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 27 

Abstract. Morphology remains a primary source of phylogenetic information for many 28 

groups of organisms, and the only one for most fossil taxa. Organismal anatomy is not a 29 

collection of randomly assembled and independent 8parts9, but instead a set of dependent and 30 

hierarchically nested entities resulting from ontogeny and phylogeny. How do we make sense 31 

of these dependent and at times redundant characters? One promising approach is using 32 

ontologies4structured controlled vocabularies that summarize knowledge about different 33 

properties of anatomical entities, including developmental and structural dependencies. Here 34 

we assess whether the proximity of ontology-annotated characters within an ontology predicts 35 

evolutionary patterns. To do so, we measure phylogenetic information across characters and 36 

evaluate if it is hierarchically structured by ontological knowledge4in much the same way as 37 

phylogeny structures across-species diversity. We implement an approach to evaluate the 38 

Bayesian phylogenetic information (BPI) content and phylogenetic dissonance among 39 

ontology-annotated anatomical data subsets. We applied this to datasets representing two 40 

disparate animal groups: bees (Hexapoda: Hymenoptera: Apoidea, 209 chars) and 41 

characiform fishes (Actinopterygii: Ostariophysi: Characiformes, 463 chars). For bees, we 42 

find that BPI is not substantially structured by anatomy since dissonance is often high among 43 

morphologically related anatomical entities. For fishes, we find substantial information for 44 

two clusters of anatomical entities instantiating concepts from the jaws and branchial arch 45 

bones, but among-subset information decreases and dissonance increases substantially 46 

moving to higher level subsets in the ontology. We further applied our approach to address 47 

particular evolutionary hypotheses with an example of morphological evolution in miniature 48 

fishes. While we show that ontology does indeed structure phylogenetic information, 49 

additional relationships and processes, such as convergence, likely play a substantial role in 50 
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explaining BPI and dissonance, and merit future investigation. Our work demonstrates how 51 

complex morphological datasets can be interrogated with ontologies by allowing one to 52 

access how information is spread hierarchically across anatomical concepts, how congruent 53 

this information is, and what sorts of processes may structure it: phylogeny, development, or 54 

convergence. 55 

 56 

Keywords: Apidae, Bayesian phylogenetic information, Ostariophysi, Phenoscape, 57 

phylogenetic dissonance, semantic similarity. 58 
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Phylogeny is the key to making sense of biodiversity. It structures the vast variation of form 62 

among species into an understandable map that we can use to place and organize all life, 63 

compare and contrast organisms, and recover the individual and shared evolutionary history 64 

for each lineage and group. By structuring knowledge about data in meaningful ways, a 65 

phylogeny allows us to extract information from biological data and ultimately, biological 66 

meaning, in ways that would be impossible without it. The hierarchical nature of life, 67 

however, is evident not just at the level of species (e.g., Oakley 2003; Serb and Oakley 2005). 68 

It is also observed among phenotypic traits, which are themselves often descended from 69 

common ancestral precursors modified over developmental and evolutionary time frames. 70 

Therefore, organismal anatomy is not a collection of randomly assembled 8parts9. It is the 71 

manifestation of relationships among anatomical entities and structure resulting from 72 

ontogeny and phylogeny. Just as we can organize knowledge about species with phylogeny, 73 

our definitions of the entities, qualities, and relations of organismal traits can be organized by 74 

ontologies4structured controlled vocabularies formalizing relationships among concepts 75 

(Mabee et al. 2007; Vogt 2009; Deans et al. 2015). 76 

Ontologies summarize knowledge about different properties of anatomical entities, 77 

including developmental and structural dependencies. For example, in fishes, the presence of 78 

a 8dorsal fin ray9 is dependent on the presence of a 8dorsal fin9. Here, we explore one 79 

particular aspect from ontologies: do ontology concepts referring to real anatomical entities 80 

and the relations among them structure phylogenetic information? In other words, does the 81 

proximity of characters within an ontology with respect to their anatomical and structural 82 

relations predict their evolutionary patterns? Investigating this question is key to 83 

understanding the processes underlying morphological evolution and to addressing key 84 

impediments to the 8Phenomics9 revolution (Deans et al. 2015)4namely, the complex sets of 85 
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dependencies among phenotypic characters that confound the application of traditional 86 

statistical models. 87 

In contrast to molecular data, which are typically treated as independently-evolving 88 

sets of characters, morphological data are known to carry dependencies and redundancies 89 

across characters. Morphological traits may change in a concerted fashion through 90 

evolutionary time (i.e., evolutionary modules) if they share a common underlying 91 

genetic/developmental machinery (Lewontin 1978; Wagner 1989, 1996, 2007; Wagner and 92 

Altenberg 1996; Wagner and Stadler 2003; Mabee 2006) and/or as a result of shared 93 

functional/ecological selective pressures (e.g., see concerted convergence: Patterson and 94 

Givnish 2002; Holland et al. 2010; Blank et al. 2013). Therefore, groups of characters may 95 

imply similar trees due to shared phylogenetic history (Fig. 1a) or convergence (Fig. 1b), and 96 

in both cases may over-represent the degree of support if treated as independent realizations 97 

of a stochastic evolutionary process. In this context, ontology knowledge may provide us with 98 

additional insights (e.g., from anatomy and development) into the historical patterns of trait 99 

changes: Do particular classes of anatomical entities provide more phylogenetic information 100 

than others (Fig. 1c)? How semantically diverse are the anatomical concepts that support a 101 

particular topology? Is there conflict between different sets of anatomical concepts that may 102 

suggest convergence or other evolutionary processes (Fig. 1d)? 103 

Here, we develop a view that is distinct from typical partitioning of phylogenetic 104 

datasets. Approaches to assess and/or account for heterogeneity across subsets/partitions of 105 

molecular data (e.g., genes, codon positions) usually focus on rates and/or model of trait 106 

evolution (see review in Kainer and Lanfear 2015); informativeness (e.g., Townsend 2007; 107 

Townsend et al. 2012); or topological conflict among inferred trees (e.g., Zhou et al. 2020; 108 

Smith et al. 2020). However, much like how partitioning taxa into a flat set of genera or 109 

families is inadequate to represent phylogenetic structure, partitions in the traditional sense 110 
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fail to account for the continuous hierarchical relations among characters. Expanding 111 

partitions among characters into hierarchical structures enables new questions to be asked of 112 

phylogenetic data. 113 

 114 

 115 

 116 

FIGURE 1. Comparison of the 8true9 species phylogeny with trees inferred from different data 117 

subsets. (a) Trees inferred from characters of 8premaxilla9 and 8maxilla9 are congruent and 118 

indicate true phylogenetic information. (b) Trees inferred from characters of 8pectoral fin9 and 119 

8pelvic fin9 are congruent between themselves but not with the 8true9 species phylogeny, thus 120 

indicating convergence, in this case, associated with other ecological/functional factors 121 

(squares and circles). (c) Ontology relations among anatomy entity concepts showing that 122 

related anatomical entities (for example, the node indicated with a star) provide true 123 

phylogenetic information. (d) Ontology relations among anatomy entity concepts showing 124 

that related anatomical entities (for example, the node indicated with a triangle) provide no 125 

phylogenetic information, but are jointly influenced by convergent evolution. Abbreviations: 126 

DF, dorsal fin; DEN, dentary; IO, infraorbital; MX, maxilla; PCF, pectoral fin; PMX, 127 

premaxilla; PVF, pelvic fin; sp1…sp50, species in a dataset. For colors, please refer to the 128 

online version of this paper available at XXX. 129 

 130 
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One such fundamental question is to ask how information about the phylogeny is 131 

structured across characters. Here, we address this question by integrating knowledge from 132 

ontologies with the Bayesian phylogenetic information (BPI) framework proposed by Lewis 133 

et al. (2016) (see also Neupane et al. 2019; Porto et al. 2021). Lewis9 et al. framework is 134 

based on Shannon9s (1948) entropy and Lindley9s (1956) information. In short, Shannon9s 135 

entropy measures uncertainty in discrete outcomes and Lindley9s information measures how 136 

data make some outcomes more probable than others. In Lewis9 et al. context, the outcomes 137 

refer to discrete tree topologies in the posterior distribution. Therefore, (Bayesian) 138 

phylogenetic information is used here in a sense that differs from most common usages. 139 

Phylogenetic information usually refers to the information inferred from data about the 8true9 140 

evolutionary history of organisms (see discussion on phylogenetic systems in Farris 1979). A 141 

related concept is phylogenetic signal, which refers to similarity among an organismal trait (or 142 

set of traits) in different taxa that is explained by shared evolutionary history (Pagel 1999). 143 

