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102

103 Soil life supports the functioning and biodiversity of terrestrial ecosystems'?.

104  Springtails (Collembola) are among the most abundant soil animals regulating soil

105 fertility and flow of energy through above- and belowground food webs*—. However, the
106  global distribution of springtail diversity and density, and how these relate to energy
107  fluxes remains unknown. Here, using a global dataset collected from 2,470 sites, we
108  estimate total soil springtail biomass at 29 Mt carbon (threefold higher than wild

109 terrestrial vertebrates®) and record peak densities up to 2 million individuals per m? in
110  the Arctic. Despite a 20-fold biomass difference between tundra and the tropics,

111  springtail energy use (community metabolism) remains similar across the latitudinal
112 gradient, owing to the increase in temperature. Neither springtail density nor

113 community metabolism were predicted by local species richness, which was highest in
114  the tropics, but comparably high in some temperate forests and even tundra. Changes
115  in springtail activity may emerge from latitudinal gradients in temperature,

116  predation’$, and resource limitation” %! in soil communities. Contrasting temperature
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responses of biomass, diversity and activity of springtail communities suggest that
climate warming will alter fundamental soil biodiversity metrics in different directions,

potentially restructuring terrestrial food webs and affecting major soil functions.

Soil biodiversity is an essential component of every terrestrial habitat that affects nutrient
cycling, soil fertility and plant-soil feedbacks, among other ecosystem functions and
services>!1. Soil functioning is jointly driven by multiple components of soil biota that are
closely interconnected, including plants, microorganisms, micro-, meso-, and macrofauna!>!3,
Land use, human activities, and climate changes induce widespread and rapid changes in the
abundance, diversity, and activity of soil biota, altering functional connections and
ecosystem-level processes in the terrestrial biosphere'. To understand, predict, and adapt to
these changes, comprehensive knowledge about the global distribution of multiple soil biota
components is urgently needed'>-1°,

With a growing understanding of the biogeography of microorganisms!’, micro-'® and
macrofauna'®, a critical knowledge gap is the global distribution of soil mesofauna.
Springtails (Collembola, Hexapoda) are among the most abundant groups of mesofauna and
soil animals from the equator to polar regions*>. They are mostly microbial feeders, but also
graze on litter and are often closely associated with plant roots*?°. Through these trophic
relationships, springtails affect the growth and dispersal of prokaryotes, fungi, and plants,
thereby supporting nutrient cycling via the transformation, degradation, and stabilisation of
organic matter>?!. Furthermore, springtails are a key food resource for soil- and surface-
dwelling predators™?, thus occupying a central position in soil food webs and supporting
multitrophic biodiversity.

To assess different functional facets of biological communities, metrics such as population

density and biomass (reflecting carbon stocks), taxonomic and phylogenetic diversity
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(ensuring multifunctionality and stability), and metabolic activity (quantifying energy fluxes
and thus functional influence) are commonly used®2?>~24, Soil biodiversity assessments have
found unexpected global hotspots in temperate regions for microorganisms (fungi and
prokaryotes)!” and macrofauna (earthworms)'®, which are not in line with the common
latitudinal biodiversity gradient found in aboveground organisms?>. Functional
complementarity principles?® suggest that diverse soil communities in temperate ecosystems
are able to support higher organismal densities and have a more efficient resource use (i.e.,
higher total activity) than at other latitudes. However, there are no global assessments of soil
animal metabolic activities. In contrast to expectations of complementarity principles,

2627 and microbes®!7 suggest that diversity and activity (represented

previous studies on plants
by respiration) do not co-vary at the global scale, probably because strong environmental
constraints limit this relationship. These discrepancies emphasize the need to investigate
relationships of multiple metrics of soil animal communities. Springtails are an ideal model
organism for exploring such relationships at a global scale, due to their ubiquity, functional
diversity and high local species richness=>.

Current knowledge suggests that springtails are especially abundant and diverse in temperate

24,28

coniferous forests and tundra, but less diverse in polar regions=*=°. Many springtails are

adapted to high and stable humidity, and sensitive to drought and temperature changes®*-.
Consequently, springtail density and diversity is likely to decrease with future climate
change, detrimentally affecting soil food webs and ecosystem functioning?!. At the same

32,33’ SO

time, springtail densities are relatively high in urban areas and in agricultural fields
global springtail biomass may be moderately affected by land-use changes worldwide.
Disentangling the roles of vegetation, climate, human disturbance, and other drivers of

various springtail community metrics will be critical to understand their contribution to soil

functioning under different global change scenarios'>!3.
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167  Here, we report the joint projection of density, diversity, and metabolic activity of soil

168  springtail communities at the global scale and test whether high species richness supports
169 increased density and total activity across springtail communities globally, or whether this
170  relationship is constrained by environmental and biotic controls. We further aimed (1) to

171  assess whether the global distribution of springtail diversity matches that of aboveground

172 biota or other soil animals; (2) to test how different metrics of springtail communities are

173 affected by climate and human activities; and (3) to quantify the global biomass of springtails
174  as a component of the global carbon stock. Using an extensive dataset of soil springtail

175  communities collected within the framework of the #GlobalCollembola initiative’ (2,470

176  sites and 43,601 samples across all continents; Fig. 1a), we show contrasting patterns across
177  soil biodiversity metrics at a global scale and demonstrate that springtails are among the most

178  functionally important and ubiquitous animals in the terrestrial biosphere.

