

1 **Globally invariant metabolism but density-diversity mismatch in springtails**

2 Anton M. Potapov^{1,2*}, Carlos A. Guerra^{3,4}, Johan van den Hoogen⁵, Anatoly Babenko², Bruno C. Bellini⁶,
3 Matty P. Berg^{7,8}, Steven L. Chown⁹, Louis Deharveng¹⁰, Ľubomír Kováč¹¹, Natalia A. Kuznetsova¹², Jean-
4 François Ponge¹³, Mikhail B. Potapov¹², David J. Russell¹⁴, Douglas Alexandre¹⁵, Juha M. Alatalo¹⁶, Javier
5 I. Arbea¹⁷, Ipsa Bandyopadhyay¹⁸, Verónica Bernava¹⁹, Stef Bokhorst⁷, Thomas Bolger^{20,21}, Gabriela
6 Castaño-Meneses²², Matthieu Chauvat²³, Ting-Wen Chen^{24,1}, Mathilde Chomel²⁵, Aimee T. Classen²⁶,
7 Jerome Cortet²⁷, Peter Čuchta²⁴, Ana Manuela de la Pedrosa²⁵, Susana S. D. Ferreira⁷, Cristina Fiera²⁷,
8 Juliane Filser²⁸, Oscar Franken^{7,8,85}, Saori Fujii²⁹, Essivi Gagnon Koudji³⁰, Meixiang Gao³¹, Benoit
9 Gendreau-Berthiaume³², Diego F. Gomez-Pamies³³, Michelle Greve³⁴, I. Tanya Handa³⁰, Charlène
10 Heiniger³⁵, Martin Holmstrup³⁶, Pablo Homet³⁷, Mari Ivask³⁸, Charlene Janion-Scheepers^{39,4}, Malte
11 Jochum^{3,4}, Sophie Joimel⁴⁰, Bruna Claudia S. Jorge⁴¹, Edite Jucevica⁴², Luís Carlos Iuñes de Oliveira
12 Filho⁴³, Osmar Klauberg-Filho⁴³, Dilmar Baretta⁴⁴, Eveline J. Krab^{45,46}, Annely Kuu⁴⁷, Estevam C. A. de
13 Lima⁴⁸, Dunmei Lin⁴⁹, Amy Liu⁹, Jing-Zhong Lu¹, María José Luciañez²⁵, Michael T. Marx⁵⁰, Matthew M.
14 McCary⁵¹, Maria A. Minor⁵², Taizo Nakamori⁵³, Ilaria Negri⁵⁴, Raúl Ochoa-Hueso^{55,56}, José G. Palacios-
15 Vargas⁵⁷, Melanie M. Pollierer¹, Pascal Querner^{58,59}, Natália Raschmanová¹¹, Muhammad Imtiaz Rashid⁶⁰,
16 Laura J. Raymond-Léonard³⁰, Laurent Rousseau³⁰, Ruslan A. Saifutdinov², Sandrine Salmon⁶¹, Emma J.
17 Sayer^{62,63}, Nicole Scheunemann^{1,64}, Cornelia Scholz⁵⁹, Julia Seeber^{65,66}, Yulia B. Shveenkova⁶⁷, Sophya K.
18 Stebaeva², Maria Sterzynska⁶⁸, Xin Sun⁶⁹, Windi I Susanti¹, Anastasia A. Taskaeva⁷⁰, Madhav P.
19 Thakur⁷¹, Maria A. Tsiafouli⁷², Matthew S. Turnbull⁷³, Mthokozisi N. Twala³⁴, Alexei V. Uvarov², Lisa A.
20 Venier⁷⁴, Lina A. Widenfalk^{75,76}, Bruna R. Winck⁴¹, Daniel Winkler⁷⁷, Donghui Wu^{78,79,80}, Zhijing Xie⁷⁸,
21 Rui Yin^{81,82}, Douglas Zeppelini⁸³, Thomas W. Crowther⁵, Nico Eisenhauer^{3,81}, Stefan Scheu^{1,84}

22

23 ¹Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen,
24 Germany. ²A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia.

25 ³Experimental Interaction Ecology Group, German Centre for Integrative Biodiversity Research (iDiv) Halle-
26 Jena-Leipzig, Leipzig, Germany. ⁴Institute of Biology, Martin Luther University Halle Wittenberg, Halle
27 (Saale), Germany. ⁵Department of Environmental Systems Science, Institute of Integrative Biology, ETH
28 Zürich, Zürich, Switzerland. ⁶Department of Botany and Zoology, Federal University of Rio Grande do Norte,
29 RN, Brazil. ⁷Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.

30 ⁸Community and Conservation Ecology Group, Groningen Institute of Evolutionary Life Science, University of
31 Groningen, Amsterdam, the Netherlands. ⁹Securing Antarctica's Environmental Future, School of Biological
32 Sciences, Monash University, Australia. ¹⁰ISYEB, Muséum National d'Histoire Naturelle, Paris, France.
33 ¹¹Department of Zoology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University
34 in Košice, košice, Slovakia. ¹²Institute of Biology and Chemistry, Moscow Pedagogical State University,
35 Moscow, Russia. ¹³Département Adaptations du Vivant, Muséum National d'Histoire Naturelle, Brunoy,
36 France. ¹⁴Department of Soil Zoology, Senckenberg Society for Nature Research, Görlitz, Germany.
37 ¹⁵Department of Soil Science, Centre for Agriculture and Veterinary Science, Santa Catarina State University
38 University (UDUESC- Lages), Lages, SC, Brazil. ¹⁶Environmental Science Center, Qatar University, Doha,
39 Qatar. ¹⁷Department of Sciences, CEPA Camargo, Astillero, Spain. ¹⁸Visva Bharati University, Bengal, India.
40 ¹⁹Administración de Parques Nacionales, Argentina. ²⁰School of Biology and Environmental Science, University
41 College Dublin, Dublin, Ireland. ²¹Earth Institute, University College Dublin, Dublin, Ireland. ²²Unidad
42 Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Campus Juriquilla, Universidad Nacional
43 Autónoma de México, Querétaro, México. ²³Normandie University - UNIROUEN, INRAE, ECODIV, Rouen,
44 France. ²⁴Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, České Budějovice,
45 Czech Republic. ²⁵Departamento de Biología (Zoología, Universidad Autónoma de Madrid, Spain. ²⁶Department
46 of Ecology & Evolutionary Biology, University of Michigan, MI 48109. ²⁷Institute of Biology Bucharest,
47 Romanian Academy, Romania. ²⁸FB 02, UFT, General and Theoretical Ecology, University of Bremen,
48 Bremen, Germany. ²⁹Department of Forest Entomology, Forestry and Forest Products Research Institute,
49 Tsukuba, Japan. ³⁰Département des Sciences Biologiques, Université du Québec à Montréal, Québec, Canada.
50 ³¹Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, China.
51 ³²Département des Sciences Naturelles, Université du Québec en Outaouais, Québec, Canada. ³³Instituto de
52 Biología Subtropical, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de
53 Misiones, Puerto Iguazú, Argentina. ³⁴Department of Plant and Soil Sciences, University of Pretoria, Pretoria,
54 South Africa. ³⁵HES-SO University of Applied Sciences and Arts Western Switzerland. ³⁶Section of Terrestrial
55 Ecology, Department of Ecosystems, Aarhus University, Aarhus, Denmark. ³⁷Instituto de Recursos Naturales y
56 Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain.
57 ³⁸Tartu College, Tallinn University of Technology, ³⁹Department of Biological Sciences, University of Cape
58 Town, Rondebosch, South Africa. ⁴⁰Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 78850
59 Thiverval-Grignon. ⁴¹Quantitative Ecology Lab, Department of Ecology, Universidade Federal do Rio Grande

60 do Sul, Porto Alegre, Brazil. ⁴²Institute of Biology, University of Latvia, Riga, Latvia. ⁴³Department of Soil
61 Science, Centre for Agriculture and Veterinary Science, Santa Catarina State University (UDESC-Lages),
62 Lages, SC, Brazil. ⁴⁴Department of Animal Science, Santa Catarina State University (UDESC Oeste), Chapecó,
63 SC, Brazil. ⁴⁵Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala,
64 Sweden. ⁴⁶Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå
65 University, Abisko, Sweden. ⁴⁷Institute of Agricultural and Environmental Sciences, Estonian University of Life
66 Sciences, Tartu, Estonia. ⁴⁸Departamento de Entomologia, Museu Nacional, Universidade Federal do Rio de
67 Janeiro, Rio de Janeiro, Brazil. ⁴⁹Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment,
68 Ministry of Education, Chongqing University, Chongqing, China. ⁵⁰Institute of Zoology, Johannes Gutenberg
69 University Mainz, Mainz, Germany. ⁵¹Department of BioSciences, Rice University, Houston, US. ⁵²Wildlife &
70 Ecology Group, School of Agriculture and Environment, Massey University, New Zealand. ⁵³Graduate School
71 of Environment and Information Sciences, Yokohama National University, Yokohama, Japan. ⁵⁴Department of
72 Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Piacenza, Italy.
73 ⁵⁵Department of Biology, IVAGRO, University of Cádiz, Puerto Real, Spain. ⁵⁶Department of Terrestrial
74 Ecology, Netherlands Institute of Ecology (NIOO KNAW), Wageningen, NL-6700 AB the Netherlands. ⁵⁷Lab.
75 Ecología y Sistemática de Microartrópodos, Depto. Ecología y Recursos Naturales, Facultad de Ciencias,
76 Universidad Nacional Autónoma de México, México, México. ⁵⁸Natural History Museum Vienna, 1. Zoology,
77 Vienna, Austria. ⁵⁹Department of Integrated Biology and Biodiversity Research, University of Natural
78 Resources and Life Sciences, Vienna, Austria. ⁶⁰Center of Excellence in Environmental Studies, King Abdulaziz
79 University, Saudi Arabia. ⁶¹UMR 7179 MECADEV - AVIV department, Muséum National d'Histoire Naturelle,
80 Brunoy, France. ⁶²Lancaster Environment Centre, Lancaster University, Lancaster, UK. ⁶³Smithsonian Tropical
81 Research Institute, Balboa, Ancon, Panama, Rep. Panama. ⁶⁴Department of Soil Zoology, Senckenberg Museum
82 of Natural History Görlitz, Görlitz, Germany. ⁶⁵Institute for Alpine Environment, Eurac Research, Bozen, Italy.
83 ⁶⁶Department of Ecology, University of Innsbruck, Innsbruck, Austria. ⁶⁷State Nature Reserve "Privolzhskaya
84 Lesostep", Penza, Russia. ⁶⁸Department of Systematics, Zoogeography and Ecology of Invertebrates, Museum
85 and Institute of Zoology Polish Academy of Science, Warsaw, Poland. ⁶⁹Key Laboratory of Urban Environment
86 and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China. ⁷⁰Institute of
87 Biology, Komi Science Centre, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia. ⁷¹Institute of
88 Ecology & Evolution, University of Bern, Bern, Switzerland. ⁷²Department of Ecology, School of Biology,
89 Aristotle University of Thessaloniki, Thessaloniki, Greece. ⁷³Unaffiliated, Edmonton, Canada. ⁷⁴Canadian

90 Forest Service, Natural Resources Canada, Sault Ste. Marie, Canada. ⁷⁵Department of Ecology, Swedish
91 University of Agricultural Sciences, Uppsala, Sweden. ⁷⁶Greensway AB, Uppsala, Sweden. ⁷⁷Institute of
92 Wildlife Management and Wildlife Biology, University of Sopron, Sopron, Hungary. ⁷⁸Key laboratory of
93 Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of
94 Sciences, Changchun 130102, China. ⁷⁹Key Laboratory of Vegetation Ecology, Ministry of Education,
95 Northeast Normal University, Changchun 130024, China. ⁸⁰Jilin Provincial Key Laboratory of Animal Resource
96 Conservation and Utilization, Northeast Normal University, Changchun 130117, China. ⁸¹Institute of Biology,
97 Leipzig University, Leipzig, Germany. ⁸²Community Department, Helmholtz Center for Environmental
98 Research, Halle, Germany. ⁸³Department of Biology, Paraiba State University, Brazil. ⁸⁴Centre of Biodiversity
99 and Sustainable Land Use, University of Göttingen, Göttingen, Germany. ⁸⁵Department of Coastal Systems,
100 Royal Netherlands Institute for Sea Research, Landsdiep 4, 't Horntje (Texel), 1797 SZ the Netherlands. *e-
101 mail: potapov.msu@gmail.com

