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Abstract
Coastal marine phototrophs exhibit some of the highest rates of primary productivity in the
world. They have been found to host a diverse set of microbes, many of which may impact the
biology of their phototroph hosts through metabolisms that are unique to microbial taxa. Here we
characterized the metabolic functions of phototroph-associated microbial communities using

metagenomes collected from 2 species of kelp (Laminaria setchellii and Nereocystis luetkeana)
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and 3 marine angiosperms (Phyllospadix scouleri, P. serrulatus and Zostera marina), including
the rhizomes of two surfgrass species (Phyllospadix spp.) and the seagrass Zostera marina, and
the sediments surrounding P. scouleri and Z. marina. Using metagenomic sequencing, we
describe 72 metagenome assembled genomes (MAGs) that potentially benefit from being
associated with macrophytes and may contribute to macrophyte fitness through their metabolic
gene content. All host-associated metagenomes contained genes for the use of dissolved organic
matter from hosts and vitamin (B, B,, B7, Bi2) biosynthesis. Additionally, we found a range of
nitrogen metabolism genes that transform dissolved inorganic nitrogen into forms that may be
more available to the host. The rhizosphere of surfgrass and seagrass contained genes for
anaerobic microbial metabolisms, including nifH genes associated with nitrogen fixation, despite
residing in a well-mixed and oxygenated environment. The range of oxygen environments
engineered by macrophytes likely explains the diversity of both oxidizing and reducing microbial
metabolisms, and contributes to the functional capabilities of microbes and their influence on

carbon and nitrogen cycling in nearshore ecosystems.

Importance
Kelps, seagrasses and surfgrasses are ecosystem engineers on rocky shorelines where they show
remarkably high levels of primary production. Through analysis of their associated microbial
communities, we found a variety of microbial metabolisms that may benefit the host, including
nitrogen metabolisms and the production of B vitamins. In turn, these microbes have the genetic
capability to assimilate the dissolved organic compounds released by their phototroph hosts. We
describe a range of oxygen environments associated with surfgrass, including low-oxygen

microhabitats in their rhizomes that host genes for nitrogen fixation. The tremendous
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productivity of coastal phototrophs is likely due in part to the activities of associated microbes

and an increased understanding of these associations is needed.

Introduction
We are experiencing a paradigm shift in biology with the recognition that many species exist as a
consortium with microbes (1). These microbial associations are nearly ubiquitous, spanning a
diversity of hosts across ecosystems. In coastal marine environments, phototrophic microbial
hosts are diverse and range from marine angiosperms to large eukaryotic protists (macroalgae).
Different macroalgal host species (2, 3) and different phototroph tissues (4, 5) host distinct
microbial communities numbering in the millions per cm® of host tissue (6), yet we still know
little about the functional role the microbiome plays in host fitness or how the host influences the
microbiome. The microbiome of phototroph species has been shown to have metabolisms that
provide nitrogen to the host (7, 8). Bacteria also supply B vitamins (9) and affect development of
their host (10). Further, the contributions that marine phototrophs make to host carbon and
nitrogen cycling have largely ignored the role that microbes play. Even as we begin to describe
their microbiome, we are discovering that environmental change affects these communities (11).
For many of the foundational phototrophic species in the coastal ocean, our understanding of the

diversity and role of their microbiome is nascent.

A unique aspect of host-associated microbes are the strong gradients in oxygen that they
experience due to the biological activities of the host. The photosynthetic and respiratory
activities of the host can generate a ‘phycosphere’ (12) where the host influences the physical

environment experienced by microbes, sometimes over micron or mm scales. For example, the
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basal leaf meristem of the seagrass Zostera ranges from oxic to anoxic conditions over a scale of
300 microns when measured with oxygen microsensors (13). This range of oxygen
concentrations likely selects for a diversity of microbial metabolisms in association with

macrophytes.

