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Decisions vary in difficulty. Humans know this and typically report more confidence in easy than in difficult5

decisions. However, confidence reports do not perfectly track decision accuracy, but also reflect response6

biases and difficulty misjudgments. To isolate the quality of confidence reports, we developed a model of7

the decision-making process underlying choice-confidence data. In this model, confidence reflects a sub-8

ject’s estimate of the reliability of their decision. The quality of this estimate is limited by the subject’s un-9

certainty about the uncertainty of the variable that informs their decision (“meta-uncertainty”). This model10

provides an accurate account of choice-confidence data across a broad range of perceptual and cognitive11

tasks, revealing that meta-uncertainty varies across subjects, is stable over time, generalizes across some12

domains, and can be manipulated experimentally. The model offers a parsimonious explanation for the13

computational processes that underlie and constrain the sense of confidence.14

Humans are aware of the fallibility of perception and cognition. When we experience a high degree of confidence in a perceptual15

or cognitive decision, that decision is more likely to be correct than when we feel less confident1. This “metacognitive” ability16

helps us to learn from mistakes2, to plan future actions3, and to optimize group decision-making4. There is a long-standing17

interest in the mental operations underlying our sense of confidence5–7, and the rapidly expanding field of metacognition seeks18

to understand how metacognitive ability varies across domains8, individuals9, clinical states10, and development11.19

Quantifying a subject’s ability to introspect about the correctness of a decision is a challenging problem12–14. There exists20

no generally agreed-upon method15. Even in the simplest decision-making tasks, several distinct factors influence a subject’s21

confidence reports. Consider a subject jointly reporting a binary decision about a sensory stimulus (belongs to “Category A”22

vs “Category B”) and their confidence in this decision. Confidence reports will reflect the subject’s ability to discriminate23

between both stimulus categories – the higher this ability, the higher the reported confidence16. They will also reflect the24

subject’s response bias (e.g., a large willingness to declare “high confidence” or “Category A”)17–19. Yet, neither of these25

factors characterizes the subject’s metacognitive ability13.26

Here, we introduce a method to quantify metacognitive ability on the basis of choice-confidence data. We propose that confi-27

dence reflects a subject’s estimate of the reliability of their decision20, expressed in units of signal-to-noise ratio. This estimate28

results from a computation involving the uncertainty of the decision variable that informed the subject’s choice21. It follows that29

metacognitive ability is determined by the subject’s knowledge about this uncertainty, or lack thereof (i.e., uncertainty about30

uncertainty, hereafter termed “meta-uncertainty”). The more certain a subject is about the uncertainty of the decision variable,31

the lower their meta-uncertainty, and the better they are able to assess the reliability of a decision. We leverage modern com-32

putational techniques to formalize this hypothesis in a two-stage process model that is rooted in traditional signal detection33

theory22 and that can be fit to choice-confidence data (the “CASANDRE” or “Confidence AS A Noisy Decision Reliability34

Estimate” model). The model predicts a systematic dependency of confidence on choice consistency20 and naturally separates35

metacognitive ability from discrimination ability and response bias.36

We found that this model provides an excellent account of choice-confidence data reported in a large set of previously pub-37

lished studies23–28. Our analysis suggests that meta-uncertainty provides a better metric for metacognitive ability than the38

non-process-model based alternatives that currently prevail in the literature13,15. Specifically, meta-uncertainty has higher test-39

retest reliability, is less affected by discrimination ability and response bias, and has comparable cross-domain generalizability.40

Meta-uncertainty is higher in tasks that involve more levels of stimulus uncertainty, implying that it can be manipulated exper-41

imentally. Together, these results illuminate the mental operations that give rise to our sense of confidence, and they provide42

evidence that metacognitive ability is fundamentally limited by subjects’ uncertainty about the reliability of their decisions.43

Results44

In simple decision-making tasks, human confidence reports lawfully reflect choice consistency20. Consider two example sub-45

jects who performed a two-alternative forced choice (2-AFC) categorization task in which they judged on every trial whether a46

visual stimulus belonged to category A or B, and additionally reported their confidence in this decision using a four-point rating47

scale. Categories were characterized by distributions of stimulus orientation that were predominantly smaller (A) or larger (B)48
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Figure 1 CASANDRE, a two-stage process model of decision confidence, accounts for the relation between confidence reports

and choice consistency. (a) Experimental design employed by ref. 25. (b) Top: Proportion of “Category B” choices is plotted

against stimulus orientation, split out by stimulus contrast (green vs yellow), for two example subjects (left, obs 1-6: Observer 6

in experiment 1 from ref. 25; right, obs 1-9: Observer 9 in experiment 1 from ref. 25). Bottom: Same for mean confidence level.