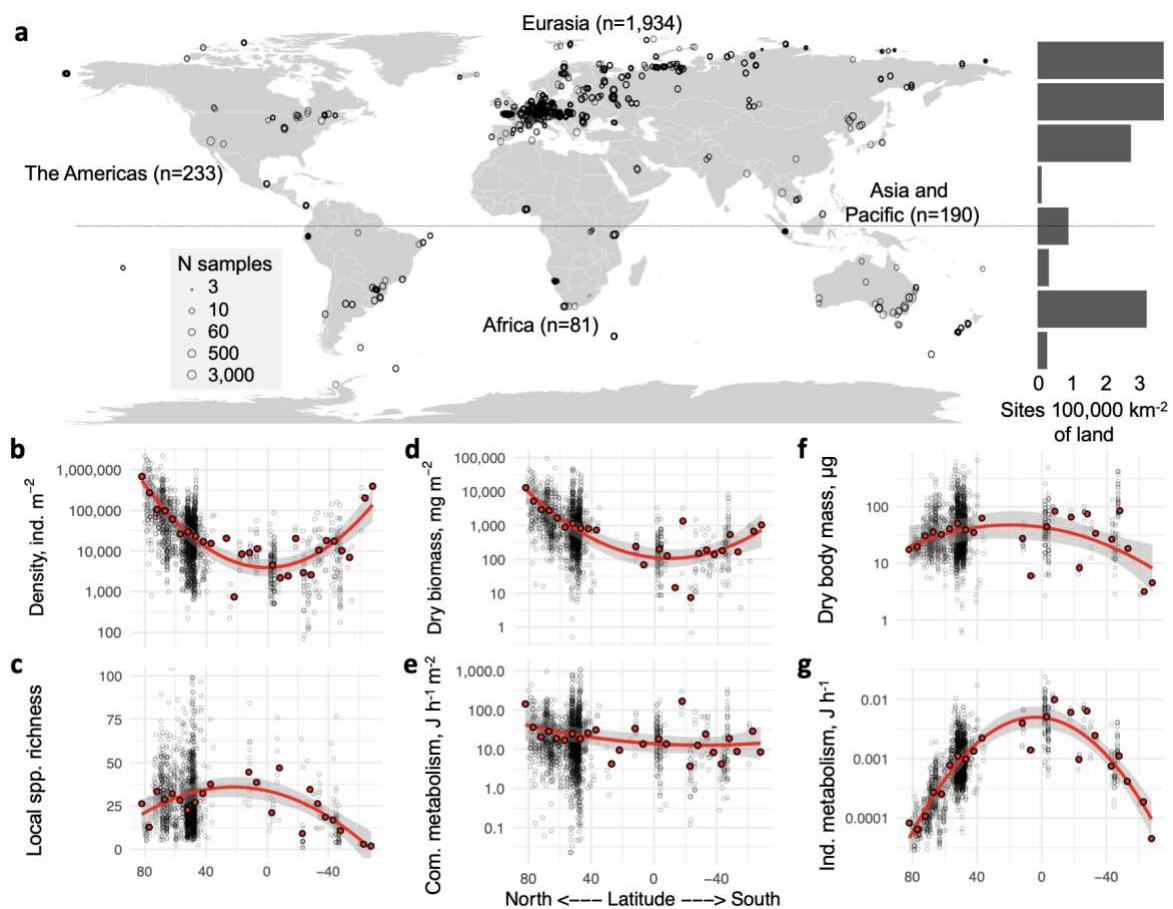
102

103 **Soil life supports the functioning and biodiversity of terrestrial ecosystems^{1,2}.**
104 **Springtails (Collembola) are among the most abundant soil animals regulating soil**
105 **fertility and flow of energy through above- and belowground food webs^{3–5}. However, the**
106 **global distribution of springtail diversity and density, and how these relate to energy**
107 **fluxes remains unknown. Here, using a global dataset collected from 2,470 sites, we**
108 **estimate total soil springtail biomass at 29 Mt carbon (threefold higher than wild**
109 **terrestrial vertebrates⁶) and record peak densities up to 2 million individuals per m² in**
110 **the Arctic. Despite a 20-fold biomass difference between tundra and the tropics,**
111 **springtail energy use (community metabolism) remains similar across the latitudinal**
112 **gradient, owing to the increase in temperature. Neither springtail density nor**
113 **community metabolism were predicted by local species richness, which was highest in**
114 **the tropics, but comparably high in some temperate forests and even tundra. Changes**
115 **in springtail activity may emerge from latitudinal gradients in temperature,**
116 **predation^{7,8}, and resource limitation^{7,9,10} in soil communities. Contrasting temperature**

117 **responses of biomass, diversity and activity of springtail communities suggest that**
118 **climate warming will alter fundamental soil biodiversity metrics in different directions,**
119 **potentially restructuring terrestrial food webs and affecting major soil functions.**

120
121 Soil biodiversity is an essential component of every terrestrial habitat that affects nutrient
122 cycling, soil fertility and plant-soil feedbacks, among other ecosystem functions and
123 services^{1,2,11}. Soil functioning is jointly driven by multiple components of soil biota that are
124 closely interconnected, including plants, microorganisms, micro-, meso-, and macrofauna^{12,13}.
125 Land use, human activities, and climate changes induce widespread and rapid changes in the
126 abundance, diversity, and activity of soil biota, altering functional connections and
127 ecosystem-level processes in the terrestrial biosphere¹⁴. To understand, predict, and adapt to
128 these changes, comprehensive knowledge about the global distribution of multiple soil biota
129 components is urgently needed^{15,16}.
130 With a growing understanding of the biogeography of microorganisms¹⁷, micro-¹⁸ and
131 macrofauna¹⁹, a critical knowledge gap is the global distribution of soil mesofauna.
132 Springtails (Collembola, Hexapoda) are among the most abundant groups of mesofauna and
133 soil animals from the equator to polar regions^{4,5}. They are mostly microbial feeders, but also
134 graze on litter and are often closely associated with plant roots^{3,20}. Through these trophic
135 relationships, springtails affect the growth and dispersal of prokaryotes, fungi, and plants,
136 thereby supporting nutrient cycling via the transformation, degradation, and stabilisation of
137 organic matter^{5,21}. Furthermore, springtails are a key food resource for soil- and surface-
138 dwelling predators^{3,5}, thus occupying a central position in soil food webs and supporting
139 multitrophic biodiversity.
140 To assess different functional facets of biological communities, metrics such as population
141 density and biomass (reflecting carbon stocks), taxonomic and phylogenetic diversity

142 (ensuring multifunctionality and stability), and metabolic activity (quantifying energy fluxes
143 and thus functional influence) are commonly used^{6,22–24}. Soil biodiversity assessments have
144 found unexpected global hotspots in temperate regions for microorganisms (fungi and
145 prokaryotes)¹⁷ and macrofauna (earthworms)¹⁹, which are not in line with the common
146 latitudinal biodiversity gradient found in aboveground organisms²⁵. Functional
147 complementarity principles²³ suggest that diverse soil communities in temperate ecosystems
148 are able to support higher organismal densities and have a more efficient resource use (i.e.,
149 higher total activity) than at other latitudes. However, there are no global assessments of soil
150 animal metabolic activities. In contrast to expectations of complementarity principles,
151 previous studies on plants^{26,27} and microbes^{9,17} suggest that diversity and activity (represented
152 by respiration) do not co-vary at the global scale, probably because strong environmental
153 constraints limit this relationship. These discrepancies emphasize the need to investigate
154 relationships of multiple metrics of soil animal communities. Springtails are an ideal model
155 organism for exploring such relationships at a global scale, due to their ubiquity, functional
156 diversity and high local species richness^{3–5}.


157 Current knowledge suggests that springtails are especially abundant and diverse in temperate
158 coniferous forests and tundra, but less diverse in polar regions^{24,28}. Many springtails are
159 adapted to high and stable humidity, and sensitive to drought and temperature changes^{29,30}.
160 Consequently, springtail density and diversity is likely to decrease with future climate
161 change, detrimentally affecting soil food webs and ecosystem functioning³¹. At the same
162 time, springtail densities are relatively high in urban areas and in agricultural fields^{32,33}, so
163 global springtail biomass may be moderately affected by land-use changes worldwide.
164 Disentangling the roles of vegetation, climate, human disturbance, and other drivers of
165 various springtail community metrics will be critical to understand their contribution to soil
166 functioning under different global change scenarios^{15,18}.

167 Here, we report the joint projection of density, diversity, and metabolic activity of soil
168 springtail communities at the global scale and test whether high species richness supports
169 increased density and total activity across springtail communities globally, or whether this
170 relationship is constrained by environmental and biotic controls. We further aimed (1) to
171 assess whether the global distribution of springtail diversity matches that of aboveground
172 biota or other soil animals; (2) to test how different metrics of springtail communities are
173 affected by climate and human activities; and (3) to quantify the global biomass of springtails
174 as a component of the global carbon stock. Using an extensive dataset of soil springtail
175 communities collected within the framework of the #GlobalCollembola initiative⁵ (2,470
176 sites and 43,601 samples across all continents; Fig. 1a), we show contrasting patterns across
177 soil biodiversity metrics at a global scale and demonstrate that springtails are among the most
178 functionally important and ubiquitous animals in the terrestrial biosphere.

179 Latitudinal gradient

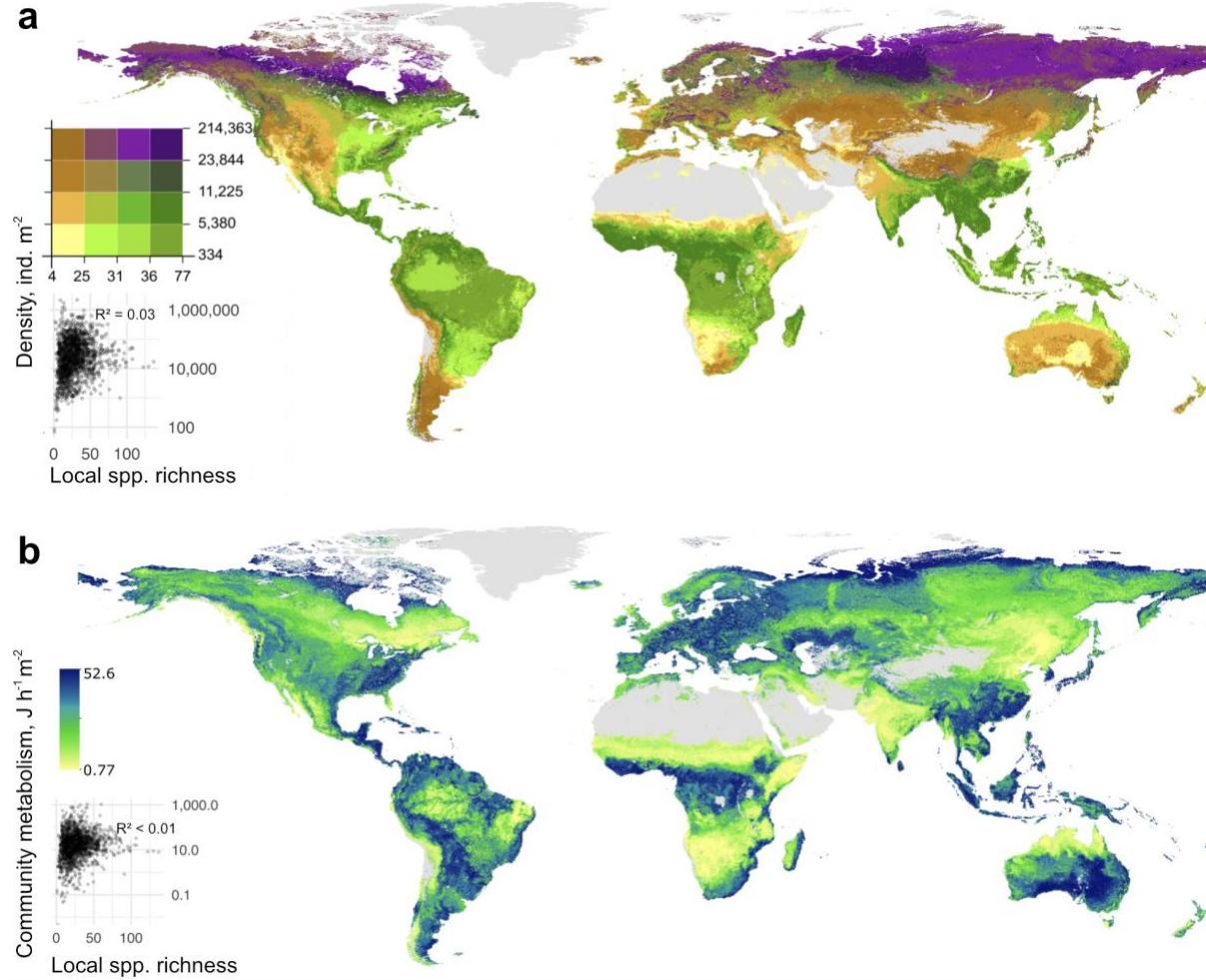
180 To calculate total biomass and metabolism of each springtail community, we used recorded
181 population densities together with estimated individual body masses and metabolic rates.
182 Body masses and metabolic rates were derived from taxon-specific body lengths using mean
183 annual soil temperature and allometric regressions (for calculations and parameter
184 uncertainties see Methods). For the assessment of local species richness, we selected 70% of
185 the sampling sites with taxonomically-resolved communities and calculated rarefaction
186 curves to account for unequal sampling efforts. As such, our trends refer to local diversity
187 (hundreds of meters), but may not be representative of regional-level diversity³⁴.
188 Springtail density varied c. 30-fold across latitudes (Fig. 1b), with maximum densities in
189 tundra (median = 131,422 individuals m⁻²) and minimum densities in tropical forests (5,831
190 individuals m⁻²) and agricultural ecosystems (3,438 individuals m⁻²; Fig. S2; n = 2,210).

191 Springtail dry biomass followed the same trend, with c. 20-fold higher biomass in tundra
192 (median = 3.09 g m^{-2}) compared to tropical agricultural and forest ecosystems (c. 0.16 g m^{-2}),
193 due to a lower average community body mass in polar as opposed to temperate and tropical
194 ecosystems (Fig. 1d,f; Fig. S2; $n = 2,053$). These density and biomass estimates are in line
195 with earlier studies²⁴ but cover wider environmental gradients. The difference in average
196 community body mass may be explained by lower proportion of large surface-dwelling
197 springtail genera in polar regions³⁵.

198

199 **Fig. 1 | Sampling locations and latitudinal gradients in springtail community metrics. a,**
200 Distribution of the 2,470 sampling sites (43,601 soil samples). The histogram shows the
201 number of sites in each 20-degree latitudinal belt, relative to the total land area in the belt. **b-**
202 **g**, Variation in density ($n = 2,210$), local species richness ($n = 1,735$), biomass, community
203 metabolism, average body mass and average individual metabolism ($n = 2,053$) with latitude.

