—H) and among
221  individuals within functional systems (see Fig 3l). These widespread correlations collectively
222 suggest that a gradient from “low LRTCs and weakly bistable” to “high LRTCs and strongly
223  bistable” is a systematic characteristic of the human brain dynamics.

224 A positive feedback loop is thought to be a generic mechanism313>42% |eading to bistability in a
225  wide range of modeled and real-world complex systems including the canonical sand-pile
226  model®* and its variations*?, ecosystems?>*, gene regulatory networks®%%%’  intra-cellular
227  signaling*®*, and network models of spiking neurons*°. In our model, the positive local
228  feedback was implemented as state-dependent phase noise?>34. Three mechanisms have been
229  proposed to account for feedback and state-dependency in microscopic neuronal dynamics®?,
230  whereas the exact neuronal mechanism for meso- and macroscopic state-dependency remains
231  unclear. We postulate that the state-dependency be a slowly fluctuating physiological
232  parameter conceivably reflecting the cortical excitability and corresponding resource
233 demand®%>2,
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234  Bistable dynamics, in general, could be associated a dichotomy of both beneficial and
235 detrimental outcomes. Organisms can operate in bistable mode that is thought to reflect a
236  dynamic motif favourable to adaptation and survival®#%%953  However, a high degree of
237  bistability characterizes many complex systems prone to catastrophic shifts**** such as sudden
238  violent vibrations in aerodynamic systems®?, irrevocable environmental changes?*>>*%, wars and
239 conflicts®’. In healthy MEG subjects, BiS and DFA were correlated, and higher 6—a band BiS and
240 DFA estimates predicted better cognitive performance. In the SEEG from epileptic patients,
241  excessive - and y-band BiS, but not DFA, characterized EZ (see Fig 5E—F), which suggests a
242  functional gradient wherein moderate bistability reflect functional advantages but high degree
243 of bistability be a sign of pathological hyper-excitability; this pathological bistability could be
244  associated with hyper-excitability, excessive synchrony, high resource demands, and likely
245  subsequent oxidative stress and tissue damage®®. This speculation is in accordance with
246  biophysical models of seizures that suggest a crucial role of a discontinuous transition (a sub-
247  critical Hopf bifurcation)®3 in generalized seizures®*>3,

248 With invasive SEEG, we found consistent and accurate performance of the BiS estimates in EZ
249  localization, which suggests a great potential for broader clinical utility, e.g., using non-invasive
250 MEG or EEG. Future work could exploit the presence of widespread bistability to large-scale
251  biophysical models of neural dynamics, building on the analytic link between the simplified
252  model employed here and physiologically derived neural mass and mean field models. Whereas
253  the simple model yields dynamical insights, the large-scale biophysical models are crucial for
254  understanding biological mechanisms®, including those that describe seizure propagation in
255  individual patient brain networks®.

256  Materials and Methods

257  The canonical Hopf bifurcation

258  The canonical model of sub- or supercritical bifurcation is °:
259 F=—1r>+r3+Br+n[(1—p) () + prim (D], (1)

260  where 7 is the time derivative of a local neuronal activity r (a real number); A is the shape
261  parameter and Sthe bifurcation parameter; 7 scales the overall influence of noise; where {, (t)
262  and {,;,,(t) are additive and state-dependent noise respectively, and they are two uncorrelated
263  Wiener processes; the parameter p weights the influence of state-dependent noise. Different
264  combinations of A and S result in either super-critical or sub-critical bifurcation (details in # ),
265  which are associated with continuous or discontinuous (or second- or first-order) phase
266  transition, respectively 2335 When r described the amplitude of a two-dimensional system
267  with phase 0, then (eq. 1) describes a Normal form stochastic Hopf bifurcation.

268  The Kuramoto model

269  We studied first- and second-order phase transitions in a Kuramoto model with a modified noise
270  term. The Kuramoto model is a generative model that can be used for studying the collective
271  behaviours of a number of interconnected phase oscillators due to weak interactions %%, In a
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272 Kuramoto model, the dynamics of each oscillator i is a scalar phase time series 6; (6 € 0:27),
273 coupled into a population ensemble 8 as,

274 0, = w; + K; + Z;, (2)

275  where, for any oscillator i, éi is the rotation of its phase 6;; w; is the natural (uncoupled)
276  frequency of i; K; = K;(8) the coupling between i and the rest oscillators of the ensemble, and
277  Z;is a stochastic term. The degree of synchrony of the ensembile (i.e., order parameter or mean
278  field) is the outcome of tripartite competition for controlling the collective behaviours of all
279 oscillators: w; and Z; are desynchronizing factors whereas K; is the synchronizing factor. Here,
280  w; follows a normal distribution with mean of zero (Hz), meaning without loss of generality, the
281  system can be observed on a rotating phase plan with arbitrary angular velocity. In the classic
282  model, the coupling term K; is defined as the i-th oscillator adjusts its phase according to
283  interactions with all other oscillators in the system through a pair-wise phase interaction
284  function:

N
285 Kl = ﬁz sin (91 - 9]), (3)

j=1

286  here, Kk is a scalar number representing coupling strength, N =200 is the number of oscillators in
287  the ensemble. For simplicity, here we used a fully coupled network to avoid other families of
288  emerging dynamics due to nodal or network structural disorders, e.g., Griffiths phase %%, In
289 addition, we found that with a Gaussian nodal-weight distribution, the model behaved
290 identically to the fully coupled networks. We modified the noise term in line with the Hopf
291 bifurcation (eq. 1) as:

292 Zi =11 = p)a (O + ARuax — R) i (D], (4)

293  here, {,(t) and {,;,(t) are additive and multiplicative noise, respectively — as described in (eg. 1),
294  however, in (eq. 4) {,(t) and {;,,(t) are uncorrelated and independent Gaussian phase noise
295  with zero mean and unit variance; pscales the influence of {;;,(t); note that the 2 bracketed
296 terms are offset (i.e., (1 — p)and p) such that their combined effect stays approximately
297  constant in magnitude; Ry 4x is the maximal order the population can reach (e.g., slightly below
298 1 due to the presence of noise) and R is the current mean field (a scalar) that quantifies the
299  degree of synchrony of the population at time t,

300 R =]z X e (5)

301 when viewing R from the complex phase plan, it essentially is the centroid vector of the
302  population phase distribution: if the whole population is in full synchrony, R= Ry4x —>1; when
303 thereis nosynchrony, R = O (see insets, Fig 1H).

