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Abstract

Previous studies have underscored the importance of breastfeeding and parental care on
offspring development and behavior. However, their contribution as dynamic variables in
animal models of early life stress are often overlooked. In the present study, we investigated
how lipopolysaccharide (LPS)-induced maternal immune activation (MIA) on postnatal day
(P)10 affects maternal care, milk, and offspring development. MIA was associated with
elevated milk corticosterone concentrations on P10, which recovered by P11. In contrast,
both milk triglyceride and percent creamatocrit values demonstrated a prolonged decrease
following inflammatory challenge. Adolescent MIA offspring were heavier, which is often
suggestive of poor early life nutrition. While MIA did not decrease maternal care quality,
there was a significant compensatory increase in maternal licking and grooming the day
following inflammatory challenge. However, this did not protect against disrupted neonatal
huddling or later-life alterations in sensorimotor gating, conditioned fear, mechanical
allodynia, or reductions in hippocampal parvalbumin expression in MIA offspring. MIA-
associated changes in brain and behavior were likely driven by differences in milk nutritional
values and not by direct exposure to LPS or inflammatory molecules as neither LPS binding
protein nor interleukin-6 milk levels differed between groups. These findings reflected
comparable microbiome and transcriptomic patterns at the genome-wide level. Animal
models of early life stress can impact both parents and their offspring. One mechanism that
can mediate the effects of such stressors is changes to maternal lactation quality which our
data show can confer multifaceted and compounding effects on offspring physiology and
behavior.

Introduction

Epidemiological studies have shown that prenatal exposure to maternal immune activation
(MIA) is a leading risk factor for developing psychiatric disorders such as autism and
schizophrenia (1-3). Administering immunogens such as lipopolysaccharide (LPS) or
polyinosinic:polycytidylic acid (poly I:C) to pregnant animals induces MIA by promoting a
cascade of inflammatory cytokines and activating the hypothalamic-pituitary adrenal (HPA)
axis of the mother (4-7). Together, these physiological responses are recognized to affect the
long-term development of offspring (4, 7). However, the impact on mothers and their
offspring when MIA occurs during lactation is relatively unexplored. This is surprising
because infections during the postnatal period are common, particularly in low resource
settings, and can result in severe morbidity and mortality (8-11).

LPS administered to rodent dams during the lactational period can impact maternal care
by reducing the amount of time spent in efficient arched back nursing postures and the
number of pups retrieved and returned back to the nest when displaced (12). In line with the
behavioral alterations, MIA in lactating dams may influence maternal milk quality. For
example, maternal LPS treatment on postnatal days 4, 11, and 18 reduced the mRNA
expression of milk nutrient precursors such as glucose and fatty acid transporters in the rat
mammary gland (13). Exposure to MIA during the lactational period can also impact
offspring behavior. For example, Nascimento and colleagues (14) observed a reduction in
ultrasonic vocalizations in male neonates shortly after their dams were treated with LPS.
Although this presumably involved changes in various forms of maternal input signals (e.qg.,
parental care and/or milk quality), the mechanisms of this MIA-derived effect on offspring
behavior remain unclear. While there is a small amount of evidence suggesting how
breastfeeding can transmit certain pathogenic bacteria and viral infections that lead to infant
disease (15-17), to our knowledge no epidemiological study has assessed how maternal
infection may impact the trajectory of infant development.
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Other exogenous factors have been shown to alter contents in breastmilk and subsequent
offspring development in animals and humans (18-22). For example, psychological stress in
humans reduces milk microbial diversity (23). Further, cortisol in maternal milk was found to
predict temperament and promote greater body weights in infant primates, although milk
energy content was also associated with body weight (24). Together, this evidence suggests
that 1) disturbances to the maternal-neonatal environment alters the developmental trajectory
of offspring, and 2) these alterations are mediated by changes in maternal care and/or
nutritional milk quality. To explore these ideas further, we assessed the effects of MIA
challenge during the mid-lactational period on maternal care, maternal milk composition, and
offspring brain development and behavior in Sprague-Dawley rats. While a majority of
studies have focused on adult behavioral outcomes following gestational MIA exposure,
longitudinal evidence suggests that differences in MIA-associated alterations in brain
development emerge in adolescence (25-26). Therefore, we curated a battery of behavioral
measures with proven translational potential (27-28) to uncover how the developing brain
may be disrupted by maternal infection. We also examined hippocampal expression of
parvalbumin given the role of this critical neuronal population in the pathophysiology of
neuropsychiatric disorders in humans and in animal models of MIA (29).

Methods and Experimental Overview

All animal procedures were performed in accordance with the Association for Assessment
and Accreditation of Laboratory Animal Care with protocols approved by the Massachusetts
College of Pharmacy and Health Sciences Institutional Animal Care and Use Committee.
Figure 1A and Table 1 outline the experimental procedures and groups evaluated in this
study. Please see the Supplementary Methods and Supplementary Table 1 for a more
detailed description of the methodological protocols and statistical analyses used in this
study. Briefly, on postnatal day 10 (P10; equivalent to the mature milk phase), Sprague-
Dawley rat mothers were removed from their litters and placed into a clean cage located in a
separate procedure room. Dams were challenged intraperitoneally (i.p.) with either 100 pg/kg
of the inflammatory endotoxin, lipopolysaccharide (LPS; Escherichia coli, serotype 026:B6;
L-3755), or pyrogen-free saline between 08:00hrs and 10:00hrs. During this period the
offspring stayed in their regular holding room and were placed into a smaller clean cage
positioned on top of a heating pad to facilitate body temperature maintenance. Offspring
body weights were collected immediately before returning to their dams and again 2 and 24
hours later, alongside the inspection of milk bands, to monitor health. Exactly 2 hours after
receiving either a saline or LPS injection, dams were anesthetized with isoflurane in O2 and
administered 0.2 mL of oxytocin (20 USP/mL i.p.) to facilitate milk production. The
pharmacokinetic profile of isoflurane suggests it is not absorbed by offspring and that
breastfeeding can resume immediately after anesthesia (30-31). Similarly, oxytocin is not
expected to affect offspring given its short plasma half-life of 1-6 minutes which is reduced
further during lactation (32). Teats were prepared by moistening the collection areas with
distilled water. Milk was collected by gently squeezing the base of each teat, and 20uL of
expelled milk was immediately processed to measure levels of creamatocrit while an
additional ~500uL was stored at -80°C for additional processing. On P11, dams were
separated from their litters again for 2 hours prior to milk collection which occurred 24 hours
after LPS or saline treatment (see 33).