Another factor important to the microbial metabolisms associated with coastal macrophytes is
nutrient availability. In coastal systems, nitrogen can limit primary production and microbial
associates that aid in accessing nitrogen might be selected. Microbial metabolisms that can
increase the available dissolved inorganic nitrogen (DIN) for the host (14) include pathways that
cleave carbon-nitrogen bonds to generate ammonium. This ammonification in biological systems
can result from a diversity of hydrolases, including ureases and other enzymes that cleave C-N
bonds (15). Further, microbes that fix atmospheric nitrogen have been discovered in an
increasing number of taxa (8, 16), now recognized to include heterotrophic as well as
phototrophic taxa (17-19). Nitrogen fixation was previously assumed to be restricted to nitrogen-
poor environments, but has been quantified recently in systems thought to be nitrogen-rich (8,
20), an enigmatic finding given that nitrogen fixation is a costly metabolic process that consumes
16 ATPs per N, fixed (21). Sediments where oxygen is low and nutrients can be depleted by
macrophytes, such as the rhizosphere of seagrasses have provided evidence of nitrogen fixation
(22-26). The recent discovery that nitrogen fixation takes place on particles in the coastal ocean
where nitrate is relatively abundant (8, 20) suggests that nifH genes could be abundant in other

nearshore systems.
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92  Microbial metabolisms that synthesize compounds and vitamins needed by seaweeds and
93  seagrasses may also underlie host-microbe exchanges. The active form of Vitamin B1 (thiamin)
94 s essential for all organisms and is involved in carbohydrate and amino acid metabolisms.
95  Vitamin B2 (riboflavin)-binding proteins are co-enzymes in various oxidases and are involved in
96  photosynthesis and phototropism (27). Vitamin B7 (biotin) is a cofactor for acetyl coenzyme A
97  (coA) which is essential for fatty acid synthesis. Vitamin B12 (cobalamin) is required as a
98  coenzyme in the mitochondria for many algae, yet they depend upon prokaryotes to produce it
99 (9, 28). Thus, marine macrophytes may be auxotrophic for key vitamins, and their production by
100  host-associated bacteria may be another basis for phototroph-microbiome interactions in nature.
101
102 Hosts might reciprocally benefit microbes, especially if heterotrophic microbes benefit from the
103 dissolved organic carbon that is released by their hosts. Of the carbon that is fixed, kelp have
104  been demonstrated to release 15-16% of it as dissolved organic matter (29, 30), and seagrasses
105  too provide a constant source of dissolved organic carbon (31, 32), likely stimulating
106  heterotrophic bacterial processes (33). These rates of organic carbon release, often involving
107  highly labile organic carbon compounds (34), could provide the basis for reciprocal benefits
108  between microbes and their associated hosts.
109
110  Here, we analyzed microbial metagenomes collected from 5 different coastal phototrophs to
111  determine if there is functional genomic evidence of microbial metabolisms that could
112 reciprocally benefit host and microbes. We analyzed the surface microbiome on the blade of two
113 kelp species (Laminaria setchellii and Nereocystis luetkeana) and the surfgrass Phyllospadix

114 scouleri, the thizomes of P. scouleri, P. serrulatus, and the seagrass species, Zostera marina, and
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115  the sediment surrounding the rhizomes of P. scouleri and Z. marina. We quantified the variable
116  oxygen environment in the rhizomes of Phyllospadix spp. to determine if they allow for aerobic
117  as well as anaerobic metabolisms. We analyzed the microbial taxa present and examined their
118  gene content to estimate their functional and metabolic capacities. We hypothesized that

119  microbial partners: 1) enhance host access to dissolved inorganic nitrogen through nitrogen

120 recycling, ammonification and nitrogen fixation, 2) provision vitamins B;, By, B7, B2, and 3) use
121 adiversity of abundant dissolved organic carbon exudates from the host. We tested whether

122 microbial taxonomy and function differed across hosts and host tissue types, and whether

123 anaerobic metabolisms were present in low-O; environments (e.g., rhizomes and sediment).

124 Through this study, we find that the range of oxygen environments engineered by host

125  phototrophs likely explains the diversity of both oxidizing and reducing microbial metabolisms,
126  and contributes to the functional capabilities of microbes and their influence on carbon and

127  nitrogen cycling in nearshore ecosystems.

128

129 Methods

130  Sampling and DNA Extraction

131  We collected metagenome samples from the surfaces of 5 different phototroph species (Table
132 S1). The surface of Phyllospadix scouleri blades, Laminaria setchellii fronds and the inner bulbs
133 of Nereocystis luetkeana were swabbed with a sterile swab and brushed with an interdental brush
134 (GUM Proxabrush Go-Betweens). We preserved sections of the rthizomes of Phyllospadix

135 scouleri, P. serrulatus and Zostera marina. Sediment surrounding P. scouleri and Z. marina was
136  also collected. All samples were collected from Tatoosh Island, WA, USA (48.393679, -

137 124.734617) on 16-17 Jul 2019, except for Z. marina samples which were sampled from West
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138  Falmouth Bay, MA, USA (41.60708333, -70.64527778) on 19 Sept 2019. We included samples
139 from the rhizosphere of Z. marina from the Atlantic Ocean as a known positive control for