304 MEG recording and subjects

305 We recorded 10 minutes resting-state magnetoencephalographic (MEG) data from 18 subjects
306 (11 males, 31.7£10.5, mean # std, yeas of age) at the BioMag Laboratory, HUS Medical Imaging
307  Center, Helsinki Finland. Subjects were seated in a dimly lit room and instructed to focus on a
308 cross on the screen in front of them. Recordings were carried out at Meilahti hospital in Helsinki
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309 (detailed in Supp. Material). All subjects were screened for neurological conditions. The study
310  protocol for MEG and MRI data obtained at the University of Helsinki was approved by the
311  Coordinating Ethical Committee of Helsinki University Central Hospital (HUCH) (ID
312  290/13/03/2013) and was performed according to the Declaration of Helsinki.

313 We also assessed working memory, attention, and executive functions in these subjects with a
314 battery of neuropsychological tests. These included (see Fig 4 x-axis): Zoo Map Time, Toulouse-
315 Pieron test (TP), Digit Symbol Coding test, Zoo Map Plan, Digit Span forward and backward
316 (BackDigits and ForwDigits, respectively), Letter-Number Sequencing (LNS), Trail Making Test
317 parts A and B (TMT-A, TMT-B). Some subjects had missing/invalid behavioural scores, and we
318 studied the neuro-behavioural correlations with dataset that at least had 16 valid subjects’
319 scores.

320 SEEG recording and subjects

321  We acquired 10 minutes of uninterrupted, seizure-free resting-state brain activity with eyes
322  closed from 64 drug resistant focal epilepsy patients (28 females, 30.11£9.1, meanzSD, yeas of
323  age, see Supplementary Table 1) undergoing pre-surgical assessments (detailed in Supp.
324  Material). The subjects gave written informed consent for participation in research studies. The
325  study protocol for SEEG, computerized tomography (CT), and MRI data obtained in the La
326  Niguarda Hospital were approved by the ethical committee of the Niguarda “Ca Granda”
327 Hospital, Milan (ID 939), Italy, and was performed according to the Declaration of Helsinki.

328  Prior to surgery, medical doctors identified epileptogenic and seizure propagation zone by visual
329  analysis of the SEEG traces ®*%>, Epileptogenic areas (generators) are the region of interest that
330 are necessary and sufficient for the origin and early organization of the epileptic activities °°.
331  SEEG contacts recorded from such generators often show low voltage fast discharge or spike
332  and wave events at seizure onset. Seizure propagation areas (receivers) are recruited during
333  seizure propagation, but they do not initialize seizures **%’. Contacts recorded from receivers
334  show delayed, rhythmic modifications after seizure initiation in the generators. It is common to
335  see regions demonstrating both generator and receiver dynamics, thus they were identified as
336 generator-receiver. In this study, we refer to generator, receiver, and generator-receiver
337  collectively as epileptogenic zone (EZ) to distinguish them from those that were tentatively
338 identified as healthy non-EZ regions (nEZ).
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589  Supplementary methods
590 MEG data acquisition

591 A 306-channel MEG system (204 planar gradiometers and 102 magnetometers) with a
592  Vectorview-Triux (Elekta-Neuromag) was used to record 10 minutes eyes-open resting-state
593  brain activity from 18 healthy adult subjects at the BioMag Laboratory (HUS Medical Imaging
594 Center, Helsinki Finland). For cortical surface reconstruction, T1-weighted anatomical MRI scans
595  were obtained at a resolution of 1x1x1 mm with a 1.5 T MRI scanner (Siemens, Germany). This
596  study was approved by the ethical committee of Helsinki University Central hospital and was
597  performed according to the Declaration of Helsinki. Written informed consent was obtained
598  from each subject prior to the experiment.

599  MEG data preprocessing and filtering

600 The Maxfilter software with temporal signal space separation (tSSS) (Elekta Neuromag Ltd.,
601 Finland) was used to suppress extra-cranial noise in sensors and to interpolate bad channels 2,
602 Independent component analysis (Matlab Fieldtrip toolbox, http://fieldtrip.fcdonders.nl) was
603  next used to identify and remove components that were correlated with ocular (identified using
604  the EOG signal), heart-beat (identified using the magnetometer signal as a reference) or muscle
605  artefacts ®°. The FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/) was used for subject
606 MEG sources reconstruction, volumetric segmentation of MRI data, surface reconstruction,
607 flattening, cortical parcellation, and neuroanatomical labeling with the Schaefer-2017 atlas 7°.
608  Each of the Schaefer-parcel belongs to a functional system ’* which informed later systems-level
609  analysis.

610 The MNE software package was used to create head conductivity models and cortically
611  constrained source models with 5000-7500 sources per subject and for the MEG-MRI co-
612  registration and for the preparation of the forward and inverse operators ’>’3. For each MEG
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613 subject, a cortical parcellation of 400 Schaefer-parcels was obtained using reconstruction-
614  accuracy optimized source-vertex-to-parcel collapsing method 4. The broadband time series of
615  these parcels were then filtered into narrow-band time series using a bank of 20 Morlet filters
616  with m =5 and log-linearly spaced center frequencies ranging from 2 to 225 Hz. For group-level
617 analyses, subject DFA and BiS estimates were morphed from 400 Schaefer-parcels into 100
618  Schaefer-parcels.

