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Abstract

Reconstructing the history of somatic DNA alterations that occurred in a tumour can help
understand its evolution and predict its resistance to treatment. Single-cell DNA sequencing
(scDNAseq) can be used to investigate clonal heterogeneity and to inform phylogeny reconstruc-
tion. However, existing phylogenetic methods for scDNAseq data are designed either for point
mutations or for large copy number variations, but not for both types of events simultaneously.
Here, we develop COMPASS, a computational method for inferring the joint phylogeny of mu-
tations and copy number alterations from targeted scDNAseq data. We evaluate COMPASS on
simulated data and show that it outperforms existing methods. We apply COMPASS to a large
cohort of 123 patients with acute myeloid leukemia (AML) and detect copy number alterations,
including subclonal ones, which are in agreement with and extend current knowledge of AML
development. We further used bulk sequencing and SNP array data to orthogonally validate our
findings.
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Introduction

Intratumour heterogeneity plays a key role in the failure of targeted cancer therapies [1]. Obtaining a
comprehensive picture of the clonal architecture and the mutational history of a patient’s tumour at the
timepoint of diagnosis therefore offers great potential to improve treatment choices and predict disease
progression. Single-cell DNA sequencing (scDNAseq) generally provides a higher resolution of intratumour
heterogeneity than sequencing bulk tumour samples. However, this advancement comes at the cost of
higher levels of noise primarily introduced during DNA amplification, an essential preparatory step for
scDNAseq. As tumours typically evolve through a combination of single-nucleotide variants (SNVs) and copy
number variants (CNVs), it has been a critical limitation that current DNA amplification technologies do not
permit the reliable calling of SNVs and CNVs simultaneously from the same cells. Multiple Displacement
Amplification (MDA) [2], which is used in most scDNAseq protocols, provides a high coverage and has a
low error rate and is therefore well suited to detect SNVs. However, MDA results in amplification biases,
which preclude reliable detection of CNVs [3]. Other protocols are better suited to detect CNVs but not
SNVs, for example a shallow whole-genome sequencing (WGS) as introduced by 10x Genomics [4]. Recently,
a high-throughput microfluidics approach was introduced, which processes thousands of single cells while
sequencing only a small set of disease-specific genes [5], and later commercialised by Mission Bio, Inc. as
the Tapestri® platform. While the limited physical coverage of the genome is far from ideal for calling
copy number events, which can stretch anywhere from a small number of bases to whole chromosomes, this
approach allows for the use of targeted PCR in the amplification step which does not introduce the strong
amplification biases observed in MDA and therefore allows, in princple, to infer both SNVs and CNVs from
the same cells [6].

Method development for inferring the evolutionary history of tumours from scDNAseq data closely followed
the technology development (Table 1). Initially, approaches have been developed to reconstruct SNV-based
mutation histories [7, 8, 9, 10, 11, 12]. Later methods were introduced that analyse the history of copy
number variants [13, 14]. SCARLET [15] was the first method for single-cell data that tried to bridge the
gap between SNV- and CNV-based tumour phylogeny reconstruction. It infers an SNV phylogeny with CNV-
constrained loss of heterozygosity (LOH), but the CNV tree has to be obtained separately, from different
cells of the same tumour. BiTSC? [16] is the only existing method that can jointly infer the phylogeny of
SNVs and CNVs. Its main drawback is that it assumes that in the absence of copy number events, the
coverage is uniform across the genome, which, in our experience, is not the case for amplicon sequencing
data. BiTSC? also does not model copy number-neutral loss of heterozygosity (CNLOH), and might therefore
falsely interpret such events as copy number losses.

Here, we introduce COMPASS (COpy number and Mutation Phylogeny from Amplicon Single-cell Sequenc-
ing), a statistical model and inference algorithm that can reconstruct the joint phylogeny of SNVs and CNVs
from single-cell amplicon sequencing data. Its key features are that it models amplicon-specific coverage fluc-
tuations and that it can efficiently process high-throughput data of thousands of cells. We show in simulation
studies that COMPASS outcompetes BITSC? in tree reconstruction accuracy in all settings with realistic
coverage variability. Moreover, COMPASS calls CNVs more conservatively than BiTSC? whose false positive
rate we find to be up to 32 times higher. We apply COMPASS to a large cohort of 123 patients with acute
myeloid leukemia (AML) [17] and orthogonally validate our findings with bulk sequencing and SNP array
data.

Results

Probabilistic model for joint SNV and CNYV single-cell tumour phylogenies

We have developed COMPASS, a likelihood-based approach to infer the evolutionary tree of somatic events
in a tumour from single-cell panel sequencing data. The set of somatic events considered by COMPASS
comprises SNVs, CNVs (loss or gain) and CNLOH. COMPASS uses as input the reference and mutated read
counts, for each variant in each cell, and the number of reads covering each region (Figure 1). The variant
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Method SNVs CNVs Doublets | SNV Re- | SNV Homozygous Est. max | Est. max
currence | loss mutations 7 cells # loci

ocoSCITE [7, §] YES NO YES YES* YES* NO 10000 100
SCI® [9] YES NO NO NO NO NO 100 1000
OncoNEM [10] YES NO NO NO NO NO 100 100
SiCloneFit [11] YES NO YES YES YES NO 100 100
SPhyr [12] YES NO NO NO YES NO 100 100
SCICoNE [13] NO YES NO - - - 100 -
CHISEL [14] YES? YES NO - - - 1000 -
SCARLET [15] YES NOT NO NO YES? NO 100 100
BiTSC? [16] YES YEST NO NO NO YES 100 100
COMPASS YES | YES | YES NO YES YES 10000 100

