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Abstract

Background: Amplicon sequencing is an established and cost-efficient method for profiling
microbiomes. However, many available tools to process this data require both bioinformatics
skills and high computational power to process big datasets. Furthermore, there are only few
tools that allow for long read amplicon data analysis. To bridge this gap, we developed the
LotuS2 (Less OTU Scripts 2) pipeline, enabling user-friendly, resource friendly, and versatile
analysis of raw amplicon sequences.

Results: In LotuS2, six different sequence clustering algorithms as well as extensive pre- and
post-processing options allow for flexible data analysis by both experts, where parameters can
be fully adjusted, and novices, where defaults are provided for different scenarios.

We benchmarked three independent gut and soil datasets, where LotuS2 was on average 29
times faster compared to other pipelines - yet could better reproduce the alpha- and beta-
diversity of technical replicate samples. Further benchmarking a mock community with known
taxa composition showed that, compared to the other pipelines, LotuS2 recovered a higher
fraction of correctly identified genera and species (98% and 57%, respectively). At ASV/OTU
level, precision and F-score were highest for LotuS2, as was the fraction of correctly
reconstructed 16S sequences.

Conclusion: LotuS2 is a lightweight and user-friendly pipeline that is fast, precise and
streamlined. High data usage rates and reliability enable high-throughput microbiome analysis
in minutes.

Availability: LotuS2 is available from GitHub, conda or via a Galaxy web interface, documented
at http://lotus2.earlham.ac.uk/.

Keywords: microbiome, short read sequencing, amplicon data analysis, 16S rRNA, ITS

BACKGROUND:

The field of microbiome research has been revolutionized in the last decade, owing to
methodological advances in DNA-based microbial identification. Amplicon sequencing (also
known as metabarcoding) is one of the most commonly used techniques to profile microbial
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communities based on targeting and amplifying phylogenetically conserved genomic regions
such as the 16S/18S ribosomal RNA (rRNA) or internal transcribed spacers (ITS) for
identification of bacteria and eukaryotes (esp. Fungi), respectively [1,2]. The popularity of
amplicon sequencing has been growing due to its broad applicability, ease-of-use, cost-
efficiency, streamlined analysis workflows as well as specialist applications such as low

biomass sampling [3].

Alas, amplicon sequencing comes with several technical challenges. These include primer
biases [4], chimeras occurring in PCR amplifications [5], rDNA copy number variations [6] and
sequencing errors that frequently inflate observed diversity [7]. Although modern read error
corrections can significantly decrease artifacts of sequencing errors [8], the taxonomic
resolution is limited to the genus or at best to species level [9,10]. To process amplicon
sequencing data from raw reads to taxa abundance tables, several pipelines have been
developed, such as mothur [11], QIIME 2 [12], DADAZ2 [8] or LotuS [13]. These pipelines differ in
their data processing and sequence clustering strategies, reflected in differing execution speed

and resulting amplicon interpretations [13,14].

Here we introduce Lotus2, designed to improve reproducibility, accuracy and ease of amplicon
sequencing analysis. LotuS2 offers a completely refactored installation, including a web
interface that is freely deployable on Galaxy clusters. During development, we focused on all
steps of amplicon data analysis, including processing raw reads to abundance tables as well as
improving taxonomic assignments and phylogenies of Operational Taxonomic Units (OTUs) or
Amplicon Sequencing Variants (ASVs) at the highest quality with the latest strategies available.
Pre- and post-processing steps were further improved compared to the predecessor “LotuS1”:
the read filtering program sdm (simple demultiplexer) and taxonomy calculation program LCA
(least common ancestor) were refactored and parallelized in C++. LotuS2 uses a ‘seed
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extension’ algorithm that improves the quality and length of OTU/ASV representative DNA
sequences. We integrated numerous features such as additional sequence clustering options
(DADA2, UNOISE3, VSEARCH and CD-HIT), advanced read quality filters based on
probabilistic and Poison binomial filtering and curated ASVs/OTUs diversity and abundances
(LULU, UNCROSS2, ITSx, host DNA filters). LotuS2 can also be integrated in complete
workflows, e.g. the microbiome visualization-centric pipeline CoMA [15] uses LotuS1/2 at its
core to estimate taxa abundances.

Here, we evaluated LotuS2 in reproducing microbiota profiles in comparison to contemporary
amplicon sequencing pipelines. We found that LotuS2 consistently reproduces microbiota
profiles more accurately, using three independent datasets, and reconstructs a mock community

with the highest overall precision.

MATERIALS AND METHODS:
Design Philosophy of LotuS2

Overestimating observed diversity is one of the central problems in amplicon sequencing,
mainly due to sequencing errors [7,16]. The second read pair from lllumina paired-end
sequencing is generally lower in quality [17] and can contain more errors than predicted from
Phred quality scores alone [18,19]. Additionally, merging reads can introduce chimeras due to
read pair mismatches [20]. The accumulation of errors over millions of read pairs can impact
observed biodiversity, so essentially is a multiple testing problem. To avoid overestimating
biodiversity, LotuS2 uses a relatively strict read filtering during the error-sensitive sequence
clustering step. This is based on i) 21 quality filtering metrics (average quality, homonucleotide
repeats, removal of reads without amplicon primers, etc), ii) probabilistic and Poisson binomial
read filtering [17,21], iii) filtering reads that cannot be dereplicated (clustered at 100% nucleotide
identity) either within or between samples and iv) using only the first read pair from paired-end

lllumina sequencing platforms. These reads are termed “high-quality” reads in the pipeline
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95  description and are clustered into OTUs/ASVs, using one of the sequence clustering programs
96 (Figure 1B).
97  However, filtered out “mid-quality” sequences are partly recovered later in the pipeline, during
98 the seed extension step. LotuS2 will reintroduce reads failing dereplication thresholds or being
99 of “mid-quality” by mapping these reads back onto high-quality OTUs/ASVs if matching at =
100  97% sequence identity. In the “seed extension” step, the optimal sequence representing each
101 OTU/ASV is determined by comparing all (raw) reads clustered into each OTU/ASV. The best
102 read (pair) is then selected based on the highest overall similarity to the consensus OTU/ASV,
103 quality and length that, in the case of paired read data, can then be merged. Thereby, the seed
104  extension step enables more reads to be included in taxa abundance estimates, as well as
105  enabling longer ASV/OTU representative sequences to be used during taxonomic classifications
106  and the reconstruction of a phylogenetic tree.
107
108
109 Implementation of LotuS2
110 Installation - LotuS2 can be accessed either through major software repositories such as i)

111 Bioconda, ii) as a Docker image or iii) GitHub (accessible through http://lotus2.earlham.ac.uk/)

112  (Figure 1A). The GitHub version comes with an installer script that downloads the required

113  databases and installs and configures LotuS2 with its dependencies. Alternatively, we provide
114  iv) a wrapper for Galaxy [22] allowing installation of LotuS2 on any Galaxy server from the

115  Galaxy ToolShed. LotuS2 is already available to use for free on the UseGalaxy.eu server

116  (https://usegalaxy.eu/), where raw reads can be uploaded and analysed (Supp. Figure 1).