619  SEEG data acquisition

620 Resting-state brain activity from 64 drug resistant focal epilepsy patients (28 females, 30.1+9.1,
621 meanzSD, yeas of age, see S.Table 1) was acquired as monopolar local field potentials (LFPs)
622 from brain tissue with platinum-iridium, multi-lead electrodes using a 192-channel SEEG
623 amplifier system (NIHON-KOHDEN NEUROFAX-110) at 1 kHz sampling rate. Each penetrating
624 electrode shaft has 8 to 15 contacts, and the contacts were 2 mm long, 0.8 mm thick and had an
625 inter-contact border-to-border distance of 1.5 mm (DIXI medical, Besancon, France). The
626  anatomical positions and amounts of electrodes varied according to surgical requirements ®*. On
627 average, each subject had 17 * 3 (mean * standard deviation) shafts (range 9-23) with a total of
628 153 + 20 electrode contacts (range 122-184, left hemisphere: 66 + 54, right hemisphere: 47 + 55
629  contacts, grey-matter contacts: 110%25). The subjects gave written informed consent for
630  participation in research studies and for publication of their data. This study was approved by
631 the ethical committee (ID 939) of the Niguarda “Ca’ Granda” Hospital, Milan, and was
632 performed according to the Declaration of Helsinki.

633  SEEG preprocessing and filtering

634  Cortical parcels were extracted from pre-surgically scanned T1 MRI 3D-FFE (used for surgical
635  planning) using the Freesurfer package ”>. A novel nearest-white-matter referencing scheme (its
636  merits discussed in ’® was employed for referencing the monopolar SEEG LFP signals. An
637  automated SEEG-electrode localization method was next used to assign each SEEG contact to a
638  cortical parcel of Schaefer 100-parcel atlas with sub-millimeter accuracy /. The SEEG electrodes
639 were implanted to probe the suspected epileptogenic zones (EZ) while inevitably passing
640  through healthy cortical structures. Contacts located at EZ are known to pick up frequent inter-
641 ictal spikes and generate abnormally large DFA . Therefore, EZ contacts and contacts recorded
642  from subcortical regions such as thalamus, hippocampus and basal ganglia were excluded from
643  analysis.

644  Nevertheless, inter-ictal events (lIE) such as spikes can be occasionally observed at non-EZ
645  locations in some subjects during rests. These IIE are characterized by high-amplitude fast
646  temporal dynamics as well as by widespread spatial diffusion, which need to be excluded to
647  avoid bias to DFA and BiS estimates. We followed approach used in to identify such IIEs. Briefly,
648  each SEEG contact broad-band signal was partitioned into non-overlapping windows of 500 ms
649  in length; a window was tagged as “spiky” and discarded from LRTCs and bistability analyses
650 when at least 3 consecutive samples exceeding 7 times the standard deviation above the
651  channel mean amplitude. Last, narrow-band frequency amplitude time series was obtained by
652  convoluting the broad-band SEEG contact time series with Morlet wavelets that were identical
653  to that of MEG data.
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654  Estimating LRTCs using detrend fluctuation analysis

655 LRTCs in 1D time series can be assessed with several metrics ”°, and in this study, linear detrend
656  fluctuation analysis (DFA) was used to assess specifically how fast the overall root mean square
657  of local fluctuations grows with increasing sampling period 3¢, An estimated DFA exponent
658 reflects the finite-size power-law scaling in narrow-band amplitude fluctuations based on the
659 assumption that the gradual evolution of a mono-fractal process time series would result in a
660 normal distribution where the fluctuation can be captured by the second order statistical
661 moments such as variance 8. The computation of DFA briefly as follows (for rationales and
662  technical details of the algorithm see &?):

663 1) The signal profile (X) of a signal was computed by computing the cumulative sum of a
664 demeaned narrow-band amplitude of a MEG parcel or SEEG contact time series.

665 2) A vector of window widths (T) was defined in which the widths were linearly spaced on
666 logio scale between 10 and 90 seconds. The same scaling range was used across
667 frequencies and for both MEG and SEEG, i.e, identical vector of T. The lower boundary of
668 10 s was set to safely avoid high non-stationarity and the filter artifacts, i.e., 20 cycles of
669 the slowest rhythm of 2 Hz; the upper bound of 90 s was 15% of total sample of the
670 resting-state recording.

671 3) For each window width tET, X was partitioned into an array of temporal windows in
672 which each window was of length t and with 25% overlap between windows W(t).

673 a. For each window w &€ W(t), detrended signal Wyetrend Was obtained by removing
674 the linear trend, i.e., subtracting the least-squares fit of samples of w from the
675 samples of w, and then obtained the root mean square of Wyetrend (RMS(Wyetrend ).
676 b. Finally, F(t), the detrended fluctuation of window size t, was obtained by
677 computing the mean of RMS(Wuetrend ).

678 4) By repeating step (3) for all window lengths of T defined in step (2), F, a vector of F(t), t
679 €T, was obtained. The DFA exponent is the slope of the trend line of F as a function of T
680 on log-log scale (Supplementary Fig 3 G, J).