BPI here refers to the 8ability9 of data to concentrate prior probabilities of tree topologies into 144 

a smaller set of trees in the posterior (as in Lewis et al. 2016). 145 

Lewis9s et al. approach allows us to assess information inferred from data, but also to 146 

evaluate how different data subsets may concentrate probabilities into alternative sets of trees 147 

through a measure called phylogenetic dissonance (Lewis et a. 2016). Data subsets may 148 

represent groups of characters from different anatomical regions. They can be compared to 149 

evaluate which ones are congruent with each other and/or with the 8true9 phylogeny, for 150 

example. Ontology knowledge can be integrated by structuring such comparisons in a 151 

meaningful way based on known relations (e.g., anatomical/developmental) among anatomy 152 

entity concepts instantiated by characters annotated in these data subsets (Fig. 2a). Semantic 153 

similarity then can be employed to assess how closely related two anatomical concepts are in 154 

the ontology, a metric that can be used to link characters in a character matrix to a 155 
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ontologically structured hierarchy, thus providing the backbone for comparisons among data 156 

subsets (Fig. 2a). 157 

The approach advocated here combines elements of information theory with ontology 158 

knowledge allowing one to investigate what sort of processes may structure probabilities in 159 

the tree space of the posterior distribution of tree topologies (Fig. 2b). BPI provides a measure 160 

of how much uncertainty there is in the posterior inferred from a data subset: lower BPI 161 

means more possible trees with probability scattered across them (e.g., Fig. 2b: DF); higher 162 

BPI means fewer possible trees with probability concentrated in some of them (e.g., Fig. 2b: 163 

PVF or PCF). Phylogenetic dissonance provides a measure of how congruent posterior 164 

distributions of trees inferred from different data subsets are: lower dissonance means that a 165 

similar set of trees with similar probabilities are present in the posteriors (e.g., Fig. 2b: PVF 166 

vs. PCF); higher dissonance means that there is low or no overlap among the posteriors (e.g., 167 

Fig. 2b: DF vs. IO). If subsets are defined based on organismal anatomy and the patterns of 168 

phylogenetic dissonance observed in the tree space of the posterior (Fig. 2b) reflect the 169 

ontological hierarchy (Fig. 2a), then one can ask if anatomy/development may play a role in 170 

explaining phylogenetic information in the data. In other words, ontology knowledge 171 

structures phylogenetic information in this case (i.e., there is semantic signal). Alternatively, 172 

if groups of unrelated anatomy entity concepts (i.e., low semantic similarity) provide 173 

congruent trees and such trees are congruent with the 8true9 species phylogeny (Fig. 1a), then 174 

such entities are just following the common species history. Finally, if groups of unrelated 175 

anatomy entity concepts provide congruent trees that are different from the species tree (Fig. 176 

1b), then other processes may be suspected (e.g., concerted convergence). 177 

 178 
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 179 

 180 

FIGURE 2. Diagrammatic representation of the relationship between ontology structure, 181 

represented as a clustering dendrogram, and a hypothetical posterior tree space. (a) Ontology 182 

hierarchy of anatomy entity concepts referring to data subsets used to infer posterior 183 

distribution of trees (only one tree shown above each term). The hierarchy is represented as a 184 

clustering dendrogram based on semantic similarity distances among anatomy entity concepts 185 

(b) Representation of a hypothetical posterior tree space. Each circle indicate a discrete tree 186 
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topology. Shade intensity is proportional to the posterior probability of each topology. Dotted 187 

ellipses indicate the hypothetical area of the tree space occupied by inferred trees in the 188 

posterior of some data subsets. Abbreviations: DF, dorsal fin; DEN, dentary; IO, infraorbital; 189 

MX, maxilla; PCF, pectoral fin; PMX, premaxilla; PVF, pelvic fin. For colors, please refer to 190 

the online version of this paper available at XXX. 191 

 192 

In this study we evaluated the phylogenetic information content of ontology-annotated 193 

character matrices by measuring BPI and phylogenetic dissonance applied to morphological 194 

data in phylogenetic inferences. We applied this approach to two datasets representing 195 

disparate animal groups for which well-established anatomy ontologies are available: bees 196 

(Hexapoda: Hymenoptera: Apoidea) and characiform fishes (Actinopterygii: Ostariophysi: 197 

Characiformes). Within the characiform fishes, we further targeted specific evolutionary 198 

questions concerning miniaturization, which is predicted to result in convergent evolution 199 

among certain data subsets. We propose a new framework for evaluating alternative 200 

hypotheses for the sets of ontological relationships that best explain phylogenetic information 201 

across ontology-annotated anatomical data subsets (i.e., semantic signal). This framework is 202 

not limited to the Bayesian information metrics used here, and it can be a general approach to 203 

understanding how ontologies may structure phylogenetic information inferred from 204 

anatomical data and investigating whether morphologically related entities show similar tree-205 

like histories due to a shared phylogeny (i.e., phylogenetic signal) or other process such as 206 

concerted convergence. We have made our implementation of this methodology available in 207 

the new R package ontobayes (https://github.com/diegosasso/ontobayes). 208 

 209 

MATERIAL AND METHODS 210 

Theoretical Background 211 

Definitions. Throughout this paper, we employed a few terms with varying usage in the 212 

literature. 8Dependency9 (e.g., either anatomical, morphological, or structural) is used in the 213 

same sense as 8ontological dependency9 (Vogt 2018a) to describe the types of relationships 214 
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when the absence/presence of one anatomical entity determines the absence/presence or 215 

condition of another. The terms 8trait9 and 8character9 are used mostly interchangeably to 216 

mean <any recognizable phenotypic unit from organisms=. Here, 8character9 is used to 217 

specifically refer to phenotypic units that are variable across organisms and used as input data 218 

in phylogenetic analyses. We make a distinction in the use of the terms 8dendrogram9 and 219 

8tree9, despite the former including the latter. 8Dendrogram9 or 8clustering dendrogram9 is 220 

used here to refer to any tree-like hierarchical diagram depicting relationships among anatomy 221 

ontology terms. 8Tree9 or 8phylogenetic tree9 is reserved to the hierarchical diagrams 222 

depicting relationships among species. 8Topology9 is used to refer to the ordering of the 223 

hierarchy among leaves in such tree-like diagrams, without respect to edge length. 8Term9 is 224 

used to refer to the labels applied to real anatomical entities represented as concepts in an 225 

anatomy ontology. 8Data subset9 or 8partition9 is used to refer to groups of traits/characters 226 

annotated with or descended from a particular ontology term/concept. 227 

 228 

Ontologies. Ontologies are structured controlled vocabularies formalizing relationships 229 

among concepts in a specific domain of knowledge, for example, vertebrate (Dahdul et al. 230 

2012; Haendel et al. 2014) and hymenopteran anatomy (Yoder et al. 2010). Concepts can be 231 

expressed by terms linked to or defining organismal anatomical entities (e.g., 8opercle9 from 232 

the Uberon anatomy ontology, Mungall et al. 2012; Haendel et al. 2014) or phenotypic 233 

qualities (e.g., 8triangular9 from the Phenotype and Trait Ontology, Gkoutos et al. 2005), and 234 

phenotypes can be described using the Entity-Quality syntax (e.g., E: 8opercle9, Q: 235 

8triangular9) (Mungall et al. 2010; Balhoff et al. 2010; Dahdul et al. 2010a, 2012). 236 

Relationships among concepts can be of various kinds (e.g., part_of, is_a, develops_from) and 237 

different logical relations may be included to build knowledge graphs with relevant structural 238 
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or developmental information about organismal traits (e.g., Dahdul et al. 2010b; Mabee et al. 239 

2012). 240 

Ontological knowledge can be explored in different ways to summarize information 241 

on structural dependencies among anatomical entities instantiating ontology concepts. One 242 

possibility is to use semantic similarity measures to build a dendrogram depicting distances 243 

among anatomy entity concepts (Fig. 2a). Semantic similarity can be assessed using different 244 

metrics such as edge-based distances (e.g., Jaccard), node-based information content (e.g., 245 

Resnik), or hybrid metrics (e.g., Hybrid Relative Specificity Similarity)(Pesquita et al. 2009; 246 

Manda and Vision 2018). Different metrics can capture alternative and/or complementary 247 

properties of the ontology. The types of relations included as well as the ontology structure 248 

itself can influence the overall similarity values between concepts (Pesquita et al. 2009; 249 