140  nitrogen fixation (22, 23). Swabs, tissue and sediment were immediately frozen at 20° C and
141  shipped to storage at -80° C. DNA from these collections was extracted with a Qiagen PowerSoil
142 Kit and multiple samples were pooled for each metagenome sample to increase DNA quantity
143 and possible discovery: P. scouleri blade, thizome and sediment (3 pooled individuals each), P.
144 serrulatus rhizome (3 individuals), L. setchellii blade (3 individuals), N. luetkeana interior bulb
145 (4 individuals), Z. Marina rhizomes and sediment (2 individuals).

146

147  Shotgun metagenomic sequencing, assembly, and read recruitment

148  The above 8 samples were run over 2 lanes on a HiSeq 2500 (2x150) with TruSeq DNA library
149  preps at Argonne National Laboratory. For each sample, resulting DNA sequences were first
150  quality filtered (35)(Minoche et al. 2011), then assembled with IDBA-UD v1.1.3 (36) (Peng et
151  al. 2012) with a minimum scaffold length of 1 kbp. Metagenomic short reads from each sample
152  were then recruited back to their corresponding assembled contigs using Bowtie2 (37). Samtools
153  (38) was used to generate sorted and indexed BAM files. Anvi’o v7.0 (39) was used as the

154  command line environment for all downstream analyses. ‘anvi-gen-contigs-database’ was used
155  to generate anvi’o contigs databases, during which Prodigal v2.6.3 (40) identified open reading
156  frames, and ‘anvi-run-hmms’ was used to identify genes matching to archaeal and bacterial

157  single-copy core gene collections using HMMER (41).

158

159  Reconstructing metagenome-assembled genomes (MAGs)
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160  To reconstruct genomes from the assembled metagenomes, we used a combination of automatic
161  binning via CONCOCT v1.1.0 (42), followed by a manual curation of each MAG as outlined by
162  Shaiber et al. 2020 (43). Genome taxonomy was determined using GTDB v.1.3.0 (44), and 'anvi-
163  run-scg-taxonomy'. We also inferred gene-level taxonomy using Centrifuge v1.0.4 (45) to aid
164  manual curation.

165

166  Phylogenomic analysis of MAGs

167  To perform a phylogenomic analysis of our MAGs, we recovered amino acid sequences for

168  bacterial single-copy core genes (SCGs) from each genome (except the only archaeal genome in
169  our collection) using the program ‘anvi-get-sequences-for-hmm-hits’ with the parameter "--

170  hmm-source 'Bacteria_71" on the ribosomal gene set ‘Ribosomal L1-L6" and the flag *--

171  concatenate’, which independently aligned each SCG independently using Muscle v3.8.1 (46)
172 before concatenating them into a final superalignment. We then refined the alignment using

173 trimAl v1.4.rev1l5 (47) to remove any position in the alignment if more than 50% of the residues
174 were gap characters. A maximum-likelihood phylogeny was inferred using IQTree (48) with
175 1,000 bootstrap replicates, and a LG+R6 model best fit our data using ModelFinder (49).

176

177  Functional analysis of microbial communities

178  To address the metabolic capabilities of host-associated microbes, we annotated genes in each
179  anvi’o contigs database with 3 different databases using ‘anvi-run-kegg-kofams’, ‘anvi-run-ncbi-
180  cogs’, and ‘anvi-run-pfams’, which used the databases of Kyoto Encyclopedia of Genes and

181  Genomes (KEGG) (50), NCBI’s Clusters of Orthologous Genes (COGs) (51) and EBI’s Pfam

182  database (52) respectively. We used these annotated genes to test for 1) nitrogen cycling
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183  metabolisms, especially those within the nitrogen-fixation pathway, 2) hydrolases, including
184  ureases, as well as ammonia-lyases, to cleave the C-N bonds in amino acids and make

185  ammonium available to the host, 3) vitamin production, namely vitamins B;, B,, B; and B, and
186  4) a set of dissolved organic matter (DOM) transporter genes identified by Poretsky et al. (34)
187  that indicate the ability of the microbial community to assimilate DOM exudates from kelps and
188  surfgrasses. The list of genes used is indicated in Table S4. We additionally developed and used
189  a graph-based algorithm on KEGG definitions for vitamins By, B,, B;7 and B, to detect the

190  presence of these biosynthetic pathways (Supplementary Code 1). To expand our functional

191  analysis of kelp blade genes, we included 32 MAGs from the surface of N. /uetkeana blades that
192 were collected from the same location at the same time using similar methods as those described
193  above (53).

