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Abstract

Evolutionarily related sequences provide information for the protein structure and function. Multiple
sequence alignment, which includes homolog searching from large databases and sequence alignment, is
efficient to dig out the information and assist protein structure and function prediction, whose efficiency has
been proved by AlphaFold. Despite the existing tools for multiple sequence alignment, searching homologs
from the entire UniProt is still time-consuming. Considering the success of AlphaFold, foreseeably, large-
scale multiple sequence alignments against massive databases will be a trend in the field. It is very desirable
to accelerate this step. Here, we propose a novel method, fastMSA, to improve the speed significantly.
Our idea is orthogonal to all the previous accelerating methods. Taking advantage of the protein language
model based on BERT, we propose a novel dual encoder architecture that can embed the protein sequences
into a low-dimension space and filter the unrelated sequences efficiently before running BLAST. Extensive
experimental results suggest that we can recall most of the homologs with a 34-fold speed-up. Moreover,
our method is compatible with the downstream tasks, such as structure prediction using AlphaFold. Using
multiple sequence alignments generated from our method, we have little performance compromise on the
protein structure prediction with much less running time. fastMSA will effectively assist protein sequence,
structure, and function analysis based on homologs and multiple sequence alignment.
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1 Introduction

The large volume of available biological data in recent years have promoted computational biological re-
search, such as protein structure and function predictions, protein secondary structure analysis, unknown pro-
tein sequence discovery, and phylogenetic reconstruction [29, 46, 55, 53, 9, 3]. As an essential and significant
computational procedure for these analysis tasks, Multiple Sequence Alignment (MSA) refers to identifying
and aligning the evolutionarily related biological sequences, which usually need to take evolutionary events
(such as deletions, insertions, rearrangements, and mutations) into consideration [10]. It has become an in-
dispensable step for biological data analysis, whose quality severely influences the performances of many
biological analysis tasks [56, 28, 17, 30, 3].

MSA originates from the pairwise sequence alignment. To solve the pairwise problem, we will find an
alignment that maximizes the similarity between two sequences [16]. One typical way of estimating similarity
is to summarize substitution matrix scores of each aligned residue pair, which can be exactly solved from a
mathematical perspective [16]. However, MSA is much more complex, which needs to find an alignment that
maximizes the sum of similarities for all sequence pairs. In fact, finding an optimal alignment for multiple
sequences from the mathematical view is a complex optimization (NP-complete) problem because it needs to
identify the best MSA from the entire set of possible alignments [12]. Hence, heuristic methods are usually
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needed. The most popular traditional MSA method is a progressive alignment algorithm, which generates
a phyletic tree and aligns a set of sequences [19, 10]. This method uses a phyletic tree to align multiple
sequences while the obtained alignments are then applied to adjust the tree. Along this line, some methods
are designed to construct global pairwise alignment and introduce tree-based progressive strategies, including
ProbCons [14], T-Coffee [33], and ClustalW [42]. To improve quality, the iterative strategy is further intro-
duced to repeatedly adjust the tree and alignment process until both of them converge [45], such as Clustal
Omega [40], MUSCLE [15], and MAFFT [24]. These designs promote the alignment quality of multiple
sequences to some extends. However, these methods need to optimize an alignment by considering a set of
pre-defined constraints, which is an NP-complete problem and is nearly impossible when the number of se-
quences is large [10]. Thus, these methods are slow and can only handle datasets with small instances [12, 25].

In recent years, some new MSA algorithms are proposed by considering the structure information of al-
ready existing protein sequences [12, 10], such as 3DCoffee [34], MICAlign [51]. Their basic idea is that
the structures of protein sequences usually evolve much more slowly than sequences themselves [26]. Hence,
they believe that if a model can consider the structure of sequences, this model has great potential of achieving
better results than other models that only rely on sequence alignment [26, 12, 11]. Armougom et al. introduce
a server termed EXPRESSO to automatically select templates by running BLAST [2, 8] to identify close ho-
mologous by considering the structural information of sequences in the PDB database [4]. The incorporation
of structure information can help promote the alignment effeteness of multiple sequences. However, these al-
gorithms rely heavily on the structure information obtained from known protein sequences, which makes them
have weak scalability because the structure of many protein sequences may not be available. What’s worse,
these methods often have low speed, which will further limit their real-world applications, especially for large
protein databases.