179 Latitudinal gradient

180  To calculate total biomass and metabolism of each springtail community, we used recorded
181  population densities together with estimated individual body masses and metabolic rates.
182  Body masses and metabolic rates were derived from taxon-specific body lengths using mean
183  annual soil temperature and allometric regressions (for calculations and parameter

184  uncertainties see Methods). For the assessment of local species richness, we selected 70% of
185  the sampling sites with taxonomically-resolved communities and calculated rarefaction

186  curves to account for unequal sampling efforts. As such, our trends refer to local diversity
187  (hundreds of meters), but may not be representative of regional-level diversity>*.

188  Springtail density varied c. 30-fold across latitudes (Fig. 1b), with maximum densities in
189  tundra (median = 131,422 individuals m?) and minimum densities in tropical forests (5,831

190  individuals m2) and agricultural ecosystems (3,438 individuals m%; Fig. S2; n = 2,210).
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191  Springtail dry biomass followed the same trend, with c. 20-fold higher biomass in tundra

192 (median = 3.09 g m?) compared to tropical agricultural and forest ecosystems (c. 0.16 g m),
193  due to a lower average community body mass in polar as opposed to temperate and tropical
194 ecosystems (Fig. 1d,f; Fig. S2; n = 2,053). These density and biomass estimates are in line
195  with earlier studies®* but cover wider environmental gradients. The difference in average

196  community body mass may be explained by lower proportion of large surface-dwelling

197  springtail genera in polar regions™.
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199  Fig. 1| Sampling locations and latitudinal gradients in springtail community metrics. a,
200  Distribution of the 2,470 sampling sites (43,601 soil samples). The histogram shows the

201  number of sites in each 20-degree latitudinal belt, relative to the total land area in the belt. b-
202 g, Variation in density (n = 2,210), local species richness (n = 1,735), biomass, community

203  metabolism, average body mass and average individual metabolism (n = 2,053) with latitude.
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204  Grey circles across panels show sampling sites; red points are averages for 5-degree

205 latitudinal belts; trends are illustrated with a quadratic function based on 5-degree averages.
206

207  Being dependent on temperature and body mass, average individual metabolism was

208  approximately 20 times higher in tropical than in polar ecosystems (Fig. 1g), which resulted
209  in similar community metabolism across the latitudinal gradient (Fig. le; total n = 2,053).
210  Hence, tropical springtail communities expend a similar amount of energy per unit time and
211  area as polar communities, despite having 20-fold lower biomass. This striking pattern

212 resembles aboveground ecosystem respiration, which also changes little across the global
213 temperature gradient?’. High metabolic rates but low densities of springtail communities are
214  consistent with the high soil respiration rates and low litter accumulation in the tropics

215  compared to biomes at higher latitudes®!6. Litter removal is facilitated by soil animals, which
216  have to consume more food per unit biomass to meet their metabolic needs under high

217  tropical temperatures’ and thus enhance decomposition in wet and warm tropical

218  ecosystems'?. This suggests that soil animal communities in the tropics are under strong

219  bottom-up control (by the amount and quality of litter), but also under strong top-down

220  control by predators, which likewise have to feed more at high temperatures’®. By contrast,
221  polar communities have access to ample organic matter stocks'®, are under weaker top-down
222 control’®, but their activity is constrained by the cold environment. The latitudinal gradient in
223  environmental and biotic controls may explain why community metabolism did not increase
224 as expected towards warm tropical ecosystems.

225  We found only weak latitudinal trends in local species richness, which was highest in tropical
226  forests (mean = 36.6 species site™!) and lowest in temperate agricultural (19.5 species site™!)
227  and grassland ecosystems (22.8 species site’!; Fig. 1c; Fig. S2). Generally, the similar local

228  diversity in different climates deviates from the latitudinal biodiversity gradients reported for
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aboveground and aquatic taxa?>-6

and corroborates the hypothesized mismatch between
above- and belowground biodiversity distributions®. This mismatch calls for explicit

assessments of soil biodiversity hotspots for monitoring and conservation of soil organisms'>.

Global distribution and its drivers

To map the global distribution of springtail community metrics and uncover its drivers, we
pre-selected climatic, vegetation, soil, topographic and anthropogenic variables with known
ecological effects on springtails (Extended Data Fig. 9a). To perform a global extrapolation,
we used 22 of the pre-selected variables that were globally available and applied a random
forest algorithm to identify the strongest spatial associations of community parameters with
environmental layers'8. To reveal the key driving factors of springtail communities, we ran a
path analysis with 12 non-collinear variables (Extended Data Fig. 9b). The European spatial
clustering in our data distribution (Fig. 1a), was taken in consideration with a continental-
scale validation in both analyses (see Methods).