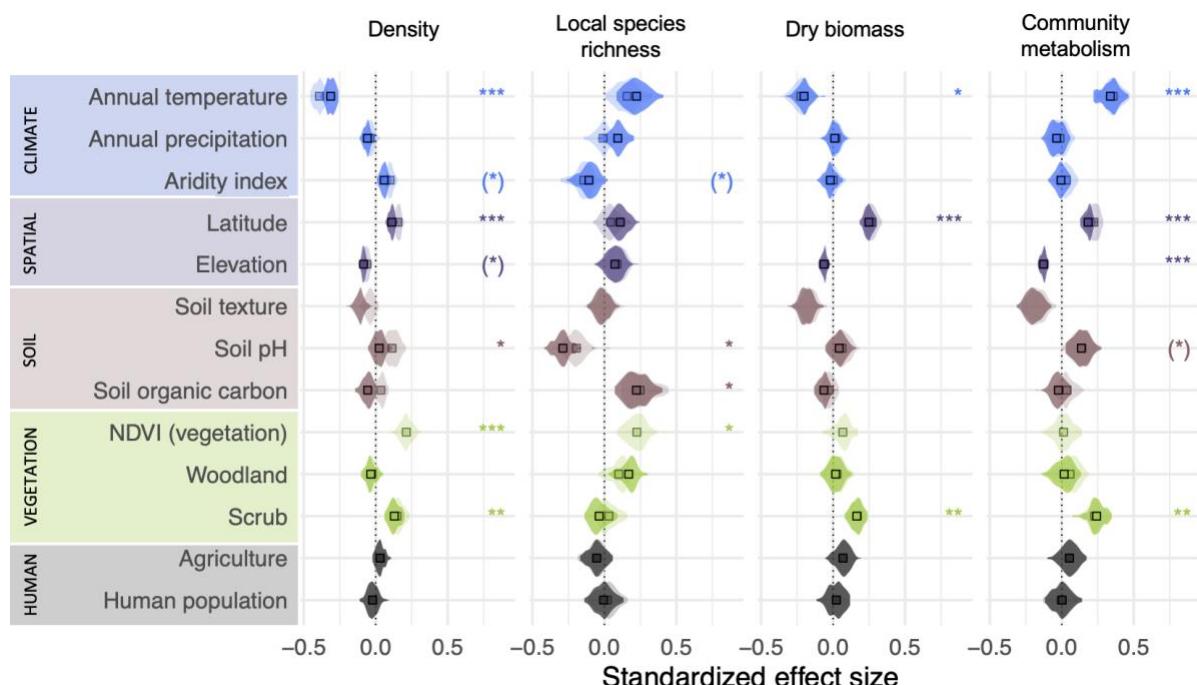
204 Grey circles across panels show sampling sites; red points are averages for 5-degree
205 latitudinal belts; trends are illustrated with a quadratic function based on 5-degree averages.
206
207 Being dependent on temperature and body mass, average individual metabolism was
208 approximately 20 times higher in tropical than in polar ecosystems (Fig. 1g), which resulted
209 in similar community metabolism across the latitudinal gradient (Fig. 1e; total n = 2,053).
210 Hence, tropical springtail communities expend a similar amount of energy per unit time and
211 area as polar communities, despite having 20-fold lower biomass. This striking pattern
212 resembles aboveground ecosystem respiration, which also changes little across the global
213 temperature gradient²⁷. High metabolic rates but low densities of springtail communities are
214 consistent with the high soil respiration rates and low litter accumulation in the tropics
215 compared to biomes at higher latitudes^{9,16}. Litter removal is facilitated by soil animals, which
216 have to consume more food per unit biomass to meet their metabolic needs under high
217 tropical temperatures⁷ and thus enhance decomposition in wet and warm tropical
218 ecosystems¹⁰. This suggests that soil animal communities in the tropics are under strong
219 bottom-up control (by the amount and quality of litter), but also under strong top-down
220 control by predators, which likewise have to feed more at high temperatures^{7,8}. By contrast,
221 polar communities have access to ample organic matter stocks¹⁶, are under weaker top-down
222 control^{7,8}, but their activity is constrained by the cold environment. The latitudinal gradient in
223 environmental and biotic controls may explain why community metabolism did not increase
224 as expected towards warm tropical ecosystems.
225 We found only weak latitudinal trends in local species richness, which was highest in tropical
226 forests (mean = 36.6 species site⁻¹) and lowest in temperate agricultural (19.5 species site⁻¹)
227 and grassland ecosystems (22.8 species site⁻¹; Fig. 1c; Fig. S2). Generally, the similar local
228 diversity in different climates deviates from the latitudinal biodiversity gradients reported for


229 aboveground and aquatic taxa^{25,26} and corroborates the hypothesized mismatch between
230 above- and belowground biodiversity distributions³⁶. This mismatch calls for explicit
231 assessments of soil biodiversity hotspots for monitoring and conservation of soil organisms¹⁵.

232 Global distribution and its drivers

233 To map the global distribution of springtail community metrics and uncover its drivers, we
234 pre-selected climatic, vegetation, soil, topographic and anthropogenic variables with known
235 ecological effects on springtails (Extended Data Fig. 9a). To perform a global extrapolation,
236 we used 22 of the pre-selected variables that were globally available and applied a random
237 forest algorithm to identify the strongest spatial associations of community parameters with
238 environmental layers¹⁸. To reveal the key driving factors of springtail communities, we ran a
239 path analysis with 12 non-collinear variables (Extended Data Fig. 9b). The European spatial
240 clustering in our data distribution (Fig. 1a), was taken in consideration with a continental-
241 scale validation in both analyses (see Methods).

242 At the global scale, species richness was not related to biomass (Pearson's $R^2 = 0.02$) or
243 density (Pearson's $R^2 = 0.03$; Fig. 2a). Our extrapolations revealed at least five types of
244 geographical areas with specific combinations of density and species richness patterns (Fig.
245 2a): (1) polar regions with very high densities and medium to high species richness such as
246 the Arctic; (2) temperate regions with medium densities and high species richness such as
247 mountainous and forested areas in Europe, Asia and North America; (3) temperate regions
248 with medium to high densities but moderate species richness such as arid temperate biomes
249 (e.g., dry grasslands); (4) temperate, subtropical and tropical arid ecosystems with low
250 densities and species richness such as semi-deserts and other arid regions; (5) tropical areas
251 with low densities but high species richness such as tropical forests and grasslands. Hotspots
252 of springtail community metabolism were observed across a range of different latitudes (Fig.


253 2b), but were not associated with biodiversity hotspots (Pearson's $R^2 < 0.01$), emphasizing
254 that species richness is neither associated with higher density nor activity of springtail
255 communities at the global scale.

256
257 **Fig. 2 | Global maps overlapping modelled springtail density and local species richness**
258 **(a) and community metabolism (b) in soil.** In (a) colours distinguish areas with different
259 combinations of density and species richness, e.g., low density - low richness is given in
260 yellow and high density - high richness in violet. In (b) the colour gradient indicates
261 community metabolism, with potential hotspots shown in blue. All data were projected at the
262 30 arcsec (approximately 1 km²) pixel scale. Pixels below the extrapolation threshold are
263 masked. Correlations between density or metabolism and species richness (inset graphs) are
264 based on site-level data.

265

266 Path analysis suggested that springtail density increases with latitude, NDVI (vegetation
267 richness), aridity index and at high soil pH, but decreases with increasing mean annual
268 temperature and elevation (Fig. 3). The positive global relationship of density with the aridity
269 index was unexpected for physiologically moisture-dependent animals such as springtails²⁹,
270 but was also observed in nematodes¹⁸ and is probably due to the low amount of precipitation
271 in circumpolar climates and very few data from desert sites. Density and biomass of
272 springtails increased with precipitation within the tropical zone (Extended Data Fig. 8).
273 Similar to patterns for earthworms¹⁹, soil properties had less evident linear effects on
274 springtail density than climate at the global scale. However, the relationships of density with
275 soil pH and organic carbon content were hump-shaped, suggesting that intermediate values of
276 these parameters are optimal for springtails (Extended Data Fig. 8), which is also observed
277 for nematodes¹⁸. Existing evidence points to soil properties as key drivers of microfauna
278 (nematodes)⁶, climate as a key driver of macrofauna (earthworms)⁷ and a combination of both
279 as drivers of mesofauna (springtails) at the global scale.

280

281 **Fig. 3 | Environmental drivers of springtail communities at the global scale.** Standardized
282 effect sizes for direct (semi-transparent colour) and total (direct and indirect, solid colour)
283 effects from path analysis are shown for density ($R^2 = 0.36 \pm 0.01$, $n = 723$ per iteration),
284 local species richness ($R^2 = 0.20 \pm 0.02$, $n = 352$), biomass ($R^2 = 0.40 \pm 0.02$, $n = 568$) and
285 community metabolism ($R^2 = 0.17 \pm 0.02$, $n = 533$). Mean values (squares) and data
286 distribution (violins) are shown. Asterisks denote factors with a significant direct effect ($p <$
287 0.05) on a given springtail community metric for $>25\%^{(*)}$, $>50\%^{*}$, $>75\%^{**}$ and $>95\%^{***}$ of
288 iterations.

289
290 Springtail density and biomass were lower in woodlands, grasslands and agricultural sites in
291 comparison to scrub-dominated landscapes (Fig. 3). In contrast to previous global
292 assessments of soil animal biodiversity^{18,19}, tundra was extensively sampled in our dataset (n
293 = 253; Fig. 1a), and densities >1 million individuals per square meter were recorded at 12
294 independent sites. The high species richness of tundra communities (Fig. 2a), suggests a long
295 evolutionary history of springtails in cold climates; indeed, they are currently the most
296 taxonomically represented group of terrestrial arthropods in the Arctic³⁵ and the Antarctic³⁷.
297 Tundra remains under snow cover for most of the year, flourishing during summer when high
298 springtail densities were recorded. During winter, springtails survive under the snow using
299 remarkable adaptations to subzero temperatures (dehydration³⁸ and ‘supercooling’³⁸).
300 Importantly, tundra soils contain a major proportion of the total soil organic matter and
301 microbial biomass stored in the terrestrial biosphere¹⁶. As climate warming alters carbon
302 cycling in the tundra³⁹, longer active periods of springtails could accelerate soil carbon
303 release to the atmosphere in polar regions⁴⁰.
304 Across tropical ecosystems in the Amazon basin, equatorial Africa and Southeast Asia, low
305 density and biomass of springtails were recorded and extrapolated (Fig. 2a, Extended Data

306 Figs. 4 and 6). Mesofauna in general have low abundances in tropical ecosystems, where the
307 litter layer is shallow and larger soil-associated invertebrates, such as earthworms, termites
308 and ants, play a more important role²⁴. Our study supports this trend also found in recent
309 global assessments of other soil invertebrates^{18,19,41}. However, considering the high mass-
310 specific metabolism of springtails and high predation rates in tropical communities^{7,8,22}, a
311 quantitative comparison of energy flows and stocks across latitudes and groups of soil fauna
312 is needed.

313 Interestingly, we found no pronounced influence of agriculture and human population on
314 springtail communities at the global scale; agriculture tended to have a positive impact on
315 biomass but a negative impact on species richness (Fig. 3). Agricultural sites had similar
316 springtail densities compared to woodlands and grasslands in the temperate zone (ca. 15-25k
317 individuals m⁻²; Extended Data Fig. 3), which may be explained by large variation in
318 management within each of these habitat types. Some springtail species effectively survive in
319 agricultural fields³³, where they are involved in nutrient cycling and serve as biocontrol
320 agents by grazing on pathogenic fungi⁴² and supporting arthropod predators⁴³. Springtails are
321 also commonly found in urban areas³². However, the negative trend in species richness at
322 human-modified sites suggests that intensive land use may reduce springtail diversity, which
323 is indeed often recorded^{32,33,44}.

324 The only variable that was positively associated with both density and local species richness
325 of springtails, was NDVI (as a proxy for vegetation richness), reinforcing the close
326 connection between springtail communities and the vegetation²⁰. Overall, high local species
327 richness was predicted in warm, acidic woodlands with high soil organic carbon stocks (Fig.
328 3) and geospatial extrapolation emphasized tropical regions and some boreal forests in North
329 America and Eurasia as springtail diversity hotspots (Extended Data Fig. 5). In our dataset,
330 sites with the highest extrapolated local species richness (i.e., >100 species) were located in

331 European woodlands (Czech Republic, Slovakia). However, this picture may be biased by the
332 historical clustering of taxonomic expertise in Europe⁵. Outside Eurasia, species-rich sites
333 (i.e. 60-80 species) were located in Vietnamese monsoon forests and some Brazilian
334 rainforests, but 70-90% of species in tropical communities remain undescribed^{45,46}. Thus,
335 despite low springtail density, tropical forests contribute substantially to global springtail
336 diversity but the full extent of this contribution is unknown.

337 Our extrapolations suggest that there are c. 2×10^{18} soil springtails globally and their total
338 biomass comprises c. 29 Mt C (c. 200 Mt fresh weight), with respiration of c. 16 Mt C month⁻¹
339 (which is c. 0.2% of the global soil respiration⁹). Our biomass estimates are very similar to
340 the global estimated biomass of nematodes (c. 31 Mt C¹⁸), but lower than that of earthworms
341 (c. 200 Mt C¹⁹), and exceeding by far that of all wild terrestrial vertebrates (c. 9 Mt C)⁶,
342 demonstrating that springtails are among the most abundant and ubiquitous animals on Earth.

343 Overall, our global dataset on soil springtail communities synthesized the work of soil
344 zoologists across the globe. It presents another milestone towards understanding the
345 functional composition of global soil biodiversity. Being highly abundant in polar regions
346 and some human-modified landscapes, springtails are facing two main global change
347 frontiers: warming in the polar regions, and land-use change and urbanization in temperate
348 and tropical regions. While the global abundance and biomass of springtails may decline with
349 climate warming in the coming decades, their global activity may remain unchanged. The
350 global diversity of springtails will depend on the balance between anthropogenic
351 transformations and conservation efforts of biomes worldwide.

352

353 References

- 354 1. FAO, ITPS, GSBI, SCBD & EC. *State of knowledge of soil biodiversity Status, challenges and*
355 *potentialities, Report 2020.* (FAO, 2020). doi:10.4060/cb1928en.
- 356 2. Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning.
357 *Nature* **515**, 505–511 (2014).
- 358 3. Rusek, J. Biodiversity of Collembola and their functional role in the ecosystem. *Biodiversity and*
359 *Conservation* **7**, 1207–1219 (1998).
- 360 4. Hopkin, S. P. *Biology of springtails: (Insecta: Collembola)*. (Oxford Science Publications, 1997).
- 361 5. Potapov, A. *et al.* Towards a global synthesis of Collembola knowledge – challenges and
362 potential solutions. *Soil Organisms* **92**, 161–188 (2020).
- 363 6. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. *Proceedings of the*
364 *National Academy of Sciences* **115**, 6506–6511 (2018).
- 365 7. Rall, B. C. *et al.* Universal temperature and body-mass scaling of feeding rates. *Philosophical*
366 *Transactions of the Royal Society B: Biological Sciences* **367**, 2923–2934 (2012).
- 367 8. Roslin, T. *et al.* Higher predation risk for insect prey at low latitudes and elevations. *Science* **356**,
368 742–744 (2017).
- 369 9. Huang, N. *et al.* Spatial and temporal variations in global soil respiration and their relationships
370 with climate and land cover. *Science Advances* **6**, eabb8508 (2020).
- 371 10. Wall, D. H. *et al.* Global decomposition experiment shows soil animal impacts on decomposition
372 are climate-dependent. *Global Change Biology* **14**, 2661–2677 (2008).
- 373 11. Handa, I. T. *et al.* Consequences of biodiversity loss for litter decomposition across biomes.
374 *Nature* **509**, 218–221 (2014).
- 375 12. Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil
376 community composition determine ecosystem multifunctionality. *Proceedings of the National*
377 *Academy of Sciences* **111**, 5266–5270 (2014).
- 378 13. Delgado-Baquerizo, M. *et al.* Multiple elements of soil biodiversity drive ecosystem functions
379 across biomes. *Nature Ecology & Evolution* **4**, 210–220 (2020).