To handle protein databases with a huge number of sequences [7, 41], people are developing faster algo-
rithms to effectively decrease the running time of models. Buchfink et al. introduce the diamond algorithm
that is built upon the double indexing for protein sequence alignment, which achieves a similar degree of sen-
sitivity with the gold standard BLASTX but is much faster [7]. Huson et al. present a new method named
protein-alignment-guided assembly for gene-centric assembly, which provides fast access to each gene fam-
ily in MEGAN [20]. Steinegger et al. design a single-instruction multiple-data vectorized implementation
version of Viterbi algorithm to align protein sequences, which accelerates the search methods HHsearch and
HHblits [41]. However, These methods are often designed for relatively small databases, which can not meet
the needs of dealing with a very large database. For example, the recently proposed AlphaFold2 needs to
obtain the MSA for every protein in the UniProt database, which contains 250 million sequences and provides
very good chances to improve the alignment quality [22, 44, 6]. And foreseeably, obtaining the MSA for a
huge number of sequences using the large database will be very common in the post-AlphaFold era. However,
using traditional methods is too slow to perform such searching. Therefore, it is still urgent to develop an
algorithm that is able to efficiently complete the searching procedure for very large databases and thereafter
perform the MSA tasks in a relatively short time.

To deal with the above issues, we propose a novel method, which is orthogonal to all the previous methods.
This fastMSA framework, consisting of query sequence encoder and context sequences encoder, can improve
the scalability and speed of multiple sequence alignment significantly. Firstly, to prepare the training data for
the proposed method, we utilize the query sequences to search from UniRef90 using JackHMMER v3.3 [50]
and build the resulted MSAs as ground truth. Secondly, in the encoder part, we design a transformer-based
query sequence and context sequence encoder with learnable parameters. It is designed to learn the sequence
embedding, where the contrastive learning strategy is introduced to significantly boost the training efficiency.
Thirdly, during the inference time, to boost the speed of the proposed algorithm for conducting the large-scale
searching, we apply the context encoder to encode all the sequences to fixed-length vectors to search for top
relevant targets. Then, we compare the similarity scores between the encoded query and all the sequences
in the database, which are utilized to rank the sequences and retrieve the top-K most similar sequences. We
will perform the standard homolog searching and MSA on the top-K most similar sequences. Extensive
experiments suggest that we can recall around 70% homologs with only top-200k sequences, which reduces
the database size by 350 folds. It can lead to around 34 folds speed-up. Moreover, our method is compatible
with the downstream tasks, such as structure prediction using AlphaFold. Using multiple sequence alignments
generated from our method, we have little performance compromise on the protein structure prediction with
much less running time. The proposed tool, fastMSA, will effectively assist protein sequence, structure, and
function analysis based on homologs and multiple sequence alignment.
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2 Related Work

2.1 Multiple Sequence Alignment

Multiple Sequence Alignment (MSA) has become a hot research area a long time ago [43, 16]. Since the
alignment of multiple sequences needs to optimize the sums-of-pairs evaluation schemes, this is a NP-complete
problem, where heuristics methods are often required [10]. Based on this consideration, the most common
one is the progressive alignment algorithm initially proposed in 1984 [19], which incorporates all the input
sequences into the final model sequentially by following an inclusion order that is pre-defined in a guide tree.
This method needs to conduct a pairwise alignment for two sequences, two profiles, or a sequence and a profile,
at each node, which is often tackled via the global dynamic programming alignment algorithm [32]. After this,
more similar algorithms that combine a global pairwise alignment method and a tree-based progressive strategy
are designed, such as ProbCons [14], T-Coffee [33], and ClustalW [42].

To improve the prediction performance, the iterative strategies are further introduced to dynamically es-
timate both the tree and alignment components by repeatedly using dynamic programming until both com-
ponents converge [45]. Based on this strategy, many algorithms are proposed for the alignment of multiple
sequences, including Clustal Omega [40], MUSCLE [15], and MAFFT [24]. At the same time, some methods
focus on improving the guide tree of MSA algorithms, which determines the order in which these sequences
should be incorporated [10]. Among these methods, Neighbor Joining (NJ) [38] and Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) [31] are most widely used, which improve the performance for the
alignment of sequences to some extent. However, these methods need to optimize an alignment by considering
a set of pre-defined constraints, which is a Maximum Weight Trace problem and is NP-complete [10]. As a
result, these methods can only deal with protein sequences datasets with small instances, such as only a few
hundred sequences [12, 25]. Therefore, these methods are not able to meet the need of analyzing thousands or
even millions of protein sequences in the new data era.