At the global scale, species richness was not related to biomass (Pearson’s R? = 0.02) or
density (Pearson’s R? = 0.03; Fig. 2a). Our extrapolations revealed at least five types of
geographical areas with specific combinations of density and species richness patterns (Fig.
2a): (1) polar regions with very high densities and medium to high species richness such as
the Arctic; (2) temperate regions with medium densities and high species richness such as
mountainous and forested areas in Europe, Asia and North America; (3) temperate regions
with medium to high densities but moderate species richness such as arid temperate biomes
(e.g., dry grasslands); (4) temperate, subtropical and tropical arid ecosystems with low
densities and species richness such as semi-deserts and other arid regions; (5) tropical areas
with low densities but high species richness such as tropical forests and grasslands. Hotspots

of springtail community metabolism were observed across a range of different latitudes (Fig.

10
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253 2b), but were not associated with biodiversity hotspots (Pearson’s R? < 0.01), emphasizing
254 that species richness is neither associated with higher density nor activity of springtail

255 communities at the global scale.

a

4 25 31 36 77

‘. .R2=0.03 1,000,000
»

Density, ind. m*?

e,y

10,000

.

: 100
0 50 100
Local spp. richness

Community metabolism, J h' m?

0 50 100
256 Local spp. richness

257  Fig. 2 | Global maps overlapping modelled springtail density and local species richness
258 (a) and community metabolism (b) in soil. In (a) colours distinguish areas with different
259  combinations of density and species richness, e.g., low density - low richness is given in

260  yellow and high density - high richness in violet. In (b) the colour gradient indicates

261  community metabolism, with potential hotspots shown in blue. All data were projected at the
262 30 arcsec (approximately 1 km?) pixel scale. Pixels below the extrapolation threshold are

263  masked. Correlations between density or metabolism and species richness (inset graphs) are

264  Dbased on site-level data.
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Path analysis suggested that springtail density increases with latitude, NDVI (vegetation
richness), aridity index and at high soil pH, but decreases with increasing mean annual
temperature and elevation (Fig. 3). The positive global relationship of density with the aridity
index was unexpected for physiologically moisture-dependent animals such as springtails®’,
but was also observed in nematodes'® and is probably due to the low amount of precipitation
in circumpolar climates and very few data from desert sites. Density and biomass of
springtails increased with precipitation within the tropical zone (Extended Data Fig. 8).
Similar to patterns for earthworms'®, soil properties had less evident linear effects on
springtail density than climate at the global scale. However, the relationships of density with
soil pH and organic carbon content were hump-shaped, suggesting that intermediate values of
these parameters are optimal for springtails (Extended Data Fig. 8), which is also observed
for nematodes'8. Existing evidence points to soil properties as key drivers of microfauna
(nematodes)®, climate as a key driver of macrofauna (earthworms)’ and a combination of both

as drivers of mesofauna (springtails) at the global scale.
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Fig. 3 | Environmental drivers of springtail communities at the global scale. Standardized
effect sizes for direct (semi-transparent colour) and total (direct and indirect, solid colour)
effects from path analysis are shown for density (R?=0.36 + 0.01, n = 723 per iteration),
local species richness (R?=0.20 + 0.02, n = 352), biomass (R>=0.40 + 0.02, n = 568) and
community metabolism (R?>= 0.17 = 0.02, n = 533). Mean values (squares) and data
distribution (violins) are shown. Asterisks denote factors with a significant direct effect (p <
0.05) on a given springtail community metric for >25%), >50%", >75%"* and >95% """ of

iterations.

Springtail density and biomass were lower in woodlands, grasslands and agricultural sites in
comparison to scrub-dominated landscapes (Fig. 3). In contrast to previous global
assessments of soil animal biodiversity!'®!°, tundra was extensively sampled in our dataset (n
= 253; Fig. 1a), and densities >1 million individuals per square meter were recorded at 12
independent sites. The high species richness of tundra communities (Fig. 2a), suggests a long
evolutionary history of springtails in cold climates; indeed, they are currently the most
taxonomically represented group of terrestrial arthropods in the Arctic® and the Antarctic?’.
Tundra remains under snow cover for most of the year, flourishing during summer when high
springtail densities were recorded. During winter, springtails survive under the snow using
remarkable adaptations to subzero temperatures (dehydration® and ‘supercooling’3?).
Importantly, tundra soils contain a major proportion of the total soil organic matter and
microbial biomass stored in the terrestrial biosphere!6. As climate warming alters carbon
cycling in the tundra®, longer active periods of springtails could accelerate soil carbon
release to the atmosphere in polar regions*,

Across tropical ecosystems in the Amazon basin, equatorial Africa and Southeast Asia, low

density and biomass of springtails were recorded and extrapolated (Fig. 2a, Extended Data
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306  Figs. 4 and 6). Mesofauna in general have low abundances in tropical ecosystems, where the
307  litter layer is shallow and larger soil-associated invertebrates, such as earthworms, termites
308 and ants, play a more important role?*. Our study supports this trend also found in recent

309  global assessments of other soil invertebrates!®!%4!, However, considering the high mass-
310  specific metabolism of springtails and high predation rates in tropical communities’-%??, a
311  quantitative comparison of energy flows and stocks across latitudes and groups of soil fauna
312 is needed.