194

195  Phylogenetic analysis of nifH genes

196  To search for nifH amino acid sequences in our environmental samples, we identified 9 MAGs
197  which contained nifH genes using the KEGG identifier K02588 with e-value < 1e-20. We

198 aligned the AA sequences for these genes against 89 well-characterized reference nifH AA

199  sequences (Table S6) using Muscle v3.8.1 (46) and refined the alignment using trimAl (gap-
200  threshold: 0.5) and ‘anvi-script-reformat-fasta’ (max-percentage-gap: 50%). A maximum-

201  likelihood phylogeny was inferred using IQTree (48) with 1,000 bootstrap replicates, and a

202  LG+RS5 model best fit our data using ModelFinder (49). nifH genes from the Zostera samples
203  served as positive controls to detect nitrogen fixation genes in other samples. Figures 2, 3, 4 were
204  generated using iTol v5 (54), R v4.0.3 and FigTree respectively. We additionally took tissue

205  samples from P. scouleri thizome (n = 16), basal meristematic region just distal to the sheath
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206  (n=12) and blade 35 cm above the rhizome (n = 12) to quantify stable isotopes of 015N and
207  613C to look for signatures of nitrogen fixation (methods described in Appendix 1).

208

209  Quantifying the Oxygen Environment

210  We quantified the oxygen concentrations in proximity to Phyllospadix spp. thizomes by

211  comparing dissolved oxygen (DO) concentrations in the surrounding seawater and in the

212 sediment around the rhizome. We used a Pyro Science Robust Oxygen Probe (OXROBI10,
213 Firesting™, Pyroscience), and repeated measurements around 0900h across 4 days (7-9 June
214 2019, 13 June 2021) within P. scouleri (n = 18) and P. serrulatus (n = 11) rhizomes. Each
215  reading first measured the surrounding seawater after which we gently pushed the tip of the
216  oxygen probe into the sediment and rhizome mass to a depth of 1-3 mm, the typical thickness
217  (pers. observation). We let the probe equilibrate and took a reading at 150 sec. This allowed the
218  rhizome oxygen environment to equilibrate after we disturbed the intact rhizome. We compared
219  surrounding water and within-rhizome oxygen using paired t-tests in R.

220

221 Data Availability

222 In addition to the code available on GitHub (__ ), the final MAG database files generated in
223 anvi’o are available on the FigShare repository: (). Metagenomic sequence data are

224  available at the NCBI’s Sequence Read Archive under accession no. (submission in progress).
225

226 Results

227  Surfgrass rhizomes have lower oxygen concentrations than surrounding seawater

10
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228  The oxygen environment in the rhizomes differed significantly from that of the surrounding
229  seawater (Fig. 1). Rhizomes maintained a lower dissolved oxygen (DO) concentration than the
230  surrounding seawater for both P. scouleri (n=18, pairwise t-test: p<0.001) and P. serrulatus

231  (n=11, pairwise t-test: p<0.001). P. serrulatus maintained a slightly lower DO concentration in
232 the thizome at 2.11 mg I"', compared to 5.61 mg I"' for P. scouleri. However, the nature of

233 sampling likely introduced more oxygenated water from the surrounding water column to the
234 rhizome-sediment microenvironment, suggesting that the actual DO concentration within the
235  sediment is lower than the value reported.

236

237  Diversity of MAGs assembled across hosts

238  Following filtering, we obtained an average of 41 million reads per sample (range 6.48 to 67.73
239  million), with 79.8% of raw reads retained on average. When these reads were assembled into
240  contigs of at least 1000 nucleotides, a mean of 42,026 contigs and a mean of 110,054 genes were
241  present across samples (Table S1).

242

243 Across 8 metagenomes we manually binned 33 high quality MAGs, defined as having a

244 completion score >90% and contamination (or redundancy) < 10% (Table 2). We also identified
245 39 lower quality MAGs that had completion scores between 38 and 93% and redundancy scores
246  between 0 and 21% (Table S3). All MAGs were bacterial except for a single archacal MAG on
247  the rhizome of P. scouleri. The bacterial MAGs spanned 7 phyla, including Proteobacteria

248  (n=34), Bacteroidota (n=19), Verrumicrobia (n=2), Campylobacterota (n=3), Desulfobacterota
249  (n=5), and a single MAG in each of Desulfomonadota, Acidobacteriota, and Spirochaetota. The

250  Archaea belonged to the phylum Chrenarchaeota. There were 46 MAGs resolved to the species

11
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251  level, with 8 to the genus level, 9 to family, 2 to order, and 2 to class level. Five MAGs were
252  resolved only as Bacteria (Table S2).