Manda and Vision 2018). Another possibility is to use ontological knowledge to explicitly 250 

account for anatomical dependencies among individual traits when specifying models of 251 

character evolution (Tarasov 2019, 2020; Tarasov et al. 2019). This can be achieved by 252 

constructing models of discrete trait evolution enabling ontology-aware transition matrices 253 

through structured Markov models equipped with hidden states (Tarasov 2019). In this work, 254 

we focused on the first way of exploring ontology knowledge. 255 

 256 

Bayesian phylogenetic information. BPI is the amount of information about phylogenetic tree 257 

topology inferred from the data. It is measured as the difference in entropy between prior and 258 

posterior probability distributions on phylogenetic tree topologies (Lewis et al. 2016). In this 259 

context, entropy can be interpreted as a measure of uncertainty and is inversely proportional 260 

to information. If data provides no information in favor of any phylogenetic tree topology, 261 

then entropy (and uncertainty) is maximal and all possible trees are equiprobable (assuming a 262 

discrete uniform prior). Thus, phylogenetic information inferred from data will make some 263 
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phylogenetic tree topologies from the prior more probable than others resulting in a 264 

concentrated posterior (Lewis et al. 2016). 265 

Comparing BPI from different subsets allows the estimation of the amount of 266 

informational conflict between posterior probability distributions of phylogenetic tree 267 

topologies4i.e., phylogenetic dissonance (Lewis et al. 2016; Neupane et al. 2019). In this 268 

study, we asked whether ontology structures Bayesian phylogenetic information for 269 

phylogenetic tree topology (see also Lewis et al. 2016; Neupane et al. 2019; Porto et al. 2021), 270 

although similar questions could be asked for other types of information (e.g., regarding 271 

ancestral states for discrete characters; Borges et al. 2019). Since the prior on phylogenetic 272 

tree topology for a dataset with a given number of taxa is the same as for all its possible 273 

subsets4for unrooted dichotomous labeled phylogenetic trees it depends only on total 274 

number of taxa4BPI from different data subsets can be compared to assess their individual 275 

informational contributions in phylogenetic analyses (e.g., Neupane et al. 2019; Porto et al. 276 

2021). Therefore, BPI and phylogenetic dissonance provide straightforward measures for 277 

assessing how much agreement or disagreement there is between the posterior distributions of 278 

phylogenetic tree topologies from two or more data subsets. We use these statistics to 279 

investigate how the ontology structure translates as congruence or dissonance in phylogenetic 280 

information provided by different subsets. 281 

 282 

The Ontobayes Approach 283 

To measure phylogenetic information and dissonance, we carried out four main steps using R 284 

(R Core Team 2021), MrBayes (Ronquist et al. 2012), and Galax (Lewis et al. 2016) in an 285 

implementation of our analysis, which we call ontobayes. In brief, we aggregate ontology-286 

annotated characters into subsets based on anatomical terms and use phylogenetic analyses of 287 

these subsets in MrBayes to obtain posterior samples of phylogenetic tree topologies. The 288 
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samples are then used to calculate the information theory metrics (i.e., BPI and phylogenetic 289 

dissonance) in Galax to compare different subsets. All functions, examples, and 290 

documentation for the ontobayes R package are available at 291 

https://github.com/diegosasso/ontobayes and in the online Supplementary Material available 292 

on Dryad. 293 

We incorporated ontological knowledge about organismal anatomy (Fig. 3a) by 294 

building data subsets (Fig. 3d) grouping characters based on ontology term annotations (Fig. 295 

3b) and structuring relationships among ontology concepts as clustering dendrograms (Fig. 296 

3c). We based dendrograms on distance matrices from measures of semantic similarity using 297 

functions from rphenoscape (https://github.com/phenoscape/rphenoscape) (Fig. 3c, hereafter 298 

8semantic similarity dendrogram9) or phylogenetic dissonance (hereafter 8dissonance 299 

dendrogram9). We evaluated two alternative ways of constructing dendrograms based on: (1) 300 

all available terms annotated to characters in a given character matrix (ALL) and (2) a smaller 301 

selection (8profile9) of preferred terms (PROFILE), which allow for specific investigation of 302 

terms of particular research interest. We estimated BPI and phylogenetic dissonance in Galax 303 

(i) among different MCMC runs from the same data subset and (ii) from different data subsets. 304 

The former analysis assess the topological convergence and information content (Lewis et al. 305 

2016), while the latter measures concordance or conflict among two or more distinct data 306 

subsets. Entropy measures in Galax (Fig. 3e, e.g., E1 and E2) were then be used to estimate 307 

information content and conflict by assessing uncertainty in posterior probability distributions 308 

(see discussions in Lewis et al. 2016; Neupane et al. 2019; Porto et al. 2021). 309 

 310 
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 311 

 312 

FIGURE 3. Diagrammatic representation of main steps of the ontobayes analysis. (a) Ontology 313 

terms referring to anatomical entities are linked to characters in a matrix using expert 314 

judgment. (b) Terms in the ontology are related to other terms by logical relations (e.g., is_a, 315 

part_of) which can be represented as a graph. (c) Semantic similarity metrics derived from 316 

such a graph (e.g., Jaccard, Resnik) can be employed to build a clustering dendrogram for 317 

terms. (d) The structure of such a dendrogram can then be used to guide comparison of 318 

subsets of characters linked to the same or related ontology terms. (e) Each subset is used to 319 

produce posterior probability distributions of phylogenetic tree topologies which are used to 320 

estimate Information Theory metrics (i.e., entropy, information, dissonance). Abbreviations: 321 

AN, organismal anatomy; AO, anatomy ontology; BI, Bayesian inference; C1…C30, 322 

characters in a matrix; DF, dorsal fin; DEN, dentary; E1…E2, entropy of posterior 323 

distributions; IO, infraorbital; MT, character matrices; MX, maxilla; PCF, pectoral fin; PMX, 324 

premaxilla; PVF, pelvic fin; sp1…sp50, species in a matrix; SS, semantic similarity 325 

dendrogram. For colors, please refer to the online version of this paper available at XXX. 326 

 327 

Empirical Analyses 328 

We analyzed how ontology structures phylogenetic information with two datasets 329 

representing disparate animal groups: bees and characiform fishes. The two groups were 330 

selected for this study since well-established anatomy ontologies are already available for 331 

them (bees and other hymenopteran insects: Hymenoptera Anatomy Ontology, HAO, Yoder 332 

et al. 2010; vertebrate animals: Uberon anatomy ontology, Mungall et al. 2012; Haendel et al. 333 

2014) and comprehensive character matrices could be annotated with ontology terms based on 334 

the authors9 expertise. The BEE dataset was modified from Porto et al. (2021), which includes 335 
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corbiculate bees and related taxa (Hexapoda: Hymenoptera: Apidae). The original matrix was 336 

reduced to contain only 10 bee species because Bayesian phylogenetic information content 337 

estimation is less reliable when the number of taxa (and thus possible phylogenetic tree 338 

topologies) is large (Lewis et al. 2016). Two species representing each of the four corbiculate 339 

bee tribes (i.e., Apini, Bombini, Euglossini, and Meliponini) were selected, plus two outgroup 340 

taxa (Centridini: Epicharis and Anthophorinae: Anthophora). The taxon sampling represents 341 

the diversity among the main lineages of Apinae bees (e.g., see Porto et al. 2021). The final 342 

dataset contained a total of 209 informative characters, each annotated with anatomical terms 343 

from HAO (see supporting data in the online Supplementary Material available in Dryad). 344 

This dataset was first analyzed under the PROFILE alternative of subset construction, which 345 

is based on pre-defined groups of selected ontological terms (i.e., 8profiles9). Six groups of 346 

terms from HAO were chosen so as to assess the information content and dissonance within 347 

and across data subsets representing groups of anatomical entities in distinct body regions 348 

from the bee anatomy. The anatomical terms were selected so as to represent the main 349 

morpho-functional regions in the body of a typical apocritran Hymenoptera. The groups of 350 

selected terms were: 1. Mouthparts: labrum, mandible, maxilla, labium, and sitophore; 2. 351 