Table 1: List of methods for tumour phylogeny inference from scDNAseq data, with their main features. The maximum number of
cells and loci are estimates for reasonable runtimes and performance. *However model selection is not automated. §Can assign SNVs
to clones after the CNV-tree is inferred by aggregating all cells assigned to each clone. TRequires CNV tree as input, which must be
obtained with another method. ¥If supported by copy-number loss; which could miss CNLOH. YOnly in regions with SNVs. ['With
copy number loss or CNLOH.

read count is the main source of information to infer SNVs, and the total number of reads in each region is
used to detect CNVs. A region is the smallest genomic entity for which a copy number event can be detected
by our model. For panel sequencing data, we define regions at the level of individual genes by accumulating
read counts of all amplicons targeting the same gene. A region may contain no variant (like region B in
the example of Figure 1), one variant (region C) or several variants (region A). When variants are present
in a region, the CNV calls are allele-specific and COMPASS takes into account the expected ratio between
mutated and wild type read counts. Germline SNPs can also be included in addition to somatic SNVs to
improve the CNV inference. When this is done, COMPASS will automatically detect that these variants are
present in the non-neoplastic cells and will place them at the root of the tree.

In a tree of somatic evolutionary events, each node implies a genotype, which is obtained by altering the
wild type diploid genome by the sequence of events defined by the path from the root to the node. By
assigning cells to a genotype associated with a tree node, the likelihood of the observed cell-specific read
count profiles can be computed, as is described in the methods. In order to compute the likelihood of the
tree of somatic events, COMPASS marginalizes out the assignment of cells to node genotypes, which is much
more computationally efficient than sampling the attachments of cells to nodes when the number of cells is
high. To account for the major sources of noise in scDNAseq data, COMPASS models sequencing errors,
allele-specific dropout rates, and doublets. For tree inference, we define a prior distribution on trees that
penalizes the number of nodes and of CNV and CNLOH events to explain the observed sequencing data. A
simulated annealing algorithm is then used to infer the tree that maximizes the posterior probability.

Evaluation on synthetic data

We evaluated COMPASS on synthetic data and compared it against BiTSC? [16], which is the only other
method that can infer a joint SNV- and CNV-based tumour phylogeny. We also included SCITE [7], an
established method of SNV-based tumour phylogeny, in order to highlight the benefits of joint SNV and
CNV inference over SNV only inference. We generated data that resembles data produced by the Tapestri®
platform, as described in Supplementary Section D.1. We used 2000 cells, 20 regions and trees with different
numbers of nodes, SNVs and CNVs, and 2 CNLOH events. The Tapestri® platform produces data where
the coverage is not uniform across amplicons, since each pair of primers has its own efficiency (Supplementary
Figures C.1 and C.2), so we varied the variance in coverage across regions. We evaluated the performance by
MP3 similarity [18] between the inferred and the true tree. The MP3 similarity is defined on mutation trees
where each node contains a set of mutations, and can be applied to trees which do not have exactly the same
set of mutations. Here, we assigned a unique label to each SNV and to each CNV (defined by the affected
region and whether the CNV is a gain or a loss), such that the MP3 similarity captures the correctness of
both the detected CNVs and the inferred tree topology.
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Figure 1: Overview of the input and output of the COMPASS algorithm. Each region (typically a gene) can contain zero, one or
several variants. COMPASS needs the number of reads in each region in each cell and the number of reads supporting the reference
(REF) and alternative (ALT) allele for each variant. COMPASS infers a tree of somatic events (SNVs, CNVs and CNLOHs). These
somatic events imply a genotype for each node, which is depicted in the lower part of each node. Here, the tree contains 2 SNVs in
the first clone, then one CNLOH in the bottom-left clone and a copy number gain and an additional SNV in the bottom-right clone.

COMPASS was found to perform best in all settings we analyzed (Figure 2). BiTSC? did not perform as
well, in particular when the coverage was not uniform across regions and when the number of SNVs was
low. SCITE performed well when there were no CNVs and when each node contained exactly one SNV
(Figure 2 top right), but its performance dropped when CNVs were present. This is expected, since the true
tree cannot be perfectly reconstructed by SCITE in this setting, which highlights the benefit of joint SNV
and CNV phylogeny to recover a more comprehensive picture of tumour evolution.

