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Abstract 19 

Advancements in deep plasma proteomics are enabling high-resolution measurement of plasma proteoforms, which may 20 

reveal a rich source of novel biomarkers previously concealed by aggregated protein methods. Here, we analyze 188 21 

plasma proteomes from non-small cell lung cancer subjects (NSCLC) and controls to identify NSCLC-associated protein 22 

isoforms by examining differentially abundant peptides as a proxy for isoform-specific exon usage. We find four proteins 23 

comprised of peptides with opposite patterns of abundance between cancer and control subjects. One of these proteins, 24 

BMP1, has known isoforms that can explain this differential pattern, for which the abundance of the NSCLC-associated 25 

isoform increases with stage of NSCLC progression. The presence of cancer and control-associated isoforms suggests 26 

differential regulation of BMP1 isoforms. The identified BMP1 isoforms have known functional differences, which may 27 

reveal insights into mechanisms impacting NSCLC disease progression.  28 

 29 
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Introduction 31 

Multiple isoforms of a single protein, or proteoforms, can arise due to alternative splicing (i.e., protein isoforms), allelic 32 

variation, and post translational modifications 1. Proteoforms play key and distinct roles in biological mechanisms, 33 

including impacting complex traits2 and disease3. For example, protein isoforms may differ in domain composition, where 34 

consequently each isoform may have substantially different functions and influence disease predisposition or progression. 35 

Advances in characterizing the proteomic landscape of lung cancers such as non-small cell lung cancer (NSCLC) and 36 

squamous cell lung cancer have enabled identification of important protein biomarkers4–6, however, few proteoforms 37 

relevant to lung cancer have been identified7, as these studies are limited to only single or few protein8–10 or proteoforms 38 

arising from different genes11. Unbiased readout technologies, such as high-resolution quantitative mass spectrometry 39 

(MS), can be employed to infer and quantify peptides and proteins with high confidence (e.g., < 1% false discovery rate 40 

(FDR)). However, large-scale LC-MS/MS-based proteomics studies have historically been impractical due to 41 

cumbersome and lengthy workflows required to achieve unbiased, deep, and rapid sampling of clinically relevant 42 

biospecimens with large dynamic ranges of protein abundances, such as blood plasma 12–14.  43 

Here, we analyze data from a previous study15 of independent acquisition (DIA)-based MS data generated from 188 44 

subjects (80 healthy control subjects and 108 subjects identified as having NSCLC) using the Proteograph™ workflow 45 

which uses nanoparticles (NPs) to enable high-resolution, unbiased, and deep assessment of the plasma proteome. We 46 

used a discordant peptide intensity search (Figure 1A) to infer four proteins with differentially abundant protein isoforms, 47 

including BMP1, for which we show has differential abundance of two isoforms (long and short), both of which have 48 

higher magnitude of differential abundance at later stages of NSCLC. BMP1 plays a role in collagen processing and the 49 

short isoform lacks the domains enabling its secretion, potentially impacting collagen’s protective role in cancer 50 

consistent with the higher abundance of the short isoform in cancer subjects observed in this paper. Hence, BMP1 51 

isoforms may constitute a novel biomarker previously concealed when assessing the aggregated BMP1 protein abundance. 52 
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Results 54 

Peptide-level analyses provides unique biological insight versus protein-level   55 

Starting from the previously derived analysis15, we searched for proteins and peptides that are differentially abundant 56 

(DA). First, to reduce potential noise introduced by rare peptides, proteins were filtered to those present in at least 50% of 57 

subjects from either 80 healthy or 61 early NSCLC (stages 1, 2 and 3) subjects, retaining 10,280 peptides and 1,565 58 

proteins across 141 subjects (Figure 1B). Next, as each protein may have been detected by more than one NP (each NP 59 

can be thought of as generating a separate MS fraction), we use MaxLFQ16 to quantify a single abundance (hereto referred 60 

to as collapsed abundances) between healthy and early NSCLC subjects. We evaluated differential protein abundance 61 

observing 243 significantly regulated proteins (adjusted p < 0.05; Wilcoxon Test) (Figure 1C, D). To investigate NPs 62 

capacity to capture biological signal beyond abundance levels (e.g., proteoform information, or NP specific protein 63 

complexes), we treated each NP:protein feature pair as a separate observation comparing healthy and early NSCLC 64 

subjects. We identified 877 NP:protein feature pairs (Figure 1E), corresponding to a 3.6-fold increase from examining 65 

differences at the aggregated level alone. This highlights the capacity of NPs coupled with LC-MS/MS to interrogate the 66 

proteome at a finer biological resolution (i.e. protein variants and complexes) than that captured by conventional DA 67 

analysis at the aggregated protein level. In addition, we performed DA analysis using peptide abundances across all NPs 68 