Head: cranium and tentorium; 3. Mesosoma: prothorax, mesothorax, and metathorax; 4. Legs: 352 

fore, mid, and hind legs; 5. Wings: fore and hind wings; 6. Metasoma: male and female 353 

genitalia. In addition to these pre-defined profiles, we analyzed this dataset under the ALL 354 

alternative of subset construction to obtain a dissonance dendrogram, which represents 355 

relationships among all ontological terms annotated to characters in the matrix by estimating 356 

phylogenetic dissonance for all pairwise comparisons among data subsets (see supporting data 357 

in the online Supplementary Material available in Dryad). 358 

The FISH dataset was obtained from Dillman et al. (2016) and includes information 359 

for four families of anostomoid fishes in the order Characiformes (Actinopterygii: 360 
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Ostariophysi: Characiformes). The original matrix was reduced so as to contain only 10 taxa 361 

and retaining 463 characters, each annotated with anatomical terms from the Uberon ontology 362 

(see supporting data in the online Supplementary Material available in Dryad). Two or more 363 

species representing the four anostomoid families (i.e., Anostomidae, Chilodontidae, 364 

Curimatidae, and Prochilodontidae) were selected, along with one outgroup taxon 365 

(Parodontidae: Parodon). The taxon sampling represents the diversity among the main 366 

lineages of anostomoid fishes (e.g., see Dillman et al. 2016). This dataset was analyzed under 367 

the ALL alternative of subset construction. It was first used to compare alternative ways of 368 

representing the relationships among subsets of ontological terms (e.g., phylogenetic 369 

dissonance and semantic similarity dendrograms) to assess congruence between ontology 370 

structure and phylogenetic information. We then evaluated (1) the information content of 371 

individual data subsets defined as groups of characters annotated to the same ontological 372 

term; (2) information content and dissonance among distinct subsets defined by different 373 

ontological terms; and (3) clade-specific information components provided by each subset to 374 

nodes in a given reference phylogenetic species tree. The reference species tree was inferred 375 

using all 463 characters for the 10 fish species sampled and represents the phylogenetic 376 

knowledge acquired when the information from all characters annotated to all ontological 377 

terms is considered together. The dataset was also used to investigate whether subsets of data 378 

might be ontologically related to particular terms (in this case, as an example, all terms that 379 

are part_of 8dermatocranium9). 380 

Within characiform fishes, miniaturization has occurred multiple times and may result 381 

in convergent character states for sets of traits. To evaluate whether the degree to which 382 

characters respond to these convergent selection pressures is structured by ontology we 383 

assembled a modified third dataset, the MINI dataset, from Mirande (2019). We focused on 384 

10 species of characiform fishes that had multiple convergent miniatures and retained 453 385 
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characters, each annotated with anatomical terms from the Uberon ontology (see supporting 386 

data in the online Supplementary Material available in Dryad). Specifically, taxon selection 387 

included: four miniature fishes (body size < 26mm sensu Weitzman and Vari 1988) and six 388 

non-miniature fishes representing four different lineages of Characidae and two outgroups. 389 

Each characid lineage was represented by a miniature and a non-miniature species. To assess 390 

convergence, a reference phylogenetic tree was inferred that constrained all miniatures to a 391 

monophyletic grouping. Clade-specific information components were then obtained for all 392 

subsets of characters to determine whether the ontology structures which traits are more 393 

informative about miniaturization phenotypes, and which traits follow the species tree. 394 

Finally, we further evaluated whether the ontology structures phylogenetic information 395 

and dissonance across characters by conducting comparisons of ontology-based subsets and 396 

randomly resampled sets of characters from the original FISH dataset. Six terms from the 397 

Uberon ontology annotated to multiple characters in the FISH dataset and representing 398 

different anatomical entities (i.e., fish bones) were chosen: 1. Premaxilla (PMX, 8 chars), 2. 399 

Maxilla (MX, 14 chars), 3. Dentary (DEN, 8 chars), 4. Infraorbital (IO, 11 chars), 5. 400 

Epibranchial bone (EB, 15 chars), and 6. Ceratobranchial bone (CB, 10 chars). For each term, 401 

100 different subsets of the same size were produced by randomly sampling characters from 402 

the original FISH dataset. These resampled subsets were compared to the ontology-based 403 

(hereafter 8standard9) subsets by measuring BPI and phylogenetic dissonance. Ontological 404 

relationships among selected terms were represented as a semantic similarity dendrogram that 405 

was then employed to guide sequential pairwise comparisons between data subsets based on 406 

terms with successive increasing distances within the ontology (i.e., decreasing semantic 407 

similarity) adopting one term as a fixed reference (i.e., PMX, premaxilla). 408 

Posterior samples of phylogenetic tree topologies were obtained running MCMC 409 

analyses in MrBayes (Ronquist et al. 2012) with two runs and four chains, for 1.0 × 107 410 
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generations, sampling every 1000th generation, and discarding the first 25% as burn-in. The 411 

Mk+G model was employed with the following priors and parameters: 1. Tree topology prior: 412 

Discrete Uniform (1, |T|); 2. Branch lengths prior: Exponential (10); 3. Discrete Gamma 413 

shape: Exponential (1); 4. State frequencies: Symmetric Dirichlet (infinity); 5. Coding bias: 414 

variable (except for the FISH dataset, which was set to all). Scripts to generate all NEXUS 415 

files and run analyses of individual data subsets were produced using the functions available 416 

in ontobayes. 417 

 418 

RESULTS 419 

Analyses of the BEE Dataset. 420 

Results from PROFILE analyses of the BEE dataset are shown in Table 1. Posterior coverage, 421 

i.e., the fraction of the total posterior probability distribution actually represented in the 422 

posterior sample of phylogenetic tree topologies (Lewis et al. 2016), for individual data 423 

subsets ranged from 51.0% for 8mid leg9 to 99.7% for 8male genitalia9; for profiles it ranged 424 

from 68.8% for 8legs9 to 94.4% for 8metasoma9. Such values indicate overall reasonable 425 

coverage (at least 50%) given that the number of possible phylogenetic tree topologies grows 426 

steeply with the increase in the number of taxa. BPI for individual data subsets ranged from 427 

31.7% for 8labrum9 to 80.7% for 8male genitalia9 and for profiles from 39.6% for 8legs9 to 428 

62.1% for 8metasoma9. Phylogenetic dissonance between different runs of MCMC for most 429 

individual data subsets was close to zero (0.1~0.7%) indicating topological convergence in 430 

the posterior; the exceptions were 8labrum9 and 8mid leg9 showing slightly higher values 431 

(1.1% and 1.3% respectively). Dissonance for profiles ranged from 8.5% for 8head9 to 14.7% 432 

for 8mesosoma9 indicating substantial informational conflict among data subsets within 433 

profiles. A clustering dendrogram depicting hierarchical relationships among ontological 434 
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terms annotated to individual data subsets included in PROFILE analyses is shown in Figure 435 

S1 (Supplementary Material: Fig. S1). 436 

 437 

TABLE 1. Results from PROFILE analyses of the BEE dataset. 438 

 439 

Data subset Coveragea Informationb Dissonancec 

Mouthparts    

Labrum 60.23 31.73 1.11 

Mandible 94.39 60.70 0.38 

Maxilla 96.29 58.69 0.27 

Labium 97.45 65.60 0.14 

Sitophore 89.16 55.67 0.55 

Run 1 85.26 47.60 13.61 

Run 2 85.31 47.49 13.83 

Mean 85.28 47.54 13.72 

Head    

Cranium 97.42 69.55 0.17 

Tentorium 82.71 47.00 0.63 

Run 1 87.34 54.64 8.39 

Run 2 86.86 54.57 8.62 

Mean 87.10 54.61 8.51 

Mesosoma    

Prothorax 99.30 75.62 0.13 

Mesothorax 97.81 67.56 0.22 

Metathorax 85.32 49.73 0.66 

Run 1 91.93 58.25 14.61 

Run 2 91.96 58.39 14.78 

Mean 91.94 58.32 14.70 

Legs    

Fore leg 83.36 50.07 0.49 

Mid leg 51.00 30.25 1.28 

Hind leg 95.01 59.14 0.33 

Run 1 69.23 39.61 12.04 

Run 2 68.34 39.67 12.05 

Mean 68.78 39.64 12.05 

Wings    

Fore wings 75.31 40.77 0.55 

Hind wings 91.23 55.19 0.37 

Run 1 71.45 42.24 10.37 

Run 2 71.29 42.23 10.38 

Mean 71.37 42.23 10.37 

Metasoma    

Female genitalia 92.07 52.24 0.36 

Male genitalia 99.70 80.85 0.14 

Run 1 94.44 62.19 11.84 

Run 2 94.31 62.09 11.94 

Mean 94.37 62.14 11.89 

 440 

a φ, estimated posterior coverage, expressed as percentage of maximum, as defined in 441 