The lower performance of BiTSC? can in part be explained by some of the assumptions of its model which
may not be applicable to targeted scDNAseq data. First, BITSC? does not allow CNLOH events and might
therefore falsely interpret them as copy number losses. In addition, it does not allow losses of the mutated
allele and only allows a copy-number gain of the mutated allele when it occurs in the same node as the
corresponding SNV. Furthermore, BiTSC? only uses the coverage at SNVs to detect CNVs, which might
miss CNVs in regions without SNVs. This explains the lower performance of BiTSC? when the number of
SNVs is low, because in this case there are more regions not covered by SNVs. Moreover, BiTSC? assumes
that, in the absence of CNVs, all positions in the genome have the same coverage, which is not the case
with targeted sequencing. We found that the performance of BiTSC? decreased when the coverage was less
uniform across regions. In particular, when the variance in coverage is set to the value estimated from real
data, the performance of BiTSC? drops sharply compared to when the coverage is uniform. Even when we
generated data according to the BiTSC? model, which is less realistic, an uneven coverage across amplicons
was sufficient to prevent BiTSC? from recovering the correct tree (Supplementary Figure D.3). Finally,
BiTSC2? was previously only applied to datasets of up to 500 cells and might not scale well to datasets
generated by the Tapestri® platform, which often contain up to 10000 cells. In fact, we found that BiTSC?
performed worse with a higher number of cells, even when we used a high number of iterations in the MCMC
sampling (Supplementary Figure D.1). This might be because BiTSC? samples attachments of cells to clones
using Gibbs sampling instead of marginalizing over the attachments, which might make the MCMC get stuck
in local optima when the number of cells is too high. To address this issue, we subsampled the input of
BiTSC2 to 100 cells, which improved its performance. In addition, we note that BiTSC? was much slower
than COMPASS on large datasets, to the point where its runtime was prohibitively long for datasets of the


https://doi.org/10.1101/2022.01.06.475205
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.06.475205; this version posted April 22, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

N COMPASS_0CNVs [ BITSC2_0CNVs 1 SCITE_OCNVs
N COMPASS_3CNVs [ BITSC2_3CNVs N SCITE_3CNVs
I COMPASS_8CNVs I BITSC2_8CNVs I SCITE_8CNVs

SNVs =7 | nodes =4 SNVs =7 | nodes = SNVs =71 nodes =8

“’Tfﬂ ALY 'f{ L T T, AR
78 ks s s 11 it

Ay :4 ?E"‘? ?r'? Q* 4? B B By
SNVs=20Ind =4 SNVs =20 | nodes =6 SNVs =20 | nodes =8
? ?f"‘;ﬁ *ff; TR W
‘ | é s B% & A Tk #h RE
T o iy sy s 1 iy H’ ’% ‘ } } % T? T{.

SNVs =50 | nodes =4 SNVs =50 | nodes =6 SNVs =50 | nodes =8

1'0‘:‘.“3} b T/ W ”’f? ™ O™E i Y ’.’”ﬁ{ W W W

N .
o '

—_
o

o
&)

MP3 similarity to the true tree
o
o

0.5 !5 ‘l l
xw % l’& l’&
00 01 03 0.5 07 00 01 03 0.5 07 00 01 03 0.5 07
Variance in coverage between regions

0.0

Figure 2: Evaluation of COMPASS, BiTSC? and SCITE on synthetic data, with different variances for the region weights (0: all
regions have the same coverage; high values: regions have very different coverages; the highlighted 0.5 corresponds to the value
estimated from real data). Here, we used trees with a varying number of nodes (4, 6 or 8), SNVs (7, 20 or 50) and CNVs (0, 3 or
8), and 2 CNLOH events. For each setting, we generated 100 different trees. The crosses represent the mean MP3 similarity to the
true tree and the boxplots show the median and quartiles.

size of those generated by the Tapestri® platform (Supplementary Figure D.7).

We also ran simulations with only SNVs (Supplementary Figure D.4). SCITE performed much better in
this context, but the model used by COMPASS contains several improvements over SCITE which allow
COMPASS to outperform SCITE in some settings, even in the absence of CNV and CNLOH events. In
particular, COMPASS outperforms SCITE when the subclones have very different sizes because COMPASS
allows each node to have its own attachment probability.

All methods were found to be very robust to the presence of doublets in the data (Supplementary Figure
D.2). Only when the doublet rate is very high does the performance drop, and this can be alleviated by
using the models of COMPASS or SCITE which explicitly account for doublets (at the cost of an increased
computational time).

We found that the performance of COMPASS decreases with an increasing number of copy number events,
especially in settings where the number of events approaches the number of nodes in the tree (Figure 2). As
described in the Methods section, COMPASS first infers the best tree without CNVs, identifies regions whose
coverage at one node differs from their coverage at the root, and selects those regions as candidate regions
which might harbour a CNV. COMPASS then looks for the best tree, but allowing only CNVs in these
selected regions. This approach drastically reduces the number of false positive CNV calls, but decreases
the sensitivity to detect subclonal CNVs. If a CNV is located in a subclone which contains an SNV or
LOH event, the subclone will be present in the tree without CNVs, and the corresponding region should
be selected, enabling the detection of this CNV. However, if a subclone is only defined by a CNV, it will
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be missing from the tree without CNVs, and the CNV will not be detected. To quantify this phenomenon,
we say that a CNV is supported by SNVs if the CNV is in a node that contains an SNV, a CNLOH or a
CNV resulting in a LOH, or it has a descendant containing such an event. As expected, the false negative
rate of COMPASS for CNVs not supported by SNVs is high (Table 2), but for CNVs supported by SNVs it
is much lower than that of BITSC2. The decreased ability of COMPASS to detect CNVs in subclones not
supported by SNVs is counterbalanced by a very low false positive rate. In contrast, BiTSC? is significantly
less conservative in calling CNVs and has a very high false positive rate.