(i.e., not collapsed abundances) between healthy and early NSCLC subjects and identified 5,181 DA peptides (Figure 1C, 69 

E), corresponding to a 6.5-fold increase from examining differences at the protein-level. Further, we identified known 70 

hallmark cancer and inflammatory biomarkers which were differentially regulated in the peptide data (Supplemental 71 

Results, Figure 1D,E). Overall, this increased number of observed significant differences between proteins, protein across 72 

NPs, and peptides across NPs, verified by the presence of known cancer biomarkers, indicates substantial opportunity to 73 

increase biological insight and the potential to identify proteoforms using peptide-level, high resolution proteomics. 74 

 75 
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76 
Fig 1. Proteome analysis of healthy and NSCLC subjects using a 5 NP plasma workflow 77 

A. Overview of this proof-of-concept proteoform identification study. Plasma samples were collected from healthy (bl78 

non-small cell lung cancer (NSCLC; yellow), late NSCLC (orange), and co-morbid (green) subjects (Sample Collect79 

plasma proteomes were analyzed for each of these subjects, which included protein extraction, protein discovery u80 

NP-based Proteograph platform, then DIA protein/peptide identification and quantification using LC-MS/MS an81 

algorithms (Proteome Analysis). Proteoforms were then identified using a discordant peptide intensity search, which 82 

examining peptide mappings to known protein coding isoforms and using differential abundance to discover83 

isoforms. Together, these identified proteoforms represent an expanded plasma proteome database not captured in84 

MS-based or targeted proteomic studies (Expanded proteome). 85 

B. Barplots showing the number of peptides and proteins groups retained after filtering to those present in at leas86 

subjects from either heathy or early NSCLC. 87 

C. Barplots showing the number of differentially abundant (DA): 1) protein groups, with collapsed abundances using M88 

2) protein groups across NPs (i.e., DA independently across NPs); and 3) peptides across NPs.  89 

D. Volcano plot showing the significance (adjusted p-value; y-axis) and fold change (x-axis) from calculating the di90 

abundance of protein groups across NPs between healthy and early NSCLC subjects. Protein groups with a l91 
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Change) greater or less than 1.0 and adjusted p-value < 0.05 are highlighted, where protein groups with increased abundance 92 

in early NSCLC subjects are shown in orange and protein groups with increased abundance in healthy subjects are shown in 93 

teal. Proteins with known roles in cancer and immune response (ITIH2, CRP, S100A9, S100A8, ANTXR2, and ANTXR1) 94 

are highlighted with various shapes. 95 

E. Volcano plot showing the significance (adjusted p-value; y-axis) and fold change (x-axis) from calculating the differential 96 

abundance of peptides across NPs between healthy and early NSCLC subjects. Peptides with a log2(Fold Change) greater or 97 

less than 1.0 and adjusted p-value < 0.05 are highlighted, where peptides with increased abundance in early NSCLC subjects 98 

are shown in orange and peptides with increased abundance in healthy subjects are shown in teal. Peptides mapping to 99 

proteins with known roles in cancer and immune response (ITIH2, CRP, S100A9, S100A8, ANTXR2, and ANTXR1) are 100 

highlighted with various shapes. 101 

 102 

Identification of four NSCLC-associated proteoforms using peptide-level 103 

discordant peptide search 104 

Next, we explored whether we could use DA peptides in contrast to the average protein-level information to help resolve 105 

proteoforms. Specifically, we extracted DA peptides and retained proteins with at least one peptide over-expressed in 106 

healthy subjects and at least one peptide over-expressed in early NSCLC subjects (Figure 2A). Then, by mapping the DA 107 

peptides to genomic space, we inferred potential exon usage and proteoforms. We performed this discordant peptide 108 

intensity analysis and identified four proteins for which we potentially captured multiple protein isoforms with significant 109 

differential behavior in early NSCLC when compared to healthy controls: BMP1, C4A, C1R, and LDHB (Figure 2B). We 110 

examined the Open Target Score 17 (Release 21.09),   which is an association score of known and potential drug targets 111 

with diseases using integrated genome-wide data from a broad range of data sources, to assess the association of the 112 

four proteins with lung carcinoma targets. We found modest to low scores (Figure 2B), suggesting a mix of novel and 113 

known lung cancer-associated proteins. These proteins have all been previously identified in plasma and range from 114 

highly abundant (C4A, C1R, LDHB) to moderately abundant (BMP1) 18 (Figure 2C). BMP1, the least abundant of the 115 

four proteins, is not identified in depleted plasma  published in this study., indicating this approach identified protein 116 

isoforms inaccessible with conventional depleted plasma proteomics workflows. These results indicate that, using a MS-117 

based peptide discordant intensity search, we can infer proteoforms with possible relevance to NSCLC. 118 
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120 