253

254  The 72 MAGs belong to diverse microbial phyla, which were distributed across the 5 host

255  species and tissue types (Fig. 2). In some cases, bacterial taxa from kelp blade tissues were most
256  closely related to bacteria collected from the rhizome or sediment of a seagrass, suggesting that
257  closely related bacterial taxa can associate with diverse hosts. Known anaerobic sulfur cyclers
258  like Desulfobulbia, Desulfobacteria, Desulfuromonadia and Campylobacteria (Sulfurovum

259  sp000296775 and Sulfurimonas autotrophica) were exclusively found in the low oxygen rhizome
260  and sediment samples of Zostera marina and Phyllospadix spp. Conversely,

261  Alphaproteobacteria, were exclusively found on surfaces exposed to the water column.

262  Gammaproteobacteria was the only class found across the range of tissue types (6 out of 8 host
263  environments). We did not include the only well-resolved archaeal taxon found in our samples,
264  Crenarchaea (P. scouleri thizome), as our analysis compared single-copy core genes specific to
265  bacterial phyla.

266

267  Host-associated microbial genomes contain pathways to synthesize vitamins, recycle nitrogen,
268  and use host-generated carbon

269  We found evidence for a number of metabolic pathways that are likely important for exchanges
270  between host phototrophs and their microbial partners (Fig. 3). Microbes on hosts had genes for
271  diverse carbohydrate and carboxylic acid assimilation via cell membrane transport proteins.

272  Host-associated microbes also had genes for a diversity of nitrogen metabolisms, including

273  ureases and hydrolases that could regenerate ammonium. Nitrogen metabolisms were most

12
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274  diverse in rhizome and sediment samples where we identified both oxidizing (nitrification) and
275  reducing (nitrate reduction, nitrogen fixation, denitrification) metabolisms, as well as

276  metabolisms that both oxidize and reduce (annamox).

277

278  Every sample had at least one gene from B-vitamins biosynthesis pathways. Using a simple-path
279  based algorithm on KEGG definitions (Supplementary Code 1), we determined that all microbial
280  communities had the metabolic pathways to synthesize vitamins B; (with the exception of the P.
281  scouleri thizome), B, and B7 (except inside the bulb of N. luetkeana). The Vitamin B, anaerobic
282  Dbiosynthesis pathway, however, was only present in MAGs found on the blades of L. setchellii
283  (2) and P. scouleri (3) and the rhizomes of P. serrulatus (2) and Z. marina (1). Additionally, all
284  three MAGs on the blade of P. scouleri that had this anaerobic pathway had the genes necessary
285  to synthesize Vitamin By, aerobically as well.

286

287  Novel detection of nitH genes in surfgrass

288  We identified the nitrogenase gene (nifH) in 9 MAGs with e-value support < 1.3e-120 (KEGG)
289  and < 1.1e-135 (COG). These 9 MAGs were assembled from P. serrulatus rhizomes (n = 2) and
290  Z. marina thizomes (n = 3) and the surrounding sediment (n = 4). Of these 9 MAGs, 5 were

291  resolved to the genus level, while others were resolved to the order and family level, including
292 Campylobacterales, Desulfobacterales and 2 Flavobacteriaceae (Fig. 4, Table S5). nifH genes
293  identified in the rhizomes of P. serrulatus and Z. marina belonging to the class Desulfobacteria
294  and family Flavobacteriaceae, clustered within Cluster III: anaerobic nitrogen-fixers that are
295  often coupled with sulfate-reduction metabolisms. Samples from Z. marina sediment and

296  rhizome also contained 3 nifH genes in Campylobacterial MAGs that clustered together in a
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297  sister clade to the aerobic nitrogen-fixers of Cluster I. The COG gene identified as nifH

298  (COG1348) also includes the homologous protochlorophyllides, which are involved in

299  photosynthetic pigment synthesis but have high sequence similarity to the nifH gene (21, 55).
300 Instead, we used the KEGG gene (K02588) that does not detect these homologs. When we

301  inspected genes on the same contig with nifH, we found a number of genes related to nitrogen
302  fixation (Table S5), including nifD (COG 2710) in 7 of the 9 contigs, nitrogen regulatory protein
303  PII (COG 347), nifB (COG 535), and multiple iron containing proteins including ferrodoxin and
304  Fe-Mo cluster-binding proteins (Table S5).