681  Estimating bistability index (BiS)

682  The BiS index of a power time series (R?) derives from model comparison between a bimodal or
683  unimodal fit of its probability distribution function (pdf); a large BiS means that the observed pdf
684 is better described as bimodal, and when BiS = 0 the pdf is better described as unimodal. We
685  followed the approach used in 2#?° to compute BiS. First, to find the pdf of power time series R?,
686  the empirical R? was partitioned into 200 equal-distance bins and the number of observations in
687  each bin was tallied. Next, maximum likelihood estimate (MLE) was used to fit a single-
688  exponential function (i.e., the square of a Gaussian process follows an exponential pdf):

689 P(x) =y (1)
690  and a bi-exponential function:

691 P(x) = 5y,e™"* — (1 — O)y,e 2" (2)
692  where y; and y; are two exponents and J'is the weighting factor.

693 Next, the Bayesian information criterion (BIC) was computed for the single- and bi-exponential
694  fitting:
23


https://doi.org/10.1101/2022.01.09.475554
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.09.475554; this version posted January 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

695 BIC = In(n)k - 2In(L) (3)

696  where n is the number of samples; L is the likelihood function; k is the number of parameters: k
697 =1 for single-exponential BICk, and k = 3 for bi-exponential model B/Cye. Thus BIC imposes a
698 penalty to model complexity of the bi-exponential model & because it has two more degrees of
699 freedom (second exponents and the weight 8) than the single exponential model.

700 Last, the BiS estimate is computed as the logio transform of difference between the two BIC
701 estimates as

702 dBIC = BICexp - BICpic (4)
703 BiS = log10(dBIC), if dBIC > 0,
704 BiS=0, ifdBIC<0

705  Thus, a better model yields a small BIC value, and BiS will be large if the bi-exponential model is
706  amore likely model for the observed power time series (Supplementary Fig 3 F, I).

707 Constructing surrogate data

708  To determine the chance level observations of DFA and BiS in null hypothesis data, i.e., without
709  embedded non-linear critical-like structures but with the same power spectrum as the real
710  physiological signals 8, phase randomized Fourier transform surrogates of the broad-band time
711 series was constructed for each MEG parcel and SEEG contact, Nmec = 6,800 and Nsgeg = 4,142
712 (Supplementary Fig. 4). The surrogate broad-band data were filtered into narrow-band data and
713  their DFA and BiS estimates were subsequently computed. Thus, the real observation can be
714  compared against the significance thresholds that were derived from the probability distribution
715  of the surrogate data across frequencies (Fig. 2).

716  Morphing MEG and SEEG data into a standard atlas

717  The MEG and SEEG group-level analyses were conducted in a 100-parcel standardized Schaefer
718  atlas ’°. The group-level MEG data were obtained in two steps (top, Supplementary Fig 4). First,
719  narrow-band DFA and BiS estimates were computed within subjects using a finer parcellation of
720  400-parcel, and the resulting estimates were morphed into 100-parcel within subjects by
721  averaging children parcels; group level cortical maps were next obtained by collapsing subjects’
722 100-parcel metrics.

723 Due to the variability in electrode location and other constraints in SEEG subjects, the morphing
724 was done and verified differently. First, narrow-band DFA and BiS estimates of individual SEEG
725  contacts were morphed directly into the Schafer 100-parcel atlas (bottom, Supplementary Fig 4).
726  The resulting group-level parcel estimates were thus heterogeneous in terms of sampling. For
727  example, one parcel may contain observations from a varying number of electrodes and/or
728  subjects. Hence, the group-level estimate of each parcel was the median of all observations, and
729  the estimate for each of the seven Yeo sub-systems was the median of its constituent parcels.
730  Furthermore, only the parcels (n=90) sampled by at least 3 subjects and 10 SEEG contacts were
731  kept for group-level analysis. The group mean parcel metrics (Supplementary Fig. 5B) were
732  identical to that of raw data (overlay curves, Fig. 2D—E) thus confirming that heterogeneous
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733 SEEG sampling (Supplementary Fig. 2 and Supplementary Fig.4) did not bias the parcel-level
734 metrics.

735 Clustering narrow-band frequency data

736 Frequency clustering analyses were conducted to reduce redundancy and for better
737 interpretability of the narrow-band data (20 frequencies x DFA/BiS x 100 parcels). Spearman’s
738 rank correlation coefficients were computed between the group-level DFA/BIS estimates of 100-
739 parcel for all pairs of frequencies. This resulted in a set of 20 x 20 adjacency matrices (As,z)
740 representing the cortical topological similarity between frequencies. Next, the similarity matrix
741  Agp was partitioned using the unweighted pair group method with arithmetic mean algorithm
742 %, an agglomerative hierarchical clustering method, to obtain frequency clusters. The algorithm
743 first builds a hierarchical tree through an iterative procedure to represent the distance between
744  pairs of objects in Asus (Supplementary Fig. 5C). In each iteration, two objects p and g with
745 nearest distance d(p, q) were merged into a cluster, and p and g can be either an element from
746  Agpora cluster of elements from As p; The distance function is defined as:

747 AP, @) = 7= Tuep Lyeq A1), (5)
748  where n, and n, are the number of elements in p and g respectively, d(x, y) is the distance
749 between x, y, and x, y are matrix elements from Az 5. The hierarchical tree was then used to
750  partition the elements from Asf, into separated clusters, e.g., if the height of p is close to the
751 height of g, then their constituent elements are similar and therefore could be considered as a
752  cluster (dashed boxes in Supplementary Fig. 5C, and solid boxes in Supplementary Fig. 5D).

753  Classifying pathophysiological SEEG contacts

754  The group-level frequency clustering analysis revealed that much of the narrow-band data were
755  topologically correlated (Fig. 3). Hence, for the classification task, twenty narrow-band metrics
756  were also collapsed into four frequency clusters as 8, 0—a, B, and y band (Fig. 5A). As subjects
757  varied greatly in their DFA and BiS estimates, band-collapsed data was normalized within
758  subjects as [X-median(X))./max(X-median(X)], and thereby the differences between EZ and nEZ
759  within subjects remained. The effect size of differences between band-collapsed and normalized
760  DFA and BiS estimates were assessed with Cohen’s d and compared with the 99%-tile of Cohen’s
761  dobserved from 1,000 EZ-nEZ label-shuffled surrogate data (Fig. 5C).