Milk quality was determined through the use of several assays (see 20, 33) to measure
levels of milk creamatocrit, lactose (Sigma-Aldrich Cat. #MAKO017), triglycerides (Abcam,
Cat. #ab65336), protein (Thermo Fisher Scientific, Cat. #23227), corticosterone (#ADI-900—
097, Enzo Life Sciences, Farmingdale, NY), immunoglobulin (Ig) A (Bethyl Laboratories,
Cat. #E111-102), interleukin (IL)-6 (Thermo Fisher Scientific, Cat. #BMS625) and
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lipopolysaccharide binding protein (LBP; Abcam, Cat. #ab269542). Commercially available
immunoassays were performed according to the manufacturer’s instructions.

The milk microbiome was examined by sequencing the V3-V4 regions of the 16S gene
(Zymo Research, Irvine, CA). Following preparation, the final library was quantified using
TapeStation® (Agilent Technologies, Santa Clara, CA) and Qubit® (Thermo Fisher
Scientific, Waltham, WA), and sequenced using an lllumina® MiSeq™ with a v3 reagent kit
(600 cycles) and 10% PhiX spike-in. Taxonomic profiling of was performed with Uclust
(Qiime v.1.9.1) and the Zymo Research Database (Zymo Research, Irvine, CA).

Following RNA-isolation (see 20, 33; QIAGEN, Cat. #217004), milk samples were more
broadly analyzed using RNA Sequencing (RNA-seq). After determining fragment size and
concentration using TapeStation® (Agilent Technologies, Santa Clara, CA), an lllumina
NovaSeq 6000 was used to obtain 100-bp reads and samples were read at a sequencing depth
of approximately 50 million reads.

Maternal behavior was assessed in the afternoon (15:00-17:00 hrs) and evening (20:00-
22:00 hrs) of P10 and in the morning (07:30-9:30 hrs) on P11. Dams were evaluated for 1-
minute intervals over 6 observation periods on behaviors including the frequency of pup-
directed behaviors, self-directed behaviors, nest building/digging behavior, and the total time
spent on the nest. The offspring of saline and MIA treated dams completed an assessment of
neonatal huddling, a form of social thermoregulation, 2 hours after being reunited with their
mother on P10 and P11. Starting on P43, one male and one female offspring from each litter
were assessed in several behavioral measures including the open field and social preference
tasks, as well as assessments of mechanical allodynia (the von Frey test), sensorimotor gating
(prepulse inhibition; PPI), and conditioned fear (see 34-37). On P46, whole hippocampus was
collected and stored at -80°C for future processing.

To measure hippocampal parvalbumin (PV) expression using western blotting, 20ug of
protein was loaded into each well of MiniProtean® gels (Bio Rad Laboratories, Cat.
#4568101). Gels were transferred onto nitrocellulose membranes (Bio Rad Laboratories, Cat.
#1620147) and blocked in 5% nonfat milk with TBS + 0.05% Tween 20 (TBST) for 1 hour at
room temperature. Membranes were then washed with TBST and incubated in a 1:1000
dilution of parvalbumin (PV) antibody (RnD Systems, Cat. # AF5058) plus TBS overnight at
4°C. The next morning, membranes were washed and incubated in an HRP-conjugated
secondary antibody (1:1000, RnD Systems, Cat., #HAF016) made in 1% nonfat milk with
TBS for 1 hour at room temperature. Membranes were then washed and exposed to a
chemiluminescent substrate (Thermo Fisher Scientific, Cat. #34580) for 5 minutes prior to
being scanned. After imaging, membranes were stripped (Thermo Fisher, Cat. # 21062) for
15 minutes at 37°C, blocked, washed, and incubated in beta actin primary antibody (1:1000,
Thermo Fisher Scientific, Cat. #MA515739) for 1 hour at room temperature. Membranes
were exposed again to the chemiluminescence substrate and imaged. Densitometry measures
were used to obtain a ratio of PV/B-actin in order to quantify differences between groups.

Two-way repeated measure ANOVAs (MIA x Time) were used to evaluate milk and
behavioral measures across P10 and P11. Violations to the assumption of sphericity were
addressed using the Huyndt Feldt correction. One-way ANOVAs were used as appropriate
for all other measures unless there were violations to the assumption of normality (Shapiro-
Wilk test) in which case Kruskal-Wallis tests were employed (expressed as X?). The
mechanical allodynia threshold data was assessed using body weight as a covariate. The
partial eta-squared (npz) is reported as an index of effect size for the ANOVASs (38). Because
the dataset was not powered to evaluate sex-differences directly, male and female animals
were evaluated separately (39). All data are expressed as mean £ SEM. Offspring data are
depicted as each sex separately and collapsed across males and females for display purposes.
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For microbiome sequencing, samples underwent composition visualization, in addition to
alpha-diversity and beta-diversity analyses (Qiime v.1.9.1) and statistical comparisons were
performed using Kruskal-Wallis (40). Linear discriminant analysis effect size (LEfSe;
http://huttenhower.sph.harvard.edu/lefse/) was utilized to determine significant differences in
taxonomy abundance between each group as previously described (41-42).