Another way to perform multiple sequence alignments is taking the structure information of already exist-
ing protein sequences into consideration. These methods are termed as structure-based MSA [12, 10], such as
3DCoffee [34], MICAlign [51], and EXPRESSO [4]. Because the structures of protein sequences often evolve
more slowly than sequences themselves [26], structure-based MSA algorithms are usually able to achieve bet-
ter performance than methods that only consider sequence alignment [12]. By learning the structure-based
multiple sequence alignment from public datasets, Matthieu et al. can successfully identify clear patterns
in correlation of crucial residues [11]. However, these methods rely heavily on the structure information of
known protein sequences, which may not always be available especially when an increasing amount of new
protein sequences are discovered every day.

2.2 Unsupervised Protein Language Model

Recent advances in large-scale language model pre-training, such as BERT [13] or GPT [35], have brought
various breakthroughs in natural language processing. In order to train the model with minimal human labeling
efforts, the training data is constructed by corrupting the sentences, i.e., replacing the original words with a
special token, then the task simply is to reconstruct the sentence from the corrupted one.

Similar ideas are then adapted into protein sequences and have emerged as a promising approach in the
field. To transfer knowledge between structurally related proteins, Bepler & Berge [5] proposed to use a
bidirectional LSTM model and multi-task framework to encode the structural information. A transformer-
based language model [36, 37], ESM-1b, is introduced by Rao et al., and demonstrates that information learned
from protein sequences alone could greatly benefit for numerous downstream tasks, such as secondary structure
prediction, contact prediction and etc, which surpasses the performance of LSTM-based [1, 18] language
models by a large margin. Rao et al. showed that MSA transformer could capture more information by
integrating MSA into the model, and achieved state-of-the-art results on multiple benchmarks. In addition, the
same language model objective is also applied in AlphaFold 2 [22], and helps to further boost the accuracy of
structure prediction.

Recently, dense retrieval based on language model in text domain has been explored and achieved state-
of-the-art performance in various tasks, such as open-domain question answering and dialog response gener-
ation [23, 52, 27, 54]. Karpukhin et al. [23] first proposed to use a bi-encoder architecture to encode query
and document respectively, then retrieve document by a similarity score based on dot product. ANCE [52]
proposes to use hard negatives to further improve the performance on retrieval. The architecture was later
adapted into text generation domain [54, 27], and became a core component for the systems to alleviate the
hallucinated facts problem.
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Figure 1: Overview of the inference pipeline for fastMSA. The top- K most similar sequences will be retrieved
using dot product, then JackHMMER is applied on this small retrieved dataset to build the MSA for further
tasks, such as 3D structure prediction or protein function prediction. Before retrieval, the UniRef90 can be
encoded into vectors offline, and it will NOT affect the inference time of building MSA.

3 Methods

In this section, we present the proposed fastMSA framework, which consists of two transformer-based
models as query sequence encoder and candidate sequences (sequences from a very large database) encoder,
as shown in Fig. 1. We first introduce how to construct training data from raw sequences, then present the
objective function and detailed inference pipeline, as shown in Fig. 2.

3.1 Pre-training Dataset Construction

To build the training dataset for the proposed method, we first used the query sequence (denoted as ¢q) to
search from UniRef90 using JackHMMER v3.3 and build the MSA as ground truth. Denote the resulted MSA
as M(qn+1)><l =[q,CY =[q,ci,cl, ..., 1], where [ is the sequence length; the first sequence, g, is the query,
and the rest n sequences, C9 = c‘{:n, are searched homologs, 1 : n denotes set {1, 2, ..., n}. For simplicity,
we drop the superscript ¢ if context is clear. Since g and ¢y, are from the same MSA, (g, ¢) are treated as a
positive pair for any ¢ € {c1,...,c,}. Note that the amount of training data could be enormous considering
the data construction process only depends on JackHMMER to build the MSA.

3.2 Bi-Encoder Model and Contrastive Learning

We denote the transformer-based query sequence and candidate encoder as fg and fy, respectively, where
© and U are learn-able model parameters. Given a paired data, say (g,c) from the previous section, the
query encoder fg maps ¢ into a d-dimensional vector, fo(q) = h, € R% and the candidate encoder maps c
into a vector with same dimension, i.e., fy(c) = z. € R<. In fact, the transformer encoder will encode the
sequence into a series of vectors with the same length, and we simply choose the first vector as its sequence
representation, and rely on the training procedure to learn the sequence embedding. Finally, the inner product
between these sequence embeddings,

Sqe = hfl * Zey (l)

is computed as the similarity score between query ¢ and candidate c. In addition, both query encoder and
candidate encoder are initialized with ESM-1b since the model is already well pre-trained with billions of
protein sequences.