762  The feature importance of these neuronal estimates were assessed with the SHapley Additive
763 exPlanations (SHAP) values®. In addition to the neuronal scores, the contact location in Yeo
764  systems was also included as an additional feature (Fig. 4D). The SHAP values is a generic metric
765  to explain any tree-based model by explicating the local and global interpretability of features,
766  which advances the transparency that conventional classifications approaches lack of. For
767  solving the EZ-classification problem, the non-parametric random-forest method® was
768  employed. The random-forest algorithm is a machine learning method uses bootstrapped
769  training dataset and combines the simplicity of decision trees with extended flexibility to handle
770  new data®. The random-forest method allows multiple target class-labels (e.g., nEZ plus three
771  distinct EZ subtypes) over binary classifiers, and here the primary interest was to separate EZ
772 and nEZ contacts.
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773  Supplementary materials
774 Theory: continuous and discontinuous phase transition in the brain

775  The classic Brain Criticality framework hypothesizes that, across the brain, neurons operate in a
776 regime of continuous transitions between asynchronous and hyper-synchronous activity, which
777 resembles the phase transition seen in numerous complex systems and is commonly known as
778  the “critical point” or a “critical region”’"%2387 Recent theoretical research suggests that the
779  brains could rather be a “quasi-critical” than a “true critical” system®®#, True criticality arises
780 in idealized systems where energy is conserved and, with a small and constant drive, the system
781 self-organizes into dynamics with one critical point®. True criticality is characterized by a
782 continuous (second-order) phase transition between disorder and order®. At the
783  phenomenological level, the ensuing critical dynamics are characterized by stationary fractional-
784  Gaussian statistics’® and the emergence of spatial °2, temporal %3, and spatio-temporal power-
785  law behaviour®9?,

I”

786  On the other hand, quasi-critical systems*?#”9* differ categorically from the true critical systems
787 by energy dissipation, as exemplified by forest fires and earthquakes®>°. The loss of energy in
788  quasi-critical systems requires a “loading” mechanism to keep them from becoming quiescent.
789  Simulations suggest that quasi-critical systems require external fine tuning to operate near the
790  critical point®®’. The brain is energetically expensive, accounting for ~20% of the human energy
791  consumption in adults®® and of up to ~66% in children®® with many physiological mechanisms
792  serving energy replenishment and metabolic regulation'®. In addition to glucose metabolism
793  per se, the notion of “loading” mechanisms also encompasses resources and mechanisms that
794  limit neuronal activity levels, for example synaptic vesicle depletion!®® and post-synaptic
795  depression®%1% respectively.

796  Theoretical studies show that neuronal systems with resource-consuming activity and slow
797  resource loading®3**%%° may indeed exhibit dynamics with a discontinuous (first-order) phase
798  transition when resource demands exceed the loading capacity. This gives rise to spontaneous
799  neuronal bistability®*®°. For example, in computational models of local populations operating
800 near a marginally stable critical point®*, excitatory neurons exhibit bistable firing rates when
801 resource demands are high®®®. Likewise, in networks of such populations, the balance of
802 resource depletion and recovery!®>!% determines the switching between continuous and
803  bistable transitions®!.

804  Slow state-dependent noise p controls fast mean field

805  When investigating the behaviours in Kuramoto model (Fig 1), pand x were held as constant
806  values (eq. 4), which reflect that both variables fluctuate at a much slower rate than the
807  population order R. The variable pis a key parameter that controls the degree of bistability in R
808  time series. Under the influence of a weak p(eq. 4), the Kuramoto model could demonstrate
809  dynamics resembling that of a supercritical stochastic Hopf bifurcation®3* which is also
810 controlled by a weak p(eq. 1). Specifically, by gradually increasing x;, a subcritical Kuramoto
811 ensemble would reach a critical point, where the subcritical fixed point (quiescent state) loses
812  stability and a smooth transition to a critical phase takes place. The time course of R in this
813  classic critical scenario follows a Gaussian distribution26,
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814  On the other hand, when the Kuramoto model is controlled by a high p, the ensemble would
815 express bistable criticality in R that resembles the dynamics of a subcritical stochastic Hopf
816 bifurcation. In this scenario, a seemingly quiescent ensemble suddenly shows supercritical
817 hypersynchrony — before the quiescent fixed-point loses stability following further increases in
818 k. Thereby, the time course of R is characterized as bimodal, supporting erratic switching
819 between low and high activity modes. Our modeling results confirmed this prediction. When piis
820 held at high value, the pdf of R as a function of k (the colour plot in top panel, Fig. 1E) coincides
821  with the prediction of the first order phase transition with a moderate width of bistable regime
822 (top, Supplementary Fig. 1A) — as comparing to theoretical possibility of a much wider bistable
823  regime >*. When pis held at low value (bottom, Fig 1E), the model dynamics accords with the
824  prediction of supercritical Hopf bifurcation as the classic criticality 7?*>. When the coupling is too
825  strong, the ensemble only dwells on the supercritical state of hypersynchrony. To better
826  demonstrate the effect of p on R, we also simulated slowly fluctuating p with x held constant
827  and found that various waveforms of p can result in rich bistable dynamics in R, even when the
828  temporal average of p was approximately the same (Supplementary Fig. 1B).