117  While LotuS2 is natively programmed for Unix (Linux, macOS) systems, other operating

118  systems are supported through the Docker image or the Galaxy web interface.

119  Input - LotuS2 is designed to run with a single command, where the only essential flags are the
120  path to input files (fastq(.gz), fna(.gz) format), output directory and mapping file. The mapping
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121 file contains information on sample identifiers, demultiplexing barcodes or file paths to already
122  demultiplexed files and can be either automatically generated or provided by the user. The
123  sequence input is flexible, allowing simultaneous demultiplexing of read files and/or integration
124  of already demultiplexed reads.

125  LotuS2 is highly configurable, enabling user-specific needs beyond the well-defined defaults.
126  There are 63 flags that can be user-modified, including dereplication filtering thresholds (-
127  derepMin), sequencing platform (-p), amplicon region (-amplicon_type), or OTU/ASV

128  postprocessing (e.g. -LULU option to remove erroneous OTUs/ASVs [23]). In addition, read
129 filtering criteria can be controlled in 32 detailed options via custom config files (defaults are
130  provided for lllumina MiSeq, hiSeq, novaSeq, Roche 454, PacBio HiFi).

131

132  Output - The primary output is a set of tab-delimited OTU/ASV count tables, the phylogeny of
133  OTUs/ASVs, their taxonomic assignments and corresponding abundance tables at different
134  taxonomic levels. These are summarized in .biom [24] and phyloseq objects [25], that can be
135 loaded directly by other software for downstream analysis.

136  Furthermore, a detailed report of each processing step can be found in the log files which

137  contain commands of all used programs (including citations and versions) with relevant

138  statistics. We support and encourage users to conduct further analysis in statistical

139 programming languages such as R, Python or Matlab and using analysis packages such as
140 phyloseq [25], documented in tutorials at http://lotus2.earlham.ac.uk/. .

141

142  Pipeline workflow - Most of LotuS2 is implemented in PERL 5.1; computational or memory
143  intensive components like simple demultiplexer (sdm) and LCA (least common ancestor) are

144  implemented in C++ (see Figure 1B for pipeline workflow). Demultiplexing, quality filtering and
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145  dereplication of reads is implemented in sdm. Taxonomic postprocessing is implemented in
146  LCA. Six sequence clustering methods are available: UPARSE [17], UNOISE3 [26], CD-HIT
147  [27], SWARM [28], DADA2 [8] or VSEARCH [29].

148 Inthe “seed extension” step, a unique representative read of a sequence cluster is chosen,
149  based on quality and merging statistics. Each sequence cluster, termed ASVs in the case of
150 DADAZ2, OTUs otherwise’, is represented by a high confidence DNA sequence (see Design
151 Philosophy of LotuS2 for more information).

152  OTUs/ASVs are further postprocessed to remove chimeras, either de novo and/or reference
153  based using the program UCHIME3 [30] or VSEARCH-UCHIME [29]. By default, ITS sequences
154  are extracted using ITSx [31]. Highly resolved OTUs/ASVs are then curated based on sequence
155  similarity and co-occurrence patterns, using LULU [23]. False-positive OTU/ASV counts can be
156 filtered using the UNCROSS2 algorithm [32]. OTUs/ASVs are by default aligned against the
157  phiX genome, a synthetic genome often included in lllumina sequencing runs, using Minimap2
158  [33]; these OTUs/ASVs are subsequently removed. Additionally, the user can filter for host

159  contamination by providing custom genomes (e.g., human reference), as host genome reads
160  are often misclassified as bacterial 16S by existing pipelines [3].

161  Each OTU/ASV is taxonomically classified, using either RDP classifier [34], SINTAX [35] or by
162  alignments to reference database(s), using the custom “LCA” (least common ancestor) C++
163  program. Alignments of OTUs/ASVs with either Lambda [36], BLAST [37], VSEARCH [29], or
164 USEARCH [38] are compared against a user-defined range of reference databases. These
165  databases cover the 16S, 18S, 23S, 28S rRNA gene and ITS region, by default a Lambda

166  alignment against the SILVA database is used [39]. Other databases bundled with LotuS2

167  include Greengenes [40], HITdb [41], PR2 [42], beetax (bee gut-specific taxonomic annotation)

168  [43], UNITE (fungal ITS database) [44], or users can provide reference databases (a fasta file

' Note that UNOISES uses the term zero-range OTUs (zOTUs); for brevity, this is omitted throughout the
text.
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169  and a tab-delimited taxonomy file). These databases can be used by themselves, or in

170  conjunction. From mappings against one or several reference databases, the least common

171 ancestor for each OTU/ASV is calculated using LCA. Priority is given to deeply resolved

172  taxonomies, sorted by the earlier listed reference databases. For reconstructing phylogenetic
173  trees, multiple sequence alignments for all OTUs/ASVs are calculated with either MAFFT [45] or
174  Clustal Q [46]; from these a maximum likelihood phylogeny is constructed using either fasttree2
175  [47] or IQ-TREE 2 [48].

176

177

178 Benchmarking amplicon sequencing pipelines

179  To benchmark the computational performance and reproducibility, we compared LotuS2’s
180 performance to commonly used amplicon sequencing pipelines including mothur [11], DADA2
181  [8], and QIIME 2 [12]. We relied, where possible, on default options or standard operating
182  procedure (SOPs) provided by the respective developers (mothur:

183 https://mothur.org/wiki/miseq sop/; QIIME 2: https://docs.qiime2.org/2021.11/tutorials/moving-

184  pictures/ and DADA2: https://benjjneb.qgithub.io/dada2/tutorial.html). DADA2 cannot demultiplex

185 raw reads and in these cases, LotuS2 demultiplexed raw reads were used as DADAZ2 input.

186  Our benchmarking scripts are available at https:/github.com/ozkurt/lotus2 benchmarking (see

187  Supp. Text). Several sequence cluster algorithms were benchmarked, for LotuS2: DADAZ2 [8],
188 UPARSE [17], UNOISE3 [26], CD-HIT [27] and VSEARCH [29]; for QIIME 2: DADA2 and

189  Deblur [49]; DADAZ2 supporting natively only DADA2 clustering; for mothur: OptiClust; and for
190 LotuS1: UPARSE. For taxonomic classification, SILVA138.1 [39], was used in all pipelines.

191 ITS amplicons are clustered with CD-HIT, UPARSE and VSEARCH and filtered by default using

192  ITSx [31] in LotuS2. ITSx identifies likely ITS1, 5.8S and ITS2 and full-length ITS sequences,
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and sequences not within the confidence interval are discarded in LotuS2. In analogy, QIIME 2-

DADAZ2 uses g2-ITSxpress [50] that also removes unlikely ITS sequences.