Following contrastive learning approaches, we further propose to use in-batch data as negatives, which
could significantly boost the training efficiency compared to actual sampling for negatives. More specif-
ically, for a batch of paired data (q1,¢1), ..., (g, c»), Where b is the batch size, the negative samples for
query g; are all other candidates within the same batch, i.e., all ¢; where j # i. Please refer to the Data
Sampling Module in Fig. 2 for more details. Suppose the query and candidate encoder map these queries
and their corresponding candidates into matrices, [h1, ha, ..., k] = [fo(q1), fo(q2), ..., fo(q)] € RP*9,
(21,22, .., 2] = [fuler), fu(ca),. .., fu(cp)] € RY@, the similarity matrix between all queries and ho-
mologs therefore are

Spxp = [sijlijers = [hi - 2lijerbs
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Figure 2: Training pipeline for the proposed method. In the Data Sampling Module, a batch of positive pairs,
(q1,¢1),---,(qv, cp), are sampled from MSAs. Then, a similarity matrix S is computed using the contrastive
loss, in which each element s;; = fo(q;)" fu(c;). Intuitively, the diagonal of the similarity matrix is trained to
be larger than the corresponding off-diagonal elements in the same row since they represent all of the positive
pairs.

which can be computed efficiently by a simple matrix multiplication. Then, for each query, say for g;, the task
is to identify the homolog ¢; among all the other negatives candidates c;, j # ¢, which is a b-way classification
problem. The objective function for query g; therefore can computed as

L; =—log 5

j=16€%

And the final objective function for the batch is the average of all queries, which is L = % Z?Zl L;. Please
refer to the Contrastive Loss Module in Fig. 2 for an illustration.

3.3 Online Inference

During the inference stage, we first apply the candidate encoder to encode all the sequences from UniRef90
into vectors and save them into memory. Though it is time-consuming to encode millions of sequences, this
encoding step only needs to be done once and can be finished offline. Then, similarity scores between the
encoded query and all the sequences in the database are computed based on the equation (1). Finally, the
sequences are ranked by the similarity score, and top-K most similar sequences will be retrieved for the next
stage. Instead of computing the score between the query and all the sequences in the database, this optimization
problem can be efficiently solved by approximation packages, such as FAISS [21]. It is worth mentioning that
to use the fast search algorithm in FAISS, the similarity score in the equation (1) has to be decomposable, which
is the underlying reason why we use dot product as the metric other than a more complex neural network. The
retrieved sequences will be used as inputs to JackHMMER to do the final MSA for the input query. Please
refer to Fig. 1 for more details about the whole pipeline.

4 Results

4.1 Dataset Preparation and Hyper-parameters

Because of the limitation in the availability of computation resources, we only managed to generate MSAs
on a small dataset, namely CATH [39], which contains around 33k sequences. JackHMMER was utilized to
iteratively search for candidate sequences in UniRef90 and align these candidate sequences to the MSA. Then,
we constructed our sub-set of UniRef90 by combining all of the top-1k similar sub-sequences in each MSA
and referring them back to the original sequence. After these procedures, the obtained sub-set covers 11M
distinguished sequences in total.

JackHMMER is then adopted to deal with the obtained distinct sequences. In our implementation, the
evaluation threshold and the number of iterations of JackHMMER are set as 10~ and 3, respectively, while
other hyper-parameters are set as the default values. In the training process, the model is trained for 100 epochs,
and the warm-ups strategy is adopted by linearly increasing the learning rate from 106 to 10~ gradually and
then decaying the rate at 30 and 60 epochs multiplying by 0.1. We use 4 NVidia V100 GPUs, each of which
hosts 64 paired data. Cross-batch negative is used to expand the actual batch size to 256.
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Three test sequence datasets, namely CASP13, CASP14, and CAMEO, are introduced to evaluate the
performance of our trained model, please refer to Table 1 for more statistics of the data. To be specific, the
domain level sequences are collected from the CASP13 and CASP14 competitions for MSA retrieval and 3D
structure construction. The CAMEOQO dataset contains all the protein sequences in a half-year period (from
2020-09-07 to 2021-05-01) from CAMEO online 3D structure prediction evaluation.