For RNA-Seq, DESeqg2 was used to determine differentially expressed genes based on a p
< 0.05, Benjamini—-Hochberg false discovery rate corrected (FDR) and fold change (FC) >
1.3 (43). Heatmaps were generated using the MultiExperiment Viewer (National Library of
Medicine, USA), while gene ontology was determined using the Database for Annotation,
Visualization and Integrated Discovery  functional annotation cluster tool
(https://david.ncifcrf.gov/).

Results
MIA challenge affected maternal behavior and offspring huddling

Immune challenge during lactation significantly impacted the number of maternal care
bouts directed towards pups. For example, a MIA by time interaction was identified for the
number of licks pups received following maternal LPS exposure (Figure 1B). While the
number of licks received was not significantly affected on P10, there was a general pattern of
reduced care provided by MIA treated dams on the afternoon of P10. This was followed by a
rebound of maternal pup licking by MIA dams on the morning of P11, possibly to
compensate for overall reduced maternal care due to illness. The display of active and low
crouch nursing behaviors and time on nest were affected by the circadian cycle (Figure 1C,
D, E), but only time on nest was impacted by MIA experience. Maternal self-directed care
was impacted as a function of sickness. There was a significant MIA by time interaction for
total number of self-grooms (Figure 1F); MIA dams had fewer bouts of grooming on the
evening of P10, which reversed substantially by the morning of P11. Similarly, the number of
maternal eating bouts was elevated on P11, although there were no significant effects of time
(Figure 1G) there was a main effect of MIA (Figure 1G). Additional maternal care data are
presented in Supplementary Figure 1A-D.

Huddling behavior was significantly reduced in the offspring of MIA dams compared to
saline (main effect of MIA; time spent huddling, Figure 1H; average number of clusters:
Figure 11). See Figure 1J for representative displays of huddling behavior in saline and MIA
offspring.

MIA challenge impacted nutritional composition of milk and microbiome communities

For milk collection (see photographs in Figure 2A depicting the milk collection
procedure), there was a significant MIA by time interaction for maternal milk levels of
corticosterone. This stress-associated hormone was elevated in milk samples 2-hours
following MIA challenge and was recovered by P11 (Figure 2B). A MIA by time interaction
was also present for % creamatocrit (Figure 2C), which is linearly related to the fat
concentration and energy content of milk (44, 45; see Supplementary Figure 2A, B). These
measures were significantly lower in the milk of MIA exposed mothers compared to saline
on P11. Triglycerides were also reduced in the milk of MIA treated dams on P11 (Figure
2D).

In order to examine the possibility that MIA challenge increased expression inflammatory
cytokines that could be transferred to nursing offspring, we analyzed the concentration of
milk IL-6. While there were no significant differences in IL-6 concentration between saline
and MIA treated dams, there was a main effect of time on this measure (Figure 2E). We also
tested the idea that bound LPS could cross into maternal milk and be absorbed by offspring.
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LPS binds directly to LBP which triggers a downstream pro-inflammatory response and the
release of acute phase proteins like IL-6 (46-47). LBP levels were measured in blood plasma
and P10 milk samples. LPB levels were significantly greater in the blood plasma of MIA
dams (Figure 2F). In milk, LPB was absent in both MIA and saline dams. Additional data on
maternal milk composition (i.e., protein, lactose, and IgA concentrations) can be found in
Supplementary Figure 2C-E.

Microbiome sequencing revealed no main effect of treatment group on alpha (Figure 2G)
or beta diversity in milk samples (Figure 2H, |). Milk samples collected on P11
demonstrated significantly greater alpha diversity along the Shannon index compared to
samples collected on P10 (Figure 2G). Between treatment groups, LEfSE analysis identified
nine differently abundant taxa on P10 and six significantly abundant taxa on P11 (Figure 2J,
K). These analyses revealed a greater abundance of Pseudomonadaceae and
Christensenellaceae on P10, and a greater expression of Senotrophomonas maltophilia,
Ruminococcaceae and Lachnospiraceae on P11 in the milk from MIA dams. For additional
data on the composition of the milk microbiome, see Supplementary Figures 3-6.

RNA-seq of the milk was performed to characterize the effects of mid-lactational MIA at
the genome-wide level. A total of 829 genes were differently expressed on P10 between
saline and MIA milk samples (Figure 3A). We analyzed clusters of gene networks that are
involved in maternal milk nutrition, immune activation, and offspring brain development (48-
55, Figure 3B). Heatmap clustering revealed a general upregulation of genes related to
nutrient transport and inflammation, while genes related to epigenetic modifications,
parvalbumin development, and glucocorticoid signaling were largely downregulated by MIA
on P10 (Figure 3B). In P11 samples (Figure 4A, B), a total of 893 genes were differentially
affected between the milk of saline and MIA dams. Heat clustering analysis of these samples
demonstrated a general downregulation in genes responsible for inflammation, glucocorticoid
signaling, epigenetic modifiers, and prolactin in MIA samples, while genes related to
oxytocin, nutrient transport, triglycerides, and parvalbumin development were largely
upregulated. For more information on the genes indicated in the heatmap clustering, see
Supplementary Tables 2 and 3.

The combination of MIA challenge and nutritional deficit affected adolescent offspring
physiology and behavior.

Male, but not female MIA offspring were significantly heavier than saline controls on P43
(Figure 5A). See Supplementary Figure 7 for additional data demonstrating the trajectory
of weight gain in both offspring and dams across early development. Using body weight as a
covariate, female offspring from MIA dams were found to have higher mechanical allodynia
thresholds on the von Frey test compared to their saline counterparts (Figure 5B). This is
suggestive of reduced sensitivity to tactile stimulation.

Although there were no differences in distance traveled (cm), percent time spent in the
center, duration of time (seconds) spent in the center, or perimeter of the open field arena (see
Supplementary Figure 8A-D), male offspring of MIA exposed mothers displayed an
increased number of crosses into both the center (Figure 5C) and perimeter (Figure 5D) of
the arena. Social preference was not affected by the early life experience for either sex
(Figure5E).