Error profiles during ASV clustering were inferred separately for the samples sequenced in
different MiSeq runs during DADA2 and Deblur clustering in all pipelines. We truncated the
reads into the same length (200 bases, default by LotuS2) in all pipelines while analysing the

datasets. Primers were removed from the reads, where supported by a pipeline.

Measuring computational performance of amplicon sequencing pipelines

When benchmarking pipelines, processing steps were separated into 5 categories in each
tested pipeline: a) Pre-processing (demultiplexing if required, read filtering, primer removal and
read merging for QIIME 2-Deblur), b) sequence clustering (clustering + refining of the clusters
and denoising for QIIME 2-DADA2, c) OTU/ASV taxonomic assignment, d) construction of a
phylogenetic tree (the option is available only in mothur, QIIME 2 and LotuS2) and e) removal of
host genome (the option is available only in QIIME 2 and LotuS2). In mothur, sequence
clustering and taxonomic assignment times were added since these pipeline commands are

entangled (https://mothur.org/wiki/miseq sop/).

Data used in benchmarking pipeline performance

Four datasets with different sample characteristics (e.g., compositional complexity, target gene
and region, amplicon length) were analysed: i) Gut-16S dataset [13]: 16S rRNA gene amplicon
sequencing of 40 human faecal samples in technical replicates that were sequenced in separate
MiSeq runs, totalling 35,412,313 paired-end reads. Technical replicates were created by
extracting DNA twice from each faecal sample. Since the lllumina runs were not demultiplexed,
pipelines had to demultiplex these sequences, if available. ii) Soil-16S dataset: 16S rRNA gene
amplicon sequencing of two technical replicates (single DNA extraction per sample) from 50 soil
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219  samples, that were sequenced in separate MiSeq runs, totalling 11,820,327 paired-end reads.
220 PCR reactions were conducted using the 16S rRNA region primers 515F

221 (GTGYCAGCMGCCGCGGTAA) and 926R (GGCCGYCAATTYMTTTRAGTTT). The soil-16S
222  dataset was already demultiplexed, requiring pipelines to work with paired FASTQ files per

223  sample. iii) Soil-ITS dataset: ITS amplicon sequencing of 50 technical replicates of soil samples
224  (single DNA extraction per sample), sequenced in two independent lllumina MiSeq runs,

225  totalling 6,006,089 paired-end reads. ITS region primers gITS7ngs_201

226 (GGGTGARTCATCRARTYTTTG) and ITS4ngsUni_201 (CCTSCSCTTANTDATATGC) [51]
227  were used to amplify DNA extracted from soil samples. The soil-ITS dataset was already

228  demultiplexed.

229  iv) Mock dataset [52]: A microbial mock community with known species composition, mock-16
230 [52]. The mock dataset comprised a total of 59 strains of Bacteria and Archaea, representing 35
231  Dbacterial and 8 archaeal genera. The mock community was sequenced on an lllumina MiSeq
232  (paired-end) by targeting the V4 region of the 16S rRNA gene using the primers 515F

233 (GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACHVGGGTWTCTAAT) [52]. This dataset

234  was demultiplexed and contained 593,868 paired reads.

235 Benchmarking the computational performance of amplicon sequencing pipelines

236  To evaluate the computational performance of LotuS2 in comparison to QIIME 2 [12], DADA2
237  [8], and the last released version of LotuS [13] (v1.62 from Jan 2020; called LotuS1 here), all
238 pipelines were run with 12 threads on a single computer free of other workloads (CPU: Intel(R)
239 Xeon(R) Gold 6130 CPU @ 2.10 GHz, 32 cores, 375 GB RAM). To reduce the influence of
240 network latencies on pipeline execution, all temporary, input, and output data were stored on a
241  local SSD. Each pipeline was run three times consecutively to account for pre-cached data and
242  to obtain average execution time and maximum memory usage. To calculate the fold

243  differences in execution speed between pipelines, the average time of all LotuS2 runs was

9


https://doi.org/10.1101/2021.12.24.474111
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.24.474111; this version posted December 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

244  divided by average QIIME 2, mothur and DADA2, where used in each of the three non-mock
245 datasets. The average of these numbers was used to estimate the average speed advantage of
246  LotuS2.

247

248 Benchmarking reproducibility of amplicon sequencing pipelines

249  Technical replicates of the soil and gut samples were used to estimate the reproducibility of the
250  microbial community composition between replicates. This was measured by calculating beta
251  and alpha diversity differences between technical replicate samples. To calculate beta diversity,
252  either Jaccard (measuring presence/absence of OTUs/ASVs) or Bray-Curtis dissimilarity

253  (measuring both presence/absence and abundances of OTUs/ASVs) were computed between
254  technical replicate samples. Before computing Bray-Curtis distances, abundance matrices were
255  normalized. Jaccard distances between samples were calculated by first rarefying abundance
256  matrices to an equal number of reads (to the size of the first sample having > 1000 read counts)
257  per sample using RTK [53]. Significance of pairwise comparisons of the pipelines in beta

258  diversity differences was calculated using the ANOVA test where Tukey’s HSD (honest

259  significant differences) test was used as a post hoc test in R.

260 To calculate alpha diversity, abundance data were first rarefied to an equal number of reads per
261  sample. Significance of each pairwise comparison in alpha diversity was calculated based on a
262  paired Wilcoxon test, pairing technical replicates.

263

264  Analysis of the mock community

265  We used an already sequenced mock community [52] of known relative composition and with
266  sequenced reference genomes available. Firstly, taxonomic abundance tables (taxonomic

267  assignments based on SILVA 138.1 [39] in all pipelines) were compared to the expected

268  taxonomic composition of the sequenced mock community. Precision was calculated as

269  (TP/(TP+FP)), recall as (TP/(TP+FN)) and F-score as (2*precision*recall/(precision+recall)), TP

10
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270  (true positive) being taxa present in the mock and correctly identified as present, FN (false

271  negative) being taxa present in the mock but not identified as present and FP (false positive)
272  being taxa absent in the mock but identified as present. The fraction of read counts assigned to
273  true positive taxa was calculated based on the sum of the relative abundance of all true positive
274  taxa. These scores were calculated at different taxonomic levels.

275  Secondly, we investigated the precision of reconstructed 16S rRNA nucleotide sequences,

276  representing each OTU or ASV, by calculating the nucleotide similarity between ASVs/OTUs
277  and the known reference 16S rRNA sequences. To obtain the nucleotide similarity, we aligned
278  ASV/OTU DNA sequences from tested pipelines via BLAST to a custom reference database
279  that contained the 16S rRNA gene sequences from the mock community

280 (https://github.com/caporaso-lab/mockrobiota/blob/master/data/mock-16/source/expected-

281  sequences.fasta), using the —taxOnly option from LotuS2. The BLAST % nucleotide identity was

282  subsequently used to calculate the best matching 16S rRNA sequence per ASV/OTU.