Table 1: The overview of three test datasets, CASP13, CASP14, CAMEO and training set CATH.

Dataset #sequences min length max length average length
CASP13 122 31 842 178.12
CASP14 102 35 838 193.80
CAMEO 297 31 1176 280.13

CATH 32658 9 1942 148.23

4.2 Retrieval Recall Rate

To evaluate the performance of the proposed fastMSA method, we calculate the recall at top {200k, 400k,
1M, 2M} for CASP13, CASP14, and CAMEO, respectively. Corresponding retrieval results are presented in
Fig. 3a, which clearly indicates that the proposed fastMSA can effectively decrease the time taken to build
MSAs using JackHMMER. It is worth noticing that when computing the recall, all the sequences that appear
in the same MSAs and the number of each greater than 10 are regarded as ground truth. We discard the rest
queries because the results will highly fluctuate otherwise.

Then we analyze the effectiveness of the proposed method for decreasing the time needed for building
MSAs. Note that the whole dataset contains around 11M sequences, by reducing the number of sequences by
55 times (11M to 200k), our method retrieves at least 55% of ground truth sequences for CASP 14, and at
least 60% for CASP 13 and CAMEO. At the same time, when the number of retrieved sequences is increased
to 2M, fastMSA can successfully detect at least 80% of ground truth for all the three datasets. Furthermore,
by comparing with the running time of JackHMMER, we can observe that the retrieval time cost is almost
negligible, which clearly demonstrates the benefits of the proposed fastMSA method. Please refer to section
4.3 for more details.

Finally, it is worth pointing out that the proposed model is trained by only using 33k MSAs, which is
because of the limitations in the hardware environment, namely computation resources. Even though, the
proposed method can still achieve very good performance, as mentioned in the above paragraph. In the future,
when more computation resources and advanced GPU machines become available, we will be able to scale up
the training scale to millions of MSAs, which could potentially further boost the results by a large margin.

4.3 Running Time

In this section, we discuss the effectiveness of our proposed fastMSA method in decreasing the running
time that is needed for building MSAs. Fig. 4 provides the results of comparing the running time of directly
using vanilla JackHMMER and that of after using our proposed fastMSA method, which clearly demonstrates
that the proposed method can effectively accelerate the running speed for various top-K settings. In this
figure, the bar chart together with the left axis demonstrates the time needed for building MSAs for the whole
CASP14 dataset before and after adopting our method. Correspondingly, the line chart and the right axis
directly illustrate the acceleration effect, which indicates how many times that our method can decrease the
needed time compared with the original method.

We can clearly observe from this figure that the proposed method can effectively speed up the running
speed. For example, for the top 100k sequences, the proposed method achieves a 34 times speedup using
our predicted sequences on Uniref90 with around 70M sequences. Since the scanning and the aligning are
two major components of JackHMMER searching time, our method can successfully cut the scanning time to
minimum. More importantly, a further speedup is expected when the proposed method is utilized to deal with
a larger sequence pool.

We also conduct experiences on databases ranging from 10M sequences to 70M and logged the time taken
retrieving from 10k to 1M targets shown in Fig. 5 which clearly shows the recall rate grows linearly through
time on each database and the time taken in retrieval grows logarithmically with target number.
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Figure 3: a: The recall rate on four data sets. We evaluate our method on three data sets with four different
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We compare the ground truth with our method. > 9 ground truth column is left blank because ground truth
with In(Meff)> 9 does not exist.

1600 -

1400 -

1200 -

Total time (min)
(=2 (-] ;
o o (=]
o o o

400 -

200 -

CASP14 MSA build time (UR90)

search time N
S— -

align time

—_—
f | | |

\

N

\

= . ;
top100k  top200k  top 400k

T
original

Methods building MSA

a

40
36
32
28
24
20
16
12

Speed up (times)

CASP14 MSA build time (UR90-sub) - 10

160

140 . 1s
E 100 1 = 16 g
g 80 - [ |searchtime g-
= [ Jalign time ls ©
S 60 3
'2 Q

401 \ 1, n

20 4 ’:‘ ’:‘ \.