COMPASS  BiTSC?

FPR, overall 0.01 0.32
FNR, overall 0.23 0.83
FNR, CNVs supported by SNVs 0.10 0.80
FNR, CNVs not supported by SNVs 0.73 0.92

Table 2: False positive rate (FPR) and false negative rate (FNR) of CNV detection by COMPASS and BiTSC? (regardless of the
position in the tree). Here, we used the simulation setting that is closest to the real AML data analysed in this work (trees with 8
nodes, 7 SNVs, 3 CNVs, 2 CNLOHs and a variance in region coverage of 0.5) and averaged the results over 100 random trees. CNVs
supported by SNVs are CNVs which are located in a node which contains a SNV or a LOH, or which has a descendant containing
such an event.

Correlations between the coverage at different amplicons

When there are no CNVs, we would expect the sequencing depth on each amplicon to be independent.
However, we observed strong correlations between the relative sequencing depth on different amplicons
(Supplementary Figures C.3 and C.4). Such correlations in Tapestri® data have not been reported before.
The biological explanation for these correlations is not clear, but they have the potential to confound the
CNYV inference, since we could interpret the two main clusters as two different clones with very different
copy number profiles. However, these correlations are independent from the actual clonal architecture of the
tumour, so by jointly inferring SNVs and CNVs, only the true CNVs should be detected. We simulated data
with such correlations between the coverage of different regions, and verified that these correlations did not
affect the results of our method (Supplementary Figure D.5).

Overview of CNVs and CNLOHSs detected in real AML data

We applied COMPASS to the cohort of 123 AML patients that were previously analyzed with the Tapestri®
platform [17]. These samples were sequenced using two different panels: 67 samples with a 50-amplicon
panel covering 19 genes and 53 samples with a 279-amplicon panel covering 37 genes (the genes covered by
the panels are shown in Supplementary Table 1). In total, COMPASS detected CNVs in 16 samples (Table
3) and CNLOH events in 35 samples. Not surprisingly, more CNVs were detected in samples analyzed with
the 279-amplicon panel than with the smaller 50-amplicon panel. For example, we found 4 samples with
CNVs on chromosome 8 with the larger panel, but the smaller panel does not contain any amplicon on this
chromosome. The most common CNV is a loss of the EZH2 gene on chromosome 7, which we detect in 8
samples (6.5% of the cohort). Loss of chromosome 7 (or deletion of the long arm of chromosome 7) is indeed
known to be common in AML [19]. In AML, mutations in the T'P53 gene are known to be associated with
a complex karyotype (multiple CNVs) [20]. We tested if we could also find such an association based on
our analysis. Reassuringly, we indeed detected mutations in TP53 in 9 samples, 5 of which also had a CNV
event (p = 0.0013, Fisher’s exact test, one-sided).

The gene for which we detected the largest number of CNLOH events was FLT3 (N = 12 samples, 9.8%),
followed by SRSF2 (N =17, 5.7%) and RUNX1 (N =4, 3.3%). FLTS3 is known to be commonly affected by
CNLOH in AML, especially when there is an internal tandem duplication [21, 22]. CNLOH on RUNX1 is
also known to be frequent [23]. However, SRSF2 has not been reported to be frequently affected by CNLOH.
The amplicons on SRSF2 present in the panel have a very low efficiency, resulting in a very high dropout
rate, which might be falsely interpreted by COMPASS as a LOH. Interestingly, all 3 samples which had the
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JAK2 pV617F mutation also had a CNLOH (in patients AML-02, AML-89 and AML-92, Supplementary
Figures F.12 to F.14), in agreement with previous reports of CNLOH for this mutation [24].

Orthogonal validation of COMPASS-derived CNV and CNLOH calls with bulk
data

Bulk targeted sequencing covering 297 genes was available for 85 samples of the 123 samples. We used
CNVkit [25] to detect CNVs in these samples. In addition, we had SNP array data available for 32 samples,
for which we used ASCAT [26] to detect both CNVs and CNLOHs. These bulk data provide an opportunity to
orthogonally validate the CNV and CNLOH calls of COMPASS with more established (but lower resolution)
approaches. We restricted the validation to events present in more than 50% of the cells, since bulk data
cannot reliably detect CNV and CNLOH events present in a small percentage of the cells.

Among the 16 samples for which we detected CNVs, bulk SNP array data was available for 2 of them and
bulk targeted sequencing for 6 of them. Among these 8 samples, all of the CNVs present in a majority of the
cells identified by COMPASS were also detected by bulk sequencing, except for one in sample AML-60-001
(Figures 3 and 4, and Supplementary Figures E.1 to E.12).

In the 85 samples with bulk sequencing, only 4 contained CNVs detected in bulk data on regions covered
by the single-cell panel that were not detected by COMPASS (Supplementary Figures E.13 to E.18), and
some of them might be false positive calls in the bulk data. Among the 32 samples for which reliable SNP
array data was available, six of them contained CNLOH events detected by both COMPASS and ASCAT,
two samples contained CNLOH events detected by COMPASS but not ASCAT, and four samples contained
CNLOH events detected by ASCAT but not COMPASS, but those were either in regions not targeted by
any amplicons or where we did not detect any SNVs (Supplementary Figures E.19 to E.26).