305

306 Discussion

307  Phototroph tissues and sediment host distinct microbial taxa and functions

308  The phototroph species we sampled in this study are foundational in coastal ecosystems (56—59),
309  yet a description of the diversity and function of their microbiomes have been lacking. All

310 MAGs were bacterial, except for a single archaeal MAG (Crenarchaeota) in the rhizome of

311 Phyllospadix scouleri, which was identified as Nitrosopumulis, a genus associated with

312 nitrification (Table S3). Together, these 5 phototrophs hosted bacteria from 9 phyla. The only
313 low diversity sample was the interior of the bulb of Nereocystis, where we assembled only a

314 single MAG (UBA7415 sp002470515) suggesting that this environment of high carbon

315  monoxide and nitrogen gas (60) may inhibit microbial activity or pose a highly selective

316  environment. Blades of kelp and surfgrass, in contrast, were a locus of microbial diversity and
317  function, a finding that is similar to many recent studies of macroalgal and seagrass microbiomes
318  reporting high microbial diversity (2, 4, 5, 61-63). The functional attributes of microbial taxa

319  associated with marine macrophytes include pathogen resistance (64), the ability to provision the
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320  host with B vitamins (9), and enhanced host algal fitness (65), perhaps through some of the

321  nitrogen metabolisms we documented here (14, 66).

322

323 Host-microbe interactions in a dynamic oxygen microenvironment

324  Grouping MAGs by microbial metabolisms (Fig. 3) showed key functional differences among
325  phototroph hosts. Blade tissues that interacted directly with the water column were associated
326  with microbial nitrogen metabolisms that were mostly oxidizing. The abundance of dissolved
327  organic carbon from phototroph hosts (29-31, 59) might select for heterotrophic metabolisms.
328  Indeed, we found an abundance of genes for dissolved organic matter assimilation and transport
329  in all metagenomes, suggesting that hosts may stimulate heterotrophy in their associated

330  microbial community similar to findings by Poretsky et al. (34). Improved characterization of the
331  components of dissolved organic matter and the genomes of hosts will allow us to better assess
332  complementarity in resource supply by hosts and resource use by microbes.

333

334  The host tissue types in this study differed in surface oxygen concentrations. Blade tissue

335  interacts with the water column and is likely more oxygenated than rhizome tissue or sediments,
336  though a previous study suggests there can also be a 60% reduction in oxygen along the

337  immediate surface of kelp blades (67), and along the mucus layer where some kelp-associated
338  bacteria reside (6). Over two-thirds of the bacterial taxa on blades of N. luetkeana belonged to
339  families associated with obligately aerobic metabolisms, demonstrating the role of oxygen in
340  shaping phototroph-associated microbial communities (68). The sediment surrounding the

341  rhizomes of Phyllospadix spp. contained low oxygen microenvironments (Fig. 1) likely

342  maintained by macroinvertebrate respiration (69)(Moulton and Hacker 2011), similar to the

15


https://doi.org/10.1101/2022.01.05.475171
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.05.475171,; this version posted January 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

343  biological processes in the anaerobic sediment surrounding Zostera (13). Low rhizosphere

344  oxygen concentrations likely structured the taxonomic composition of Z. marina to include

345  anaerobic taxa such as Campylobacteria, Desulfatitalea and Desulfobulbus. The presence of
346  anaerobes like Desulfuromonadia, Desulfobaceria, Spirochaeta and Aminicenantia in P.

347  serrulatus rthizomes suggests sulfate reduction also occurs, possibly coupled to dissolved organic
348  carbon use as an energy source (e.g. (70) Howarth & Hobbie 1982). Additionally,

349  Campylobacteria and the genus Thiodiazotropha were associated with Z. marina and may

350  remove detrimental sulfide accumulation through sulfur oxidation (71, 72).

351

352 Nitrogen metabolisms that were both oxidizing and reducing were found in MAGs associated
353  with rhizomes of both Z. marina and Phyllospadix (Fig. 3), suggesting the potential for temporal
354  niches when, for example, ammonium oxidation to nitrate occurs during high-O, daylight

355  periods, followed by nitrate reduction or nitrogen fixation during O,-depleted nighttime hours.
356  Additionally, all MAGs in this study contained hydrolases that cleave carbon-nitrogen bonds to
357  produce ammonium (14), recycling nitrogen compounds for host uptake. Oxidizing and reducing
358  metabolisms are likely separated only by microns in the hosts studied here.