829  The model shows high degree of bistability under the influence of strong state-dependent noise,
830  which results in a tendency to stay in either an up-state or a down-state thus avoiding moderate
831 level of synchrony as expected in the classic criticality models. This up state corresponds to
832  resource-demanding large amplitude oscillations (limit cycle), which eventually leads to
833  depletion and ensuing returning of a low amplitude, subcritical down-state fixed point attractor
834  for recovery. On the extreme spectrum of such bifurcation and the underlying slow variable is
835  epileptic seizure >*°31%4,

836  SEEG cortical sampling statistics

837 Preprocessing of the SEEG data yielded 7,019 SEEG contacts in various cortical and subcortical
838  gray matter locations (Supplementary Fig. 2A). For investigating the LRTCs and bistability of
839  cortical dynamics that were tentatively considered as normal, contacts recorded from
840  subcortical structures and epileptogenic zones were excluded. Contacts with more than 2.5%
841  samples identified as “spiky” were also excluded (Supplementary Fig. 2A-B, see suppl.
842 Methods). Thereby, 3/7 of available contacts were excluded, and in the resulted 4,142 contacts,
843  asmall fraction cannot be reliably assign a parcel by the segmentation software 7’ and therefore
844  were also excluded. This resulted in 4,122 contacts (66.8 + 24.5 per patient, range: 4 to 123) for
845  analyses. Although the cortical sampling was heterogeneous across patients, with 4,124 cortical
846  nEZ contacts, we were able to cover 90 out of the 100 Schaefer parcels with each parcel
847  sampled by at least 3 subjects and 10 contacts (see also Supplementary Fig 2C-D).

848 Narrow-band DFA and BiS estimates in MEG and SEEG

849  SEEG and MEG demonstrated differentiated spectral peaks and magnitude of DFA and BiS
850  estimates (Fig 2). We speculated that these discrepancies between SEEG and MEG might be
851  attributable to two factors (or the combination of both):

852 First, it was due to different brain states in healthy vs epileptic brains. High degree of
853 bistability has been suggested as an early sign of shift to catastrophic events in ecosystems 2°,
854  considering the likely universal nature of bistability 3%, high bistability outside of the visual
855  system (e.g., default model and limbic systems) in SEEG data could be a sign of transition to
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856  catastrophic events (i.e., seizures) in the epileptic brain. It could be a great clinical interest to
857  further this line of work to find solutions to reverse high bistability to mildly bistability or
858  smooth phase transitions (e.g., dampening) for eluding the catastrophic events in the brain 1.
859 Moreover, epilepsy is known to affect brain rhythms especially the 6 and 6 band synchrony
860 16107 which might be an explanation to the presence of high bistability in slow rhythms below o
861 band in SEEG.

862 Second, mesoscopic SEEG recording is able to pick up highly local signals and thus more
863 sensitive to specificity such as difference between functional systems, which MEG is unable to
864  SEEG signals is highly localized to the sampled tissue surrounding the electrode contacts (2mm
865 in length) and minimally affected by signal mixing %8, whereas MEG sensors are at least several
866  centimeters away from the cortex, and its signals are therefore the linear summation of
867  unknown number of cortical sources. According to the central limit theorem, even though
868 individual processes are non-Gaussian, the linear combination of multiple such processes will
869 appear Gaussian.

870 Topological similarity between LRTCs and bistability

871  As a preliminary inspection of topological similarity, all-to-all correlations were computed
872  indiscriminately between group-level parcel DFA and BiS estimates, between MEG and SEEG,
873 and across all frequencies. Within metrics, well delineated clusters of a slow and a fast
874  frequency band were observed (along diagonal, Supplementary Fig. 6). There were positive
875 correlations between DFA and BiS in both MEG and SEEG data, and some negative correlations
876  between MEG and SEEG. The frequency-collapsed 6—a and y-band DFA and BiS estimates were
877 next inspected (Fig. 3C). The similarity between band-clustered cortical maps of 100 Schaefer
878  parcels (Supplementary Fig. 7) converged with narrow-band observation (Supplementary Fig. 6).
879  On systems-level (Supplementary Fig. 8), subjects’ band-clustered DFA and BiS were correlated
880 in almost all functional systems except for SEEG 6—a band limbic system (Spearman’s rank
881 correlation, p < 0.01).

882  Anatomical specificity of bistability and LRTCs

883 While there were no systems-wise differences in MEG, SEEG 6—a band BiS and DFA estimates, y
884  band DFA estimates between Yeo functional systems were different (Kruskal-Wallis test, p <
885  0.05, Fig. 3F).

886  In MEG, the mean 6—a and y-band DFA and BiS estimates of Yeo systems appeared similar (thick
887 black lines, Supplementary Fig. 9A—B), confirming high correlations between DFA and BiS
888  estimates observed in both group and systems-level in individuals (Supplementary Fig. 7-8,
889  respectively). With these source-modeled MEG data, we replicated 6—a band resting-state
890  bistability in visual areas that was reported previously in EEG sensors 2¢1%°, Furthermore, the
891  visual (VIS) and somatosensory (SM) systems showed higher BiS and DFA, whereas fronto-
892  parietal (FP) and default-model (DEF) systems showed lower BiS and DFA estimates than the
893  null-hypothesis observations (line plots, Supplementary Fig 9A). The surrogate data of no
894  systems-wise differences were constructed by shuffling Yeo system labels of the parcels. In MEG
895 y-band, DFA estimates were similar in magnitude to that of 6—a band, but BiS estimates were
896  about half of the magnitude of 6—a band. In particular, the dorsal-attention (DAN) and the
897  limbic (LIM) systems showed the highest y-band DFA, whereas VIS had the lowest DFA. There
898  were no differences in DFA and BiS estimates between Yeo systems (Wilcoxon’s signed-rank
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899  test, alpha@0.05, FDR corrected) confirming the negative findings of the Kruskal-Wallis tests
900  (Fig. 3F).

901 In SEEG, the 6—a and y band mean DFA and BiS estimates of Yeo systems appeared different
902 (Supplementary Fig. 9 C-D), which confirmed low correlations in group and systems-level in
903 individuals (Supplementary Fig. 7 & 8). Although visual systems in SEEG and MEG data were
904 comparable in 6—a band BiS and DFA estimates, in SEEG, the visual system showed lowest
905  6-a band BiS and DFA estimates.