For sample AML-59-001, COMPASS inferred a tree containing two main clones, each of which has a different
mutation in the RUNX1 gene (Figure 3). In addition, the dominant clone has one deletion of EZH2 on
chromosome 7, and one amplification of WT1 on chromosome 11, while the smaller clone has a loss of TP53
on chromosome 17, which results in a LOH for one germline variant (the sample might also have a somatic
mutation on TP53 not captured by the panel). The ASCAT profile inferred from SNP array data also
contains the deletion on chromosome 7 and the amplification of chromosome 11, but does not contain any
loss on chromosome 17. This is expected, as this deletion is only present in 5% of the cells and hence is
unlikely to be detected from a bulk sample. This example supports the correctness of the upper part of our
tree since the CN'Vs found in the dominant clone are also detected with an orthogonal method. It also shows
that our method can take advantage of the single-cell resolution of the Tapestri® data to uncover CNVs in
small subclones which are missed by bulk methods, and to reveal the order of SNV and CNV events in a
branching clonal architecture.

The inferred tree for sample AML-99-001 displays a linear evolution and contains one amplification of two
genes on chromosome 8, as well as a CNLOH of RUNX1 on chromosome 21 (Figure 4). One germline variant
on RAD21 was covered by the targeted panel, which improves the reliability of the CNV call on chromosome
8, since it is based both on the total coverage in the region and the allelic fraction of the RAD21 SNP. The
ASCAT profile inferred from SNP array data also contains this copy number gain on chromosome 8 and the
CNLOH on chromosome 21, again supporting our tumour phylogeny. Interestingly, there are 5 longitudinal
samples available for this patient, and we detect the copy number gain on chromosome 8 and the CNLOH
on RUNXI in all 5 of them, although the CNLOH on RUNX1 is only present in a small subclone on the
fourth and fifth samples (Supplementary Figures F.8 to F.11).

Two independent deletions on chromosome 17

Sample AML-101-001 provides an interesting illustration of the benefits of joint SNV and CNV phylogeny
inferred from single-cell data for understanding the evolution of a tumour. This sample contains two different
mutations in TP53 (on the two different allelic copies) and COMPASS inferred two independent deletions
on chromosome 17 (Figure 5). In the first deletion, all three genes present in the panel on this chromosome
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Patient Panel CNV
+1 FLT3 (chr13)
AML-07 | 50-amplicon | -1 RUNX1 (chr21)
-1 U2AF1 (chr21)
AML-39 | 50-amplicon | -1 EZH2 (chr7)
-1 EZH2 (chr7)
AML-59 | 50-amplicon | +1 WTTL (chrll)
-1 TP53 (chrl7)
AML-60 | 50-amplicon | +1 ASXLI (chr20)
AML-73 | 50-amplicon | -1 RUNX1 (chr21)
AML-42 | 279-amplicon | -1 TET2 (chr4)
-1 EZH2 (chr7)
. -1 RAD21 (chr8
AML-78 | 279-amplicon -1 MYC (d(1r8) )
-1 ETV6 (chrl2)
-1 EZH2 (chr7)
-1 TP53 (chrl7)
AML-79 | 279-amplicon | -1 SETBP1 (chr18)
+1 RUNX1 (chr21)
+1 U2AF1 (chr21)
. +1 RAD21 (chr8
AML-83 | 279-amplicon 11 MYC (c|(1r8) )
AML-98 | 279-amplicon | -1 EZH2 (chr7)
. +1 RAD21 (chr8
AML-99 | 279-amplicon +1 MYC (c£r8) )
-1 EZH2 (chr7)
. -1 TP53 (chrl7
AML-101 | 279-amplicon 1 NF1 (c(hr17))
-1 PPM1D (chrl7)
AML-103 | 279-amplicon | -1 TET2 (chr4)
-1 EZH2 (chr7)
AML-107 | 279-amplicon | -1 ETV6 (chrl2)
-1 FLT3 (chr13)
AML-111 | 279-amplicon | -1 EZH2 (chr7)
+1 RAD21 (chr8)
AML-117 | 279-amplicon | +1 MYC (chr8)
-1 TP53 (chrl7)

Table 3: List of CNVs detected in the cohort. 67 samples were sequenced with a 50-amplicon panel and 56 were sequenced with a

larger 279-amplicon panel. The sign indicates whether the CNV is a loss (-1) or a gain (+1).
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Figure 3: Top: inferred tree for sample AML-59-001, where the dominant clone contains a copy number loss on EZH2 (chr7) and a
copy number gain on WTI (chrll), and a small subclone contains a copy number loss on TP53 (chrl7). A germline TP53 variant
is shown at the root because it is taken into account by COMPASS to detect the copy number loss. The notation CNV-1 TP53:REF
indicates that one copy of the reference allele is lost. Bottom: allelic copy number profile inferred from bulk SNP array data using
ASCAT [26]. Both CNVs in the dominant clone are confirmed, but the bulk SNP array data cannot detect a CNV present in only 5%
of the cells.