359

360  We detected biosynthetic pathways for vitamins B, B,, B7 and B, that are required by the

361  auxotrophic phototroph hosts in this study (9, 10, 73). We found that only the blades of P.

362 scouleri harbored MAGs with both anaerobic and aerobic biosynthetic pathways for Vitamin
363 By, suggesting that the variable oxygen environment driven by host-metabolism creates diverse
364  metabolic niches for associated microbes. Strong gradients in oxygen and metabolically diverse

365  microbial metabolisms are present in a diversity of animal hosts such as corals and sponges as a
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366  result of host metabolism (74—76). Fluctuating oxygen microenvironments might also promote
367  cross-feeding, where microbial taxa produce a metabolite that can be consumed by other taxa.
368  Cross-feeding is potentially important for nitrogen (77) and carbon metabolisms (78, 79) in

369  microbial communities.

370

371  Characteristics of previously undescribed nitrogen fixation in surfgrass

372 Building on recent studies that illustrate the association of nitrogen fixing microbes with a

373  diversity of macroalgae (80) and seagrasses (22, 23, 81, 82), we found a previously undescribed
374  diversity of nitrogenase genes associated with the surfgrass Phyllospadix. We detected nifH
375  genes in P. serrulatus rhizomes that resolved into the Cluster I group of nifH genes, which are
376  characterized by aerobic nitrogen fixers. P. serrulatus, in comparison to P. scouleri, is found
377  higher up in the intertidal zone and often in sheltered tidepools that tend to undergo dramatic
378  daily fluctuations in oxygen, possibly allowing for a temporal low-O; niche during the night
379  (83). Conversely, we did not detect nitrogenase genes in the microbiome of P. scouleri, which
380 inhabits more wave-exposed and thus better oxygenated environments (Fig. 1). However, stable
381  isotope analyses across P. scouleri samples show a lower nitrogen isotopic signature in the

382  rhizome compared to the rest of the plant, a possible indication of nitrogen from an atmospheric
383  source (Fig. S1), though in situ experiments with stable isotope tracers are needed to confirm the
384  presence of nitrogen fixation.

385

386  Nitrogen fixation by microbial associates provides a key means of increasing the availability of
387  ammonium, possibly supporting primary productivity. P. scouleri biomass reaches 12.7 kg of

388  wet mass per square meter of shore and exudes 0.93 mg C per hour per gram dry mass as
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389  dissolved organic carbon that may fuel microbial activity (59). There is evidence that nitrogen
390 fixation can contribute to seagrass productivity (66, 84), a possible adaptation to low nitrogen
391  environments. Our finding that nitrogen fixing microbes are associated with a rocky intertidal
392  surfgrass is especially surprising given that Tatoosh Island is in an area of upwelling and high
393  DIN (86) at the more northerly end of the California Current Large Marine Ecosystem. Whether
394  nitrogen fixation forms the basis for reciprocal host-microbe exchange is still unknown.

395

396  The metagenomic analyses we present here suggest that phototroph-associated microbiomes may
397  be involved in carbon, nitrogen and vitamin metabolisms important to their hosts, likely

398  generating commensal or mutualistic interactions. Future experiments should test these

399  hypothesized interactions between host and microbiome. The importance of seaweeds and

400  seagrasses to coastal productivity, and the demonstrated sensitivity of both host and microbes to
401  increasing temperatures and pH (11, 62, 85), pathogens (61), and other anthropogenic stressors,
402  underline the importance of further studying phototroph-microbiome interactions.

403
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642  Ino.11758.

643

644  Table 1. Summary of the features of 8 metagenomes. More information is in Table S1 and the

645  taxonomy based on single copy genes is in Table S2.

Phyllospadix Phyllospadix | Laminaria | Nereocystis Zostera
scouleri serrulatus setchellii luetkeana marina
Sediment Rhizome Blade Rhizome Blade Inner bulb | Sediment Rhizome

# quality reads (in millions)

43.68 67.73 38.41 37.99 48.58 6.48 19.37 65.76
Bacteria
63.7% 58.3% 63.6% 63.0% 63.9% 62.2% 33.6% 60.6%
Archaea
34.2% 38.3% 33.1% 33.3% 32.7% 35.9% 62.1% 34.2%
646
647
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648  Table 2. Metagenome assembled genomes across all samples and their representation across

649  phyla. More detailed information on the MAGs can be found in Table S3.