Symbols summarize observed choice behavior, the dotted line illustrates the theoretical optimum, and the full lines show the

fit of the CASANDRE model. Symbol size is proportional to the number of trials. The model was fit to all data simultaneously

using a maximum likelihood estimation method. Only two out of six contrasts are shown here. Fits to all conditions are shown in

Supplementary Fig. 1. (c) Observed and predicted confidence-consistency relationship for two example subjects. (d) Observed

and predicted choice-confidence data for an example subject performing a visuo-haptic two-interval forced choice (2-IFC) cate-

gorization task (observer 36 in experiment 1 from Arbuzova and Filevich in the Confidence Database 23). (e) Schematic of the

hierarchical decision-making process underlying choice-confidence data in the CASANDRE model.

than zero degrees. Stimuli varied in orientation and contrast (Fig. 1a). Because the category distributions overlap, errors are49

inevitable. The most accurate strategy is to choose category A for all stimuli whose orientation is smaller than zero degrees, and50

category B for all stimuli whose orientation exceeds zero degrees (Fig. 1b, top, dotted line). As can be seen from the aggregated51

choice behavior, the more the stimulus orientation deviates from zero, the more closely human subjects approximate this ideal52

(Fig. 1b, top, symbols). As can also be seen, this relationship is modulated by stimulus contrast – the lower the stimulus con-53

trast, the weaker the association between orientation and choice (Fig. 1b, top, green vs yellow symbols). The distinct effects of54

orientation and contrast on choice consistency are evident in the subjects’ confidence reports. Confidence is minimal for con-55

ditions associated with a choice proportion near 0.5 (i.e., the most difficult conditions), and monotonically increases as choice56

proportions deviate more from 0.5 (Fig. 1b, bottom). We found that the association between choice consistency and confidence57

is so strong, that plotting average confidence level against the aggregated choice behavior reveals a single relationship across all58

stimulus conditions (Fig. 1c). This is true of both example subjects, although their confidence-consistency relationships differ59

in shape, offset, and range. We speculate that a lawful confidence-consistency relationship is not a coincidental feature of this60

experiment, but a widespread phenomenon in confidence studies (Fig. 1d).61

A monotonically increasing relation between confidence reports and choice consistency implies that subjects can assess the62

reliability of their decisions. However, whether their ability to do so is excellent or poor cannot be deduced from empirical63
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measurements alone. One possibility is that subjects accurately assess decision reliability on every single trial, indicating excel-64

lent metacognitive ability. Alternatively, there might be a high degree of cross-trial variability in confidence reports, implying65

less accurate decision reliability assessment and thus limited metacognitive ability. Of course, given the variability of the pri-66

mary choice behavior, some variability in confidence reports is expected, even for flawless introspection. How much exactly?67

And what might be the origin of excess variance? Answering these questions requires a quantitative model that provides an68

analogy for the mental operations that underlie a subject’s primary decisions and confidence reports. In the following section,69

we develop such a process model.70

A two-stage process model of decision-making71

Assume that a subject solves a binary decision-making task by comparing a noisy, one-dimensional decision variable, Vd, to72

a fixed criterion, Cd (Fig. 1e, top). For some tasks, it is convenient to think of this decision variable as representing a direct73

estimate of a stimulus feature (e.g., orientation for the task shown in Fig. 1a). For other tasks, it is more appropriate to think74

of it as representing the accumulated evidence that favors one response alternative over the other (e.g., “Have I heard this song75

before?”). The process model specified by these assumptions has proven very useful in the study of perception and cognition.76

It readily explains why repeated presentations of the same stimulus often elicit variable choices. In doing so, it clarifies how77

choices reflect a subject’s underlying ability to solve the task as well as their primary response bias22.78

We expand this framework with an analogous second processing stage that informs the subject’s confidence report. Assume79

that the subject is presented with a set of stimuli that elicit the same level of cross-trial variability in the decision variable.80

The smaller the overlap of the stimulus-specific decision variable distribution with the decision criterion, the “stronger” the81

associated stimulus is, and the more consistent choices will be. On any given trial, the distance between the decision variable and82

the decision criterion provides an instantaneously available proxy for stimulus strength, and hence for choice reliability14,29–33.83

However, in many tasks, the decision variable’s dispersion, σd, will vary across conditions, resulting in different amounts of84

stimulus “uncertainty” (the larger σd, the greater this uncertainty). To be a useful proxy for choice reliability, the stimulus85

strength estimate must therefore be normalized by this factor20. This operation yields a unitless, positive-valued variable, Vc,86

which represents the subject’s confidence in the decision:87

Vc =
|Vd − Cd|

σ̂d

(1)

where Vd is the decision variable, Cd the decision criterion, and σ̂d the subject’s estimate of σd. We assume that the subject88

is unsure about the exact level of stimulus uncertainty. Repeated trials will thus not only elicit different values of the decision89

variable, but will also elicit different estimates of stimulus uncertainty. Specifically, we assume that σ̂d is on average correct90