(TP53, NF1 and PPM1D) were lost, and in the second deletion only TP53 and NF1 were lost. Such double
TP53 mutations are not rare in AML, although they are less common than one TP53 mutation followed
by a LOH [27]. Once both TP53 alleles are mutated we would not expect any additional fitness advantage
from losing one copy, whereas here if two deletions on chromosome 17 were independently selected, it seems
likely that this deletion drives oncogenesis. A possible explanation is that the fitness advantage provided
by these deletions on chromosome 17 does not come from the loss of TP53, but rather from the loss of
NF1. NF1 codes for the protein neurofibromin, which is a GTPase activating protein that can accelerate
the hydrolysis of RAS-bound GTP into GDP, thus downregulating the RAS pathway. Consequently, a loss
of NF1 could result in an increased activity of the RAS pathway [28]. This proposed mechanism would be
consistent with the fact that there are two additional clones which also contain mutations upregulating the
RAS pathway (mutations in KRAS and PTPN11). Thus, this would be a case where there are 4 co-existing
clones with different genotypes, but all of these genotypes have the same consequence on the RAS pathway.
In this example, integration of SNVs and CNVs into the phylogeny is critical because based on the coverage
information alone, it would not be possible to detect that two different copies of TP53 are lost independently.

Discussion

We have developed COMPASS, a probabilistic model for inferring clonal phylogenies based on point muta-
tions and copy number events from single-cell DNAseq data. COMPASS is geared towards the use of read
count data from high-throughput amplicon-based sequencing, for example, as generated by the MissionBio
Tapestri® platform. Unlike BiTSC2 which is currently the only other method to infer tumour phylogenies
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Figure 4: Top: inferred tree for sample AML-99-001, where most neoplastic cells have a copy number gain on chromosome 8 and a
CNLOH on RUNX1 (chr21). Bottom: allelic copy number profile inferred from bulk SNP array data using ASCAT [26]. The CNV
on chromosome 8 and the CNLOH on chromosome 21 are confirmed.

based on SNVs and CNVs from single-cell sequencing data, COMPASS can also detect copy-neutral loss of
heterozygosity, an important prognostic marker in AML. Our simulation experiments illustrate two further
key advantages of COMPASS over BiTSC2. First, COMPASS is able to process larger datasets with thou-
sands of cells, and second, it is more robust to systematic local coverage fluctuations between amplicons that
are independent of copy number changes. These patterns are most likely introduced by variability in primer
pair efficiency in the targeted amplicon-based sequencing. In general, SNVs are easier to call from deep tar-
geted sequencing than copy number states. This stands in contrast to shallow WGS which is better suited
for detecting large CNVs than SNVs. Looking at CNV detection alone, our results show that COMPASS
outcompetes BITSC? with regard to both false negative and false positive rate with the latter being up to 32
times higher for BiTSC2. We also observe that it is particularly challenging to detect subclones characterized
only by CNVs, and in our simulations, COMPASS mostly fails to detect them. This is analogous to how
CHISEL can only detect SNVs in subclones containing CNVs [14], for shallow WGS data. The same trend
is observed for BiTSC2 but less pronounced due to the overall less conservative CNV calling strategy of this
method. In practice, many of the subclones seemingly characterized only by CNVs will in fact be supported
by SNVs located outside the small set of genes currently targeted in high-throughput assays. Therefore
sequencing a larger part of the genome will likely reduce the number of these hard to detect CNVs.

We applied COMPASS to a large real-world dataset of 123 AML samples. Previously, clonal architecture of
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Figure 5: Top: Inferred tree for sample AML-101-001. The notation CNV-1 TP53:ALT,REF indicates that the copy of TP53 that was
lost contained the mutation pY220C, but not the mutation pV143M. Conversely, CNV-1 TP53:REF,ALT indicates that the pV143M
mutation was lost, but not pY220C. Bottom: sketch describing the corresponding two independent deletions on chromosome 17.

these samples was only inferred based on SNVs. Jointly analysing SNVs and CNVs with COMPASS allowed
for a more complete characterization of the clonal heterogeneity in these samples. The main scientific advance
provided by COMPASS is the ability to delineate the order of SNV, CNV and CNLOH in a branching
evolution pattern, which can help analyze the fitness of clones that are evolving in parallel. Among our most
striking findings are a strong association of CNVs with mutations in TP53, and deletions to be most common
on chromosome arm 7q. Both findings are in agreement with the current knowledge of AML development.
We were also able to orthogonally validate CNVs detected with COMPASS using bulk SNP array data.

While we focus here on AML, COMPASS is not generally restricted to this cancer type. For example, more
complex copy number events like whole genome duplications which are uncommon in AML but occur in
many solid tumours could be easily modelled in COMPASS by adding one event which doubles every copy
number.