283

284

285 RESULTS

286  We analysed four datasets to benchmark the computational performance and reliability of the
287  pipelines. The datasets consisted either of technical replicates (gut-16S, soil-16S, soil-ITS) or a
288  mock community. Technical replicates were used to evaluate the reproducibility of community
289  structures and were chosen to represent different biomes (gut, soil), using different 16S rRNA
290 amplicon primers (gut-16S, soil-16S) or ITS sequences (soil-ITS) as well as a synthetic mock
291  community of known composition.

292

293 Computational performance and data usage

294  The complete analysis of the gut-16S dataset was fastest in LotuS2 (on average 35, 12, 9 and
295 3.8 times faster than mothur, QIIME 2-DADA2, QIIME 2-DEBLUR and native DADA2,
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296  respectively, Figure 2A). Note that DADAZ2 could not demultiplex the dataset, the average of
297  LotuS2 and QIIME2 demultiplexing times were used instead. LotuS2 was also faster in the

298  analysis of the soil-16S dataset compared to the other tested pipelines (5.7, 3.5, 3.5 times faster
299 than DADA2, QIIME 2-DADA2 and QIIME 2-DEBLUR, respectively, Figure 2B). The difference
300 in speed between LotuS2 and QIIME 2 was more pronounced in the analysis of the soil-ITS

301 dataset, where LotuS2 was on average 69 times faster than QIIME 2 and DADAZ2 (Figure 2C).
302 LotuS2 also outperformed other pipelines in the case of the gut-16S dataset (on average

303 LotuS2 was 15 times faster) compared to the soil dataset (average 4.2). This difference stems
304 mainly from the demultiplexing step, where LotuS2 is significantly faster. The sequence

305 clustering step was fastest using the UPARSE algorithm, i.e. an average 60-fold faster than

306 sequence clustering in other pipelines. Averaged over these three datasets, LotuS2 was 29

307 times faster than other pipelines.

308  Taxonomic classification of OTUs/ASVs was also faster in LotuS2 (~5 times faster for gut-16S,
309 2 times for soil-16S). However, this strongly depends on the total number of OTUs/ASVs for all
310 pipelines. For example, the default naive-Bayes classifier [54] in QIIME 2 is faster relative to the
311 number of OTUs/ASVs, compared to LotuS2 taxonomic assignments in this benchmark.

312  Nevertheless, the LotuS2 default taxonomic classification is via RDP classifier [34], and

313 alternatively, the SINTAX [35] classifier could be used, both of which are significantly faster than
314  the here presented Lambda LCA against the Silva reference database.

315 Compared to LotuS1, LotuS2 was on average 3.2 times faster, likely related to refactored C++
316  programs that can take advantage of multiple CPU threads (Figure 2A-B).

317 Inits fastest configuration (using “UPARSE” option in clustering, “RDP” to assign taxonomy), the
318 gut and soil 16S rRNA datasets can be processed with LotuS2 in under 20 mins and 12 mins,
319  using < 10 GB of memory and 4 CPU cores.

320  Despite using similar clustering algorithms (e.g. DADAZ2 is used in DADA2, QIIME 2 and

321  LotuS2), the tested pipelines apply different pre- and post-processing algorithms to raw
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322  sequence reads and clustered ASVs and OTUs, leading to differing ASV/OTU numbers and
323 retrieved reads (the total read count in the ASV/OTU abundance matrix) (Supp. Table 1 and
324  Figure 2D-F). DADAZ2 typically estimated the highest number of ASVs, but the number of

325 retrieved reads varied strongly between datasets. QIIME 2-DADA2 estimated fewer ASVs than
326 DADAZ2, but more ASVs than LotuS2-DADA2, although mapping fewer reads than LotuS2.

327  Although retrieving a smaller number of reads, QIIME 2-Deblur reported comparable numbers of
328 ASVs to LotuS2, despite the differences in clustering algorithms. mothur performed differently in
329 the gut-16S and soil-16S datasets, where it estimated either the highest number of OTUs or
330 could not complete the analysis since all the reads being filtered out, respectively. Overall,

331  LotuS2 often reported the fewest ASVs/OTUs, while including more sequence reads in

332  abundance tables. This indicates that LotuS2 has a more efficient usage of input data while

333  covering a larger sequence space per ASV/OTU.

334

335 Benchmarking the reproducibility of community compositions

336  Next, we assessed the reproducibility of community compositions, using gut-16S, soil-16S and
337  soil-ITS datasets comparing beta diversity between technical replicates (Bray Curtis distance,
338 BCd and Jaccard distance, Jd). We found that Jd and BCd were the lowest in LotuS2, largely
339 independent of the chosen sequence clustering algorithms and dataset. This indicates a greater
340 reproducibility of community compositions generated by LotuS2 (Figure 3A-B and Supp.

341  Figure 2). The lowest BCd and Jd were observed for UPARSE (Figure 3A-B and Supp. Figure
342  2)in both gut- and soil-16S datasets, though this was not always significant between different
343  LotuS2 runs (Supp. Table 2).

344  Even using the same clustering algorithm, LotuS2-DADA2 compositions were more

345  reproducible, compared to both QIIME 2-DADA2 and DADA2 (significant only on soil data).

346  LotuS2-DADA2 denoises by default all reads (per sequencing run) together, while in the default
347 DADAZ2 setup each sample is separately denoised; the latter strategy has a reduced
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348 computational burden but can potentially miss sequence information from rare bacteria. mothur
349  showed poorer performance compared to other pipelines on the gut-16S dataset and did not
350 complete on the soil data.

351  We then calculated the fraction of samples being closest in BCd distance to its technical

352 replicate for each pipeline (Figure 3D-E), simulating the process of identifying technical

353 replicates without prior knowledge. LotuS2 with UNOISES clustering resulted in the highest
354  fraction of samples being closest to its replicate among all samples, in both gut- and soil-16S
355 datasets while in the mothur result, technical replicates were the most unlikely to be closest to
356 their technical replicate.

357  When this comparison was made with the non-default options in LotuS2 (using different

358  dereplication parameters, deactivating LULU, using UNCROSS2 or retaining taxonomically
359 unclassified reads), BCd between the technical replicates remained largely unchanged (Supp.
360 Figure 2, Supp. Figure 3A-B and Supp. Text). However, retaining unclassified reads could
361  significantly reduce the reproducibility of LotuS2 results on the gut-16S dataset. Furthermore,
362 even starting the analysis with different read truncation lengths, LotuS2 still had the highest
363  reproducibility in both gut- and soil-16S datasets (Supp. Figure 4, Supp. Figure 5 and Supp.
364  Text).