906  The post-hoc tests (unpaired t-test, p < 0.05, FRD corrected) for between-system differences in
907 DFA and BiS estimates (see also Fig. 3F) revealed that DAN showed higher 6—a band DFA, FP and
908  DEF showed higher 6—a band BiS, ventral-attention (VAN) showed lower y band BiS than most
909  of other systems (interaction matrices, Supplementary Fig. 9 C—D). On the other hand, the VIS
910 and VAN show low DFA estimates. System-wise difference in DFA was only observed between
911 LIM and VAN, which validates the negative finding of systems’ effect on mean DFA (y band pink
912 dot in Fig 3F). On the other hand, the VIS, DAN, and LIM system showed high y band BiS
913  estimates, and VAN and FP systems have low BiS estimates. The VIS system had highest y band
914 BiS estimates.

915  Classifying epileptogenic zones (EZ)

916  Across subjects, there was large variability in the number of EZ contacts, i.e., the target variables
917  of the classifier (Supplementary Fig. 11A). To ensure there were enough data for the classifier
918  within subjects, a selection criterion was imposed such that each patient should have at least
919 five EZ and five nEZ contacts (red dashed lines, Supplementary Fig. 11A) and at least a total of 30
920  contacts. Thus, 55 subjects met these criteria and were selected for the classification analysis.
921  On average, each subject had 28.5£17.0 (mean, std) EZ and 66.4 £21.2 nEZ, and on population
922  the ratio of EZ:nEZ = 1/2.3 with some variability across Yeo systems, among which subcritical
923  contacts were ten times more likely to be EZ than nEZ (Supplementary Fig. 11B).

924 On population level, between EZ and nEZ contacts, several bands showed differences in
925  normalized DFA and BiS estimates (Fig. 5A—C). However, we were more interested in classifying
926  EZ contacts in individuals. As a liability check, we classified pooled individual contacts using all
927 nine features, i.e., 8, 0—a, B, and y band DFA and BiS estimates plus SEEG contact loci in Yeo
928  systems. The classification was performed using the random forest algorithm3® with a total of
929 5,217 contacts from 55 patients (Supplementary Fig. 11B) with randomly split 20% and 80% as
930 testing and training set, respectively. The analysis of the receiver operating characteristics (ROC)
931  of classification outcome revealed an area under the curve (AUC) of 0.8, and thus confirming
932  useful information among these features for within individual classification.

933  Global and local feature importance to the random forest classifier were next assessed with
934  SHAP values. The results supported the hypotheses that y- and B-band BiS, contact-locus and &-
935  band DFA were indeed the most important features to tell EZ apart from nEZ contacts (Fig. 5D).
936 To better understand the impact of the features on the classification outcome, the within-
937  subject EZ classifications were carried out with four incremental feature sets as using i) DFA
938 alone, ii) BiS alone, iii) combing DFA and BiS, iv) combing DFA, BiS, and contact-locus in Yeo
939 systems.
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940  The overall classification outcome was variable across Yeo systems and classifying EZ contacts in
941 limbic systems yielded best outcome (large AUC, Supplementary Fig. 11 D). Using DFA alone, the
942  algorithm performed poorly (gray line, Supplementary Fig. 11E). The individual subject ROC
943 curves showed large variability (Supplementary Fig. 11 F—I), and overall combing DFA, BiS, and
944  contact-locus yielded best outcome (black curve, Supplementary Fig. 11]). Last, the mean AUC of
945 ROC in Yeo systems (Supplementary Fig. 11E) and in individual patients (Supplementary Fig. 11J)
946  were compared against 1,000 label-shuffled surrogate data (Fig. 5E).
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947  Supplementary (S.) Figs
948  Supplementary Fig. 1
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949 Fluctuations at two different time-scale in Kuramoto Model. (A) With coupling strength (x) held

950 constant and just below the critical point (see Fig 1), slow fluctuations in p (the thick gray band) result in
951 (B) diverse patterns of bistability in the fast fluctuating mean field of the Kuramoto model (red).
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952  Supplementary Fig. 2
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953 SEEG electrode selection criteria and population sampling statistics. (A) SEEG contact selection
954 criteria, in brackets are the number of contacts after a specific criterion was applied. (B) The cumulative
955 distribution function (cdf) of contact number per subject after specific criteria were applied; colour code is
956 the same as in (A); inset is the cdf of spike samples out of 10 min resting from 4,693 SEEG contacts, red
957 dashed line indicates the threshold in box 5 in (A). (C) Contact number as a function of number of distinct
958 subjects per parcel (after morphing SEEG contacts into Schaefer 100-parcels); one marker represents one
959 Schaefer 100-parcle, red dashed lines are exclusion criteria, i.e., at least 3 subjects and 10 contacts per
960  parcel. (D) Visualization of distinct subject number and SEEG contact number per Schaefer parcel as
961 shown in (C). cWM-ref: closest white-matter contact reference scheme (Armulfo et al., 2015).
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962  Supplementary Fig. 3
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963  SEEG time series, bistability and DFA fitting. (A—D) Examples of bistability in nEZ SEEG contact signals
964 from four distinct subjects. mFG: middle frontal gyrus; sOG: superior occipital gyrus; mOG: middle occipital
965 gyrus; sTS: superior temporal sulcus. (E-J) Examples of bistable time series and model fitting of an EZ (E) and
966 a nEZ (H) contact. These two contact locations were 19.7 mm apart and recorded with two distinct electrodes
967 from the superior frontal gyrus (sFG) and were referenced with the same nearest white matter contact (Arnulfo et
968  al., 2015). (F) Examples of bi-exponential model fitting for BiS estimates and (G) DFA power-law fitting of 4
969 Hz and 40 Hz narrow-band real and surrogate time series of the EZ contact from (E). (I) Bi-exponential fitting
970 and (J) DFA power-law fitting of 4 Hz and 40 Hz narrow-band real and surrogate time series of the nEZ contact
971 from (H). The DFA fitting plot reads as, when the observation window size doubles (by narrow-band cycle
972 length — irrespective of frequency), the detrended fluctuation increase by a constant rate of log(DF).