2. Identification of four proteoforms, including BMP1, in 141 healthy and early NSCLC subjects u121 

discordant peptide intensity search  122 

Fig 

s using a 
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A. Cartoon describing the discordant peptide intensity search strategy. We calculated DA across peptides between healthy (blue) 123 

and early NSCLC (yellow). Protein groups with at least one peptide significantly over-expressed (triple asterisks) in healthy 124 

subjects (teal arrow) and at least one peptide over-expressed in early NSCLC subjects (orange arrow) were identified as 125 

having putative proteoforms. Mapping the peptides to the gene structure, we inferred potential exon usage and segments 126 

suggesting the detection of more than one protein isoform.  127 

B. Barplot showing four proteins in which we potentially captured multiple protein isoforms: BMP1, C4A, C1R, and LDHB and 128 

their associated Open Target Score for lung carcinoma.  129 

C. Plot showing the four proteins with putative proteoforms matched to a reference database (HPPP) plotted as a distribution by 130 

the rank order of published concentrations (x-axis) and by the log10 published concentration (ng/ml; y-axis).  131 

D. Box plot showing the log10 median normalized intensities of BMP1 in early NSCLC subjects (yellow) and in healthy subjects 132 

(blue) with collapsed abundances across NPs. P-values, calculated using a Wilcoxon test, are shown.  133 

E. Box plot showing the log10 median normalized intensities of BMP1 in early NSCLC subjects (yellow) and in healthy subjects 134 

(blue) in NP, SP-353-002. P-values, calculated using a Wilcoxon test, are shown.  135 

F. Series of boxplots showing the log10 median normalized intensities of seven peptides mapping BMP1 in early NSCLC 136 

(yellow) and healthy subjects (blue). Peptides that are over-expressed in healthy subjects are indicated with a teal arrow and 137 

in early NSCLC are indicated with an orange arrow. Peptides that are significantly DA are indicated with a triple asterisk. P-138 

values, calculated using a Wilcoxon test and adjusted, are shown.  139 

G.  Heatmap showing the Pearson correlation of the seven BMP1 peptide abundances, where low correlation is indicated in 140 

shades of blue and high correlation is indicated in shades of red. Correlation values were clustered using hierarchical 141 

clustering. Peptides are annotated by the direction of DA, including over-expressed in healthy subjects are highlighted in teal 142 

and early NSCLC are highlighted in orange. 143 

H. Gene structure plots of four known BMP1 protein coding transcripts (i.e., isoforms) with the seven BMP1 peptides mapped 144 

to genomic region. Peptides spanning intronic regions are indicated with a horizontal line. Peptides 1 and 2, corresponding to 145 

being over-expressed early NSCLC, are boxed in orange, creating one segment. Peptides 37, corresponding to being over-146 

expressed healthy, are boxed in teal, creating a second segment. Segment 2 appears to correspond to the shorter isoform 1, 147 

whereas segment 2 appears to correspond to the longer isoforms 2-4. 148 

 149 

To interrogate the extent to which isoforms information adds to disease insight, we examined differences in abundances 150 

between healthy and early NSCLC subjects for BMP1 (Figure 2D-G), C4A (Supplemental Figure 1), C1R (Supplemental 151 
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Figure 2), and LDHB (Supplemental Figure 3) at the collapsed protein-level, NP:protein-level, and peptide-level. 152 

Examining BMP1, at the collapsed protein (Figure 2D) and NP:protein (Figure 2E) level, we do not observe a 153 

difference in BMP1 abundance, as a result of an averaging of peptide abundances occurring at the protein-level. 154 