313  Interestingly, we found no pronounced influence of agriculture and human population on
314  springtail communities at the global scale; agriculture tended to have a positive impact on
315  biomass but a negative impact on species richness (Fig. 3). Agricultural sites had similar

316  springtail densities compared to woodlands and grasslands in the temperate zone (ca. 15-25k
317  individuals m%; Extended Data Fig. 3), which may be explained by large variation in

318  management within each of these habitat types. Some springtail species effectively survive in
319  agricultural fields*}, where they are involved in nutrient cycling and serve as biocontrol

320  agents by grazing on pathogenic fungi*? and supporting arthropod predators*’. Springtails are
321  also commonly found in urban areas®?. However, the negative trend in species richness at
322 human-modified sites suggests that intensive land use may reduce springtail diversity, which
323 is indeed often recorded??3344,

324  The only variable that was positively associated with both density and local species richness
325  of springtails, was NDVI (as a proxy for vegetation richness), reinforcing the close

326  connection between springtail communities and the vegetation?®. Overall, high local species
327  richness was predicted in warm, acidic woodlands with high soil organic carbon stocks (Fig.
328  3) and geospatial extrapolation emphasized tropical regions and some boreal forests in North
329  America and Eurasia as springtail diversity hotspots (Extended Data Fig. 5). In our dataset,

330 sites with the highest extrapolated local species richness (i.e., >100 species) were located in
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European woodlands (Czech Republic, Slovakia). However, this picture may be biased by the
historical clustering of taxonomic expertise in Europe’. Outside Eurasia, species-rich sites
(i.e. 60-80 species) were located in Vietnamese monsoon forests and some Brazilian
rainforests, but 70-90% of species in tropical communities remain undescribed*-%. Thus,
despite low springtail density, tropical forests contribute substantially to global springtail
diversity but the full extent of this contribution is unknown.

Our extrapolations suggest that there are ¢. 2x10'8 soil springtails globally and their total
biomass comprises c. 29 Mt C (c. 200 Mt fresh weight), with respiration of c¢. 16 Mt C month"
!'(which is c. 0.2% of the global soil respiration”). Our biomass estimates are very similar to
the global estimated biomass of nematodes (c. 31 Mt C'3), but lower than that of earthworms
(c. 200 Mt C'?), and exceeding by far that of all wild terrestrial vertebrates (c. 9 Mt C)®,
demonstrating that springtails are among the most abundant and ubiquitous animals on Earth.
Overall, our global dataset on soil springtail communities synthesized the work of soil
zoologists across the globe. It presents another milestone towards understanding the
functional composition of global soil biodiversity. Being highly abundant in polar regions
and some human-modified landscapes, springtails are facing two main global change
frontiers: warming in the polar regions, and land-use change and urbanization in temperate
and tropical regions. While the global abundance and biomass of springtails may decline with
climate warming in the coming decades, their global activity may remain unchanged. The
global diversity of springtails will depend on the balance between anthropogenic

transformations and conservation efforts of biomes worldwide.
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Methods

Data reporting. The data underpinning this study is a compilation of existing datasets and

therefore, no statistical methods were used to predetermine sample size, the experiments were

not randomized and the investigators were not blinded to allocation during experiments and

outcome assessment. The measurements were taken from distinct samples, repeated

measurements from the same sites were averaged.
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Data acquisition. Data were primarily collected from individual archives of contributing co-
authors. Both published and unpublished data were collected, using raw data whenever
possible entered into a common template. In addition, data available from Edaphobase*’” was
included. The following minimum set of variables was collected: collectors, collection
method (including sampling area and depth), extraction method, identification precision and
resources, collection date, latitude and longitude, vegetation type (generalized as grassland,
scrub, woodland, agriculture and ‘other’ for the analysis), and abundances of springtail taxa
found in each soil sample (or sampling site). Underrepresented geographical areas (Africa,
South America, Australia and Southeast Asia) were specifically targeted by a literature search
in the Web of Science database using the keywords ‘springtail’ or ‘Collembola’, ‘density’ or
‘abundance’ or ‘diversity’, and the region of interest; data were acquired from all found
papers if the minimum information listed above was provided. In total, 363 datasets
comprising 2,783 sites were collected and collated into a single dataset (Extended Data Fig.
1).