Methods

Probabilistic model

COMPASS defines a probability distribution over trees of somatic events (SNVs, CNVs, CNLOHs). The
prior on trees penalizes the number of nodes and CNV/CNLOH events, and the likelihood takes into account
both the total number of reads in each region and the number of reads at each locus supporting the mutated
vs wild type allele. The two components of this likelihood are described in more detail below. A simulated
annealing algorithm is used to infer the tree with the highest probability. A complete description of the
probabilistic generative process defined for COMPASS is provided in the Supplementary Material section A.
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Likelihood for the number of reads in each region

We model the read count in each region with a negative binomial distribution (Gamma-Poisson), which we
parameterize with a mean g and inverse dispersion parameter §. This corresponds to sampling the read
counts from a Poisson distribution, where the rate of the Poisson distribution is first sampled from a Gamma
distribution with shape parameter 6 and scale parameter 4. Compared to a Poisson distribution whose

variance would be equal to the mean p, the Gamma-Poisson distribution has a higher variance p + % u?.

When there is a total of D; reads in cell j, reads have a probability p; to fall into region k (in the absence of
CNVs). If cell j is attached to node o, which has a copy number of ¢, (c;), for region k, then the expected

read count for region k in cell j is E(Dy;) = D; < (;j ) o1, which leads to the following likelihood:
0 cr(o; Dy;
cp(o; T(Dy; + 0 0 D-Mpk
kj 9+Dijk 9+Dijk

Likelihood for the number of mutated reads at each variable locus

COMPASS does not take as input called genotypes, but instead works directly with the allelic read counts,
similar to SCI® [9]. Even when the coverage is low, COMPASS can harness all of the available information
while taking the uncertainty into account. In addition, a copy number alteration can lead to one allele having
a higher copy number than the other, resulting in an unbalanced allelic proportion, which can be detected
from the allelic read counts (Supplementary Figure C.9), making the CNV inference more precise. We model
allelic read counts with a beta-binomial distribution to account for overdispersion. Let D be the sequencing
depth at a position and A be the counts of alternative reads, f be the frequency of the alternative nucleotide
and w be the concentration parameter. The beta-binomial likelihood is given by

D) B(A+wf, D—A+w(l—f))
A Bwf, w(l = f))

P(AD, f,w) = ( @)

where B is the beta function.

Let ¢ and ¢(® be the number of copies of the reference and alternative allele, respectively. The true
(@

@ Let € be the sequencing error rate. If we exclude the

two other nucleotides different from ref and alt, the proportion of alternative reads should be o) (1-

(M Fel@
e) + C(Tﬁ%a Each of the two alleles can independently be dropped out: Let k and [, respectively, be
the number of reference and alternative allele copies which got amplified. We observed that in real data,
different variants had different dropout rates (Supplementary Figure C.8), so we allowed in our model each
variant ¢ to have its own dropout rate p;, which is inferred using an EM algorithm described below. Taking
into account all of the dropout possibilities, the probability of the observed read counts for cell j at locus ¢

1S

proportion of the alternative nucleotide is

P (Azj | Dij>c(r)ac(a)7M7€awhomawhet) =

C(T) c(a) (M el g kil l k

0<k<c™
0<i<e(®)
(k,1)#(0,0)

where w(k,l) = wWhom if K =0 or Il =0 and w(k,l) = wpe; otherwise (the overdispersion is higher in case of
heterozygosity).
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Marginalization over the attachments of cells to nodes

Instead of sampling the attachments of cells to nodes as part of the MCMC scheme, we compute the likelihood
of a tree by marginalizing over the attachments and we only sample trees as in SCITE [7]. This makes the
inference much faster when the number of cells is high, which is typically the case for Tapestri® data. Unlike
SCITE, COMPASS does not use a uniform prior over nodes in the marginalization, but instead learns the
probability 7, to sample a cell from a node n. This improves the inference, especially when some clones are
much smaller than others, and this is feasible for Tapestri® data because we have a high number of cells
and a small number of nodes. The node weights m,, are learnt using an EM procedure described below. If
o; denotes the node to which cell j is attached, then the likelihood of a tree can be written as

PD.AIT) =[] Y7, [I PWrjlero).on) ] P(Ai | Dij el (05). e (o)) (4)

cell j o; region k locus 4

Doublets

Doublets can optionally be modelled. In case they are included, we compute separately the probability of a
cell to attach to a single node, and to attach to a doublet, and we mix them with the doublet probability 9,
as is done in coSCITE [8].

The general formula of Equation (4) remains valid, but the attachment o; of cell j can either be a single
node or a pair of nodes. In case o; is a single node n, the probability to attach to it is P(o;) = (1 — ).
In case o; is a doublet (n,n’), the probability to attach to it is P(o;) = dm,m,. The genotype of a doublet
is computed by adding the copy numbers of the alleles of the two nodes, and averaging the copy numbers of
the regions. If we explicitly separate singlets from doublets, we obtain

P(D,A|T)=[] ((1 —6)Y mP(Dj,Aj|n) +8Y Y mmy P(Dj, A; In,n’)> ()

cell j

PD,AT)= ] (¢ (1— an II PO lex(n). o) [T P4y | Dijo e (), i (), o)

cell j region k locus 4
+ c
DD RN | R erln) o)
region k

[T PAy | Dy e () + &7 (), ) (n) + ¢ (n m)) (6)

locus 1

Tree prior

The tree prior penalizes the number of nodes in the tree, as well as the number of LOH and CNV events.