380 14. Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity
381 in the Anthropocene. *Current Biology* **29**, R1036–R1044 (2019).

382 15. Guerra, C. A. *et al.* Tracking, targeting, and conserving soil biodiversity. *Science* **371**, 239–241
383 (2021).

384 16. Crowther, T. W. *et al.* The global soil community and its influence on biogeochemistry. *Science*
385 **365**, (2019).

386 17. Bahram, M. *et al.* Structure and function of the global topsoil microbiome. *Nature* **560**, 233–237
387 (2018).

388 18. van den Hoogen, J. *et al.* Soil nematode abundance and functional group composition at a global
389 scale. *Nature* (2019) doi:10.1038/s41586-019-1418-6.

390 19. Phillips, H. R. P. *et al.* Global distribution of earthworm diversity. *Science* **366**, 480–485 (2019).

391 20. Fujii, S., Saitoh, S. & Takeda, H. Effects of rhizospheres on the community composition of
392 Collembola in a temperate forest. *Applied Soil Ecology* **83**, 109–115 (2014).

393 21. Filser, J. *et al.* Soil fauna: key to new carbon models. *Soil* **2**, 565–582 (2016).

394 22. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic
395 theory of ecology. *Ecology* **85**, 1771–1789 (2004).

396 23. Hooper, D. U. *et al.* Effects of biodiversity on ecosystem functioning: A consensus of current
397 knowledge. *Ecological Monographs* **75**, 3–35 (2005).

398 24. Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in
399 decomposition processes. *Oikos* **39**, 288–388 (1982).

400 25. Hillebrand, H. On the Generality of the Latitudinal Diversity Gradient. *The American Naturalist*
401 **163**, 192–211 (2004).

402 26. Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. *Proceedings of*
403 *the National Academy of Sciences* **104**, 5925–5930 (2007).

404 27. Enquist, B. J., Kerkhoff, A. J., Huxman, T. E. & Economo, E. P. Adaptive differences in plant
405 physiology and ecosystem paradoxes: insights from metabolic scaling theory. *Global Change*
406 *Biology* **13**, 591–609 (2007).

407 28. Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in
408 belowground communities. *Ecology Letters* **12**, 1238–1249 (2009).

409 29. Kærsgaard, C. W., Holmstrup, M., Malte, H. & Bayley, M. The importance of cuticular
410 permeability, osmolyte production and body size for the desiccation resistance of nine species of
411 Collembola. *Journal of Insect Physiology* **50**, 5–15 (2004).

412 30. Janion-Scheepers, C. *et al.* Basal resistance enhances warming tolerance of alien over indigenous
413 species across latitude. *Proceedings of the National Academy of Sciences* **115**, 145–150 (2018).

414 31. Peguero, G. *et al.* Fast attrition of springtail communities by experimental drought and richness–
415 decomposition relationships across Europe. *Global Change Biology* **25**, 2727–2738 (2019).

416 32. Joimel, S. *et al.* Urban and industrial land uses have a higher soil biological quality than expected
417 from physicochemical quality. *Science of The Total Environment* **584–585**, 614–621 (2017).

418 33. Filser, J., Mebes, K.-H., Winter, K., Lang, A. & Kampichler, C. Long-term dynamics and
419 interrelationships of soil Collembola and microorganisms in an arable landscape following land
420 use change. *Geoderma* **105**, 201–221 (2002).

421 34. Phillips, H. R. *et al.* Response to Comment on “Global distribution of earthworm diversity”.
422 *Science* **371**, (2021).

423 35. Babenko, A. B. The structure of springtail fauna (Collembola) of the Arctic. *Entomological
424 Review* **85**, 878–890 (2005).

425 36. Cameron, E. K. *et al.* Global mismatches in aboveground and belowground biodiversity.
426 *Conservation Biology* (2019).

427 37. Baird, H. P., Janion-Scheepers, C., Stevens, M. I., Leihy, R. I. & Chown, S. L. The ecological
428 biogeography of indigenous and introduced Antarctic springtails. *Journal of Biogeography* **46**,
429 1959–1973 (2019).

430 38. Sørensen, J. G. & Holmstrup, M. Cryoprotective dehydration is widespread in Arctic springtails.
431 *Journal of Insect Physiology* **57**, 1147–1153 (2011).

432 39. Box, J. E. *et al.* Key indicators of Arctic climate change: 1971–2017. *Environmental Research
433 Letters* **14**, 045010 (2019).

434 40. Sørensen, L. I., Holmstrup, M., Maraldo, K., Christensen, S. & Christensen, B. Soil fauna
435 communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast
436 Greenland. *Polar Biology* **29**, 189–195 (2006).

437 41. Johnston, A. S. A. & Sibly, R. M. Multiple environmental controls explain global patterns in soil
438 animal communities. *Oecologia* **192**, 1047–1056 (2020).

439 42. Goncharov, A. A. *et al.* Detrital subsidy alters the soil invertebrate community and reduces
440 infection of winter wheat seedlings by Fusarium wilt. *Applied Soil Ecology* **163**, 103914 (2021).

441 43. von Berg, K., Thies, C., Tscharntke, T. & Scheu, S. Changes in herbivore control in arable fields
442 by detrital subsidies depend on predator species and vary in space. *Oecologia* **163**, 1033–1042
443 (2010).

444 44. Tsiafouli, M. A. *et al.* Intensive agriculture reduces soil biodiversity across Europe. *Global
445 Change Biology* **21**, 973–985 (2015).

446 45. Shveenkova, Y. Springtail communities (Collembola, Hexapoda). in *Structure and Functions of
447 Soil Communities of a Monsoon Tropical Forest (Cat Tien National Park, southern Vietnam)* (ed.
448 Tiunov, A. V.) 131–147 (KMK Scientific Press, 2011).

449 46. Deharveng, L. & Bedos, A. Factors influencing diversity of soil Collembola in a tropical
450 montane forest (Doi Inthanon, Northern Thailand). in *Soil biota, nutrient cycling and farming
451 systems* (eds. Paoletti, M. G., Foissner, W. & Coleman, D. C.) (Lewis Publishers, 1993).

452

453 Methods

454 **Data reporting.** The data underpinning this study is a compilation of existing datasets and
455 therefore, no statistical methods were used to predetermine sample size, the experiments were
456 not randomized and the investigators were not blinded to allocation during experiments and
457 outcome assessment. The measurements were taken from distinct samples, repeated
458 measurements from the same sites were averaged.

459 **Data acquisition.** Data were primarily collected from individual archives of contributing co-
460 authors. Both published and unpublished data were collected, using raw data whenever
461 possible entered into a common template. In addition, data available from Edaphobase⁴⁷ was
462 included. The following minimum set of variables was collected: collectors, collection
463 method (including sampling area and depth), extraction method, identification precision and
464 resources, collection date, latitude and longitude, vegetation type (generalized as grassland,
465 scrub, woodland, agriculture and ‘other’ for the analysis), and abundances of springtail taxa
466 found in each soil sample (or sampling site). Underrepresented geographical areas (Africa,
467 South America, Australia and Southeast Asia) were specifically targeted by a literature search
468 in the Web of Science database using the keywords ‘springtail’ or ‘Collembola’, ‘density’ or
469 ‘abundance’ or ‘diversity’, and the region of interest; data were acquired from all found
470 papers if the minimum information listed above was provided. In total, 363 datasets
471 comprising 2,783 sites were collected and collated into a single dataset (Extended Data Fig.
472 1).

473 **Calculation of community parameters.** Community parameters were calculated at the site
474 level. Here, we defined a site as a locality that hosts a defined springtail community, is
475 covered by a certain vegetation type and has a maximum spatial extent (diameter) of several
476 hundred meters, making species co-occurrence and interactions plausible. To calculate
477 density, numerical abundance in all samples was averaged and recalculated per square meter
478 using the sampling area. Springtail communities were assessed predominantly during active
479 vegetation periods (i.e., spring, summer and autumn in temperate and boreal biomes, and
480 summer in polar biomes). Our estimations of community parameters therefore refer to the
481 most favourable conditions (peak yearly densities). This seasonal sampling bias is likely to
482 have little effect on our conclusions, since most springtails survive during cold periods^{38,48}.

483 Finally, we used mean annual temperatures⁴⁹ to estimate the seasonal mean community
484 metabolism (described below).

485 All data analyses were conducted in R v. 4.0.2⁵⁰ with RStudio interface v. 1.4.1103 (RStudio,
486 PBC), unless otherwise mentioned. To calculate local species richness, we used data
487 identified to species or morphospecies level. Since the sampling effort varied among studies,
488 we extrapolated species richness using rarefaction curves based on individual samples with
489 the Chao estimator⁵¹ in the vegan package⁵². For some sites, sample-level data were not
490 available in the original publications, but an extensive sampling effort was made. In such
491 cases, we predicted extrapolated species richness based on the completeness (ratio of
492 observed to extrapolated richness) recorded at sites where sample-level data were available
493 (only sites with 5 or more samples were used for the prediction). We built a binomial model
494 to predict completeness in sites where no sample-level data were available (435 sites in
495 Europe, 15 in Australia, 6 in South America, 4 in Asia, and 3 in Africa) using latitude and the
496 number of samples taken at a site as predictors.

497 To calculate biomass, we first cross-checked all taxonomic names with the collembola.org
498 checklist⁵³ using fuzzy matching algorithms (*fuzzyjoin* R package⁵⁴) to align taxonomic
499 names and correct typos. Then we merged taxonomic names with a dataset on body lengths
500 compiled from the BETSI database⁵⁵, a personal database of Matty P. Berg, and additional
501 expert contributions. We used average body lengths for the genus level (body size data on
502 432 genera) since data at the species level were not available for many species and
503 morphospecies, and species within most springtail genera had similar body size ranges. Dry
504 and fresh body masses were calculated from body length using a set of group-specific length-
505 mass regressions (Extended Data Table 1)^{56,57} and the results of different regressions applied
506 to the same morphogroup were averaged. Dry mass was recalculated to fresh mass using
507 corresponding group-specific coefficients⁵⁶. We used fresh mass to calculate individual

508 metabolic rates⁵⁸ and account for the mean annual topsoil (0-5 cm) temperature at a given
509 site⁵⁹. Group-specific metabolic coefficients for insects (including Collembola) were used for
510 the calculation: normalization factor (i_0) $\ln(21.972)$ [$J h^{-1}$], allometric exponent (a) 0.759, and
511 activation energy (E) 0.657 [eV]⁵⁸. Community-weighted (specimen-based) mean individual
512 dry masses and metabolic rates were calculated for each sample and then averaged by site
513 after excluding 10% of maximum and minimum values as outlier samples with small
514 sampling areas, which have a high probability of randomly including large individuals. To
515 calculate site-level biomasses and community metabolism, we summed masses or metabolic
516 rates of individuals, averaged them across samples, and recalculated them per unit area (m^2).
517 **Parameter uncertainties.** Our biomass and community metabolism approximations contain
518 several assumptions and ignore latitudinal variation in body sizes within taxonomic groups⁶⁰.
519 Nevertheless, latitudinal differences in springtail density (30-fold), environmental
520 temperature (from -17.0 to +27.6°C), and genus-level community compositions (there are
521 only few common genera among polar regions and the tropics)⁵³ are higher than the
522 uncertainties introduced by indirect parameter estimations, which allowed us to detect global
523 trends. Although most springtails are concentrated in the litter and uppermost soil layers²⁴,
524 their vertical distribution depends on the particular ecosystem⁶¹. Since sampling methods are
525 usually ecosystem-specific (i.e. sampling is done deeper in soils with developed organic
526 layers), we treated the methods used by the original data collectors as representative of a
527 given ecosystem. Under this assumption, we might have underestimated the number of
528 springtails in soils with deep organic horizons, so our global estimates are conservative and
529 we would expect true global density and biomass to be slightly higher. To minimize these
530 effects, we excluded sites where the estimations were likely to be unreliable (see data
531 selection below).

532 **Data selection.** Only data collection methods allowing for area-based recalculation (e.g.
533 Tullgren or Berlese funnels) were used for analysis. Data from artificial habitats, coastal
534 ecosystems, caves, canopies, snow surfaces, and strong experimental manipulations beyond
535 the bounds of naturally occurring conditions were excluded (Extended Data Fig. 1). To
536 ensure data quality, we performed a two-step quality check: technical selection and expert
537 evaluation. Collected data varied according to collection protocols, such as sampling depth
538 and the microhabitats (layers) considered. To technically exclude unreliable density
539 estimations, we explored data with a number of diagnostic graphs (see Supplementary Data
540 Cleaning Protocol) and filtered it, excluding the following: (1) All woodlands where only soil
541 or only litter was considered; (2) All scrub ecosystems where only ground cover (litter or
542 mosses) was considered; (3) Agricultural sites in temperate zones where only soil with
543 sampling depth <10 cm was considered. Additionally, 10% of the lowest values were
544 individually checked and excluded if density was unrealistically low for the given ecosystem
545 (outliers with density over three times lower than 1% percentile within each ecosystem type).
546 In total, 237 sites were excluded from density, and 394 sites from biomass, and community
547 metabolism analyses based on these criteria. For the local species richness estimates, we
548 removed all extrapolations based on sites with fewer than three samples and no
549 (morpho)species identifications (647 sites; Extended Data Fig. 1).