365  Lastly, we calculated the reproducibility of reported alpha diversity between technical replicate
366 samples in both gut-16S and soil-16S datasets (Supp. Figure 6A-B). In both datasets, LotuS2
367  alpha diversity was not significantly different between technical replicates, as expected (5 of 8
368 comparisons, Wilcoxon signed-rank test), whereas, in 6 of 6 cases, QIIME 2, mothur and

369 DADAZ2 had significant differences in the alpha diversity between technical replicates.

370  Thus, LotuS2 showed in our benchmarks a higher data usage efficiency and higher

371 reproducibility of community compositions than QIIME 2, DADA2 and mothur. These

372  benchmarks also showed the importance of pre- and postprocessing raw reads and
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373  OTUs/ASVs, since LotuS2-DADA2 and QIIME 2-DADA2 performed better than and DADAZ2,
374  despite using the same clustering algorithm.

375

376 Benchmarking soil-ITS dataset

377  Unlike 16S rRNA gene amplicons, ITS amplicons typically vary greatly in length [4], requiring a
378  different sequence clustering workflow; therefore, LotuS2 uses by default CD-HIT to cluster ITS
379  sequences, and ITSx to identify plausible ITS1/2 sequences.

380 Interms of data usage, both LotuS2 and QIIME 2-DADAZ2 retrieved similar numbers of reads,
381  but for QIIME 2 these read counts were distributed across twice the number of ASVs (Figure
382  2F). QIIME 2-DADAZ2 reproduced the fungal composition significantly worse in replicate

383 samples, compared to LotuS2-UPARSE, having higher pairwise BCd (Figure 3C) and Jd

384  (Supp. Figure 2H-I). However, it spanned the highest fraction of samples closest to its technical
385 replicate, although this fraction was overall very high for all the pipelines (0.978-1) (Figure 3F).
386 DADAZ2 performed relatively worse, yielding the highest number of ASV, lowest retrieved read
387  counts (Figure 2F), significantly the highest BCd (Figure 3C, Suppl. Table 2) between replicate
388 samples. LotuS2 had overall the lowest BCd and Jd between replicates, using both UPARSE
389 and CD-HIT clustering (Figure 3C, Supp. Figure 2H-I). Usage of CD-HIT in combination with
390 ITSx led to anincrease in OTU diversity (from 947 to 1008) although read counts remained

391  mostly the same in the final output matrix and BCd was largely similar (Supp. Figure 3C). Here,
392 deactivating LULU slightly decreased reproducibility (Supp. Figure 3C).

393 Finally, we calculated the reproducibility of alpha diversity between the technical replicate

394 samples in the soil-ITS dataset (Supp. Figure 6C). All pipelines resulted in no significant

395 difference between the technical replicate samples, thus alpha diversity was highly reproducible
396 independent of the pipeline.

397

398 Benchmarking the dataset from the mock microbial community
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399 To assess how well a known community can be reconstructed in LotuS2, we used a previously
400 sequenced 16S mock community [52] containing 43 genera and 59 microbial strains, where
401  complete reference genomes were available.

402  All pipelines performed poorly at reconstructing the community composition (Pearson R=0.43-
403 0.67, Spearman Rho=0.54-0.80, Supp. Table 3 and Supp. Figure 7), possibly related to PCR
404  biases and rRNA gene copy number variation. Therefore, we focused on the number of

405 correctly identified taxa. For this, we calculated the number of reads assigned to true taxa as
406  well as precision, recall and F-score at genus level. LotuS2-VSEARCH and LotuS2-UPARSE
407  had the highest precision, F-score and fraction of reads assigned true positive taxa, (Figure 4A
408 and Supp. Figure 8). LotuS1 had the highest recall, but low precision. When applying the same
409 tests at species level, LotuS2-DADAZ2 had overall the highest precision and F-score (Supp.
410 Figure 9). QIIME 2-DEBLUR had often competitive, but slightly lower, precision, recall and F-
411  scores compared to LotuS2, while mothur, QIIME 2-DADAZ2 and DADA2 scores were lower
412  (Figure 4A).

413 Next, we investigated which software could best reconstruct the correct OTU/ASV sequences.
414  For this, we calculated the fraction of TP OTUs/ASVs (i.e., OTUs/ASVs which are assigned to a
415  gpecies based on the custom mock reference taxonomy) with 97%-100% nucleotide identity to
416  16S rRNA sequences from reference genomes in each pipeline (Figure 4B). Here, LotuS2-
417 VSEARCH and LotuS2-UPARSE reconstructed OTU sequences were most often identical to
418 the expected sequences, having 82.2% of the OTU sequences reconstructed at 100%

419  nucleotide identity to reference sequences. QIIME 2-Deblur ASV sequences were of similar
420  quality, but slightly less often at 100% nucleotide identity (78.2%). DADA2 and QIIME 2-DADA2
421  ASV sequences were often more dissimilar to the expected reference sequences. It is

422  noteworthy that LotuS2-DADA2 did outperform these two pipelines based on the same

423  sequence clustering algorithm, likely related to the stringent read filtering and seed extension
424  stepin LotuS2.
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425  The mock community consisted of 49 bacteria and 10 archaea [52], with 128 16S rRNA gene
426  copies included in their genomes. If multiple 16S copies occur within a single genome, these
427  can diverge but are mostly highly similar or even identical to each other [55]. Thus, 59 OTUs
428  would be the expected biodiversity, and <128 ASVs. Notably, the number of mothur and QIIME
429  2-Deblur TP ASVs/OTUs exceeded this threshold (N=370, 198, respectively), both pipelines
430 overestimate known biodiversity. DADA2 and QIIME 2-DADA2 generated more ASVs than

431  expected per species (N=94, 122 respectively), but this might account for divergent within-

432  genome 16S rRNA gene copies. LotuS2 was notably at the lower end in predicted biodiversity,
433  predicting between 53-61 OTUs or ASVs in different clustering algorithms (Supp. Table 4).
434  However, these seemed to mostly represent single species, covering the present species best
435 among pipelines, as the precision at species level was highest for LotuS2 (Supp. Figure 9),
436  thus capturing species level biodiversity most accurately.

437  Based on the mock community data LotuS2 was more precise in reconstructing 16S rRNA gene
438 sequences, assigning the correct taxonomy, detecting biodiversity, and within-genome 16S
439 copies were less likely to be clustered separately using LotuS2.

440

441  DISCUSSION

442  LotuS2 offers a fast, accurate and streamlined amplicon data analysis with new features and
443  substantial improvements since LotuS1. Software and workflow optimizations make LotuS2
444  substantially faster than either QIIME 2, DADA2 and mothur. On large datasets, this advantage
445  becomes crucial for users: for example, we processed a highly diverse soil dataset consisting of
446  >11 million non-demultiplexed PacBio HiFi amplicons (26 Sequel Il libraries) in 2.5 days on 16
447  CPU cores, using a single command (unpublished data). Besides being more resource and
448  user-friendly, compositional matrices from LotuS2 were more reproducible and accurate across

449  all tested datasets (gut 16S, soil 16S, soil ITS, mock community 16S).
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450 LotuS2 owes high reproducibility and accuracy to the efficient use of reads based on their

451  quality tiers in different steps of the pipeline. Low-quality reads introduce noise and can

452  artificially inflate observed biodiversity, i.e., the number of OTUs/ASVs [56]. Conversely, an
453  overly strict read filter will decrease sensitivity for low-abundant members of a community by
454  artificially reducing sequencing depth. To find a trade-off, LotuS2 uses only truncated, high-
455  quality reads for sequence clustering (except ITS amplicons), while the read backmapping and
456  seed extension steps restore some of the discarded sequence data.