Lewis et al. (2016). 442 

b BPI, estimated Bayesian phylogenetic information content, expressed as percentage of 443 

maximum, as defined in Lewis et al. (2016). 444 

c D, estimated phylogenetic dissonance, expressed as percentage of maximum, as defined in 445 

Lewis et al. (2016). 446 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 6, 2022. ; https://doi.org/10.1101/2022.01.06.475250doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.06.475250
http://creativecommons.org/licenses/by-nc-nd/4.0/


 447 

The dissonance dendrogram shows that data subsets included a priori in the same 448 

profile according to prior expert judgement about bee9s anatomy (Table 1) were not 449 

necessarily the ones less dissonant among themselves (Supplementary Material: Fig. S1). For 450 

example, subsets included in the 8mouthparts9 profile (i.e., 8labrum9, 8mandible9, 8maxilla9, 451 

8labium9, and 8sitophore9) were not clustered in the dissonance dendrogram (Supplementary 452 

Material: Fig. S1: e.g., 8labrum9 groups with 8metathorax9 and 8mandible9 with 8fore leg9). 453 

This indicates that BPI content estimated from different subsets within profiles shows 454 

significant conflicting signal, i.e., information for alternative sets of phylogenetic tree 455 

topologies in the posterior distribution. Patterns observed in the dissonance dendrogram 456 

(Supplementary Material: Fig. S1) agreed with results shown in Table 1 indicating conflict 457 

among data subsets within profiles (phylogenetic dissonance >> 5%). 458 

Results from ALL analyses of the BEE dataset (Supplementary Material: Fig. S2 and 459 

Table S1) showed similar patterns. Clustering of ontological terms annotated to data subsets 460 

based on phylogenetic dissonance does not reflect structural dependencies among anatomical 461 

entities of the bee anatomy. For example, BPI inferred from morphologically closely related 462 

entities such as 8stipital sclerite9, 8lacinial lobe9, and 8galea9 (all part_of a bee 8maxilla9) were 463 

highly dissonant among subsets (i.e., terms far apart in the dissonance dendrogram) whereas 464 

that of some unrelated entities such as 8flabellum9 (part_of 8labium9) and 8female genitalia9 465 

(part_of 8metasoma9) were often less dissonant. BPI content inferred from individual subsets 466 

varied greatly in the ALL analyses of the BEE dataset as well (Supplementary Material: Table 467 

S1 and Fig. S2: barplots). Relative information, measured as the BPI of an individual subset 468 

divided by the mean BPI across all subsets, was particularly high for many subsets 469 

instantiating anatomical entities from the mouthparts (e.g., 8sitophore9, 8labrum9, 8stipes9), 470 

prothorax (e.g., 8profurcasternum9, 8probasisternum9, 8propleuron9), and metasoma (e.g., 471 
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8male genitalia9, 8female genitalia9) of bees (Supplementary Material: Fig. S2: bar heights 472 

higher than 1.0). BPI content for individual data subsets shown in Table S1 (Supplementary 473 

Material: Table S1) indicate considerably low phylogenetic information (< 25%) for at least 474 

half of them, also reflected in the higher phylogenetic dissonance values between different 475 

MCMC runs. 476 

 477 

Analyses of the FISH Dataset. 478 

As shown in Figures S3 and S4 (Supplementary Material: Figs S3 and S4), overall 479 

relationships among ontology terms were quite different between the semantic similarity and 480 

dissonance dendrograms indicating that phylogenetic information is not always structured by 481 

ontological knowledge and closely related terms in the ontology (i.e., semantically similar) do 482 

not always correspond to data subsets with more congruent phylogenetic information (i.e., 483 

lower phylogenetic dissonance). Relationships based on semantic similarity (Supplementary 484 

Material: Fig. S3), which reflect distances among concepts in the anatomy ontology, can be 485 

compared to relationships based on phylogenetic dissonance (Supplementary Material: Fig. 486 

S4), which reflect the degree of phylogenetic congruence or conflict among the posterior 487 

distributions of phylogenetic tree topologies obtained from the analyses of the subsets 488 

annotated to ontology terms. For example, the dissonance dendrogram indicate the following 489 

relationships among three particular anatomy terms: (8premaxilla9 + 8maxilla9) + 8dentary9. 490 

This means that the posterior distributions of phylogenetic tree topologies obtained from the 491 

analyses of all characters annotated to the term 8premaxilla9 and all characters annotated to 492 

the term 8maxilla9 are more similar (i.e., include a more similar set of phylogenetic trees with 493 

similar posterior probabilities) than either is to the posterior distribution obtained from the 494 

analysis of all characters annotated to the term 8dentary9. In other words, the phylogenetic 495 
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information inferred from premaxillary and maxillary characters is more congruent; that for 496 

premaxillary and dentary or maxillary and dentary characters is less. 497 

BPI content of individual data subsets and patterns of BPI and phylogenetic 498 

dissonance among-subsets mapped onto the semantic similarity dendrogram obtained for the 499 

FISH dataset varied greatly with most subsets presenting relatively low information (Fig. 4: 500 

middle column barplots). However, two major clusters of terms in the semantic similarity 501 

dendrogram (indicated by arrowheads) represent groups of relatively highly informative 502 

individual data subsets (e.g., some bones from the epibranchial and ceratobranchial series, 503 

maxilla, premaxilla, dentary, ectopterygoid and quadrate bones etc.). Relative information 504 

among-subsets, measured as among-subset BPI divided by mean among-subset BPI across all 505 

nodes of the semantic similarity dendrogram, was especially higher in some sectors of the 506 

dendrogram (Fig. 4a: blue circles) and decreased drastically towards deeper nodes (Fig. 4a: 507 

blue circles). Relative dissonance among-subsets, measured in a similar way, showed a 508 

similar but opposing pattern (as expected) with overall increase in values towards deeper 509 

nodes (Fig. 4b: red circles). 510 

 511 
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 512 

 513 

FIGURE 4. Bayesian phylogenetic information content for all anatomical entities linked to 514 

Uberon terms in the FISH dataset. Clustering dendrograms in (a) and (b) are obtained from 515 

pairwise semantic similarity between terms converted to a distance matrix. Barplots in middle 516 

column show information content of individual trait subsets defined by ontology terms 517 

relative to mean information across all subsets. Filled circles in trait dendrograms show (a) 518 

Bayesian phylogenetic information content and (b) phylogenetic dissonance among trait 519 

subsets defined by the ontology terms subtended by each node relative to respective mean 520 

values across all subsets. Bar lengths and circles have no absolute scale and are proportional 521 

to the relative maximum amount of (a) information or (b) dissonance observed. Bottom left 522 

and right boxes contain explanatory diagrams on how to interpret results in this figure. For 523 

colors, please refer to the online version of this paper available at XXX. 524 

 525 

Patterns of among-subset information and dissonance are better understood in 526 

conjunction, as explained in the bottom-right box in Figure 4. Clusters of data subsets 527 

providing highly congruent phylogenetic information are also expected to present relatively 528 
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higher among-subset relative information (Fig. 4a: large blue circles) and lower dissonance 529 

(Fig. 4b: small red circles) since they should represent similar posterior distributions of 530 

phylogenetic tree topologies (e.g., Fig. 2b: PCF and PVF). On the other hand, if data subsets 531 

provide highly conflicting information, then the opposite will be true, with relatively lower 532 

among-subset relative information (Fig. 4a: small blue circles) and higher dissonance (Fig. 533 

4b: large red circles) (e.g., Fig. 2b: DF and IO). If most datasets provide little to no 534 

information at all, then both among-subset relative information and dissonance will be 535 

relatively lower since they should represent mostly flat, broadly overlapping, posterior 536 

distributions of phylogenetic trees. More complex scenarios, however, are usually found, with 537 

many clusters grouping multiple data subsets with varying degrees of information content and 538 

only partly overlapping posterior distributions of phylogenetic trees (e.g., Fig. 2b: PCF and 539 

DF) thus resulting in more ambiguous patterns of among-subsets relative information and 540 

dissonance, as observed for many nodes in Figure 4 (blue and red circles). Results were 541 

further inspected as phylogenetic tree topology trace plots (as available in the R package 542 

RWTY, Warren et al. 2017) to help assess degree of overlap between posterior distributions 543 

and better understand patterns of among-subsets information and dissonance. Some examples 544 

contrasting posterior distributions of phylogenetic tree topologies from both MCMC runs 545 

from the same data subset and from different subsets with congruent or conflicting 546 

phylogenetic information are provided in Figures S5 and S6, respectively (Supplementary 547 