Calculation of community parameters. Community parameters were calculated at the site
level. Here, we defined a site as a locality that hosts a defined springtail community, is
covered by a certain vegetation type and has a maximum spatial extent (diameter) of several
hundred meters, making species co-occurrence and interactions plausible. To calculate
density, numerical abundance in all samples was averaged and recalculated per square meter
using the sampling area. Springtail communities were assessed predominantly during active
vegetation periods (i.e., spring, summer and autumn in temperate and boreal biomes, and
summer in polar biomes). Our estimations of community parameters therefore refer to the
most favourable conditions (peak yearly densities). This seasonal sampling bias is likely to

have little effect on our conclusions, since most springtails survive during cold periods®®43.
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Finally, we used mean annual temperatures* to estimate the seasonal mean community
metabolism (described below).

All data analyses were conducted in R v. 4.0.2°° with RStudio interface v. 1.4.1103 (RStudio,
PBC), unless otherwise mentioned. To calculate local species richness, we used data
identified to species or morphospecies level. Since the sampling effort varied among studies,
we extrapolated species richness using rarefaction curves based on individual samples with
the Chao estimator’! in the vegan package’?. For some sites, sample-level data were not
available in the original publications, but an extensive sampling effort was made. In such
cases, we predicted extrapolated species richness based on the completeness (ratio of
observed to extrapolated richness) recorded at sites where sample-level data were available
(only sites with 5 or more samples were used for the prediction). We built a binomial model
to predict completeness in sites where no sample-level data were available (435 sites in
Europe, 15 in Australia, 6 in South America, 4 in Asia, and 3 in Africa) using latitude and the
number of samples taken at a site as predictors.

To calculate biomass, we first cross-checked all taxonomic names with the collembola.org
checklist>® using fuzzy matching algorithms (fuzzyjoin R package®*) to align taxonomic
names and correct typos. Then we merged taxonomic names with a dataset on body lengths
compiled from the BETSI database™, a personal database of Matty P. Berg, and additional
expert contributions. We used average body lengths for the genus level (body size data on
432 genera) since data at the species level were not available for many species and
morphospecies, and species within most springtail genera had similar body size ranges. Dry
and fresh body masses were calculated from body length using a set of group-specific length-
mass regressions (Extended Data Table 1)°%°7 and the results of different regressions applied
to the same morphogroup were averaged. Dry mass was recalculated to fresh mass using

corresponding group-specific coefficients>®. We used fresh mass to calculate individual
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metabolic rates®® and account for the mean annual topsoil (0-5 cm) temperature at a given
site>®. Group-specific metabolic coefficients for insects (including Collembola) were used for
the calculation: normalization factor (i0) In(21.972) [J h'], allometric exponent (a) 0.759, and
activation energy (E) 0.657 [eV]°%. Community-weighted (specimen-based) mean individual
dry masses and metabolic rates were calculated for each sample and then averaged by site
after excluding 10% of maximum and minimum values as outlier samples with small
sampling areas, which have a high probability of randomly including large individuals. To
calculate site-level biomasses and community metabolism, we summed masses or metabolic
rates of individuals, averaged them across samples, and recalculated them per unit area (m?).
Parameter uncertainties. Our biomass and community metabolism approximations contain
several assumptions and ignore latitudinal variation in body sizes within taxonomic groups®.
Nevertheless, latitudinal differences in springtail density (30-fold), environmental
temperature (from -17.0 to +27.6°C), and genus-level community compositions (there are
only few common genera among polar regions and the tropics)>? are higher than the
uncertainties introduced by indirect parameter estimations, which allowed us to detect global
trends. Although most springtails are concentrated in the litter and uppermost soil layers?,
their vertical distribution depends on the particular ecosystem®!. Since sampling methods are
usually ecosystem-specific (i.e. sampling is done deeper in soils with developed organic
layers), we treated the methods used by the original data collectors as representative of a
given ecosystem. Under this assumption, we might have underestimated the number of
springtails in soils with deep organic horizons, so our global estimates are conservative and
we would expect true global density and biomass to be slightly higher. To minimize these
effects, we excluded sites where the estimations were likely to be unreliable (see data

selection below).
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Data selection. Only data collection methods allowing for area-based recalculation (e.g.
Tullgren or Berlese funnels) were used for analysis. Data from artificial habitats, coastal
ecosystems, caves, canopies, snow surfaces, and strong experimental manipulations beyond
the bounds of naturally occurring conditions were excluded (Extended Data Fig. 1). To
ensure data quality, we performed a two-step quality check: technical selection and expert
evaluation. Collected data varied according to collection protocols, such as sampling depth
and the microhabitats (layers) considered. To technically exclude unreliable density
estimations, we explored data with a number of diagnostic graphs (see Supplementary Data
Cleaning Protocol) and filtered it, excluding the following: (1) All woodlands where only soil
or only litter was considered; (2) All scrub ecosystems where only ground cover (litter or
mosses) was considered; (3) Agricultural sites in temperate zones where only soil with
sampling depth <10 cm was considered. Additionally, 10% of the lowest values were
individually checked and excluded if density was unrealistically low for the given ecosystem
(outliers with density over three times lower than 1% percentile within each ecosystem type).
In total, 237 sites were excluded from density, and 394 sites from biomass, and community
metabolism analyses based on these criteria. For the local species richness estimates, we
removed all extrapolations based on sites with fewer than three samples and no
(morpho)species identifications (647 sites; Extended Data Fig. 1).