457  Notably, OTU/ASV reconstructed with LotuS2 were the most similar (at >99% identity) to the
458 reference, compared to other pipelines (Figure 4B). This was mostly independent of clustering
459  algorithms used, a combination of both selecting high-quality reads for sequence clustering and
460 the seed extension step, that selects a high-quality read (pair) best representing each OTU or
461  ASV. Seed extension also decouples read clustering and read merging, avoiding the use of the
462  error-prone 3’ read end or second read pair during the error sensitive sequence clustering step
463 [17]. Thereby, potential length restrictions during the clustering step will not carry over to

464  computational steps benefitting from longer sequences, such as taxonomic assignments or
465  phylogeny reconstructions.

466 In conclusion, LotuS2 is a major improvement over LotuS1, representing pipeline updates that
467  accumulated over the past eight years. It offers superior computational performance, accuracy
468 and reproducibility of results, compared to the other tested pipelines. Importantly, it is

469  straightforward to install, and programmed to reduce required user time and knowledge,

470  following the idea that less is more with LotuS2.

471

472  Availability and Requirements:

473  Availability of LotuS2: Documentation, tutorials: lotus2.earlham.ac.uk, Installation via

474  bioconda: https://anaconda.org/bioconda/lotus2
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475  Galaxy wrapper (MIT licensed): https://github.com/TGAC/earlham-

476  galaxytools/tree/master/tools/lotus2 and https://toolshed.g2.bx.psu.edu/view/earlhaminst/lotus2/

477  Galaxy server: https://usegalaxy.eu/

478  Programs (GPLv3 licensed): https://github.com/hildebra/lotus2, https:/github.com/hildebra/sdm,

479 https://qithub.com/hildebra/LCA

480  All the commands used for the benchmarking are available in

481 https://github.com/okurt/lotus2 benchmarking

482  Availability of the data:
483  Accession numbers for the datasets used for benchmarking in this study are: PRJEB49356
484  Mock-16 community is downloaded from the mockrobiota repository [52]:

485  htips://s3-us-west-2.amazonaws.com/mockrobiota/latest/mock-16/mock-forward-read.fastg.gz

486 https://s3-us-west-2.amazonaws.com/mockrobiota/latest/mock-16/mock-reverse-read.fastg.gz

487

488 List of abbreviations:

489  OTU: Operational taxonomic unit; ASV: Amplicon sequence variant; ITS: Internal transcribed
490 spacer; TP: True positive; FN: False negative; FP: False positive; LotuS: Less OTU Scripts;
491  sdm: simple demultiplexer; LCA: least common ancestor; DADA: The Divisive Amplicon

492  Denoising Algorithm; QIIME: Quantitative Insights Into Microbial Ecology

493
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717  Figure 1- Workflow of the LotuS2 Pipeline
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718 a) LotuS2 can be installed either through i) Bioconda, ii) GitHub with the provided autolnstaller
719  script oriii) using a Docker image. Alternatively, iv) Galaxy web servers can also run LotuS2
720  (e.g. hitps://usegalaxy.eu/) b) LotuS2 accepts amplicon reads from different sequencing

721  platforms, along with a map file that describes barcodes, file locations, sample IDs and other
722  information. After demultiplexing and quality filtering, high-quality reads are clustered into either
723  ASVs or OTUs. The optimal sequence representing each OTU/ASV is calculated in the seed
724  extension step, where read pairs are also merged. Mid-quality reads are subsequently mapped
725  onto these sequence clusters, to increase cluster representation in abundance matrices. From
726  OTU/ASV sequences, a phylogenetic tree is constructed, and each cluster is taxonomically

727  assigned. These results are made available in multiple standard formats, such as tab-delimited
728 files, .biom or phyloseq objects, to enable downstream analysis. New options in LotuS2 for each
729  step are denoted with black colour whereas options in grey font were already available in LotusS.
730

731

732
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Figure 2: Computational performance of amplicon sequencing pipelines

16S rRNA amplicon MiSeq data from A) gut-16S and B) soil-16S and C) soil-ITS samples were
processed to benchmark resource usage of each pipeline, run on the same system under equal
conditions (12 cores, max 150Gb memory). In all pipelines, OTUs/ASVs were classified by
similarity comparisons to SILVA 138.1. In LotuS2, LAMBDA was used to align sequences for all
clustering algorithms.

Pipeline runs were separated by common steps (pre-processing, sequence clustering,
taxonomic classification and phylogenetic tree construction and/or off-target removal). Because
native DADA2 cannot demultiplex reads, we used the average demultiplexing time of QIIME 2
and LotuS2 (LotuS2 demultiplexed, unfiltered reads were provided to DADA2). LotuS2 pipelines
are labelled with red colour.
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D, E, F) Data usage efficiency of each tested pipeline, by comparing the number of sequence
clusters (OTUs or ASVs) to retrieved read counts in the final output matrix of each pipeline.
Note that mothur results on soil-16S are not shown, because the pipeline rejected with default

parameters all sequences.
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Figure 3- Reproducibility from different amplicons sequence data analysis pipelines.

Three independent datasets were used to represent different biomes and amplicon
technologies, using A, D) human faecal samples (16S rRNA gene, N=40 replicates). B, E) soil
samples (16S rRNA gene, N=50 replicates) and C, F) soil samples (ITS 2, N=50 replicates).
A-C) Bray-Curtis distances among technical replicate samples are used to assess the
reproducibility of community compositions by different pipelines. The pipeline with the lowest
BCd in each subfigure is denoted with a star (*). The significance of pairwise comparisons of
each pipeline is calculated using the Tukey’s HSD test (Supp. Table 2).

D-F) Further, the fraction of technical replicates being closest to each other (BCd) was
calculated to simulate identifying technical replicates without additional knowledge. Numbers
above bars are the ordered pipelines performing best.
Lower Bray-Curtis distances between technical replicates and a higher fraction of correct
technical replicates indicate better reproducibility. LotuS2 pipelines are labelled with red colour.
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768  Figure 4- Benchmarking of amplicon sequence data analysis pipeline’s performance
769  using a mock community with known species composition

770  A) Accuracy of each pipeline in predicting the mock community composition at genus level. For
771 benchmarking we compared the fraction of reads assigned to true genera and both correctly
772  and erroneously recovered genera. Precision, Recall and F-score were calculated based on the
773  true positive, false positive and false negative taxa identified. At species level, LotuS2 excelled
774  as well in these statistics (Supp. Figure 9).