Material: Figs S5 and S6). 548 

Clade-specific phylogenetic information inferred from data subsets in the FISH dataset 549 

demonstrate that most phylogenetic information for the particular reference species tree 550 

obtained from the analysis of the full dataset (Fig. 5, bottom) is inferred from two major 551 

clusters of data subsets (Fig. 5, heatmap, dashed boxes) as indicated in the semantic similarity 552 

dendrogram (Fig. 5, right): one including bones from epibranchial, ceratobranchial, and 553 
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pharyngobranchial series (Fig. 5, trait dendrogram, top cluster); and another including bones 554 

from maxilla, premaxilla, dentary, and infraorbital series, among others (Fig. 5, trait 555 

dendrogram, bottom cluster). With the exception of the first node (Fig. 5, species tree, bottom, 556 

N1), which was enforced due to rooting, only one node in the reference phylogenetic species 557 

tree received no support at all (Fig. 5, species tree, bottom, N7); all other nodes received 558 

variable amount of support from different subsets in both clusters (Fig. 5, top-left, heatmap; 559 

e.g., N23N6; shade intensity proportional to posterior probability). The proportion of data 560 

subsets supporting each node in the phylogenetic species tree also varied (Fig. 5, bottom-right, 561 

barplots), with about only 1% of all subsets supporting N5 and between 4% and 9% 562 

supporting other nodes. It was also possible to investigate if the two inferred clusters of data 563 

subsets shared underlying ontological concepts. For example, we filtered all ontology terms 564 

defining subsets that are part_of 8dermatocranium9 (Supplementary Material: Fig. S7: orange 565 

shaded rows in the heatmap) and found that information only from bones from the fish 566 

dermatocranium supported N5 (Supplementary Material: Fig. S7, species tree, bottom, N5) 567 

and most non-dermatocranium bones supported N2 and N4 (Supplementary Material: Fig. S7, 568 

species tree, bottom, N2 and N4). 569 

 570 
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 571 

 572 

FIGURE 5. Clade-specific Bayesian phylogenetic information components in the FISH dataset. 573 

Heatmap shows which clades (columns) from a reference phylogenetic species tree (below) 574 

are supported by each subset defined by ontology terms (rows) in the reference trait 575 

dendrogram (right). Species tree is based on all characters. Trait clustering dendrogram is 576 

obtained from pairwise semantic similarity between terms converted to a distance matrix. 577 

Dashed boxes indicate two major clusters of data subsets. Heatmap color shade intensity is 578 

proportional to posterior probability. Barplots at bottom right show proportion of trait subsets 579 

supporting a given clade in the phylogenetic species tree. Abbreviations: N1…N8, nodes 580 

referring to clades in the phylogenetic species tree. For colors, please refer to the online 581 

version of this paper available at XXX. 582 

 583 

Analysis of the MINI Dataset. 584 
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Results from the analysis of the MINI dataset (Supplementary Material: Fig. S8) showed little 585 

phylogenetic information to tree topology that could be useful to address the particular 586 

question about miniaturization in this sample of characiform fishes. Only a few data subsets 587 

(about 1%) provided information to N5, the clade enforcing the grouping of all miniature 588 

fishes (Supplementary Material: Fig. S8, species tree, bottom, N5). Most data subsets (about 589 

7%) provided information to N2, the clade including all Characidae (Supplementary Material: 590 

Fig. S8, species tree, bottom, N2). No data subset provided information to N6 and N7 591 

(Supplementary Material: Fig. S8, species tree, bottom, N6-N7), subclades of the miniature 592 

fishes clade. The majority of data subsets informative to nodes recovered in the reference 593 

phylogenetic species tree (Supplementary Material: Fig. S8, species tree, bottom, N23N5) 594 

were annotated to ontology terms mostly related to anatomical entities comprising particular 595 

tooth rows from jaw bones (e.g., 8premaxillary tooth row9, 8maxillary tooth row9, 8dentary 596 

tooth row9), with 8premaxillary tooth row9 supporting the miniature fishes clade. 597 

 598 

Resampling Analyses. 599 

Resampling analyses show that mean values of BPI and phylogenetic dissonance were higher 600 

and lower, respectively, in datasets based on ontology term annotations compared to those 601 

composed by randomly resampling characters4strongly supporting that some ontology-based 602 

subsets carry shared phylogenetic information. BPI estimated for standard subsets were 603 

almost always higher than their respective resampled counterparts (Fig. 6a: e.g., PMX, MX, 604 

EB, CB). As expected, the opposite pattern was observed for phylogenetic dissonance, with 605 

most standard subsets showing lower values (Fig. 6b). A semantic similarity dendrogram for 606 

the selected ontology terms recovered two clusters, one for 8premaxilla9 + 8maxilla9 + 607 

8dentary9 + 8infraorbital9 and another for 8ceratobranchial bone9 + 8epibranchial bone9 608 

(Supplementary Material: Fig. S9). Results of pairwise comparisons between data subsets 609 
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with estimates of phylogenetic dissonance obtained for standard and resampled subsets are 610 

shown in Figure S10 (Supplementary Material: Fig. S10). Note that estimates for comparisons 611 

between standard subsets show a trend of increasing phylogenetic dissonance (Supplementary 612 

Material: Fig. S10: e.g., PMX-MX, PMX-DEN, PMX-IO, PMX-EB etc.) when datasets 613 

annotated to increasing distantly related ontology terms were compared (Supplementary 614 

Material: Fig. S9). 615 

 616 

 617 

 618 

FIGURE 6. Boxplots showing estimated (a) Bayesian phylogenetic information and (b) 619 

phylogenetic dissonance across replicated analyses for standard data subsets relative to 620 

resampled data subsets. Values above the dotted line indicate values higher than the median 621 

of the respective resampled data subsets. Note that information is higher and dissonance is 622 

lower for all ontology-based data subsets except IO than random subsets sampled of the same 623 

size, but without respect to ontology. Abbreviations: CB, ceratobranchial bone; DEN, 624 

dentary; EB, epibranchial bone; IO, infraorbital; PMX, premaxilla; MX, maxilla. The <r= 625 

prefix denote resampled subsets. For colors, please refer to the online version of this paper 626 

available at XXX. 627 

 628 

DISCUSSION 629 

Ontologies bridge different domains of knowledge across life sciences (e.g., anatomy, 630 

development, genetics, behavior, ecology) allowing data integration within and across 631 
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databases (Mabee et al. 2007; Deans et al. 2015). The recent growing interest in ontologies 632 

has contributed to the establishment of multiple collaborative projects targeting different 633 

biological entities (e.g., genes: The Gene Ontology Consortium 2000; cells: Bard et al. 2005; 634 

gross anatomy: Mungall et al. 2012), model organisms (e.g., mouse: Hayamizu et al. 2005; 635 

zebrafish: Sprague et al. 2008), and taxonomic groups (e.g., mammals: Smith et al. 2005). 636 

Multispecies anatomy ontologies have been introduced for many taxa (e.g., amphibians: 637 

Maglia et al. 2007; fishes: Dahdul et al. 2010b; spiders: Ramírez and Michalik 2014; 638 

hymenopteran insects: Yoder et al. 2010) prompting assimilation of ontological knowledge in 639 

studies of evolutionary phenotypes (e.g., Mabee et al. 2012), semantic-aware anatomical 640 

descriptions (e.g., Mikó and Deans 2009; Silva and Feitosa 2019), and standardization of 641 

morphological terminology (e.g., Vogt 2008, 2009; Vogt et al. 2010; Karlsson and Ronquist 642 

2012; Porto et al. 2016, 2017). In other words, ontologies are the structured knowledge that 643 

can be used to organize trait data in much the same way that phylogenies organize species 644 

data. 645 

 646 

Does ontology carry phylogenetic information? In this work, we have asked to what degree 647 

phylogenetic information is structured by ontological knowledge by evaluating the BPI 648 

content and phylogenetic dissonance among ontology-annotated anatomical data subsets. If 649 

ontology carry any phylogenetic information, one would expect that sets of trees inferred 650 

from data subsets annotated with related ontology concepts would also be more similar (e.g., 651 

Fig. 2: PCF and PVF). In other words, their posterior distributions would concentrate 652 

probabilities in similar sets of trees. This would be indicated by high BPI and low 653 

phylogenetic dissonance among data subsets representing semantically similar concepts. 654 