Data expert evaluation. We performed manual expert evaluation of every contributed
dataset. Evaluation was done by an expert board of springtail specialists, each with extensive
research experience in a certain geographic area. Each dataset was scored separately for
density and species richness as either trustworthy, acceptable, or unreliable. Density
estimation quality was assessed using information about the sampling and extraction method
and the density estimation itself. Species richness estimation quality was assessed using

information about the identification key, experience of the person who identified the material,
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557  species (taxa) list, and the species richness estimation itself. Based on the expert opinions,
558 unreliable estimates of density (together with biomass and community metabolism) and
559  species richness were excluded (Extended Data Fig. 1). The resulting final dataset included
560 2,470 sites and 43,601 samples®® with a median of six samples collected at each site. The
561  dataset comprised 2,210 sites with density estimation (69 - 2,181,600 individuals m™2), 2,053
562  sites with mean fresh body mass (1.8 - 3,110 pg), mean metabolic rate (0.028 - 2.4 mJ h'!),
563  dry biomass (0.5 - 92,943 mg m2), fresh biomass (1.6 - 277,028 mg m2) and community
564  metabolism estimations (0.03 - 999.68 J h'!), and 1,735 sites with local species richness
565  estimation (1 - 136.7 species; Extended Data Figs. 1 and 2).

566  Data transformation. All parameters except for extrapolated local species richness were
567  highly skewed (e.g., density had a global median of 21,016 individuals m? and a mean of
568 60,454 individuals m?) and we applied logio-transformation prior to analysis. This greatly
569  improved the fit of all statistical analyses.

570  Latitudinal and ecosystem trends. To explore changes in springtail communities with
571  latitude, we sliced the global latitudinal gradient into 5-degree bins and calculated average
572  parameters across sites in each bin after trimming to ensure the same statistical weight for
573  each latitudinal bin while plotting the gradient. The latitudinal gradient was plotted with
574  ggplor29, and quadratic smoothers were used to illustrate trends. Mean parameters of

575  springtail communities were compared across ecosystem types using a linear model and
576  multiple comparisons with the Tukey HSD test using HSD.fest in the agricolae package®*.
577  Habitats were classified according to the vegetation types. Climates were classified as polar
578  (beyond the polar circles, i.e., more than 66.5 and less than -66.5 degrees), temperate (from
579  the polar circles to the tropics of Capricorn/Cancer, i.e. to 23.5 and -23.5 degrees) and

580 tropical (in between 23.5 and -23.5 degrees). Habitats and climates were combined to

581  produce ecosystem types. For the analysis, only well-represented ecosystem types were
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582  retained: polar scrub (n = 253), polar grassland (n = 39), polar woodland (n = 28), temperate
583  woodland (n = 907), temperate scrub (n = 104), temperate grassland (n = 445), temperate

584  agriculture (n = 374), tropical agriculture (n = 68) and tropical forest (n = 141; Extended Data
585  Fig. 3).

586  Selection of environmental predictors. To assess the drivers of global distributions of

587  springtail community metrics, we pre-selected variables with a known ecological effect on
588  springtail communities (based on expert opinions) and constructed a hypothetical relationship
589  diagram (Extended Data Fig. 9a). Environmental data were very heterogeneous across the
590  springtail studies, so we used globally available climatic and other environmental layers;

591  these included layers bearing climatic (mean annual temperature, temperature seasonality,
592 temperature annual range, mean annual precipitation, precipitation seasonality, precipitation
593  of the driest quarter®, aridity index®®), topographic (elevation, roughness®’), vegetative and
594  land cover (aboveground biomass®, tree cover®, Net Primary Production, Normalized

595  Difference Vegetation Index [NDVI]”?), topsoil physicochemical (0-15 cm depth C to N

596 ratio, pH, clay, sand, coarse fragments, organic carbon, bulk density’!) and human population
597  density’?.

598  Geospatial global projections. To create global spatial predictions of springtail density,

599  species richness, biomass, and community metabolism, we followed the approach previously
600 used for nematodes'®73 that is based on spatial associations of community parameters with
601  global environmental information. A Random Forest algorithm was applied to identify the
602  spatial associations and extrapolate local observations to the global scale'®73. After retrieving
603 the environmental variable values for each location, we trained 18 model versions, each with
604  different hyperparameter settings, i.e., variables per split (range: 2 - 7); minimum leaf

605  population (range: 3 - 5). To minimize the potential bias of a single model, we used an

606  ensemble of the top 10 best-performing models, selected based on the coefficient of
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607  determination (R?), to create global predictions of each of the community parameters.