Sensorimotor gating was evaluated using PPI of the acoustic startle reflex. A significant
MIA by time interaction (Figure 5F) and a significant main effect of time (Figure 5G, H,
collapsed across males and females for display purposes) confirmed that all groups
demonstrated an increased % PPI as the intensity was raised from 69 to 85 dB. While females
were unaffected, male offspring originating from MIA exposed mothers had attenuated PPI
values compared to saline controls at the 69dB, 73dB, and 81dB intensities (Figure 5F). The
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mean percent prepulse inhibition across all five prepulse intensities was not affected as a
function of maternal MIA exposure (Figure5l).

With respect to conditioned fear, there was a main effect of MIA for % PPI during the
trials without fear (Figure 5J, K, L). % PPI for trials containing the conditioned stimulus
was not significantly different between saline and MIA animals for either sex
(Supplementary Figure 8E, collapsed across males and females for display purposes). One-
way ANOVA revealed a main effect of trial type (Supplementary Figure 8E), which was
expected given that the added element of fear increases % PPI (56-57). Conditioned fear did
not lead to significant changes in total mean % PPI when collapsed across all dB, regardless
of MIA or sex (Supplementary Figure 8F, data collapsed across males and females for
display purposes), suggesting that fear modulated % PPI similarly regardless of sex or MIA
exposure.

In addition to these behavioral effects, PV/B-actin ratios were significantly reduced in the
hippocampus of male MIA offspring compared to saline dams (Figure 5M).

Discussion

In the United States, postpartum bacterial infections develop in approximately 5-7% of
mothers (58), and vyet, little research is dedicated toward understanding how postnatal
infection affects parental input signals like lactation and subsequent infant outcomes. We
demonstrate that variations in milk quality may be part of a mechanism that programs
offspring physiology and behavior following a transient stress exposure during the lactational
period (see Figure 6 for summary of proposed mechanisms). In the present study, acute MIA
exposure on P10 was associated with sustained changes in both the nutritional content and
microbial profile of maternal milk. Moreover, the MIA-induced changes in milk fat and
corticosterone levels were accompanied by long-term physiological and behavioral
alterations in offspring. For example, neonatal offspring from MIA-challenged dams spent
less time huddling compared to controls. In adolescence, MIA offspring were heavier,
demonstrated deficits in sensorimotor gating, threat detection, hippocampal PV expression,
and had increased mechanical allodynia thresholds. These MIA-associated effects in
offspring were unlikely due to an overexposure to inflammatory cytokines. Instead, offspring
behavior and bodyweight differences likely reflected the unique expression of the nutritional
elements and metabolically relevant bacterial taxa found in P10 and P11 milk samples. While
most of the MIA-related literature has been dedicated to uncovering the physiological and
behavioral effects on offspring gestationally exposed to MIA, fewer studies have focused on
the impact of MIA exposure after birth. Importantly, the timing of MIA administration is
critical to the translatability of these animal models to human studies, which have identified
the second trimester as a sensitive window in cases of prenatal MIA exposure (2, 4). In rats,
P10 corresponds to the perinatal period of development in humans (59), making our MIA
model most relevant to maternal infections that occur soon after birth. Future studies are
needed to extrapolate how MIA affects development when administered at later points during
the lactational window.

MIA was associated with multiple changes in the composition of maternal milk content.
We observed a significant increase in milk corticosterone 2-hours post LPS treatment that
subsided by P11. Milk corticosterone is expressed linearly to plasma corticosterone (60),
validating our MIA model. Importantly, milk corticosterone can pass from a mother to her
offspring where these glucocorticoids can remain active in the periphery and in the brain (61-
62). Increased corticosterone exposure from breastmilk has previously contributed to HPA
axis dysfunction as well as altered learning and memory abilities in rat pups of both sexes,
independent of maternal care (63-64). In addition to its modulatory actions within the HPA
axis, recent evidence has demonstrated the regulatory role of corticosterone in breastmilk
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where the presence of this hormone (the human equivalent of cortisol) can modulate
nutritional elements including sodium, potassium (65-66) and fat (24). This evidence
suggests that the temporary rise in corticosterone on P10 may have preceded downstream
changes in milk nutritional quality. In line with this, MIA reduced % creamatocrit and milk
triglycerides on P11. However, higher levels of glucocorticoids in milk alone are not a
sufficient predictor of offspring bodyweight (24, 62), suggesting that the actions of
corticosterone in neonates are likely interwoven with milk nutrition.

Microbiome sequencing did not reveal significant differences in alpha or beta diversity
between saline and MIA treated dams. While general diversity was not affected, LEfSe
analysis uncovered significant differences in the expression of certain taxa on P10 and P11.
Specifically, MIA dams exhibited a higher abundance of bacterial families including
Pseudomonadaceae, which was previously shown to be over expressed in the ceca of
pregnant mice with low serum triglycerides (67). Further, milk from MIA dams also
exhibited elevated levels of Stenotrophomonas maltofilia, which has the ability to degrade
hydrocarbon chains and therefore could prevent triglyceride synthesis (68). Given that the
microbes in breast milk directly colonize the infant gut (69-70), it is likely that these
differently expressed taxa are being passed to the offspring to influence future metabolic
processes. However, microbiome sequencing of the offspring duodenum was not performed,
and this is an important limitation to the present study. Future experiments assessing the
relationship between milk and the offspring microbiome will be critical to determine the
contribution of these MIA-induced microbial differences to offspring development. Clinical
research exploring potential therapeutic interventions, such as targeting the microbiome (71)
which may rescue changes in milk composition and subsequent offspring developmental
outcomes in contexts where postnatal infections are common, would highly benefit from
these future investigations.