When analyzing the BEE dataset, through the PROFILE analyses, we find that subsets 655 

grouped based on anatomically related ontology concepts (i.e., 8profiles9) actually exhibit 656 
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considerably high phylogenetic dissonance (Table 1, values between 8.5~14.7%). When 657 

analyzing the FISH dataset, we find substantial information in many ontology-annotated data 658 

subsets, but not universally across all anatomical subsets studied (Figs 4-5). Some clusters of 659 

similar ontology terms represent groups of highly informative individual data subsets (Fig.4: 660 

arrowheads) with high among-subset BPI (Fig. 4: blue circles) and moderate to low 661 

phylogenetic dissonance (Fig. 4: red circles). These clusters include concepts referring to 662 

some bones from jaws and branchial arches. These findings are consistent with the results 663 

from the resampling analyses of the FISH dataset, which show that BPI for data subsets 664 

containing characters annotated with the concepts of 8maxilla9, 8premaxilla9, 8epibranchial9 665 

and 8ceratobranchial9 was higher than that of subsets based on a random resample of 666 

characters (Fig. 6b). The analyses of both datasets show that ontology does indeed structure 667 

phylogenetic information in some cases, thus prompting further investigation on the 668 

underlying biological processes that may explain that. However, ontology concepts and their 669 

relations do not fully explain phylogenetic information for all datasets and across all 670 

anatomical entities4as might be expected given the somewhat limited set of relations present 671 

in current anatomy ontologies. Instead, we observe that the semantic similarity dendrogram 672 

relating ontology concepts (Supplementary Material: Fig. S3) and the dissonance dendrogram 673 

relating posteriors inferred from the anatomical data subsets (Supplementary Material: Fig. 674 

S4) have very different topology. This indicates that additional processes or other biases are 675 

likely to also play a role in explaining BPI and dissonance values across anatomical subsets. 676 

 677 

How is phylogenetic information structured? While we show that the ontology hierarchy does 678 

carry signal in the structuring of phylogenetic information for some datasets and anatomical 679 

concepts, it predictably does not do in all cases. Nevertheless, we can use the ontology 680 

hierarchy to interrogate morphological data with ontology knowledge in search for 681 
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meaningful biological insights. Here, we asked if particular classes of anatomical entities 682 

were more phylogenetically informative than others. 683 

As for the BEE dataset, for example, most information was inferred from anatomical 684 

entities instantiating concepts from mouthparts (e.g., 8sitophore9, 8labrum9, 8stipes9), 685 

prothorax (e.g., 8profurcasternum9, 8probasisternum9, 8propleuron9), and metasoma (e.g., 686 

8male genitalia9, 8female genitalia9). As for the FISH dataset, two main clusters of anatomical 687 

entities (Fig. 5, heatmap, dashed boxes) provide most of the information for nodes recovered 688 

in the phylogenetic species tree (Fig. 5: bottom tree). One cluster includes many concepts 689 

from the jaw bones (e.g., 8premaxilla9, 8maxilla9, 8dentary9); the other, many from the 690 

branchial arch bones (e.g., 8pharyngobranchial9, 8epibranchial9, 8ceratobranchial series9); and 691 

most of these are developmentally associated with the dermatocranium (Supplementary 692 

Material: Fig. S7: orange shades). The two clusters of concepts and their association with 693 

8dermatocranium9 reinforce the findings that, for the FISH dataset, ontology seems to 694 

structure phylogenetic information. The analyses of both datasets show that indeed 695 

phylogenetic information is not uniformly distributed across anatomy ontology concepts. 696 

Furthermore, anatomy entities do not provide the same information for all nodes in the 697 

phylogenetic species tree. For the FISH dataset (Fig. 5, bottom tree, N1-N8), for example, 698 

most information is inferred for N2-4 and N6, whereas N5 and N7 are inferred with little or 699 

no information from individual anatomy ontology concepts. This indicates that despite 700 

phylogenetic information not being uniform across all anatomical entities, it is still important 701 

to include a 8semantic diversity9 of anatomical concepts in order to provide resolution for as 702 

many nodes as possible in the phylogenetic species tree. 703 

 704 

What sorts of processes may structure information? If ontology hierarchy does not fully 705 

explain the phylogenetic information inferred from data, which other processes may explain 706 
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it? Here we explored ontological knowledge summarized as a clustering dendrogram relating 707 

anatomical concepts by semantic similarity. This dendrogram was used as a proxy to describe 708 

anatomical/structural relations among real anatomical entities. These anatomical/structural 709 

relations might be interpreted as the product of developmental processes affecting 710 

morphogenesis of anatomical entities. Therefore, when we first asked the question whether 711 

ontology structures phylogenetic information, we were interested in knowing if 712 

anatomical/structural (~developmental) relations among traits can influence their evolution. In 713 

other words, investigate if the evolution of some characters is non-independent due to 714 

anatomical/structural associations and/or other biological processes. 715 

Non-independence among characters can result in more similar posterior distributions 716 

of trees inferred from dependent anatomical subsets4e.g., due to anatomical/structural 717 

associations. It may also result from common functional/ecological factors shared across 718 

species. Likewise, similar posterior distributions can simply be the result of shared 719 

evolutionary history. Some anatomical subsets may produce posterior distributions that are 720 

more congruent with the true species phylogeny (e.g., Fig. 1a,c). Others may agree within-721 

subsets and/or among-subsets but disagree with the true species phylogeny (e.g., Fig. 1b,d). 722 

These can be easily accessed, for example, by contrasting posterior distributions for the 723 

species phylogeny4inferred from other sources of data (e.g., molecular data)4with 724 

posteriors inferred from data subsets annotated to each anatomical concept. Those agreeing 725 

with the species tree posterior distribution (i.e., high BPI and low dissonance) would indicate 726 

anatomical entities that evolved following the species phylogeny. Those disagreeing with the 727 

species phylogeny but agreeing among themselves (i.e., low BPI and high dissonance in 728 

relation to the assumed species tree posterior, but high BPI and low dissonance among 729 

themselves) would indicate anatomical entities that evolved under processes other than 730 

phylogeny, for example, concerted convergence due to shared functional/ecological factors 731 
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across unrelated species (e.g., Fig. 1a-b, squares and circles). Then, for those subsets agreeing 732 

with the species phylogeny, it is possible to assess how much the phylogenetic information is 733 

structured by ontology by contrasting clustering dendrograms based on semantic similarity 734 

and phylogenetic dissonance (as discussed in previous sections). Finally, some anatomical 735 

concepts may be inferred with low information due to few characters in the respective data 736 

subsets and/or noise. 737 

As it was shown before, the anatomical/structural ontology does indeed effectively 738 

cluster some groups of anatomical concepts by their patterns of phylogenetic information, but 739 

not for the entire anatomy. Conflict among anatomical subsets and the species phylogeny or 740 

shared response to convergent selective pressures are likely candidates to explain the 741 

evolution of these other traits. Indeed, results from the PROFILE analysis of the BEE dataset 742 

demonstrates the former scenario (Table 1). Posterior distributions inferred from anatomical 743 

entities associated with the same anatomy-based 8profile9 (e.g., 8mouthparts9, 8head9, 8legs9, 744 

8wings9 etc.) have high levels of dissonance with each other, indicating that BPI in this case is 745 

not structured by anatomical relations and there is considerable conflict among anatomical 746 

subsets. As for the FISH dataset, the two clusters of concepts (Fig. 5, dashed boxes) indicate 747 

that phylogenetic information is partly structured by ontology, as shown before, but also by 748 

the species history, since most anatomical subsets in such clusters are inferred with 749 

information supporting many nodes in the assumed species phylogeny (Fig. 5, bottom tree). 750 

The MINI dataset shows an interesting case where the assumed species tree intentionally does 751 

not correspond to the most probable species phylogeny. By enforcing a clade grouping all 752 

miniatures (Supplementary Material: Fig. S8, N5), it was possible to observe different 753 

processes likely structuring the phylogenetic information of anatomical subsets. For example, 754 

a small cluster of related anatomical concepts referring to tooth rows from jaw bones of fishes 755 

(Supplementary Material: Fig. S8, dashed box) indicate some structuring of phylogenetic 756 
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information by ontology, but not necessarily agreeing with a 8true9 species phylogeny. On the 757 

other hand, several unrelated anatomical concepts provide phylogenetic information for 758 