550 **Data expert evaluation.** We performed manual expert evaluation of every contributed
551 dataset. Evaluation was done by an expert board of springtail specialists, each with extensive
552 research experience in a certain geographic area. Each dataset was scored separately for
553 density and species richness as either trustworthy, acceptable, or unreliable. Density
554 estimation quality was assessed using information about the sampling and extraction method
555 and the density estimation itself. Species richness estimation quality was assessed using
556 information about the identification key, experience of the person who identified the material,

557 species (taxa) list, and the species richness estimation itself. Based on the expert opinions,
558 unreliable estimates of density (together with biomass and community metabolism) and
559 species richness were excluded (Extended Data Fig. 1). The resulting final dataset included
560 2,470 sites and 43,601 samples⁶² with a median of six samples collected at each site. The
561 dataset comprised 2,210 sites with density estimation (69 - 2,181,600 individuals m⁻²), 2,053
562 sites with mean fresh body mass (1.8 - 3,110 µg), mean metabolic rate (0.028 - 2.4 mJ h⁻¹),
563 dry biomass (0.5 - 92,943 mg m⁻²), fresh biomass (1.6 - 277,028 mg m⁻²) and community
564 metabolism estimations (0.03 - 999.68 J h⁻¹), and 1,735 sites with local species richness
565 estimation (1 - 136.7 species; Extended Data Figs. 1 and 2).

566 **Data transformation.** All parameters except for extrapolated local species richness were
567 highly skewed (e.g., density had a global median of 21,016 individuals m⁻² and a mean of
568 60,454 individuals m⁻²) and we applied log₁₀-transformation prior to analysis. This greatly
569 improved the fit of all statistical analyses.

570 **Latitudinal and ecosystem trends.** To explore changes in springtail communities with
571 latitude, we sliced the global latitudinal gradient into 5-degree bins and calculated average
572 parameters across sites in each bin after trimming to ensure the same statistical weight for
573 each latitudinal bin while plotting the gradient. The latitudinal gradient was plotted with
574 *ggplot2*⁶³, and quadratic smoothers were used to illustrate trends. Mean parameters of
575 springtail communities were compared across ecosystem types using a linear model and
576 multiple comparisons with the Tukey HSD test using *HSD.test* in the *agricolae* package⁶⁴.
577 Habitats were classified according to the vegetation types. Climates were classified as polar
578 (beyond the polar circles, i.e., more than 66.5 and less than -66.5 degrees), temperate (from
579 the polar circles to the tropics of Capricorn/Cancer, i.e. to 23.5 and -23.5 degrees) and
580 tropical (in between 23.5 and -23.5 degrees). Habitats and climates were combined to
581 produce ecosystem types. For the analysis, only well-represented ecosystem types were

582 retained: polar scrub (n = 253), polar grassland (n = 39), polar woodland (n = 28), temperate
583 woodland (n = 907), temperate scrub (n = 104), temperate grassland (n = 445), temperate
584 agriculture (n = 374), tropical agriculture (n = 68) and tropical forest (n = 141; Extended Data
585 Fig. 3).

586 **Selection of environmental predictors.** To assess the drivers of global distributions of
587 springtail community metrics, we pre-selected variables with a known ecological effect on
588 springtail communities (based on expert opinions) and constructed a hypothetical relationship
589 diagram (Extended Data Fig. 9a). Environmental data were very heterogeneous across the
590 springtail studies, so we used globally available climatic and other environmental layers;
591 these included layers bearing climatic (mean annual temperature, temperature seasonality,
592 temperature annual range, mean annual precipitation, precipitation seasonality, precipitation
593 of the driest quarter⁶⁵, aridity index⁶⁶), topographic (elevation, roughness⁶⁷), vegetative and
594 land cover (aboveground biomass⁶⁸, tree cover⁶⁹, Net Primary Production, Normalized
595 Difference Vegetation Index [NDVI]⁷⁰), topsoil physicochemical (0-15 cm depth C to N
596 ratio, pH, clay, sand, coarse fragments, organic carbon, bulk density⁷¹) and human population
597 density⁷².

598 **Geospatial global projections.** To create global spatial predictions of springtail density,
599 species richness, biomass, and community metabolism, we followed the approach previously
600 used for nematodes^{18,73} that is based on spatial associations of community parameters with
601 global environmental information. A Random Forest algorithm was applied to identify the
602 spatial associations and extrapolate local observations to the global scale^{18,73}. After retrieving
603 the environmental variable values for each location, we trained 18 model versions, each with
604 different hyperparameter settings, i.e., variables per split (range: 2 - 7); minimum leaf
605 population (range: 3 - 5). To minimize the potential bias of a single model, we used an
606 ensemble of the top 10 best-performing models, selected based on the coefficient of

607 determination (R^2), to create global predictions of each of the community parameters.

608 Geographical regions with climatic conditions poorly represented by our sites and without

609 NPP data were excluded from the extrapolation (e.g., Sahara, Arabian desert, Himalayas). We

610 evaluated our extrapolation quality based on spatial approximations of interpolation versus

611 extrapolation⁷³. In this approach, we first determined the range of environmental conditions

612 represented by the observations. Next, we classified all pixels to fall within or outside the

613 training space, in univariate and multivariate space. For the latter, we first transformed the

614 data into principal component space, and selected the first 11 PC axes, collectively explaining

615 90% of the variation. Finally, we classified pixels to fall within or outside the convex hulls

616 drawn around each possible bivariate combination of these 11 PC axes; pixels that fell

617 outside the convex hulls in >90% of cases were masked on the map.

618 To estimate spatial variability of our predictions while accounting for the spatial sampling

619 bias in our data (Fig. 1a) we performed a spatially stratified bootstrapping procedure. We

620 used the relative area of each IPBES⁷⁴ region (i.e., Europe and Central Asia, Asia and the

621 Pacific, Africa, and the Americas) to resample the original dataset, creating 100 bootstrap

622 resamples. Each of these resamples was used to create a global map, which was then reduced

623 to create mean, standard deviation, 95% confidence interval, and coefficient of variation

624 maps (Extended Data Figs. 4-7).

625 Global biomass, abundance, and community metabolism of springtails were estimated by

626 summing predicted values for each 30 arcsec pixel¹⁸. Global community metabolism was

627 recalculated from joule to mass carbon by assuming 1 kg fresh mass = 7×10^6 J⁷⁵, an average

628 water proportion in springtails of 70%⁵⁶, and an average carbon concentration of 45%

629 (calculated from 225 measurements across temperate forest ecosystems)⁷⁶.

630 **Path analysis.** To reveal the drivers of springtail communities at the global scale, we

631 performed a path analysis. After filtering the selected environmental variables (see above)

632 according to their global availability and collinearity, 13 variables were used (Extended Data
633 Fig. 9b): mean annual temperature, mean annual precipitation (CHELSA database⁶⁵), aridity
634 (CGIAR database⁶⁶), soil pH, sand and clay contents combined (sand and clay contents were
635 co-linear in our dataset), soil organic carbon content (SoilGrids database⁷¹), NDVI (MODIS
636 database⁷⁰), human population density (GPWv4 database⁷²), latitude, elevation⁶⁷, and
637 vegetation cover (woodland, scrub, or agriculture; grasslands were represented as the
638 combination of woodland, scrub, and agriculture absent). Before running the analysis, we
639 performed the Rosner's generalized extreme Studentized deviate test in the *EnvStats*
640 package⁷⁷ to exclude extreme outliers and we z-standardized all variables (Supplementary R
641 Code).

642 Separate piecewise structural equation models were run to predict density, dry biomass,
643 community metabolism, and local species richness in the *lavaan* package⁷⁸. To account for
644 the spatial clustering of our data in Europe, instead of running a model for the entire dataset,
645 we divided the data by the IPBES⁷⁴ geographical regions and selected a random subset of
646 sites for Eurasia, such that only twice the number of sites were included in the model as the
647 second most represented region. We ran the path analysis 99 times for each community
648 parameter with different Eurasian subsets (density had n = 723 per iteration, local species
649 richness had n = 352, dry biomass had n = 568, and community metabolism had n = 533). We
650 decided to keep the share of the Eurasian dataset larger than other regions to increase the
651 number of sites per iteration and validity of the models. The Eurasian dataset also had the
652 best data quality among all regions and a substantial reduction in datasets from Eurasia would
653 result in a low weight for high quality data. We additionally ran a set of models in which the
654 Eurasian dataset was represented by the same number of sites as the second-most represented
655 region, which yielded similar effect directions for all factors, but slightly higher variations
656 and fewer consistently significant effects. In the paper, only the first version of analysis is

657 presented. To illustrate the results, we averaged effect sizes for the paths across all iterations
658 and presented the distribution of these effect sizes using mirrored Kernel density estimation
659 (violin) plots. We marked and discussed effects that were significant at $p < 0.05$ in more than
660 a given number of iterations (arbitrary thresholds were set to 25%, 50%, 75% and 95% of
661 iterations; Fig. 3).

662

663 **Data availability statement.**

664 The data that support the findings of this study are available under CC-BY 4.0 license from
665 Figshare: <https://doi.org/10.6084/m9.figshare.16850419>; high-resolution maps can be
666 assessed at <https://doi.org/10.6084/m9.figshare.16850446>.

667

668 **Code availability statement**

669 Programming code for the path analysis and the geospatial modelling is available under CC-
670 BY 4.0 from Figshare: <https://doi.org/10.6084/m9.figshare.16850419>.

671

672 **Methods references**

673 47. Burkhardt, U. *et al.* The Edaphobase project of GBIF-Germany—A new online soil-zoological
674 data warehouse. *Applied Soil Ecology* **83**, 3–12 (2014).

675 48. Sømme, L. Supercooling and winter survival in terrestrial arthropods. *Comparative Biochemistry*
676 *and Physiology Part A: Physiology* **73**, 519–543 (1982).

677 49. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global
678 land areas. *International Journal of Climatology* **37**, 4302–4315 (2017).

679 50. R Core Team. *R: A language and environment for statistical computing*. (R Foundation for
680 Statistical Computing, 2019).

681 51. Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by
682 completeness rather than size. *Ecology* **93**, 2533–2547 (2012).

683 52. Oksanen, J. *et al.* Vegan: community ecology package. R package version 1.17-6. (2011).

684 53. Bellinger, P. F., Christiansen, K. A. & Janssens, F. Checklist of the Collembola of the World.
685 <http://www.collembola.org/> (2020).

686 54. Robinson, D. *fuzzyjoin: Join Tables Together on Inexact Matching*. (2020).

687 55. Pey, B. *et al.* A Thesaurus for Soil Invertebrate Trait-Based Approaches. *PLoS ONE* **9**, e108985
688 (2014).

689 56. Petersen, H. Estimation of dry weight, fresh weight, and calorific content of various Collembolan
690 species. *Pedobiologia* **15**, 222–243 (1975).

691 57. Tanaka, M. Ecological studies on communities of soil Collembola in Mt. Sobo, southwest Japan.
692 *Japanese Journal of Ecology* **20**, 102–110 (1970).

693 58. Ehnes, R. B., Rall, B. C. & Brose, U. Phylogenetic grouping, curvature and metabolic scaling in
694 terrestrial invertebrates: Invertebrate metabolism. *Ecology Letters* **14**, 993–1000 (2011).

695 59. Lembrechts, J. *et al.* *Global maps of soil temperature*. <https://osf.io/pksqw> (2021)
696 doi:10.32942/osf.io/pksqw.

697 60. Bonfanti, J. *et al.* Intraspecific body size variability in soil organisms at a European scale:
698 implications for functional biogeography. *Functional ecology* **32**, 2562–2570 (2018).

699 61. Potapov, A. M. *et al.* Arthropods in the subsoil: Abundance and vertical distribution as related to
700 soil organic matter, microbial biomass and plant roots. *European Journal of Soil Biology* **82**, 88–
701 97 (2017).

702 62. Potapov, A. M., Guerra, C. A. & van den Hoogen, J. #GlobalCollembola: site-level database and
703 analyses. *Figshare*. Dataset. <https://doi.org/10.6084/m9.figshare.16850419.v1>

704 63. Wickham, H. *ggplot2: elegant graphics for data analysis*. (Springer-Verlag, 2009).

705 64. Mendiburu, F. de. *agricolae: Statistical Procedures for Agricultural Research*. (2020).

706 65. Karger, D. N. *et al.* Climatologies at high resolution for the earth's land surface areas. *Scientific
707 Data* **4**, 170122 (2017).

708 66. Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: A spatial
709 analysis of global land suitability for clean development mechanism afforestation and
710 reforestation. *Agriculture, Ecosystems & Environment* **126**, 67–80 (2008).

711 67. Amatulli, G. *et al.* A suite of global, cross-scale topographic variables for environmental and
712 biodiversity modeling. *Scientific Data* **5**, 180040 (2018).

713 68. Santoro, M. GlobBiomass - global datasets of forest biomass. (2018)
714 doi:10.1594/PANGAEA.894711.

715 69. Hansen, M. C. *et al.* High-Resolution Global Maps of 21st-Century Forest Cover Change. *Science*
716 **342**, 850–853 (2013).

717 70. Tuanmu, M.-N. & Jetz, W. A global 1-km consensus land-cover product for biodiversity and
718 ecosystem modelling. *Global Ecology and Biogeography* **23**, 1031–1045 (2014).

719 71. Hengl, T. *et al.* SoilGrids250m: Global gridded soil information based on machine learning.
720 *PLOS ONE* **12**, e0169748 (2017).

721 72. Center for International Earth Science Information Network - CIESIN - Columbia University.
722 Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match
723 2015 Revision UN WPP Country Totals. (2016).

724 73. van den Hoogen, J. *et al.* *A geospatial mapping pipeline for ecologists.*
725 <http://biorxiv.org/lookup/doi/10.1101/2021.07.07.451145> (2021) doi:10.1101/2021.07.07.451145.

726 74. IPBES. *Summary for policymakers of the global assessment report on biodiversity and ecosystem*
727 *services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem*
728 *Services.* (2019).

729 75. Peters, R. H. *The ecological implications of body size.* (Cambridge University Press, 1983).