608  Geographical regions with climatic conditions poorly represented by our sites and without
609  NPP data were excluded from the extrapolation (e.g., Sahara, Arabian desert, Himalayas). We
610 evaluated our extrapolation quality based on spatial approximations of interpolation versus
611  extrapolation’. In this approach, we first determined the range of environmental conditions
612  represented by the observations. Next, we classified all pixels to fall within or outside the
613  training space, in univariate and multivariate space. For the latter, we first transformed the
614  data into principal component space, and selected the first 11 PC axes, collectively explaining
615  90% of the variation. Finally, we classified pixels to fall within or outside the convex hulls
616  drawn around each possible bivariate combination of these 11 PC axes; pixels that fell

617  outside the convex hulls in >90% of cases were masked on the map.

618  To estimate spatial variability of our predictions while accounting for the spatial sampling
619  bias in our data (Fig. 1a) we performed a spatially stratified bootstrapping procedure. We
620  used the relative area of each IPBES region (i.e., Europe and Central Asia, Asia and the
621  Pacific, Africa, and the Americas) to resample the original dataset, creating 100 bootstrap
622  resamples. Each of these resamples was used to create a global map, which was then reduced
623  to create mean, standard deviation, 95% confidence interval, and coefficient of variation

624  maps (Extended Data Figs. 4-7).

625  Global biomass, abundance, and community metabolism of springtails were estimated by
626  summing predicted values for each 30 arcsec pixel'®. Global community metabolism was

627  recalculated from joule to mass carbon by assuming 1 kg fresh mass = 7 x 10° J7>, an average
628  water proportion in springtails of 70%°%, and an average carbon concentration of 45%

629  (calculated from 225 measurements across temperate forest ecosystems)’®.

630  Path analysis. To reveal the drivers of springtail communities at the global scale, we

631  performed a path analysis. After filtering the selected environmental variables (see above)
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according to their global availability and collinearity, 13 variables were used (Extended Data
Fig. 9b): mean annual temperature, mean annual precipitation (CHELSA database®), aridity
(CGIAR database®®), soil pH, sand and clay contents combined (sand and clay contents were
co-linear in our dataset), soil organic carbon content (SoilGrids database’"), NDVI (MODIS
database’®), human population density (GPWv4 database’?), latitude, elevation®’, and
vegetation cover (woodland, scrub, or agriculture; grasslands were represented as the
combination of woodland, scrub, and agriculture absent). Before running the analysis, we
performed the Rosner's generalized extreme Studentized deviate test in the EnvStats
package’’ to exclude extreme outliers and we z-standardized all variables (Supplementary R
Code).

Separate piecewise structural equation models were run to predict density, dry biomass,
community metabolism, and local species richness in the lavaan package’®. To account for
the spatial clustering of our data in Europe, instead of running a model for the entire dataset,
we divided the data by the IPBES’* geographical regions and selected a random subset of
sites for Eurasia, such that only twice the number of sites were included in the model as the
second most represented region. We ran the path analysis 99 times for each community
parameter with different Eurasian subsets (density had n = 723 per iteration, local species
richness had n = 352, dry biomass had n = 568, and community metabolism had n = 533). We
decided to keep the share of the Eurasian dataset larger than other regions to increase the
number of sites per iteration and validity of the models. The Eurasian dataset also had the
best data quality among all regions and a substantial reduction in datasets from Eurasia would
result in a low weight for high quality data. We additionally ran a set of models in which the
Eurasian dataset was represented by the same number of sites as the second-most represented
region, which yielded similar effect directions for all factors, but slightly higher variations

and fewer consistently significant effects. In the paper, only the first version of analysis is
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presented. To illustrate the results, we averaged effect sizes for the paths across all iterations
and presented the distribution of these effect sizes using mirrored Kernel density estimation
(violin) plots. We marked and discussed effects that were significant at p < 0.05 in more than
a given number of iterations (arbitrary thresholds were set to 25%, 50%, 75% and 95% of

iterations; Fig. 3).

Data availability statement.
The data that support the findings of this study are available under CC-BY 4.0 license from

Figshare: https://doi.org/10.6084/m9.figshare.16850419; high-resolution maps can be

assessed at https://doi.org/10.6084/m9.figshare.16850446.

Code availability statement

Programming code for the path analysis and the geospatial modelling is available under CC-

BY 4.0 from Figshare: https://doi.org/10.6084/m9.figshare.16850419.
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Extended Data Fig. 1 | Flow diagram of data compilation and selection. Major data

77
2,667

4,407

3,239

10,507

893
420
782
1,118
3,300

1,955

providers of #GlobalCollembola whose data were used in the analysis are given in the shaded

table on the right side. Providers are ordered based on the number of sites, but exemplar

datasets with extensive sampling efforts (number of samples) are given to illustrate the

available data.
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802  Extended Data Fig. 2 | Selected sampling sites that were used in the analysis. a, Density
803  (n=2210), b, Local species richness (n = 1735); ¢, Dry biomass (n = 2053); d, Community

804  metabolism (n = 2053). Data scales are logarithmic except for local species richness.
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Extended Data Table 1 | Regression coefficients used to estimate the dry and fresh body

masses of springtail genera based on body lengths. For each genus, the average body mass

(M) [ug dry weight] was calculated from the average body length (L) [mm] using the power

equation: M = a*L"b, where a is the normalisation coefficient and b is the exponent.