Differences in microbial and nutritional markers paralleled MIA-mediated changes found
in the whole-transcriptome of the milk using RNA-seq. Notably, we observed a significant
upregulation in aldosterone-promoting Ace and a downregulation of the mineralocorticoid
receptor-coding Nr3c2 in MIA milk on P10 (Figure 3B, Supplementary Table 2). These
changes, coupled with the increase in P10 milk corticosterone, corroborated differences
observed in milk nutrition given that aldosterone is another crucial mediator of breastmilk
nutrition and ion exchange (65). These results were further supported by the differential
genomic profiles between milk from MIA and saline dams for gene clusters related to
triglycerides and nutrient transport. RNA-seq also revealed a general upregulation of genes
involved in the inflammatory response in maternal milk on P10 in MIA-treated dams.
Although LBP and IL-6 were equally regulated between saline and MIA dams, the possibility
that other inflammatory cytokines may be active in milk and subsequently affect offspring
development cannot be entirely ruled out. There was an unexpected significant upregulation
of several genes within the inflammation pathway on P11 (Figure 4B, Supplementary
Table 3), however this may be reflective of the simultaneous downregulation of epigenetic
modifiers since cytokine release is often associated with aberrant epigenetic activity (72).
While the function of breastmilk RNA once it is absorbed by offspring is still being
unpacked, fluorescently tagged RNA-containing milk exosomes were shown to reach the
offspring brain in vivo, and these exomes have the ability to influence cellular processes in
vitro (73, 74). Our data identified several key genes related to brain development within
maternal milk including Foxp2, Homerl, Tnr, and Gabbr2, necessitating a more focused
investigation into how these genes may have been differently expressed in the offspring brain
following mid-lactational MIA. Overall, these data demonstrate the extensive effects of MIA
on maternal milk at the genome-wide level.
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We used several behavioral measures to explore the role of lactational MIA exposure on
offspring development. Neonatal ‘huddling’ is described as a form of social thermoregulation
(75). One previous study found a reduction in nest seeking behavior in rat pups prenatally
exposed to LPS (76). Undernourishment has also been shown to reduce neonatal huddling in
rat pups (77), and huddling efficiency may be related to serum triglycerides in newborn
rabbits (78). This evidence suggests that MIA-modulated huddling may emerge due to
differences in the fat content of maternal milk. Disruptions in huddling can also arise
following changes to maternal care (79-81). Although maternal care in the present study did
not drastically differ between MIA and saline dams, we did observe differences in maternal
self-directed care. Therefore, reduced pup huddling may not be exclusively promoted by
MIA-associated changes in milk quality.

Prenatal MIA has been shown to modulate offspring performance on certain tasks, such as
the open field, social preference, PPl, measures of mechanical allodynia, and fear
conditioning paradigms (4, 36, 82-84). Here, we observed significant MIA induced
reductions in % PPl that were exacerbated in male adult offspring while females
demonstrated deficits in mechanical allodynia. MIA was also associated with a significant
reduction in % PPI in trials without fear, following the foot shock and conditioned stimulus
(CS) pairing. These findings suggest MIA contributes to an impairment in the offspring’s
ability to discriminate between “safe” trials (without CS presentation) and “stressful” trials
(with CS presentation). Early life stress has been shown to impair this form of contextual
threat detection in adolescence, and this is especially true for females (85-86). These results,
in addition to reduced neonatal huddling, point to generally impaired sensory processing and
threat responses in the offspring of dams exposed to MIA during lactation. While we might
expect these behavioral changes in our offspring to be maintained into adulthood, neonatal
LPS exposure has been associated with altered behavior during specific developmental
windows (e.g., adolescence) which can remit by later ages (e.g., adulthood; 87). Therefore,
future studies should consider assessing both adolescents and adults in order to better
understand the trajectory of these effects. The lactational period is an important time for
neonates and here we underscore the value of maternal inputs (e.g., maternal milk quality and
behavior) in offspring behavioral development.

We measured the expression of GABAergic PV in the offspring hippocampus since
altered PV expression in this region is a common theme in prenatal MIA models and is
associated with many MIA-associated behavioral and sensory processing changes (88-90).
Further, poor nutrition in early life can prevent the development of PV in rat hippocampus
(91) although this has only been explored in males. The emergence of neonatal huddling
behavior is time-locked to the maturation of GABAergic signaling (92). Therefore, mid-
lactational MIA may disrupt this early form of social behavior by attenuating the
development of PV cells. Importantly, MIA dams showed significant increases in pup-
directed licking and grooming behavior the day following MIA challenge. This heightened
maternal care demonstrated by MIA dams on P11 may have been reflected by the
upregulated expression of milk genes related to oxytocin on P11, but also may have acted as
a compensatory mechanism to buffer the future development of more severe social deficits in
adolescent offspring. This is plausible, given that tactile stimulation through the licking and
grooming of pups is one form of maternal behavior that promotes brain development and
modulates future offspring behavior (93-96). In adolescence, male MIA offspring
demonstrated a reduced expression in hippocampal PV. In vivo inhibition of PV in the
hippocampus has previously been shown to reduce PPl in male mice (97). Mechanistically,
gestational exposure to MIA results in a more reactive HPA axis and altered hippocampal
circuitry in male animals (36). In this study, we show that mid-lactational MIA may target
similar mechanisms, as our male offspring demonstrated reduced PV expression and greater
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bodyweights, which may suggest greater stress levels compared to females. Together, these
results demonstrate one neuronal target by which MIA during mid-lactation contributes to
lasting changes in offspring brain development in males. More work is needed to discern the
neuronal targets of mid-lactational MIA in females.