775  B) Percentage of true positive ASVs/OTUs having a nucleotide identity = indicated thresholds to
776 16S rRNA gene sequences of genomes from the mock community.

777  Pipeline(s) showing the highest performance in each comparison is denoted with a star (*). TP,
778  true positive; ASV, amplicon sequencing variant; OTU, operational taxonomic unit.

779

32


https://doi.org/10.1101/2021.12.24.474111
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.24.474111; this version posted December 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

780  Supp. Figures and Tables:
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783  Supp. Figure 1: Galaxy web interface of LotuS2

784  Raw reads can be uploaded into the LotuS2 via the Galaxy web interface and analysed
785  (accessible on https://usegalaxy.eu/).
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Supp. Figure 2- Reproducibility and data usage efficiency respective to dereplication
filtering.
A, D and G) Data usage efficiency of each tested pipeline at different dereplication parameters
of LotuS2 (from strictest to least strict dereplication: 20:1,12:3,6:2; 15:1,9:3,12:2; 10:1,6:3,8:2;
8:1,4:2,3:3 (default); 4:1; 2:1 and 1:1) using DADA2 or CD-HIT clustering for 16S and ITS
dataset, respectively, by comparing the number of sequence clusters (OTUs/ASVs) to retrieved
read counts in final output matrix.
The dereplication can be fine controlled through a syntax. For example, 8:1,4:2,3:3 means that
a read is accepted, if it occurs >=8 times in >= 1 samples or >4 times total in >= 2 samples or
>=3 times in >= 3 samples.
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803  Supp. Figure 3- Reproducibility of the technical replicates respective to different LotuS2
804 non-default parameters

805 Bray-Curtis distances between technical replicates of A) gut-16S B) soil-16S and C) soil-ITS
806  datasets using default and non-default parameters (LotuS2 flags: -lulu 0, -xtalk 1, -

807 keepUnclassified 1, -ITSx 0, where 1 means the option is activated; 0 means deactivated).

808 When activated, -lulu option uses LULU R package [23] to merge OTUs/ASVs based on their
809 co-occurrences; -xtalk option checks for cross-talk [32], -keepUnclassified includes unclassified
810 (i.e. not matching to any taxon in the taxonomy database) OTUs/ASVs in the final matrix and —
811 ITSx activates the ITSx program [31] to only retain OTUs fitting to ITS1/ITS2 hmm models.
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Supp. Figure 4- Data usage efficiency of different amplicon sequence data analysis
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817
818
819
820
821
822
823

pipelines.

Data usage efficiency on gut 16S rRNA (gut- 16S), soil 16S rRNA (soil-16S) and Soil ITS (soil-
ITS) amplicons, tested with different pipelines at different read truncation lengths (170, 200, 230
& 170, 200, 220 bases for the gut and soil datasets, respectively), by comparing the number of
sequence clusters (ASVs /OTUs) to retrieved read counts in the final output matrix of each
pipeline. In all other analysis, default values were used for LotuS2 (200 bases).
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826  Supp. Figure 5- Reproducibility of beta diversity at different read truncation lengths

827  Reproducibility of sequenced technical replicates, by measuring the Bray-Curtis (A and C) and
828  Jaccard distances (B and D) of the microbiome composition among technical replicate samples.
829  Two datasets were used to represent different biomes and amplicon technologies, using (A, B)
830 and human faecal samples (16S rRNA primer, N=40 replicates) and (C, D) soil samples (16S
831 rRNA, V4-V5 region primers, N=50 replicates). Lower Bray-Curtis or Jaccard distances between
832  technical replicates indicate better reproducibility of community compositions.

833  Default pipeline parameters and recommended settings for each dataset were used (Please see
834  the Supp. Text for further information).
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838
839  Supp. Figure 6: Reproducibility of alpha diversity between technical replicates.
840 OTU/ASV Richness was calculated for A) gut-16S B) soil-16S and C) soil-ITS datasets.
841  Samples were rarefied to an equal number of reads per sample before calculating richness, and
842  any samples whose replicate pair was removed after rarefaction (because of having lower
843  number of reads than the rarefaction depth) were excluded from further analysis. LotuS1 results
844  for soil-16S were removed due to too many samples being removed in rarefactions. Significance
845  of differences in richness between the sets were calculated based on the paired samples
846  Wilcoxon test (***, **, * and “ns” denotes p<0.0005, p<0.005, p<0.05 and p> 0.05 (i.e. not
847  significant), respectively).
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851  Supp. Figure 7: Observed composition of the mock community compared to the
852 composition predicted by each pipeline
853 A) Relative abundances of the 16 orders having the highest abundance.
854  B) Bray-Curtis distance based PCoA of the observed composition of the mock sample and
855  composition predicted by each pipeline

38


https://doi.org/10.1101/2021.12.24.474111
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.24.474111; this version posted December 24, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

— £ 3001
— —— >
o 4et05 = 2}
g <
& I
o -]
§ 5 200
2 B
Q0
E 2e+05 ] T U
=1 Qo
Zz H £ 1004
3
) | H__’ﬂ__‘ - T r_ﬁ
0e+00 O e 0
5 = o o o 5 B w w 5 5 g g 2 . 8 L L
£ 3 2 3 8§ ¢ 2 2 &g £ 2 3 5 3 2 o g ¢
E a s &8 § a 2 & & E 2 o fa fa = s] o o
& 1 i [ 5 =) =] o & & 17} 5 =] >
w0 L w W 1] = 3 o -
= | 2 = <] © 3 = o o
& a g S | a o § S | |
|:| Total number of reads |:| Number of OTUs/ASVs
856 |:| Number of reads assigned to true taxa |:| Number of OTUs/ASVs assigned to true taxa

857  Supp. Figure 8: Number of reads and OTUs/ASVs and those assigned true taxa at genus
858 level by each pipeline in the analysis of the mock community

859  Total number of A) reads retrieved by each pipeline and those assigned to true taxa at genus
860 level B) OTUs/ASVs generated by each pipeline and those assigned to true taxa at genus level.
861 Blue and red line indicates number of 16S gene copies and species, respectively, in the mock
862  community.
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composition at species level.

For benchmarking we compared the fraction of reads assigned to true taxa and both correctly
and erroneously recovered taxa at the species level from the mock community.
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Gut-16S
Number of reads Number of OTUs/ASVs
mothur 11855762 23736
QIIME 2-Deblur 9995254 950
QIIME 2-DADA2 11510552 2539
DADA2 12048048 2591
LotuS2-DADA2 12935664 999
LotuS2-UNOISE3 3698064 766
LotuS2-UPARSE 12995784 742
LotuS2-VSEARCH 2778696 1464
LotuS1-UPARSE 1305288 514
Soil-16S
Number of reads Number of OTUs/ASVs
QIIME 2-Deblur 1157357 19641
QIIME 2-DADA2 2278731 25229
DADA2 4526920 49111
LotuS2-DADA2 2710629 19568
LotuS2-UNOISE3 2448475 19217
LotuS2-UPARSE 2637572 8789
LotuS2-VSEARCH 2678716 9250
LotuS1-UPARSE 749449 5987
Soil-ITS
Number of reads Number of OTUs/ASVs
QIIME 2-DADA2 4962260 2203
DADA2 1742895 3368
LotuS2-UPARSE 4805387 1046
LotuS2-VSEARCH 4829288 920
LotuS2-CDHIT 2678716 1008

Supp. Table 1: Read counts and number of OTUs/ASVs in the OTU/ASV matrix of each

pipeline.