Abdomen length of Symphypleona was used in the original equations and was assumed to be

0.83 of the total body length. Two sets of coefficients coming from two independent

studies3®7 were used for each morphogroup (a1, b1 and a2, b2) and the two estimates of dry

body mass were averaged. Fresh body mass was calculated from the resulting average by

dividing it by the proportion of the dry weight.

Morphogroup Normalisation  Exponent Normalisation Exponent Dry weight
(ar) (b1) (a2) (b2) proportion

Entomobryidae 11.749 2.52 14.256 2.708 0.30

Isotomidae 6.457 2.99 5.623 2.799 0.36

(small)

Isotomidae 5.623 3.28 8.427 3.223 0.36

(large)

Onychiuridae 4.266 2.75 5.598 2.769 0.30

Poduromorpha 9.772 2.55 5.598 2.769 0.30

(excl.

Onychiuridae)

Symphypleona 190.546 3.627 39.628 3.796 0.21

Tomoceridae 9.204 2.744 14.256 2.708 0.25
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815

816  Extended Data Fig. 3 | Mean estimates for community parameters in different

817  ecosystem types. Points represent sites, labels represent mean values, means sharing the

818  same letter are not significantly different (Tukey’s HSD test for multiple comparisons®). For
819  ecosystem classification see Methods.
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Density, ind./m?
[Predicted ensemble mean]

I High : 254,956

l Low : 516

b

Not assessed

Density, ind./m?
[bootstrapped mean]

High : 254,956

e

Standard deviation
[bootstrapped]

. High : 162,220
Low : 1 Not assessed

Extended Data Fig. 4 | Global projection of springtail density. Distribution was predicted
with the random forest algorithm (a) based on the entire dataset and (b) using mean
prediction after bootstrapping data by continents (R = 0.57 £ 0.04). Green colour identifies
hot spots, violet colour cold spots. The bottom map (c) shows the standard deviation across
the bootstrapped predictions (red — high, yellow —low). All data were projected at the 30

arcsec (approximately 1 km?) pixel scale.
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Rarefied richness
[Predicted ensemble mean]
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Rarefied richness
[bootstrapped mean]

High : 62

Not assessed
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Extended Data Fig. 5 | Global projection of springtail local species richness. Distribution
was predicted with the random forest algorithm (a) based on the entire dataset and (b) using
mean prediction after bootstrapping data by continents (R?> = 0.31 + 0.06). Green colour
identifies hot spots, violet colour cold spots. The bottom map (c) shows the standard
deviation across the bootstrapped predictions (red — high, yellow — low). All data were

projected at the 30 arcsec (approximately 1 km?) pixel scale.
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a ) e T

Biomass [dry], mcg/m?
[Predicted ensemble mean]

l High: 7,619,000
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Not assessed

Biomass [dry], mcg/m?
[bootstrapped mean]

I High: 7,619,000
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Standard deviation
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High: 2,147,480
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Extended Data Fig. 6 | Global projection of springtail biomass. Distribution was predicted
with the random forest algorithm (a) based on the entire dataset and (b) using mean
prediction after bootstrapping data by continents (R?> = 0.47 + 0.05). Green colour identifies
hot spots, violet colour cold spots. The bottom map (c) shows the standard deviation across
the bootstrapped predictions (red — high, yellow — low). All data were projected at the 30

arcsec (approximately 1 km?) pixel scale.
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843  Extended Data Fig. 7 | Global projection of springtail community metabolism.

844  Distribution was predicted with the random forest algorithm (a) based on the entire dataset
845  and (b) using mean prediction after bootstrapping data by continents (R? = 0.33 + 0.09).
846  Green colour identifies hot spots, violet colour cold spots. The bottom map (c) shows the
847  standard deviation across the bootstrapped predictions (red — high, yellow — low). All data

848  were projected at the 30 arcsec (approximately 1 km?) pixel scale.
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Extended Data Fig. 8 | Associations of selected environmental variables with springtail
density, local species richness, dry biomass and community metabolism. Quadratic
function was used for approximation to illustrate global trends (red line). Blue lines show

linear trends in equatorial (solid), temperate (long dash) and polar zones (short dash).
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Extended Data Fig. 9 | Initial and final relationship diagram in the path analysis. Factors

directly and indirectly affecting community parameters of springtails at the global scale were

pre-selected based on expert opinion (a). Factors in the final model (b) were further selected

according to their global availability and collinear factors were removed. The global

distributions of pH and NDVI (Normalized Difference Vegetation Index) are initially

modelled based on other factors, which was accounted for in the final model.
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