The penalty for the number of nodes is proportional to the number of mutations in the tree because if the
tree contains many mutations, it is more likely that each node will contain several mutations.

When several CNV or CNLOH events affect contiguous regions, they are counted as one event, because
such events typically affect large genomic regions, often whole chromosomes. The same penalty is used for
CNLOH and copy number losses resulting in a LOH, but a lower penalty is used for CNVs which do not
result in a LOH, because they have a lower impact on the likelihood. The penalty for CNLOH and CNV
events has an affine relationship with the number of cells, because when more cells are present, such events
have a higher impact on the likelihood, but we also need a minimum evidence to be able to detect such
events.
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Since COMPASS allows the inclusion of germline variants in the tree (to improve the inference of CNVs, in
case they are part of a region affected by a loss or amplification), mutations which are not at the root of the
tree are penalized. Optionally, COMPASS can take as input the frequency of variants in the 1000 Genomes
database. Variants present in this database are penalized more heavily (proportionally to their population
frequency) for not being at the root, since they are more likely to be germline variants.

The prior of a tree depends on parameters for the penalties p1, p2, p3 and py, which are chosen empirically.
The main one is py which controls the addition of CNLOH and CNV events. Its default value works well
on MissionBio datasets, but might have to be adjusted in case there are too many false positives or false
negatives on other datasets. The default value of p; is low because the node probabilities already remove
most of the benefits of having additional nodes, but it could be increased if we wanted to reduce the number
of nodes in the tree. The values of p3 and p4 are not critical because this part of the prior does not play a
significant role in most cases. The formula for this log-prior is:

log(P(T)) = — P1Mmuts"'nodes

1
— (1500 + ncents)p2 (nCNLOH + neNv_LoH + QnCN\/IloLOH)

- § ]lz not attached at the root (p?) + p4freq1000(}enomes (7’))

locus 4

+ Constant

Simulated annealing

Even though the number of mutations with targeted DNA sequencing is small, the tree space is still very
large, which precludes an exhaustive search over the whole tree space. Consequently, we use a simulated
annealing (SA) approach. At each iteration, we start from a tree 7 and propose a new tree 7’ by sampling
it from a proposal distribution ¢(7,7’). The MCMC moves are described in the Supplementary Material
section B. Then, we compute the likelihood of the new tree, and accept the new tree with probability

min {1, exp (M)} where T is a temperature parameter. Otherwise, we reject the new tree and

start a new iteration from tree 7. The temperature is progressively lowered, which prevents being stuck in
a local optimum initially.

In practice, we first run SA without CNVs. That way, we can identify the cells that are attached to the root
as non-neoplastic cells, and use those cells to estimate the weight of each region py, which is the probability
for a read to fall into region k for a diploid cell without any CNVs. In addition, in the inferred tree without
CNVs, we look for regions which have a lower or higher average normalized sequencing depth in some nodes
compared to the root, and we select those regions as potential regions which might harbour copy number
variants. Then, we run the SA with CNVs, but we restrict the addition of CNV events to the selected regions.
We also exclude regions which have a very low amplification rate from the CNV inference, as their sequencing
depth is very unreliable. This selection might lead to false negative CNVs, but reduces the number of false
positives and decreases the number of iterations required in the SA, since it reduces the set of possible events
that can be proposed.

Estimation of the node probabilities and dropout rates

The model contains two parameters which need to be estimated: the weight m, of each node n and the
dropout rate u; of each variant ¢. Ideally, we would like to marginalize over these parameters. However, the
space is too large to integrate over, and sampling these parameters with the MCMC would be very inefficient:
when a new tree is proposed, the old parameters might not work well for this new tree, which would lead to
the tree being refused with a very high probability. Alternatively, we could jointly propose a new tree and
new node weights and dropout rates, but the probability to obtain good parameters would be extremely low.
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Thus, instead of marginalizing over the node probabilities and dropout rates, we use the parameters which
maximize the posterior probability. This can be efficiently performed with an EM algorithm, which has to
be performed inside each MCMC step. We have two types of latent variables: the attachments of cells to
nodes, 0;, and for each cell j and each locus 7, the number of reference and alternative alleles that did not get

dropped out, C’Z-(jr) and CZ-(;). We use a beta prior centered on 0.05 for the dropout rates and a flat Dirichlet
prior D(1,...,1) for the node weights.

During the E-step, we compute the probabilities ) of the latent variables, given the current parameters.
71—nF)(ng*AJ | 0j = naﬂ-vu)

Q(oj =n) (0j =n|Dj, Aj, 7, p) Zn’ mwP(D;, A | o; =1/, m, ) (7)

QUCY =k O =1]0;=n) = P(CJ) = k,Cf) =1| Dij, Aij 05 = n, 1)

& (n -‘rC(-a') n)—k—l
plt e (TRl g P A | Dy K D)
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During the M-step, we update the parameters (node probabilities 7, and dropout rates p;) in order to
maximize the sum of the log-prior and of the expected hidden log-likelihood.
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Data availability

The single-cell DNA sequencing data of Morita et al. [17] is available on the SRA under the project ID
PRJNAG48656.

Code availability

COMPASS has been implemented in C++ is freely available under a GPL3 license at https://github.
com/cbg-ethz/COMPASS.
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