Although baseline maternal care was not assessed prior to milking procedures in the
present study, future studies should consider how milking procedures may confound maternal
care and affect offspring. Aside from a general pattern of decreased (but not significant)
licking and grooming of pups on the afternoon of P10, we did not observe a drastic reduction
in pup directed behaviors in MIA dams. The effects of LPS are highly dose dependent (98).
While Vilela and colleagues (12) observed more dramatic deficits in maternal care following
MIA, they implemented a dose of LPS 5-times higher than the dose used in the present study.
Moreover, lactational exposure to LPS using the same dose as that used in the current study
also resulted in improved maternal care (14). Importantly, LPS is a bacterial memetic that
acts via the Toll-like receptor 4 pathway (99). Therefore, caution should be taken when
interpreting the clinical relevance of our finding since work is needed in this field to establish
if viral and other types of infections may affect lactation in a similar manner. Together, the
results of our study suggest that stressors experienced during the neonatal period may interact
with maternal care and lactation quality, affecting offspring physiology and behavior. Indeed,
early life stress models affect both the parent(s) and the offspring; the dynamic impacts on
each need to be considered as part of the mechanistic programming of the developmental
trajectory.

Conclusions

Maternal care and milk quality are important components for offspring development, brain
health, and behavior. Here, we demonstrate that an acute maternal immune response during
mid-lactation is sufficient to trigger changes in breastmilk quality and its microbiome profile,
in addition to the physiology and behavior of adolescent offspring. These results contribute to
the broader literature by suggesting that the effects of MIA on offspring development are not
restricted to the prenatal window. Moreover, this study ties in the characteristics of lactation
and nutrition as part of a mechanism contributing to the trajectory of offspring development
following early life stress. Given that animal models of early life stress can impact both
parents and their offspring, the quality of maternal milk should be considered among the
variables investigated in future studies. Finally, this work underscores the importance of
research focused on potential therapeutic interventions (e.g., nutritional lactation
supplements) and necessitates a better representation of pregnant and nursing people to aim
for increased equity and inclusivity in both basic and clinical research.
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Figure Captions

Figure 1. Maternal care and offspring huddling behaviors following maternal immune
activation (MIA) during the mid-lactational period. (A) Timeline of experimental
procedures. Maternal care was evaluated in the afternoon and night of postnatal day (P) 10
and the morning of P11. (B) MIA x Time interaction for the total number of pup licks (F(2,
26) = 31.435, p = 0.001, n,? = 0.701). Pup licking and grooming were elevated in MIA dams
on P11 (p = 0.001). The circadian cycle influenced the display of (C) active nursing bouts
(F(2, 26) = 7.752, p = 0.0022, n,> = 0.374), which were elevated in both groups on P10. (D)
Low crouch nursing bouts (F(2, 26) = 3.960, p = 0.032, n,? = 0.233), and (E) total time
(seconds) that the dam spent on nest were also affected by the circadian cycle, as dams spent
less time in the low crouch nursing posture and overall less time on the nest during the
evening on P10. Total number of (F) self-groom bouts demonstrated a MIA x Time
interaction (F(1.322, 26) = 12.33, p = 0.001, n,” = 0.485); Huyndt Feldt correction. MIA was
associated with a reduction in self-grooming bouts on the evening of P10 (p = 0.025), which
were increased on the morning of P11 (p = 0.0001). A main effect of MIA was observed for
(G) the number of eating bouts (F(1, 13) = 10.64, p = 0.006, np2 = 0.450). (H) Total time pups
spent huddling (seconds) was reduced by MIA (F(1, 12) = 30.079, p = 0.001, np2 =0.715) as
was the (I) average number of pup clusters across P10 and P11 (F(1, 12) = 8.33, p = 0.014,
np2 = 0.410). (J) Shows representative photographs of the huddling behavior of saline and
MIA litters. Data are expressed as mean £ SEM; Saline: n = 8; MIA: n = 7. *p < 0.05, ***p
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<0.001, MIA versus Saline; ®p < 0.05, ®p < 0.01, main effect of time; °p < 0.05, "°p < 0.01,
®bbn < 0.001, main effect of MIA.

Figure 2. Nutritional profile and micr obiome community distribution of milk following
maternal immune activation (M1A) during the mid-lactational period. (A) Photographs
of maternal milk collection. A significant MIA x Time interaction was observed for maternal
milk levels (Saline: n = 8; MIA: n = 7) of (B) corticosterone (ng/mL; F(1, 13) = 8.496, p =
0.013, n,” = 0.415), which was elevated in the milk of MIA dams on P10 (p = 0.009). A MIA
x Time interaction was observed for (C) percent (%) creamatocrit (F(1, 13) = 5.86, p = 0.032,
n,” = 0.858), which was significantly lower in MIA samples on P11 (p = 0.002). A significant
main effect of MIA was observed for (D) milk triglycerides (mg/dL; F(1, 13) = 6.496, p =
0.026, n,” = 0.351). There was a main effect of time on (E) milk interleukin (IL)-6 (pg/mL)
concentrations (F(1,13) = 33.01, p < 0.001, n,” = 0.717) in that IL-6 was increased in both
groups on P11. Levels of (F) LPS binding protein (LPB; ug/mL) were increased in the blood
plasma of MIA dams (X?(1)=5.00, p=0.025), but there were negligible levels in maternal milk
(p>0.05). (G) Alpha diversity of P10 and P11 milk samples along the Shannon Index was
increased in both groups on P11 compared to P10 (X*(1) = 5.33, p = 0.021). (H) Beta
diversity using principal coordinate analysis (PCoA) of P10 and (I) P11 milk samples were
created using the matrix of pair-wise distance between samples determined by Bray-Curtis
dissimilarity using unique amplicon variants. (J) Microbial composition of taxonomy at the
family level for saline and MIA dams at P10 (Saline: n = 6; MIA: n = 6) and P11 (Saline: n =
6; MIA: n = 7). (K) LEfSe biomarkers plots. These figures display taxa that are significantly
more abundant in the milk of saline-treated dams (blue bars) versus MIA-treated dams (red
bars) on P10 and P11. These taxa were identified based on their significant distributions (p <
0.05) and effect sizes (LDA score) larger than 2 for P10 (Saline: n = 6; MIA: n = 6) and for
P11 (Saline: n =7; MIA: n = 7). Among these taxa, MIA was associated with a higher level
of Pseudomonadaceae (LDA score = 2.94, p=0.02) and Christensenellaceae (LDA score =
2.82, p = 0.02) on P10, and a greater expression of Stenotrophomonas maltophilia (LDA
score= 3.45, p=0.025), Ruminococcaceae (LDA score = 3.35, p = 0.02) and Lachnospiraceae
(LDA score= 3.85, p = 0.01) on P11. Data are expressed as mean = SEM. *p < 0.05, ***p
<0.001, MIA versus Saline; ®p < 0.05, ®p < 0.01, main effect of time; °p < 0.05, "°p < 0.01,
bbb < 0.001, main effect of MIA. LPS — lipopolysaccharide.