[} 0

T
top 100k

T
top 200k

b

top AIIOOK
Methods building MSA

T
original

Figure 4: The time taken to build MSAs using JackHMMER. Sub-figure a and b show the performance on
Uniref90 version 2018.3 and the sub-set built by us.


https://doi.org/10.1101/2021.12.20.473431
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.20.473431; this version posted December 21, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Time-Recall on db of different sizes

80 label
—— 10M
75 —— 20M
—=— 35M

70 400k —— 70M
o ® 200k
o~
N
- 60
©
8] 100k
Q 55
o 400k

50

45 200k

100k
40
100k
5 10 15 20
Time(min)

Figure 5: The recall against time taken searching on databases of different sizes and different recall sequences.
The legend denotes the size of sequence database and the annotation of point means the retrieve number.

4.4 Evaluation on Downstream Tasks

To evaluate the quality of the retrieved MSAs by the proposed method, the 3D structures are built via
AlphaFold2 and RoseTTAFold. Instead of using the MSA searching protocols adopted in AlphaFold2 and
RoseTTAFold, the MSAs retrieved by our methods are fed into the 3D modeling steps. By default, five 3D
models are generated by AlphaFold2, whereas only one model is provided by RoseTTAFold. To evaluate the
modeling qualities of the 3D models, the global IDDT score between the native structures and the modeled 3D
structures is calculated accordingly.

We present the structure prediction results using retrieved MSA in Table 2. In particular, we compare the
AlphaFold2 and RoseTTAFold modeling results that are using (1) original MSA from the whole UniRef90
(original); (2) MSA generated from a subset of UniRef90 that created by ourselves, which serves as the upper
bound of the proposed method (ground truth) and (3) MSA generated by proposed method using top 200k and
top 1M sequences (top 200k and top 1M). It can be clearly seen from the table that our predicted results has a
slight drop compared with the ground truth column predicted by AlphaFold2, but is still comparative to (see
results on CAMEO) or even superior to (see results of CASP13 and CASP14) RoseTTAFold results with raw
MSA searched against UniRef90. All these indicate the high quality of the MSAs retrieved by the proposed
method.

Finally, we would like to mention an interesting phenomenon that we observe. In our analysis, we find that
the modeling results are very sensitive to the build-up of MSAs. Although the top 200k sequences retrieved
by our method is only a small subset of the top 1M sequences, the resulted MSA searched from the top
200k sequences could still achieve better performances occasionally, or even for the whole CASP14 dataset.
Therefore high recall does not necessarily lead to higher folding accuracy. It demonstrates that our method
is able to make a good balance between computation time and the quality of the retrieved MSAs. More
importantly, for some datasets, it can further decrease the running time while improving the retrieval quality.
We further check this interesting phenomenon in Section 4.7 on three representative proteins by comparing
MSAs from our method to the ground-truth MSAs.

4.5 Accuracy with respects to Meff

Meft is used since it is a metric for the number of non-redundant sequence homologs in a MSA. Following [47],
we use 70% sequence identity as the cutoff to compute the similarity matrix between any two sequences. Please
refer to [48, 47] for more detailed formulas. Intuitively, MSAs with small Meff are more difficult to predict
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Table 2: Modeling precision with corresponding filtered ground truth MSA over 10 sequences

AlphaFold2 ‘ RoseTTAFold
Dataset
original ground truth top 200k top IM ‘ original ground truth
CASP13 84.69 78.90 74.47 75.49 71.83 69.12
CASP14 77.28 71.20 65.86 64.14 63.91 61.78
CAMEO 79.12 73.15 68.69 69.23 70.15 68.25
CASP13 CASP14
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Figure 6: Comparison of 3D structural modeling precision for each protein using the ground-truth MSAs
and MSAs from our method. We use AlphaFold2 to predict the 3D structures from the MSAs. a Head-to-
head comparison between the ground-truth MSAs and MSAs from fastMSA with top-200k filtering on the
3D structural modeling precision for the CASP13 proteins. b Head-to-head comparison between the ground-
truth MSAs and MSAs from fastMSA with top-200k filtering on the 3D structural modeling precision for the
CASP14 proteins.

since they contain less homologous information.