Characidae (Supplementary Material: Fig. S8, species tree, bottom, N2), thus indicating 759 

congruence with the 8true9 species phylogeny, but no semantic signal (i.e., ontology does not 760 

seem to structure phylogenetic information). Finally, characters from the anatomical concept 761 

8premaxillary tooth row9 support the miniature clade, thus indicating a possible case of 762 

concerted convergence due to miniaturization in such fishes. 763 

 764 

Alternative and complementary approaches. We acknowledge that some questions addressed 765 

here can be partially explored using existing or alternative methods. For example, there are 766 

different methods for assessing support to bipartitions (splits), compatibility and/or conflict 767 

among characters (Bandelt and Dress 1992: split decomposition; Hendy and Penny 1993: 768 

spectral analysis; Chen et al. 2005: spectral partitioning). These methods are not at odds with 769 

ours; they are complementary. Indeed we think they could also be enhanced by the inclusion 770 

of the ontology-guided approach. Furthermore, our analyzes are based on entropy-derived 771 

metrics of information and evaluate posterior distributions of tree topologies inferred from 772 

groups of characters (i.e., subsets), instead of character-by-character. This enables evaluation 773 

of how Bayesian (phylogenetic) information and conflict is structured by ontology and to 774 

make meaningful comparisons among data subsets. 775 

Another important distinctive aspect of our approach is that it adopts the definition of 776 

<phylogenetic information= in the same sense as suggested in Lewis et al. (2016). Therefore, 777 

our approach assesses the (Bayesian) phylogenetic information of data subsets. This is useful 778 

because first, it considers not individual trees, but entire posterior samples, thus incorporate 779 

phylogenetic uncertainty; and second, it allows comparisons of how the information in 780 

different data subsets concentrate the probabilities from the prior set of possible tree 781 
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topologies into a different (or similar) set of trees in the posterior. By guiding these 782 

comparisons with ontology knowledge and semantic distances, we can evaluate how 783 

independent conceptual modules support or disagree with each other and with the overall 784 

species tree topology4helping to alleviate a major challenge to morphological phylogenetics, 785 

the non-independence of characters. 786 

 787 

Limitations and caveats. One limitation of our approach is that it currently lacks a means to 788 

formally test for statistical significance of differences in BPI and dissonance values. 789 

Nonetheless, our intent was to help researchers assess the absolute and relative 790 

information/dissonance among ontology-annotated anatomical data subsets, and using 791 

ontologies to guide this exploration can help researchers to identify patterns across data 792 

subsets that might be explained by particular ontological relations and/or biological processes. 793 

In our study, we used the Phenoscape Knowledgebase (KB: https://phenoscape.org) to 794 

calculate semantic similarity across all types of ontological relations present in the KB. We 795 

noted that semantic similarity values calculated did not always correspond to our a priori 796 

expectations in illuminating ways. For example, some characters annotated with different 797 

ontology terms may share high semantic similarity because they share is_a relationships with 798 

a particular ontology concept, such as characters annotated with terms that are subtypes of 799 

(i.e., subclasses_of) the concept 8calcareous tooth9, despite being part_of anatomical 800 

structures in distinct body regions of a fish (e.g., 8premaxillary tooth9, 8maxillary tooth9, 801 

8dentary tooth9). This suggests that disentangling the different types of relations between 802 

terms (e.g., Vogt 2018a: subsumption vs. parthood relations) would allow for testing 803 

alternative hypotheses for the ontology structure and relations that best reflect the 804 

phylogenetic information inferred from anatomical data subsets. This would enable other 805 

types of hypotheses to be tested using phylogenetic character matrices. 806 
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Doing so would alleviate one potential critique of using semantic similarity 807 

dendrograms4the expectation that ontological relationships will fully describe the actual 808 

relationships among real anatomical entities instantiated by such terms. In fact, this should not 809 

be expected given that ontologies do not contain complete information, and because unlike 810 

phylogeny, there is no single bifurcating structure that can adequately describe all character 811 

relations. Furthermore, anatomical concepts available in an ontology can vary depending on 812 

the referential adopted (i.e., classification), terms can be characterized with varying degree of 813 

detail (i.e., granularity), and organismal anatomies can be represented in multiple alternative 814 

ways by different experts (i.e., semantic heterogeneity) (Vogt 2018b). Ontologies always 815 

reflects design decisions among its creators and maintainers and, therefore, there is no single 816 

correct scope or structure. For example, semantic similarity dendrograms, depending on the 817 

type of relations included in the reference anatomy ontology, may cluster terms such as 8distal 818 

process of premaxilla9, 8distal process of maxilla9, and 8distal process of dentary9 because 819 

they all share the same is_a relationship (i.e., are different subtypes of) 8distal process9 (i.e., 820 

subsumption relations), even though they are part_of different fish jaw bones (i.e., parthood 821 

relations). Nonetheless, potential biases due to ontology choice or character annotation with 822 

ontology terms can be directly assessed by comparing alternative ontologies in much the same 823 

way that alternative phylogenies (or phylogenetic networks) can be compared to assess how 824 

among-species variation is structured. 825 

Another possible objection concerns the assumption that anatomical relationships 826 

always conform to hierarchies and, therefore, can be represented as dendrograms. Differently 827 

from species phylogenies, where the process of descent with modification produces a clear 828 

hierarchical pattern across species (for most organisms), for anatomical entities, such pattern 829 

may or may not be expected as a general rule for anatomical relationships. However, some 830 

studies do suggest this may be the case for some anatomical entities. For example, studies on 831 
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the evolution of cell types and eyes in Metazoa show that relationships among some 832 

anatomical entities may in fact be well-represented as tree-like diagrams, both in 833 

developmental and evolutionary time (Oakley 2003; Arendt 2008; Arendt et al. 2016). 834 

Nevertheless, much like genetic data with frequent horizontal gene transfer, semantic signal 835 

will often likely require multiple topological structures to best explain and predict character 836 

similarity. We argue that interrogating datasets with these alternative sets of relations and 837 

topologies is likely to reveal much about the processes governing morphological evolution, 838 

and argue for the continued development of robust ontologies for organismal traits. 839 

 840 

Perspectives and future directions. Applying ontology-guided approaches and moving beyond 841 

the flat, one-dimensional partitioning of characters has enormous potential for making sense 842 

of trait evolutionary patterns. For example, one can assess the phylogenetic information 843 

provided by data subsets annotated to particular ontology terms in respect to one or more 844 

nodes of interest in a given reference phylogenetic species tree (e.g., Fig. 5, bottom, species 845 

tree). Node(s) in such trees may characterize clade(s) of organisms sharing a particular 846 

biology or some traits of relevance; and by interrogating this node, we can discover and 847 

identify subsets of morphological characters that are phylogenetically highly informative for 848 

that particular node (e.g., Supplemental Material: Fig. S8: MINI dataset). Such an approach 849 

can be expanded and generalized to any test statistic of interest that can be calculated across 850 

the phylogeny or on a per character basis. For example, a researcher might be interested in the 851 

magnitude of support for a rate shift at a particular node, rather than the BPI content at the 852 

node given a particular reference ontology. 853 

Such metrics can then be evaluated in light of the relationships among terms annotated 854 

to character data subsets, including using different ontological relations (e.g., part_of, 855 

develops_from) or distance metrics (e.g., Jaccard, Resnik) to build a semantic similarity 856 
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dendrogram. This can mirror the way that alternative phylogenetic tree topologies are used to 857 

assess and compare phylogenetic information and signal across species, and they can shed 858 

light on the underlying processes determining similar evolutionary patterns in morphological 859 

traits. This approach can be employed, for example, to investigate if highly (or alternatively 860 

slightly) informative data subsets annotated with particular anatomical terms share any 861 

common underlying ontological relations. For example, we observed that most characters 862 

informative for the FISH dataset are included in data subsets defined by ontology concepts 863 

referring to bones that are part_of 8dermatocranium9(Supplemental Material: Fig. S7) thus 864 

indicating possible structural/developmental dependencies among such traits. 865 

Future research on Bayesian phylogenetic information will likely help to circumvent 866 

the limitation to small datasets by using tree priors allowing for polytomies or better strategies 867 

to sample posterior probability distributions (see discussions in Lewis et al. 2016). Further 868 

studies could make use of alternative visualization graphs for the relationships among 869 

ontology terms, using networks instead of dendrograms, and the selection of specific types of 870 

ontological relations, distance metrics, or subgraphs to represent the ontology structure (see 871 

also Vogt 2018b for additional insights into using graphs in ontology-aware phylogenetic 872 

analysis). 873 
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