Figure 3. Transcriptomic analyses of milk samples obtained on P10 from rat mothers
exposed to either saline or maternal immune activation (MIA). (A) Volcano plot
depicting the distribution of 829 genes based on log2 fold change and -log10 p values. Grey
dots are genes, and the dots highlighted in blue represent genes that displayed the highest
magnitude of significance (padj<0.05, FC>1.3). (B) Heatmaps of differentially expressed
genes related specifically to milk nutrient transport, triglyceride concentration, parvalbumin
development, aldosterone/MR signaling, inflammation, LPS binding, oxytocin, prolactin,
glucocorticoid signaling (events following glucocorticoids binding to the GR receptor),
glucocorticoid binding, glutamate/GABA, and epigenetic modifiers. Expression is
represented with the log2 transformation of counts recorded with a z-score based on the
average across experimental groups. Data are expressed as *p <0.05 or **adjusted p <0.05, or
***EC>1.3, MIA versus Saline. GR- glucocorticoid receptor. MR- mineralocorticoid
receptor.

Figure 4. Transcriptomic analyses of milk samples obtained on P11 from rat mothers
exposed to either saline or maternal immune activation (MIA). (A) Volcano plot
depicting the distribution of 893 genes based on log2 fold change and -log10 p values. Grey
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dots are genes, and the dots highlighted in blue represent genes that displayed the highest
magnitude of significance (padj<0.05, FC>1.3). (B) Heatmaps of differentially expressed
genes related specifically to milk nutrient transport, triglyceride concentration, parvalbumin
development, aldosterone/MR signaling, inflammation, LPS binding, oxytocin, prolactin,
glucocorticoid signaling (events following glucocorticoids binding to the GR receptor),
glucocorticoid binding, glutamate/GABA, and epigenetic modifiers. Expression is
represented with the log2 transformation of counts recorded with a z-score based on the
average across experimental groups. Data are expressed as *p <0.05 or **adjusted p <0.05, or
***EC>1.3, MIA versus Saline. GR- glucocorticoid receptor. MR- mineralocorticoid
receptor.

Figure 5. Adolescent offspring physiology and behavior following maternal immune
activation (MI1A) during the mid-lactational period. A main effect of MIA was observed
in males for (A) postnatal day 43 body weights (grams; F(1,13) = 19.037, p = 0.001, n,’ =
0.594. (B) Mechanical paw withdrawal thresholds (grams) on the von Frey test evaluating
mechanlcal allodynia were significantly greater in female offspring (F(1, 12) = 8.925, p
=0.011, n,’ = 0.427). Male offsprlng made a greater number of crosses into the (C) center
(F(1, 13) = 5.744, p = 0.032, n,* = 0.306); and (D) perimeter (F(1, 13) = 6.513, p = 0.024, n,’
= 0.334) of an open field arena. There were no effects of MIA on (E) social preference index.
Line plots displaying percent prepulse inhibition (PPI) as a function of increasing prepulse
intensities for (F) males (significant MIA by time interaction F(4, 52) = 4.578, p = 0.003, n,’
= 0.260). Male offspring from MIA dams demonstrated significant reductions in PPI at the
69dB (F(1, 13) = 17.009, p = 0.001, n,’ = 0743) 73dB (F(1, 13) = 5.927, p =0.030, n,” =
0.581), and 81dB (F(1, 13) = 8.315, p = 0.013, n,’ = 0.633) mtensmes (G) PPI performance
for females (main effect of dB F(4, 52) = 80.357, p = 0.001, n,> = 0.861), and (H) male and
female PPI combined for display purposes. (I) The bar plot shows the mean percent prepulse
inhibition across all five prepulse intensities. Condltloned fear % PPI for (J) males (main
effects ofMIA for 73dB (F(, 13) = 6.787, p = 0.022, n,? —0343) 81dB (F(1, 13) =6.787, p
= 0.022, n,?=0.343) and 85 dB (F(1, 13) = 13.124, p = 0.003, n,’=0.502)). Conditioned fear
% PPI for (K), females (main effects of MIA for 69dB (F(1, 13) =12.969, p = 0.003,
n,’=0.495) and 81dB (F(1, 13) = 25.117, p = 0.001, n,’=0.659)). (L) Males and females
combined for display purposes. (M) Hippocampal parvalbumin (PV) and densitometric ratios
for male and female offspring from saline (black) and MIA (grey)-treated dams. PV/B-actin
ratios were significantly reduced in male MIA offspring (F(1, 13) =6.96, p = 0.022, np2 =
0.367). Data are expressed as mean £ SEM; Saline: n = 8; MIA: n = 7 for the behavioral
measures and Saline: n = 7; MIA =7 for hippocampal PV. *p <0.05, **p<0.01, ***p <0.001,
MIA versus Saline. %p <0.05, ¥p<0.01, ***p <0.001, main effect of trial type.