730 76. Potapov, A. M., Tiunov, A. V. & Scheu, S. Uncovering trophic positions and food resources of
731 soil animals using bulk natural stable isotope composition. *Biological Reviews* **94**, 37–59 (2019).

732 77. Millard, S. P. *EnvStats: An R Package for Environmental Statistics.* (Springer, 2013).

733 78. Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. *Journal of Statistical*
734 *Software* **48**, 1–36 (2012).

735

736 Acknowledgements

737 The article is an outcome of the #GlobalCollembola community initiative that is voluntarily supported by
738 researchers around the world. Data collection and analysis was supported by the Russian Science Foundation
739 (19-74-00154 to A.P.) and by Deutsche Forschungsgemeinschaft (SFB990-EFForTS to S.S.). The following
740 funding bodies provided support for individual contributors: ARC SRIEAS Grant SR200100005 Securing
741 Antarctica's Environmental Future to S.L.C., Slovak Scientific Grant Agency VEGA 1/0346/18 to L.K., RFBR
742 19-516-60002 to N.A.K., Carl Tryggers Stiftelse för Vetenskaplig Forskning and Qatar Petroleum to J.M.A.,
743 BIO 27 (2013-2014)-MAGyP and PICTO 2084 (2012)-ANPCyT to V.B., DAAD-19-10 and MSM200962001 to
744 T.C., grant TE, PN-III-P1-1.1-TE-2019-0358 to C.F., NWO grant 821.01.015 to O.F., National Natural
745 Sciences Foundation of China No 41471037 and 41871042 to M.G., BIO 27 (2013-2014), MAGyP; PICT 2084
746 (2012), FONCyT to D.F.G., NRF South African National Antarctic Programme grant 110734 to M.G., Natural
747 Resources Canada (NRCan), EcoEnergy Innovation Initiative under the Office of Energy Research and
748 Development, and the Natural Sciences and Engineering Research Council of Canada (NSERC) to I.T.H.,
749 L.A.V. and L.R., Independent Research Fund Denmark grant no. DFF-4002-00384 to M.H., Estonian Science
750 Foundation G9145 to M.I., SA-France bilateral grant to C.J., SA (NRF) / Russia (RFBR) Joint Science and
751 Technology Research Collaboration project no. 19-516-60002 (FRBR) and no. 118904 (NRF) to M.P. and C.J.,
752 European Research Council (ERC), European Union's Horizon 2020 research and innovation programme (grant
753 agreement no. 677232; to N.E.); iDiv, German Research Foundation (DFG-FZT 118, 202548816) to M.J. and
754 N.E., French National Agency of Research (ANR) (JASSUR research project; ANR-12-VBDU-0011),
755 «Ministère de l'Agriculture et de la Pêche» and «Ministère de l'Education Nationale de la Recherche et de la
756 Technologie» (ACTA programme), «Ministère de l'Aménagement du Territoire et de l'Environnement» (Pnetox
757 programme), EU-funded project, ECOGEN QLK5-CT-2002-01666 (www.ecogen.dk), “Agence de
758 l'Environnement et de la Maîtrise de l'Énergie” (BIOINDICATEUR 2, BIOTECHNOSOL), ANDRA and GISFI
759 (www.gisfi.fr) to S.J., GRR SER-BIODIV (Région Normandie, France) to MCha, ESP9258, B02 to A.K.,
760 Fundamental Research Funds for the Central Universities (grant no. 2018CDXYCH0014) to D.L., DFG
761 316045089 to J.L., Massey University Research Fund grant to M.A.M., DFG SCHE 376/38-2 to M.M.P., grant
762 from the Austria Academy of Science: Heritage_2020-043_Modeling-Museum to P.Q., Slovak Scientific Grant
763 Agency: VEGA Nos. 1/0441/03 and 1/3267/06 to N.R., Higher Education Commission of Pakistan to M.I.R.,
764 RSF 21-74-00126 to R.A.S., Austrian Federal Government and European Union (Rural Development 2014-

765 2020) to J.S., AAAA-A17-117112850235-2 to A.A.T., Brazilian Council for Scientific and Technological
766 Development - CNPq (grant no. 152717/2016-1) to B.R.W., 309030/2018-8 to D.Z. and 305426/2018-4 to
767 B.C.B., National Natural Science Foundation of China (31970434, 31772491) to N.N.G., Research and
768 Innovation Support Foundation of Santa Catarina (FAPESC) (6.309/2011-6/FAPESC) and the CNPq
769 (563251/2010-7/CNPq) to L.C.I.O.F., O.K.-F., the Latvian Council of Science Grants no. 90.108, 93.140,
770 96.0110, 01.0344 to E.J., CNPq for the Research Productivity Grant (305939/2018-1) to D.B., FPI-MICINN
771 grant in the project INTERCAPA (CGL2014-56739-R) to P.H. Authors are grateful to Penelope Greenslade for
772 providing the literature on Australian Collembola communities. Authors are grateful to Frans Janssens for
773 providing the global checklist of Collembola.

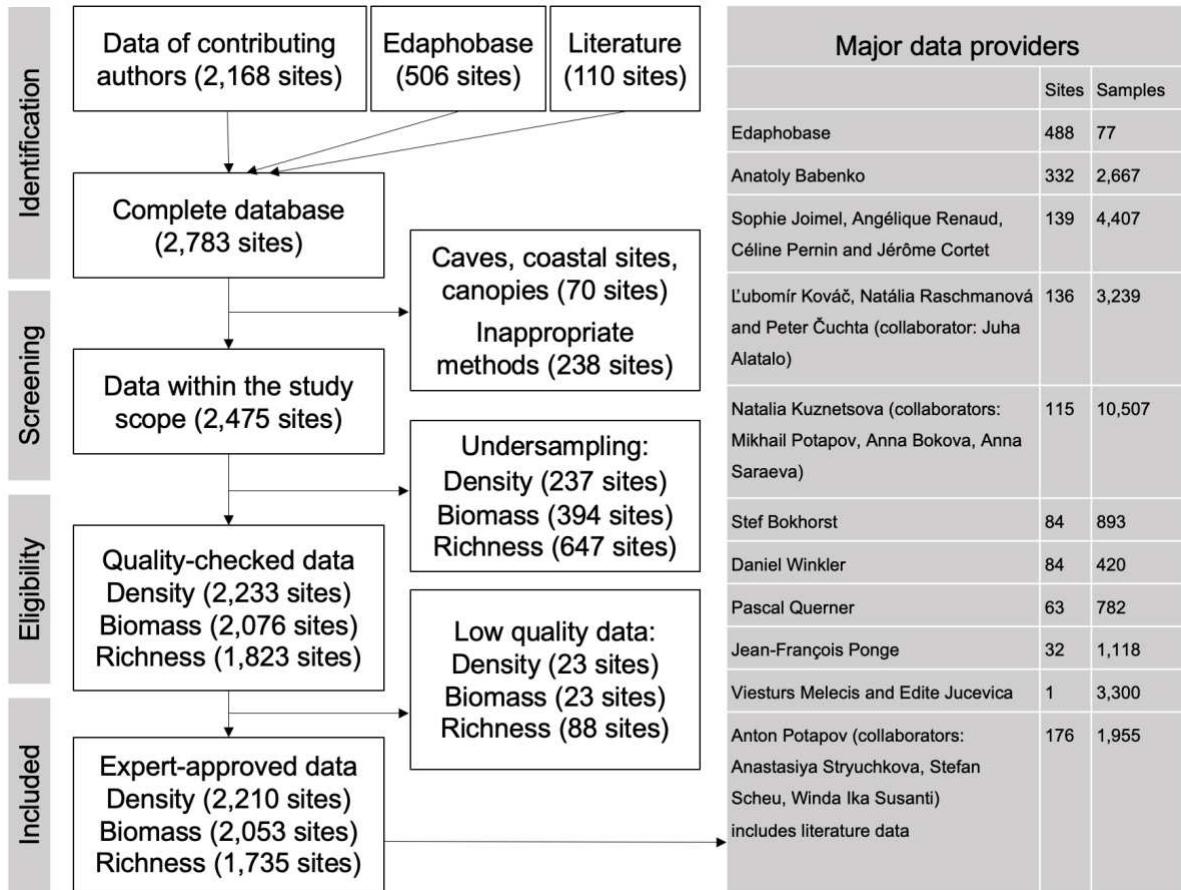
774 Author contributions

775 A.M.P. designed the study, coordinated the collection, cleaning and standardization of data and wrote the first
776 draft of the manuscript. C.G. and A.M.P. designed and performed the path analysis. J.v.d.H. designed and
777 performed the geospatial modelling. A.B., B.C.B., L.D., L.K., N.A.K., J.F.P. and M.B.Pot. evaluated the data
778 quality. M.P.B., S.L.C., J.F.P., D.J.R., T.C., N.E., S.S., M.Cha., J.F. and I.T.H. contributed to writing and
779 conceptualisation of the manuscript. A.M.P., A.B., M.P.B., S.L.C., L.D., L.K., N.A.K., J.F.P., M.B.Pot., D.J.R.,
780 J.M.A., J.I.A., I.B., V.B., S.B., T.B., G.C., M.Cha., T.Che., M.C., A.T.C., J.C., P.Č., A.M.d.l.P, A.D., S.D.F.,
781 C.F., J.F., O.F., S.F., E.G., M.G., B.G., D.F.G., M.Gre., I.T.H., C.H., M.H., P.H., M.I., C.J., M.J., S.J., B.S.J.,
782 E.J., L.C.I.O.F., O.K.-F., D.B., E.J.K., A.K., E.A.L., D.L., J.L., M.J.L., M.T.M., M.M.M., M.A.M., T.N., I.N.,
783 R.O., J.G.P., M.M.P., P.Q., N.R., M.I.R., L.J.R., L.R., R.A.S., S.Sal., E.J.S., N.S., C.S., J.S., Y.B.S., S.K.S.,
784 M.S., X.S., W.I.S., A.A.T., M.P.T., M.A.T., M.S.T., M.N.T., A.V.U., L.A.V., L.A.W., B.R.W., D.W., D.Wu.,
785 Z.J.X., R.Y., D.Z., N.E. and S.S. contributed data. All authors contributed to editing of the paper.

786

787 **Competing interests.** Authors have no competing interests to declare.

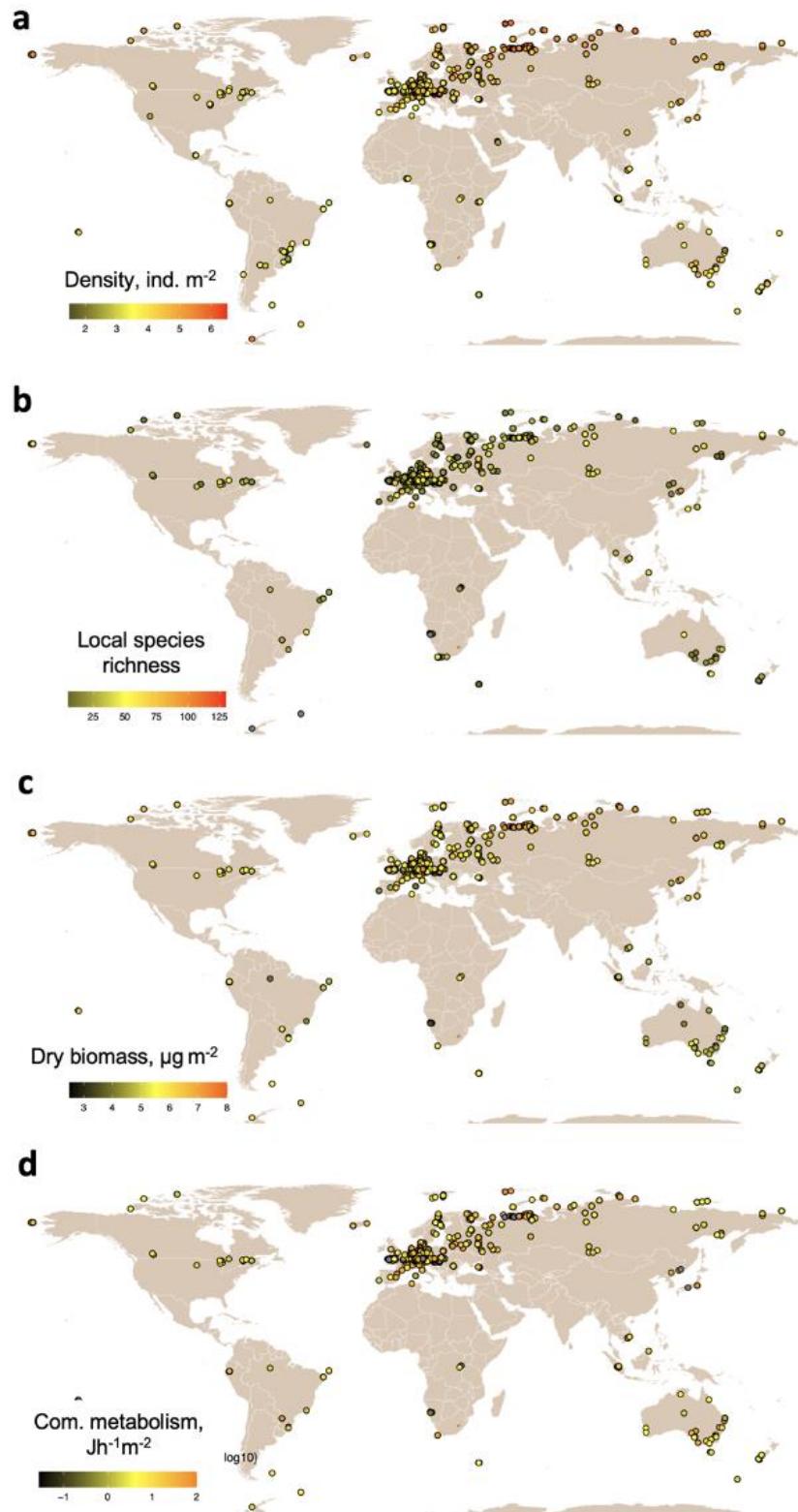
788


789 Supplementary Information is available for this paper.

790

791 **Materials & Correspondence.** Correspondence and requests for materials should be

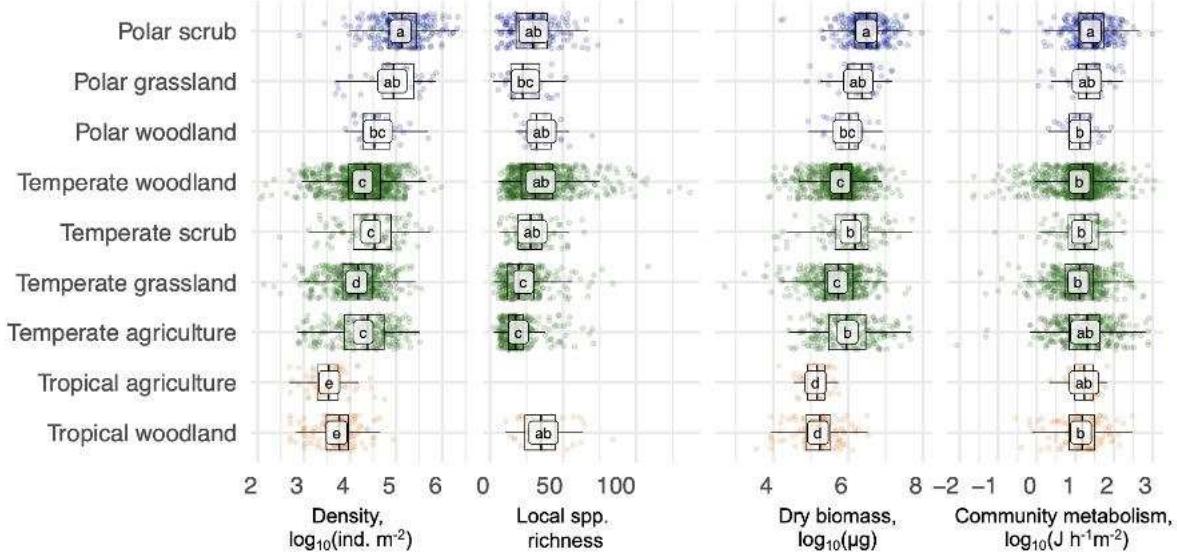
792 addressed to A.M.P.