However, at the peptide-level (Figure 2F), there are three significantly differential peptides: 1) peptide 1, which is 155 

significantly upregulated in early NSCLC subjects (adjusted p = 5.29 x 10-4; Wilcoxon Test); 2) peptide 3, which is 156 

significantly upregulated in healthy subjects (adjusted p = 1.21 x 10-2; Wilcoxon Test); and 3) peptide 7, which is 157 

significantly upregulated in healthy subjects (adjusted p = 4.99 x 10-2; Wilcoxon Test). We also observe a trend in 158 

direction of abundance differences, where the first two peptides are upregulated in early NSCLC subjects and the last 159 

five peptides are upregulated in healthy subjects (Figure 2F). To assess whether these two groups of peptides belong to 160 

different proteoforms, we further compared their abundance similarities across the 141 subjects. We expect peptides that 161 

belong to the same proteoform to have correlated abundances across a cohort of individuals since they belong to the same 162 

molecular entity while peptides belonging to different proteoforms should have less-correlated abundances across the 163 

same cohort of individuals. We thus performed pairwise Pearson correlation and hierarchical clustering analysis, 164 

which showed two distinct clusters driven by a high degree of correlation in peptide 1 and 2 (cluster 1) and peptides 165 

3-7 (cluster 2) (Figure 2G). We next mapped the peptides to their genomic sequence, including four protein coding 166 

isoform transcripts (ENST00000397814, ENST00000354870, ENST00000306349, and ENST00000306385), and 167 

ordered them according to exon order (Figure 2H). We observed two distinct segments of corresponding direction of 168 

BMP1 peptide differential abundance. Specifically, peptides 1 and 2 were both upregulated in early NSCLC subjects 169 

(segment 1) and peptide 3-7 were all upregulated in healthy subjects (segment 2) (Figure 2F). Peptides mapping 170 

segment 1 exclusively map to exons present in the short isoform (ENST00000397814), whereas peptides mapping to 171 

segment 2 exclusively map to exons present in the three longer isoforms (ENST00000354870, ENST00000306349, 172 

and ENST00000306385) (Figure 2H). The opposite pattern of abundance of the long and short isoforms in early 173 

NSCLC subjects versus healthy subjects suggest that BMP1 isoforms may play a role in cancer and may serve as a 174 

novel biomarker.. This pattern is exaggerated when examining long and short isoforms in late-stage NSCLC 175 

subjects, where we observe a trend of increasing upregulation of segment 1 peptides (short BMP1 isoform) and a 176 
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trend of decreasing upregulation of segment 2 peptides (long BMP1 isoform) between healthy subjects, Stage 1 and 177 

2 NSCLC subjects, and Stage 3 and 4 NSCLC subjects (Supplemental Figure 4).  178 

 179 

Discussion 180 

Existing technologies, including an unbiased bottom-up NP-based methodology upstream of LC-MS/MS-based 181 

workflows and targeted methodologies, have enabled protein-centric analyses that have revealed new insights into human 182 

disease. While protein-centric bottom-up analyses have made substantial strides in our understanding of human biology, 183 

aggregating peptide level quantifications to the protein level may conceal biologically critical features, such as 184 

proteoforms arising from alternative splicing (protein isoform), allelic variation (protein variants), or post-translational 185 

modifications, which may provide mechanistic insights and novel biomarkers underlying complex traits and disease. 186 

Importantly, unbiased LC-MS/MS-based proteomic data can be re-mined to enable peptide-centric analyses that may 187 

reveal new information about proteoforms. In this study, we use peptide-level information derived from LC-MS/MS data 188 

to enable proteoform identification using discordant peptide abundance and apply that to a NSCLC cohort. Typically, 189 

protein inference engines use peptide-level data to detect the presence or absence of peptides to identify protein isoforms. 190 

However, here we show the utility of incorporating quantitative profiles of peptides mapping to known isoforms in 191 

potentially increasing the sensitivity of the underlying proteoform detection. Thus, we hypothesized that previously 192 

generated LC-MS/MS plasma proteomic data can be reanalyzed at the peptide-level using quantitative profiles to infer 193 

protein isoforms15, potentially yielding deeper insights into disease mechanisms and we demonstrated that such a 194 

reanalysis revealed known and putative, novel disease-relevant proteoforms. 195 

We performed peptide analysis using DIA data derived from healthy and early NSCLC subjects by conducting a 196 

discordant peptide intensity search to identify protein isoforms. We identified four proteins with DA peptides and putative 197 

isoforms, including BMP1, C4A, C1R, and LDHB. Importantly, none of these proteins showed a difference in abundance 198 

at the protein-level. For BMP1 and C1R, using peptide abundance as a proxy for functionally relevant proteins we 199 

identified potential NSCLC-related isoforms.  We showed BMP1 has differential abundance of two isoforms (long and 200 
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short), both of which have higher magnitude of differential abundance at later stages of NSCLC. BMP1 plays a role in 201 

collagen processing and the short isoform lacks the domains enabling its secretion, potentially impacting collagen’s 202 