Figure 6. Summary of mechanisms affecting milk quality and offspring brain and
behavior following maternal immune activation (MIA) during the mid-lactational
period. Mid-lactational MIA experienced on postnatal day (P)10 is associated with changes
in the milk transcriptome on both P10 and P11, in addition to increased milk corticosterone
concentrations and microbial expression of Christensenellaceae on P10. In concert, these
effects may lead to reduced LPS binding protein in milk on P10 and fat content on P11. We
propose that this altered milk profile is one mechanism by which mid-lactational MIA
contributes to the emergence of sex-specific behavioral and physiological changes across the
early life of offspring. LPS — lipopolysaccharide; MR- mineralocorticoid receptor.

Table 1. Litter treatments and endpoints.
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Supplementary M ethods.
Supplementary Table 1. Maternal immune activation model reporting guidelines checklist.

Supplementary Table 2. Differentially expressed genes in P10 milk samples from the
selected pathways. Genes with “NA” padj values indicate that FDR was not calculable due to
fewer normalized counts than the optimal threshold.

Supplementary Table 3. Differentially expressed genes in P11 milk samples within the
targeted pathways.

Supplementary Figure 1. Maternal care behaviors following maternal immune
activation (MIA) during the mid-lactational period. Total number of (A) pup retrievals,
(B) passive nursing bouts, (C) nest building behaviors, and (D) maternal drinking bouts.
Maternal care was evaluated in the afternoon and night of postnatal day (P) 10 and the
morning of P11. Saline: n = 8, MIA: n = 7. Data are expressed as mean + SEM. °p < 0.05,
main effect of time.

Supplementary Figure 2. Nutritional profile of milk following maternal immune activation
(MIA) during the mid-lactational period. Maternal milk (A) fat concentration (g/L), (B)
energy value (kcal/L), (C) protein concentration (mg/mL), (D) lactose concentration (ng/ulL),
and IgA concentration (mg/mL). Saline: n = 8; MIA: n = 7. Data are expressed as mean *
SEM. *p < 0.05, ***p <0.001, MIA versus Saline; ®p < 0.05, main effect of time.

Supplementary Figure 3. Cladogram of milk biomarkers associated with treatment group on
P10 (determined by LEfSe). Diameter of the nodes indicates relative abundance of taxa for
saline (green) and MIA (red) samples. Placement indicates the classification of taxa, where
nodes decrease in rank the closer to the center of the diagram. (Saline: n = 6; MIA: n = 6).

Supplementary Figure 4. Taxonomy heatmap demonstrating the top fifty most abundant
species identified in samples on P10. Treatment group is indicated by the colored bar at the
top of the figure (red = saline, blue = MIA). Each row represents the abundance for each
taxon, with the taxonomy ID shown on the right. Each column represents the abundance for
each sample. (Saline: n = 6; MIA: n =6).

Supplementary Figure 5. Cladogram of milk biomarkers associated with treatment group on
P11 (determined by LEfSe). Diameter of the nodes indicates relative abundance of taxa for
saline (green) and MIA (red) samples. Placement indicates the classification of taxa, where
nodes decrease in rank the closer to the center of the diagram. (Saline: n=7; MIA: n = 7).

Supplementary Figure 6. Taxonomy heatmap demonstrating the top fifty most abundant
species identified in samples on P11. Treatment group is indicated by the colored bar at the
top of the figure (red = saline, blue = MIA). Each row represents the abundance for each
taxon, with the taxonomy ID shown on the right. Each column represents the abundance for
each sample. (Saline:n=7; MIA: n=7).

Supplementary Figure 7. Offspring and maternal body weights across early
development following maternal immune activation (MI1A) during the mid-lactational
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period. A) Male body weights demonstrated a significant effect of time (F(2, 26)= 1078.59,
p<0.001) and MIA (F(1,13)= 7618.25, p<0.001) while B) female offspring and C) dam body
weights only differed significantly across time (females: F(2, 26)=1491.4, p<0.001; maternal
body weight: F(1, 13)=21.64, p<0.001). P10 offspring body weights were obtained by taking
the average weight from the weight of all pups of the same sex for each litter (Saline: n = §;
MIA n = 7). P21 and P43 body weights were obtained from one male and one female per
litter (Saline: n = 8; MIA n = 7). Data are expressed as mean = SEM. ***p < 0.001, main
effect of MIA; **¥p < 0.001, main effect of time.

Supplementary Figure 8. Adolescent offspring behavior following maternal immune
activation (MIA) during the mid-lactational period. (A) Distance traveled (cm), (B)
percent time spent in the center, and duration of time (seconds) spent in the (C) center and
(D) perimeter of an open field arena. (E) Conditioned fear significantly increased %PPI
regardless of MIA or sex (F(4, 52)= 8.19, p=0.008, n,°=0.226). (F) %PPI for trials primed
with conditioned fear collapsed across males and females for display purposes. Saline: n = 8;
MIA n = 7. Data are expressed as mean + SEM. Data are expressed as mean = SEM,
*p<0.05.
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Table 1. Litter Treatments and Endpoints.

Number of Number of

Treatment Whole

Litters : Number of Number of Number of Number of
Litters”®

Included in Oftfspring** Oftspring*= Offspring** Oftspring** Included

included in

Maternal P10 and P11 Included in P43 Included in P44 Included in P43 in Hippocampal PV

Behavior : Behavior Analyses | Behavior Analyses | Behavior Analyses | Analyses
Measures Huddling

Test

7 Litters” 8 Males; 8 Females | 8 Males; 8 Females | 8 Males; 8 Females | 7 Males: 7 Females”
7 Males; 7 Females | 7 Males; 7 Females | 7 Males; 7 Females | 7 Males; 7 Females

“Whole litter refers to all 10 pups (5 males and 5 females).
““Only one male and one female pup were evaluated from each litter.

*One Saline litter was not evaluated on this measure
P = Postnatal day

PV- Parvalbumin interneurons.
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