Supp. Table 2: Significance of differences between each pipeline in the reproducibility of
beta diversity between the technical replicates

Significance of differences in Bray-Curtis distance between the pipelines were calculated based
on the Tukey’s HSD test.
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Spearman Correlation

p.value correlation coefficient
mothur 1.83E-07 0.544018417
QIIME 2-Deblur 1.57E-15 0.747912391
QIIME 2-DADA?2 3.76E-12 0.680648974
DADA2 6.77E-12 0.674725632
LotuS2-DADA2 3.26E-12 0.682064113
LotuS2-VSEARCH 2.80E-17 0.776030912
LotuS2-UNOISE3 4.99E-14 0.720369663
LotuS2-UPARSE 2.80E-17 0.776030912
LotuS2-UPARSE 1.32E-19 0.808037907

Pearson Correlation

p.value correlation coefficient
mothur 3.99E-07 0.531185654
QIIME 2-Deblur 1.99E-11 0.663501229
QIIME 2-DADA2 3.91E-09 0.600486282
DADA2 7.72E-12 0.673389135
LotuS2-DADA2 6.62E-05 0.43083946
LotuS2-VSEARCH 2.68E-09 0.605505625
LotuS2-UNOISE3 1.22E-08 0.584843731
LotuS2-UPARSE 2.68E-09 0.605505625
LotuS1-UPARSE 1.63E-09 0.611973422

BCd to the mock community

BCd
mothur 0.430087
QIIME 2-Deblur 0.340823
QIIME 2-DADA2 0.373356
DADA2 0.327616
LotuS2-DADA2 0.35983
LotuS2-VSEARCH 0.324378
LotuS2-UNOISE3 0.34578
LotuS2-UPARSE 0.324378
LotuS1-UPARSE 0.324448

896

897  Supp. Table 3: Correlation and beta distance between the mock community and re-

898 constructed mock community by each pipeline

899  A-B) Spearman and Pearson correlation between the expected abundances in the mock

900 community and the observed abundances by each pipeline. C) Bray-Curtis dissimilarity between
901  the known mock community and re-constructed mock community composition by each pipeline.
902

903
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Number of OTUs/ASVs  Number of reads Fraction of reads assigned to TP taxa TP FP FN Precision  Recall F-score
mothur 370 144147 0.817443304 34 25 11 0.576271 0.755556 0.653846
QIIME 2-Deblur 198 480049 0.872517181 38 13 7 0.745098 0.844444 0.791667
QIIME 2-DADA2 122 454082 0.882792095 36 19 9 0.654545 0.8 0.72
DADA2 94 536901 0.922646819 39 24 6 0.619048 0.866667 0.722222
LotuS2-DADA2 61 497970 0.867775167 38 9 7 0.808511 0.844444 0.826087
LotuS2-VSEARCH 53 494122 0.979268278 39 9 6 0.8125 0.866667 0.83871
LotuS2-UNOISE3 60 423292 0.975794487 38 9 7 0.808511 0.844444 0.826087
LotuS2-UPARSE 53 494122 0.979268278 39 9 6 0.8125 0.866667 0.83871
LotuS1-UPARSE 66 148959 0.979202331 41 16 4 0.719298 0.911111 0.803922

Supp. Table 4: Accuracy of each pipeline in re-constructing the mock community at
genus level

Supplementary Information:

Influence of dereplication thresholds, non-default parameters and read truncation

Dereplication is the pre-clustering of sequencing reads at 100% nucleotide identity, a commonly
used strategy to reduce the computational complexity of sequence clustering [17]. Further,
dereplication can be used to filter out sparsely occurring reads that could represent technical
artifacts, unlikely to represent true biodiversity. Therefore, LotuS2 uses a “dereplication” filter,
that can be user defined.

Overall, this filter does not mostly change the number of OTU/ASV counts, with more
OTUs/ASVs being recovered when the filter is more relaxed (Supp. Figure 2A,D,G). This is
expected because this filter is designed to remove sparse OTUs/ASVs that could both represent
technical replicates as well as extremely rare microbes. However, this did not affect the overall
community reproducibility of either gut- or soil-16S samples. However, in soil-ITS samples, we
noted a dramatic decrease in BCd between technical replicates at stricter dereplication cut-offs
(Supp. Figure 2H-I).

The number of retrieved reads remained very stable independent of filtering stringency; this is
expected because the backmapping of mid-quality reads will re-introduce reads not passing the

dereplication filter.
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927  LotuS2 uses several default options (-lulu 1, -xtalk 0, -keepUnclassified 0 and -ITSX 1; where
928  “1” means the option is “activated” and “0” means “deactivated”). When activated, -lulu option
929 uses LULU R package [23] to merge OTUs/ASVs based on their co-occurrences; -xtalk option
930 checks for cross-talk [32], -keepUnclassified includes unclassified (i.e. not matching to any

931 taxon in the taxonomy database) OTUs/ASVs in the final matrix and —ITSx activates the ITSx
932  program [31] to only retain OTUs fitting to ITS1/ITS2 hmm models. The impact of these

933 parameters on the reproducibility of LotuS2 was tested (Supp. Figure 3). Overall, non-default
934  options did not change the BCd between the technical replicates except -keepUnclassified 1
935 notably increasing BCd in gut-16S, while -lulu 0 slightly increased BCd in soil-ITS.

936

937 Read length truncation is frequently used to remove the typically low quality 3’ end of reads
938 [8,17]. This is impacting the retrieved read counts as well as observed OTU/ASV diversity. For
939 example, at 170 bp read truncation, mothur, DADA2 and QIIME 2-DADA2 were severely

940 impacted in merging read pairs, failing or only integrating a fraction of read pairs in gut and soil-
941 16S datasets Supp. Figure 4). While LotuS2 also had slightly different read and cluster

942  numbers with changing truncation lengths, it was more stable, because reads are merged in the
943  seed extension step after sequence clustering on truncated, high-quality reads are completed
944  (Supp. Figure 4). In shorter or longer read truncations, LotuS2 was still performing the best with
945  the lowest BCd (Supp. Figure 5A,C) and Jd (Supp. Figure 5B,D) between technical replicates
946  in both gut- and soil-16S datasets.

947  Taken together, the higher performance of LotuS2 in reproducibility of the dataset was

948 independent of the dereplication parameters and read truncation length.
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