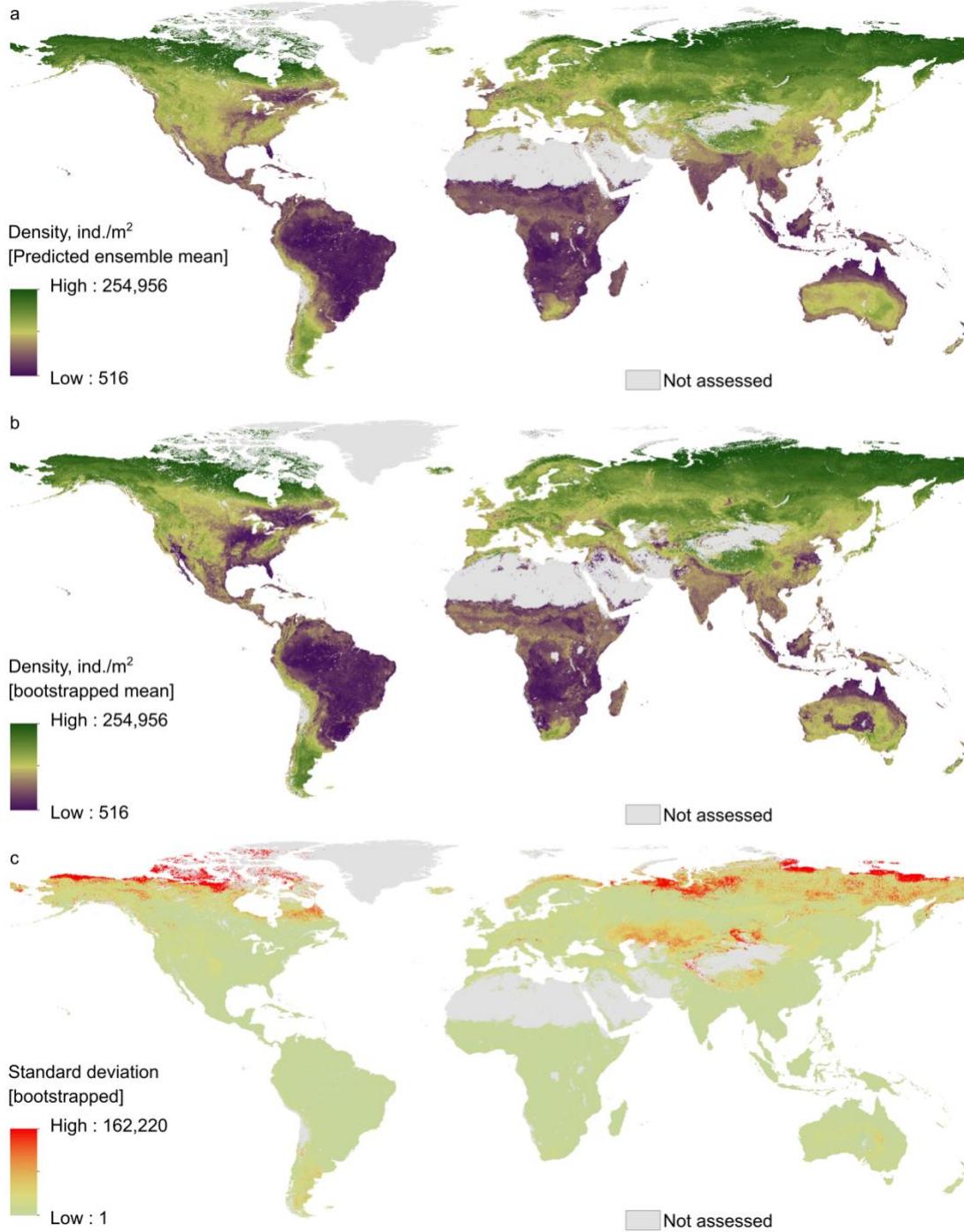

793 **Extended data**

794

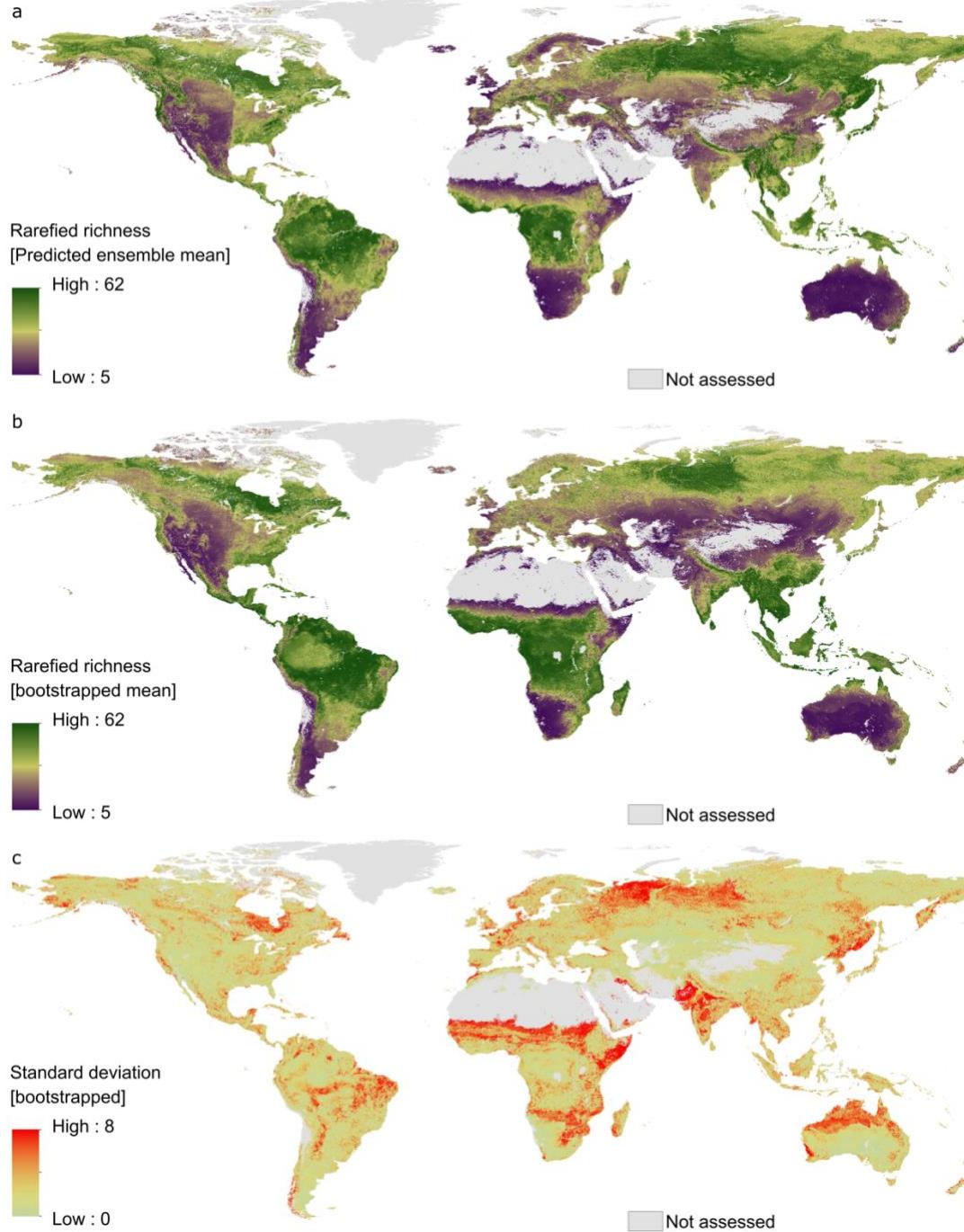
795 **Extended Data Fig. 1** | Flow diagram of data compilation and selection. Major data
796 providers of #GlobalCollembola whose data were used in the analysis are given in the shaded
797 table on the right side. Providers are ordered based on the number of sites, but exemplar
798 datasets with extensive sampling efforts (number of samples) are given to illustrate the
799 available data.

800

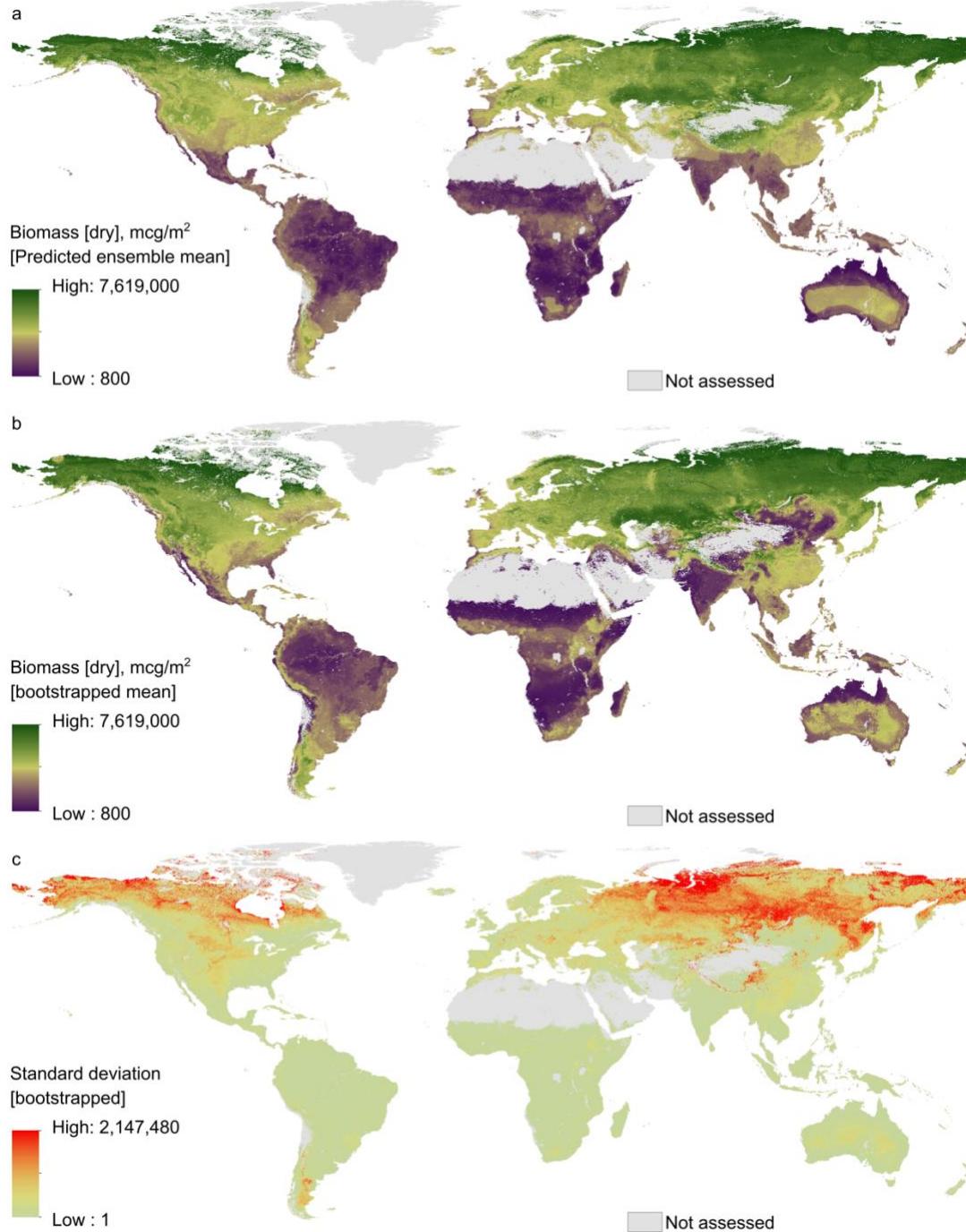

801


802 **Extended Data Fig. 2 | Selected sampling sites that were used in the analysis.** **a**, Density
803 ($n = 2210$), **b**, Local species richness ($n = 1735$); **c**, Dry biomass ($n = 2053$); **d**, Community
804 metabolism ($n = 2053$). Data scales are logarithmic except for local species richness.