Phyllospadix Phyllospadix | Laminaria | Nereocystis Zostera
scouleri serrulatus setchellii luetkeana marina
Sediment Rhizome Blade Rhizome Blade Inner bulb Sediment Rhizome

High Quality MAGs

3 1 7 6 9 1 2 5
Other MAGs

2 2 8 7 7 0 5 7
Proteobacteria

2 - 9 2 10 1 5 5
Bacteroidota

3 2 5 4 4 - - 1
Verrucomicrobia

- - - - 2 - - -
Campylobacterota

- - - - - - 2 1
Desulfobacterota

- - - 2 - - - 3
Desulfuromonadota

- - - 1 - - - -
Acidobacteriota

- - - 1 - - - -
Spirochaetota

- - - 1 - - - -
No ID

- - 1 2 - - - 2
Crenarchaeota

- 1 - - - - - -

650
651
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652 Figure Captions

653  Figure 1. Boxplot comparing the dissolved oxygen concentrations of water column (blue) and
654  the sediment-rhizome environment (red) of P. scouleri (pairwise t-test: p<0.001) and P.

655  serrulatus (pairwise t-test: p<0.001). Sampling dates are represented by different colors.

656

657  Figure 2. A phylogenomic tree of 6 concatenated bacterial single-copy core ribosomal genes
658  from 71 bacterial MAGS across 8 samples, showing the results from 33 high quality MAGs and
659 38 lower quality ones. One MAG, PSC_RHZ Bin 00003, from the rhizome of P. scouleri, was
660 identified as an archaeal genome and was thus omitted from this tree. Gaps in class, family and
661  genus indicate the level to which taxonomic classification was resolved in each MAG. All blade
662 tissues have 'water column exposure', while rhizome and sediment samples do not.

663

664  Figure 3. Microbial Metabolisms in the MAGs reported in Fig. 2 and Table S3 across all hosts
665  and grouped as those that might benefit the host ("hosts benefit") and microbial metabolisms that
666  might utilize host provisioned metabolites ("microbes benefit"). Each tick along the x-axis

667  corresponds to a MAG. N. luetkeana blade MAGs are from Weigel et al. (in review). The

668  metabolisms for DOC Uptake that benefit microbes are shown as a heatmap of the count of the
669  number of genes that can metabolize Compatible Solutes, Carboxylic Acids, Carbohydrate

670  Pentoses and General Carbohydrates. Microbial metabolisms that benefit the host are

671  Ammonification Hydrolases, where the heatmap provides a count of the hydrolases acting on
672  C-N bonds other than peptide bonds, Nitrogen Metabolisms and Vitamin Synthesis, both

673  shown as the presence or absence of a gene in a pathway. The genes used in this are in Table S4.

674
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675  Figure 4. A phylogenomic tree of nifH genes found on the rhizomes of P. serrulatus (PSE,
676 n=3) and the rhizomes and surrounding sediment of Z. marina (ZMA, n=2 and 5,

677  respectively). Some nifH genes group into Cluster I, including a sulfur oxidizing taxon on the
678  rhizome of Z. marina, and other taxa in Campylobacterota, including Sulfurovum. Cluster 111
679  contains taxa associated with rhizomes including rhizomes including Desulfobulbus

680  mediterraneus on P. serrulatus and a Desulfobacterales associated with Z. marina rhizomes.

681
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691 Supplementary Files

692  Table S1. A summary of eight metagenomes from five macrophyte taxa.

693  Table S2. A summary of taxonomy of MAGs

694  Table S3. The features of 72 metagenome assembled genomes (MAGS).

695  Table S4. Genes used to generate Fig. 3

696  Table S5. The features of nifH genes found in MAGs.

697  Table S6. nifH reference amino acid sequences

698

699  Appendix 1. Additional methods to quantify carbon and nitrogen stable isotopes in P. scouleri
700  Figure S1. Stable isotope analysis of delC13 and delN15 at blade tip, meristem, rhizome of P.

701  scouleri. From blade tip to rhizome, water flow and thus elemental mixing reduces due to

702  attenuation and boundary layer effects of surfgrass canopy. Assuming elemental uptake occurs
703  from the same pools of C and N, the lower the extent of mixing, the heavier the isotopic

704  signature should be at that point of the plant. This is observed with delC13 which gets heavier

705  from the tip to the blade. This is observed with deIN15 till the meristem after which it lightens.
706  This is probably occurring as nitrogen is taken up from a different pool of nitrogen from that

707  around the blade/meristem. This different pool is probably made available through n-fixation
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