protective role in cancer consistent with the higher abundance of the short isoform in cancer subjects observed in this 203 

paper. Additionally, C4A showed distinct peptide abundance discordance in one segment of the protein, which did not 204 

correspond to any known protein coding isoforms, suggesting peptide-centric proteoform identification may result in 205 

novel disease-associated isoforms. 206 

The method we used to search for protein isoforms through discordant peptide intensity is stringent in terms of the number 207 

of protein isoform candidates we can find, but easily interpretable. Similar approaches such as COPF 19 and PeCorA 20 use 208 

quantitative disagreements between peptides mapped to the same protein or peptide correlation within the same protein to 209 

detect protein isoforms and suggest proteoforms. However, as shown with our examples where 2 of the 4 isoform 210 

candidates (C1R and LDHB) met the discordant peptide intensity criteria but failed to be readily explained by known 211 

isoforms or biological conjecture, evaluation of the validity of the isoform candidate is needed but is outside the scope of 212 

this study. In this paper, our validation was mapping the peptides back to the genomic sequence and known isoform 213 

transcripts. Manual validation (e.g., isoform specific enrichment with isoform specific antibodies) can confirm the 214 

presence of novel isoforms. This might be possible for the limited candidates arising from our stringent isoform detection 215 

process, however, other processes such COPF and PeCorA could yield dramatically more candidates. 216 

It is possible that the finding of only four protein isoforms in 188 subjects has been impacted by limited sample sizes 217 

reducing our power to identify proteoforms. Similarly, it is also possible that other undiscovered proteoforms are not 218 

functional in plasma and may only be identified in other biofluids or tissues. While our study shows the utility of using 219 

NP-based methodology upstream LC-MS/MS-based workflows to identify proteoforms, it is possible that expanding the 220 

sample size and diversity in sample type may yield further insights into disease-associated proteoforms. In addition, LC-221 

MS/MS enables quantifying and identifying tens of thousands of peptides with post-translational modifications precisely 222 

defined by their intact mass and fragmentation pattern.  223 

The identification of proteoforms (protein isoforms) highlights important considerations for current approaches 224 

characterizing the impact of genetic variation on molecular phenotypes, like protein abundance, by conducting protein 225 

quantitative trait analyses (pQTLs). Specifically, recent pQTL analyses using large cohorts 21 are performed at the protein-226 
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level and largely miss or misattribute peptide-level proteoform effects. Furthermore, these studies utilize aptamer and 227 

antibody-based methodologies that, as been recently shown 21, can lead to false discoveries and uncertain identification 228 

error rates because of conceptual limitations (e.g., the presence of a non-synonymous SNP inducing an amino acid change 229 

that disrupts the binding of the aptamer or antibody). Interrogating protein abundances with this high resolution approach 230 

provides deeper insight into the molecular mechanisms underlying human biology and opens a possible new avenue for 231 

biomarker identification and therapeutic development. 232 

 233 

Materials and methods 234 

Identification of protein isoforms 235 

As previously reported, plasma from healthy subjects and from subjects diagnosed with NSCLC at stage 1, 2, 3, and 4 was 236 

collected and processed with the Proteograph™ workflow 15 and DIA data was generated and processed (Supplemental 237 

Methods). From the 1,565 proteins present after filtering, we searched for peptides that had differential abundance 238 

between controls and cancer (p < 0.05; Benjamini-Hochberg corrected). Discordant pairs are defined as peptides from the 239 

same protein where at least one peptide was identified with significantly higher, and another peptide was identified with 240 

significantly lower plasma abundance in healthy controls vs. early NSCLC. 241 

This work generated no additional data from new or existing patient samples and used raw data already deposited in the 242 

public database ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) with the 243 

dataset PXD017052. 244 

Protein quantification across multiple samples 245 

Within each nanoparticle, standard MaxLFQ was used to quantify abundance at the protein level. For each peptide, the 246 

intensity ratios between every pair of samples were first computed. The pairwise protein ratio is then defined as the 247 

median of the peptide ratios from all peptides map to the same protein. With all the pairwise protein ratios between any 248 

two samples, we can perform a least-squares analysis to reconstruct the abundance profile optimally satisfying all the 249 
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protein ratios. Then the whole profile is rescaled to the cumulative intensity across samples for the final protein abundance 250 

22. A modified MaxLFQ was used to quantify abundance across samples and nanoparticles. For each protein, all peptides’ 251 

intensities belonging to a protein from all samples and NP were employed to calculate peptide ratios and subsequent 252 

calculation steps resulting in abundance across all samples and NP. 253 
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