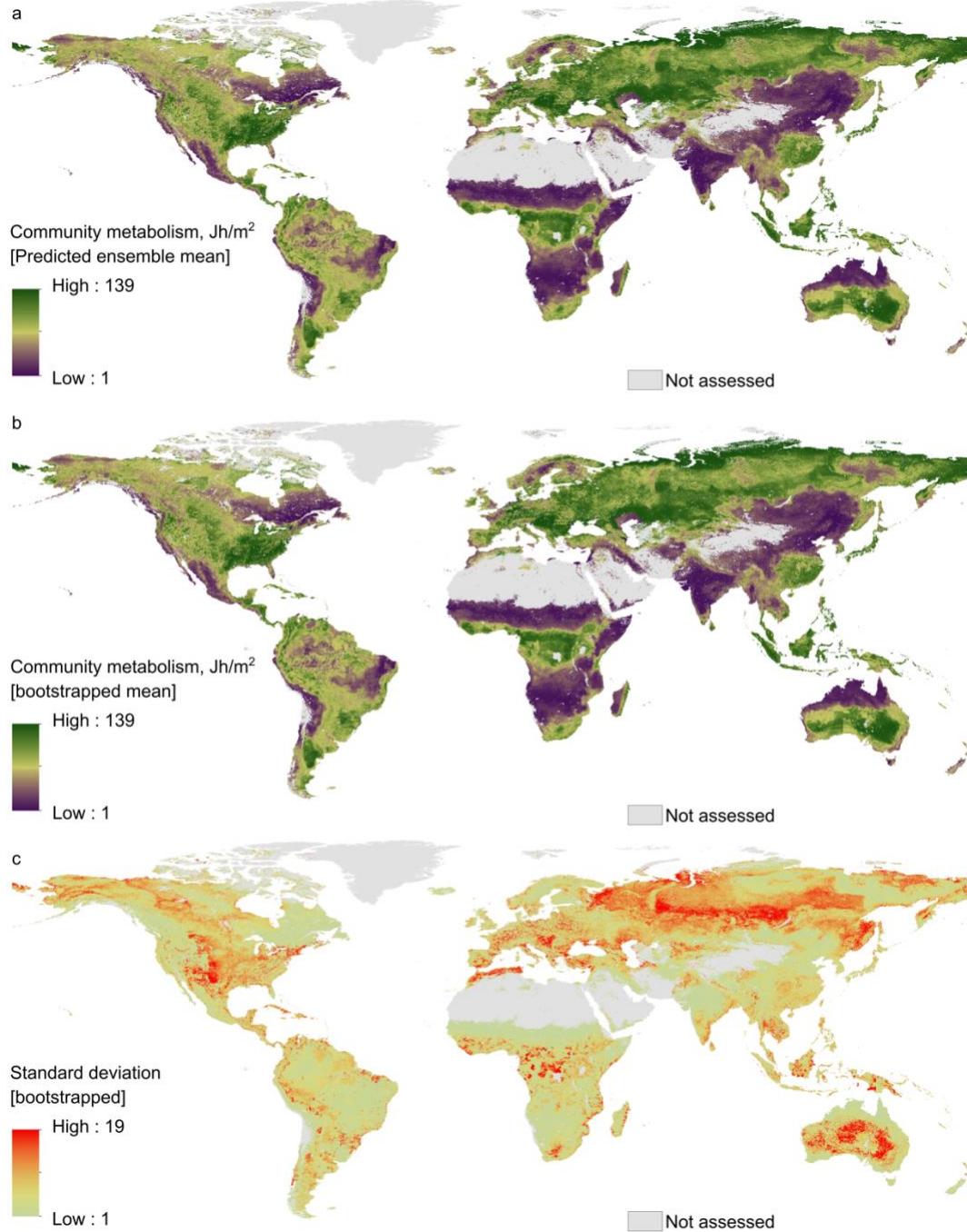
805 **Extended Data Table 1** | Regression coefficients used to estimate the dry and fresh body
806 masses of springtail genera based on body lengths. For each genus, the average body mass
807 (M) [μg dry weight] was calculated from the average body length (L) [mm] using the power
808 equation: $M = a \cdot L^b$, where a is the normalisation coefficient and b is the exponent.
809 Abdomen length of Symphyleona was used in the original equations and was assumed to be
810 0.83 of the total body length. Two sets of coefficients coming from two independent
811 studies^{56,57} were used for each morphogroup (a_1 , b_1 and a_2 , b_2) and the two estimates of dry
812 body mass were averaged. Fresh body mass was calculated from the resulting average by
813 dividing it by the proportion of the dry weight.


Morphogroup	Normalisation	Exponent	Normalisation	Exponent	Dry weight
	(a_1)	(b_1)	(a_2)	(b_2)	proportion
Entomobryidae	11.749	2.52	14.256	2.708	0.30
Isotomidae (small)	6.457	2.99	5.623	2.799	0.36
Isotomidae (large)	5.623	3.28	8.427	3.223	0.36
Onychiuridae	4.266	2.75	5.598	2.769	0.30
Poduromorpha (excl. Onychiuridae)	9.772	2.55	5.598	2.769	0.30
Syphyleona	190.546	3.627	39.628	3.796	0.21
Tomoceridae	9.204	2.744	14.256	2.708	0.25

814

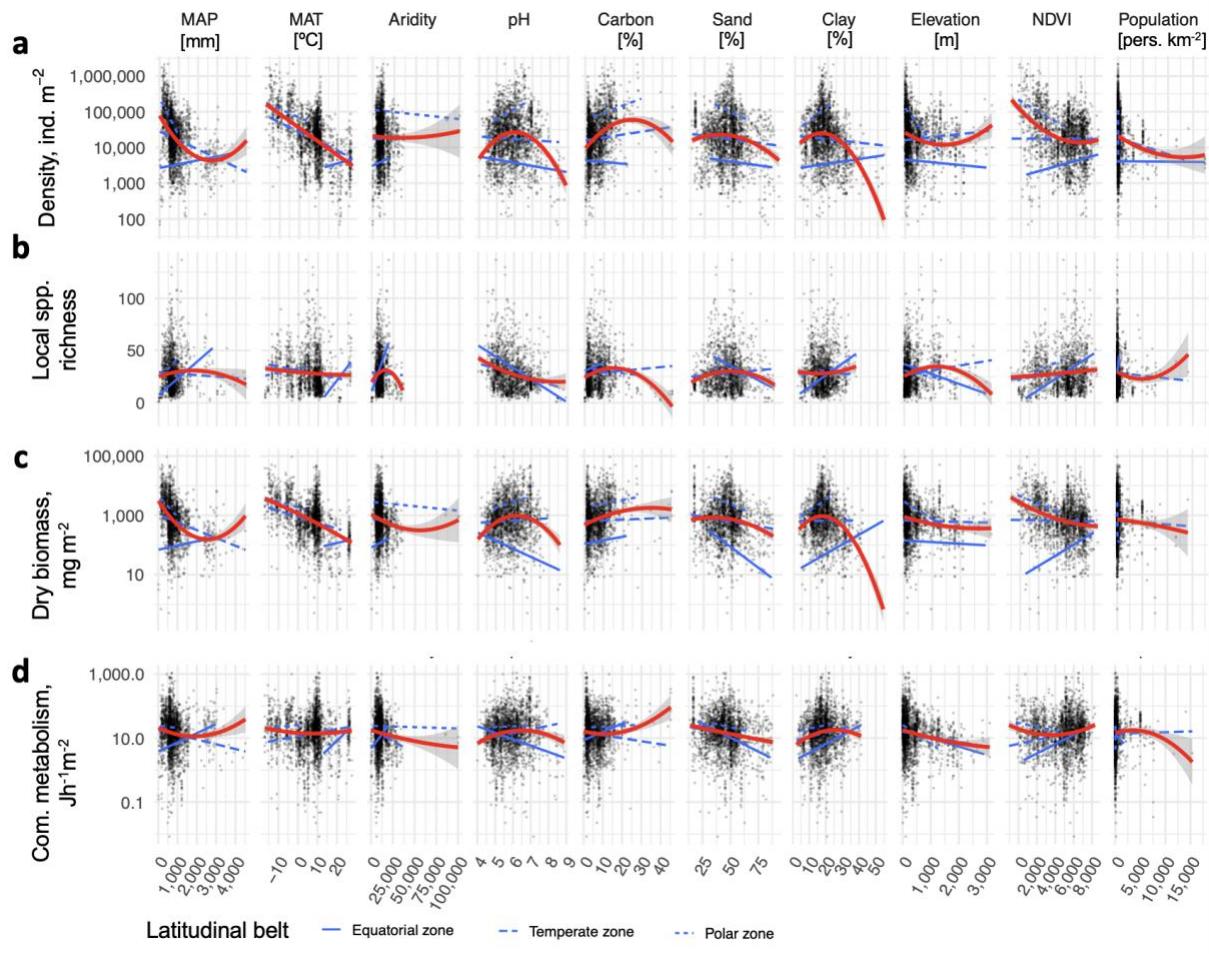


821
822 **Extended Data Fig. 4 | Global projection of springtail density.** Distribution was predicted
823 with the random forest algorithm (a) based on the entire dataset and (b) using mean
824 prediction after bootstrapping data by continents ($R^2 = 0.57 \pm 0.04$). Green colour identifies
825 hot spots, violet colour cold spots. The bottom map (c) shows the standard deviation across
826 the bootstrapped predictions (red – high, yellow – low). All data were projected at the 30
827 arcsec (approximately 1 km²) pixel scale.


828

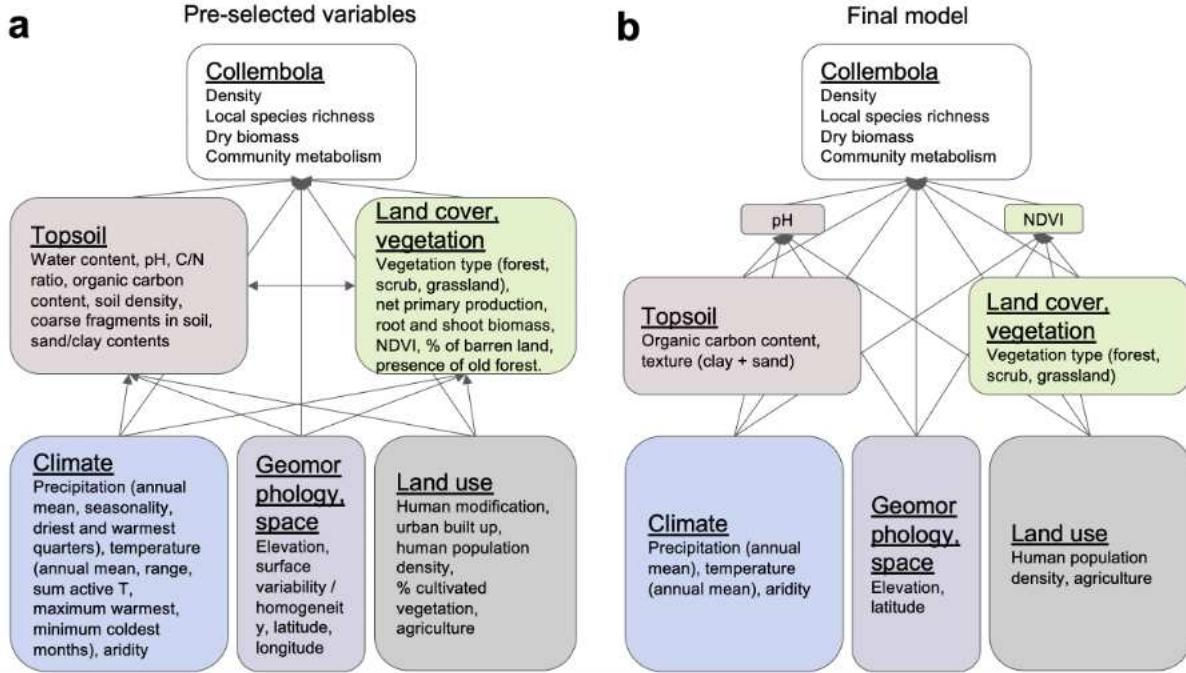
829 **Extended Data Fig. 5 | Global projection of springtail local species richness.** Distribution
830 was predicted with the random forest algorithm (a) based on the entire dataset and (b) using
831 mean prediction after bootstrapping data by continents ($R^2 = 0.31 \pm 0.06$). Green colour
832 identifies hot spots, violet colour cold spots. The bottom map (c) shows the standard
833 deviation across the bootstrapped predictions (red – high, yellow – low). All data were
834 projected at the 30 arcsec (approximately 1 km²) pixel scale.

835


836 **Extended Data Fig. 6 | Global projection of springtail biomass.** Distribution was predicted
837 with the random forest algorithm (a) based on the entire dataset and (b) using mean
838 prediction after bootstrapping data by continents ($R^2 = 0.47 \pm 0.05$). Green colour identifies
839 hot spots, violet colour cold spots. The bottom map (c) shows the standard deviation across
840 the bootstrapped predictions (red – high, yellow – low). All data were projected at the 30
841 arcsec (approximately 1 km²) pixel scale.

842

843 **Extended Data Fig. 7 | Global projection of springtail community metabolism.**


844 Distribution was predicted with the random forest algorithm (a) based on the entire dataset
845 and (b) using mean prediction after bootstrapping data by continents ($R^2 = 0.33 \pm 0.09$).
846 Green colour identifies hot spots, violet colour cold spots. The bottom map (c) shows the
847 standard deviation across the bootstrapped predictions (red – high, yellow – low). All data
848 were projected at the 30 arcsec (approximately 1 km²) pixel scale.

849

850 **Extended Data Fig. 8 | Associations of selected environmental variables with springtail**
851 **density, local species richness, dry biomass and community metabolism.** Quadratic
852 function was used for approximation to illustrate global trends (red line). Blue lines show
853 linear trends in equatorial (solid), temperate (long dash) and polar zones (short dash).

854

855

856 **Extended Data Fig. 9 | Initial and final relationship diagram in the path analysis.** Factors
857 directly and indirectly affecting community parameters of springtails at the global scale were
858 pre-selected based on expert opinion (a). Factors in the final model (b) were further selected
859 according to their global availability and collinear factors were removed. The global
860 distributions of pH and NDVI (Normalized Difference Vegetation Index) are initially
861 modelled based on other factors, which was accounted for in the final model.