33


https://doi.org/10.1101/2022.01.09.475554
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.09.475554; this version posted January 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

973  Supplementary Fig. 4
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974  Analysis pipeline for MEG and SEEG data, respectively.
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Supplementary Fig. 5
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The cortical origins of DFA and BiS are similar between neighbouring frequencies but different
between slow and fast rhythms demarcated at 40 Hz. (A) BiS and DFA of each Schaefer parcel (y axis)
observed at narrow-band frequency (x axis) ranging from 2 to 225 Hz for SEEG and MEG data. The 10
gray-out rows are the excluded SEEG parcels due to under sampling. (B) Parcel mean across frequencies
of real data (solid lines) and surrogate (dashed lines). (C) The distance between each frequency’s spatial
similarity. (A—C) share the same x-axis (Frequency); (D) Cross-frequency adjacency matrices of
topological similarity, the same as Fig 3A; correlation is the Spearman’s r between Schaefer Atlas parcels’
DFA or BiS of two different frequencies.
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984  Supplementary Fig. 6
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985 All-to-all cross correlations between frequencies, metrics and datasets. (A) Normalized group-level
986 Schaefer 100-parcel metrics afo frequencies. Normalization y = (x(i)-min(x)) /(max(x)- min(x)). (B) All-to-
987  all topological correlations between R, DFA, and BiS and between MEG and SEEG data (Spearman’s rank
988 order r, p>0.01, not controlled for FDR).
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989  Supplementary Fig. 7
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990 DFA and BiS estimates correlated in MEG and SEEG cortical parcels. (A)The adjacency matrix of
991 significant Spearman’s correlation between band-collapsed DFA and BiS (p < 10, FDR corrected). (B)
992 The effect size of the differences between DFA and BiS of MEG and SEEG data in Schaefer parcels
993 (n=90, due to exclusion of 10 SEEG parcels). (C—J) Scatter plots showing correlation between DFA
994 and BiS estimates in band-clustered all-to-all correlation matrix (top); each data point corresponds to
995 the group average metrics in one Schaefer 100-parcel (Nmec=100; Nsgeg = 90).
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996  Supplementary Fig. 8
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997 DFA and BiS are correlated in MEG and SEEG subsystems. Top left panel is from Fig 3H; top right is
998  the number of subjects observed in each Yeo system: MEG N=18, and SEEG N=50+9, range: 3660,

999 variable subject N per system in SEEG due to heterogeneous spatial sampling. In scatter plots, each dot
1000  corresponds to the observation from one subject.
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1001  Supplementary Fig. 9
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1002  Systems-level differences and anatomical localization of DFA and BiS. These are post hoc tests for
1003 differences in DFA and BiS between Yeo systems (Fig 31). (A-D) Neuro-anatomical localization of
1004  frequency-collapsed BiS and DFA; marker (*) in colour-bar label indicates significant differences between
1005 systems (Fig 3I). The line plots below the brains are median DFA/BiS of Yeo systems, dashed lines are
1006  5%- and 95%-tile of permutation median (Npermutaion = 10°). The adjacency matrices are the significant —

1007  logio(p) values of pairwise tests for between-system differences (SEEG: unpaired t-test; MEG: Wilcoxon’s
1008  signed-rank test, p<0.05, FDR corrected).
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(A) Left: percentage of parcels showed significant
correlation between executive function score (normalized zoo map time) and parcel DFA and BiS; right:
0—a band BiS as a function of DFA. (B) The behavioural correlations (primary y-axis) and probability of
parcels showing significant correlations (secondary y-axis) on functional systems-level (corrected for FDR).
(C) Top row: cortical maps of behavioural correlations; bottom row: subject neuronal estimates as a
function of executive score from exemplary regions of interest where each marker is the observation from
one subject (C=D) The corresponding p values of correlation tests in Fig 4A and C, respectively; dashed
lines indicate FDR (Benjamini-Hochberg procedure with FDR at 0.05 for 8 neuropsychological scores)
adjusted p values for eight neuropsychological tests. (E) Sorted p-values (thick line) of individual parcel
behavioural correlation for 6—a band DFA and (F) BiS estimates. Thin lines indicate Benjamini-Hochberg
procedure with FDR at 0.05 adjusted p values. (G) Examples of parcel-level behavioural correlations to
Zoom map time rank for a-band DFAs and (H) 6—a band BiS estimates, where each marker indicates one
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1023  Supplementary Fig. 11
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1024 Classification of EZ and nEZ SEEG contacts (both cortical and subcortical) using band clustered
1025 DFA and BiS estimates. (A) Number of EZ and nEZ contacts in each subject; solid dots indicate subjects
1026 who met selection criteria for classification analysis; red dashed lines indicate selection criterion: each
1027  subject must have great than five EZ and nEZ contacts. (B) EZ and nEZ contacts located in Yeo’s systems
1028 and subcortical (subC) regions, data pooled over 55 subjects from (A). (C) An example of the receiver
1029 operator curve (ROC) of preliminary population-level classification using all contacts and all features with
1030  randomly split test and train set (20% and 80%, respectively); TPR: true positive rate; FPR: false positive
1031 rate; AUC: area under the ROC curve. (D-J) Leave-one(subject)-out classification results using random
1032 forest algorithm. (D) The ROC of each subsystem, classification with the full feature set, D&B(Y). (E) The
1033  AUC yielded from classification using DFA only, BiS estimates only, combining DFA and BiS (D&B), and
1034 full feature set D&B(Y), i.e., DFA, BiS and SEEG contact loci. (F-I): individual (thin lines) and group
1035 average ROC (thick) yielded from classification using varying feature sets. (J) The AUC of ROCs shown
1036 in (F—J), subjects were sorted by the area under the ROC curve of D&B (Y) feature set.
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