To check the prediction accuracy using proposed fastMSA with respect to the number of homologs, we
further divide MSAs into 7 bins based on their In(Meff), and compute the average IDDT of ground truth and
fastly retrieved MSAs (top 200k and top 1M) for each bin. The results are presented in Fig. 3 b to d. First of
all, we notice that the average IDDT increases as In(Meff) is getting larger from O to 5, then flattened after its
value is larger than 5 for all three approaches, which might be due to the fact that AlphaFold 2 does not benefit
much from more sequence information once it surpasses a threshold, which is consistent with the findings
in [22]. In addition, retrieving more sequences to build MSA does not necessarily lead to higher accuracy
since the performance on top 200k and top 1M are comparable on almost all bins. This is an interesting topic,
and we will explore more in future work. Finally, the IDDT on ground truth MSAs outperforms the proposed
fastMSA significantly when In(Meff) is small in most cases, which indicates that retrieving correct homologs
is difficult for such queries.

4.6 Head-to-head comparison on CASP13 and CASP14

To evaluate fastMSA more comprehensively, we perform a head-to-head between MSAs from fastMSA and
the ground truth MSAs on the protein 3D structure modeling. We use AlphaFold2 to assist the comparison,
predicting the 3D structures with it using different MSAs. We evaluate the 3D structure prediction precision
for each protein using the ground-truth MSA and the MSA from our method, respectively. When running our
method, we filter out the top-200K sequences before performing the standard searching and alignment. We
visualize all the results for CASP13 and CASP14 in Fig. 6, with each point representing a protein. The X-axis
shows the performance of the ground-truth MSAs, while the Y-axis shows the prediction precision using our
MSAs. If the point is far below the red diagonal line, the ground-truth MSA is better for the protein. As
shown in the figure, most of the points are around the line, which suggests that our method’s acceleration does
not compromise the prediction performance too much. Surprisingly, not all the points are below the red line.
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T1070-D2 T1052-D3 T1100-D2

IDDT: 92.13 IDDT: 91.33 IDDT: 29.24
IDDT: 90.49 IDDT: 32.48 IDDT: 79.72

Figure 7: The representative AF2 3D structures based on ground-truth MSAs and top 200k MSAs. The native
structures are gray, structures based on ground-truth MSAs are cyan, and structures based on top 200k MSAs
are magenta. The values in this figure are global IDDT scores.

Sometimes, our method can even achieve a better prediction precision than the ground-truth MSAs on both the
CASP13 and CASP14. In addition to providing acceleration, our method may be combined with traditional
MSA methods to further boost the protein structure prediction performance.

4.7 Case Study

As shown in Fig. 6, the MSAs from fastMSA are comparable to, sometimes even better than, the ground-
truth MSAs in 3D structure modeling. We investigate the performance of fastMSA in more detail on three
representative proteins from CASP14 dataset by visualizing the predicted 3D structures directly. The structures
of three representative targets from the CASP14 dataset are presented in Fig. 7. For both ground-truth MSAs
and top 200k MSAs, AF2 successfully builds the high accurate 3D structure models for T1070-D2, with global
IDDT scores of 92.13 and 90.49. For T1070-D2, the 3D models from both MSAs are in perfect alignment in
not only beta-sheets but also loops regions. For target T1052-D3, the 3D model based on ground-truth MSA
is more close to the native structure (global IDDT 91.33), whereas the 3D model is based on top 200k MSA
(with a low global IDDT score 32.48) however forms missing orientated /3-sheets. For the 3rd case, the AF2
3D model based on 200k MSA is more similar to the native structure (global IDDT 79.72) than the 3D model
based on the ground-truth MSA (global IDDT 29.24).

5 Discussion and Conclusion

MSAs are vital for protein structural and functional analysis. In the post-AlphaFold era, large-scale multiple
sequence alignments against massive datasets will be foreseeably popular [49], while its speed is the bottle-
neck. This paper proposes a new retrieval framework, fastMSA, based on Transformer and contrastive loss
to accelerate the MSA generation and its inference time, which is orthogonal to all the previous accelerating
methods. By filtering out the unrelated sequences on the low-dimensional space before performing MSA,
our method can accelerate the process by 35 folds. As our method is orthogonal to all the other traditional
bioinformatic algorithms, fastMAS can be combined with the other methods seamlessly without changing the
previous tools and packages. We validate its effectiveness and efficiency on multiple benchmarks and observe
promising results and substantial speed improvement on protein structure prediction. Essentially, we can speed
up the protein structure prediction using AlphaFold with little performance compromise by accelerating the
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MSA generation step. In the future, we will expand the size of the MSA training set to obtain more efficient
sequence embedding and improve the recall rate further, and apply the proposed method to other downstream
tasks, such as protein-RNA interaction modeling [49].
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