(i.e., its mean value equals σd), but varies from trial-to-trial with standard deviation σm, resulting in “meta-uncertainty” (the91

larger σm, the greater this meta-uncertainty). As we shall see, variability in the decision variable is the critical model component92

that limits stimulus discriminability, while variability in the uncertainty estimate similarly limits metacognitive ability. Finally,93

comparing the confidence variable with a fixed criterion, Cc, yields a confidence report (Fig. 1e, bottom).94

To fit this model to data, the form of the noise distributions must be specified. A common choice for the first-stage noise is the95

normal distribution. This choice is principled, as the normal distribution is the maximum entropy distribution for real-valued96

signals with a specified mean and variance34. It is also convenient, as it results in fairly simple data-analysis recipes22. The97

second-stage noise describes variability of a positive-valued signal (σd cannot be smaller than zero by definition). A suitable98

maximum entropy distribution for such a variable is the log-normal distribution28,34. Under these assumptions, the confidence99

variable is a probability distribution constructed as the distribution of the ratio of a normally and log-normally distributed100

variable. There exists no closed form description of this ratio distribution, ruling out simple data-analysis recipes. However,101

we can leverage modern computational tools to quickly compute the confidence variable’s probability density function by102

describing it as a mixture of Gaussian distributions (see Methods). This mathematical street-fighting maneuver35 enables us103

to fit this two-stage process model to choice data (Fig. 1b-d, full lines). Before doing so, we first derive a set of basic model104

predictions.105

Deriving model predictions106

To gain a deeper understanding of the impact of the different model components on confidence reports, we investigated the107

model’s behavior in a continuous 2-AFC discrimination task with binary confidence report options (“confident” or “not confi-108

dent”). We assumed the decision variable’s mean value to be stimulus-dependent (in this simulation, it is identical to the true109

stimulus value). All other model components were varied independently of the stimulus (see Methods). Altering the first-stage110

decision criterion (Fig. 2a, top left, orange vs grey line) affects the confidence variable distribution by shifting its mode and,111
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Figure 2 Impact of the different model components on primary choice behavior and confidence reports. (a) Top left: illustration of

the decision criterion (orange line) and the decision variable distribution elicited by repeated presentations of the same stimulus

(orange distribution). Bottom left: the associated confidence variable distribution (purple distribution). Vc is a positive-valued

variable. As plotting convention, we reserve negative values for “Category A” choices, and positive values for “Category B”

choices. The confidence criterion (purple line) therefore shows up twice in this graph. Top right: the resulting psychometric

function over a range of stimulus values (orange line). The filled symbol corresponds to the condition depicted on the left

hand side. Bottom right: same for the resulting confidence function. All panels: the grey dotted line illustrates how the model

predictions change when a specific model component (here, the decision criterion) is altered. The open symbol corresponds to

the condition depicted on the left hand side. (b) Increasing the level of stimulus uncertainty affects both primary decisions and

confidence reports. (c) Lowering the confidence criterion yields more “confident” reports at all stimulus values. (d) Increasing

meta-uncertainty increases the fraction of “confident” reports for weak stimuli, but has the opposite effect for strong stimuli.

(e) The confidence-consistency relation for two levels of meta-uncertainty. All other model parameters held equal. (f) The

psychometric function, split out by confidence report (“confident” in green vs “not confident” in red), for three levels of meta-

uncertainty. (g) The confidence-consistency relation under a liberal vs a conservative confidence criterion. All other model

parameters held equal, σm = 0.25.
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in the presence of meta-uncertainty, its spread and skew (Fig. 2a, bottom left, purple vs grey distribution). At the level of ob-112

servables, this manipulation results in a horizontal shift of the “psychometric function” that characterizes how choices depend113

on stimulus value (Fig. 2a, top right). This shift is accompanied by an identical shift of the “confidence function” that char-114

acterizes how confidence reports depend on stimulus value (Fig. 2a, bottom right). Effects of this kind have been documented115

for human20,36,37 and animal38,39 subjects. Altering the level of first-stage noise (Fig. 2b, top left, orange vs grey distribution)116

affects the confidence variable distribution by changing its mode and, in the presence of meta-uncertainty, its spread and skew117

(Fig. 2b, bottom left, purple vs grey distribution). At the level of choice behavior, this manipulation changes the slope of the118

psychometric function (Fig. 2b, top right) as well as the overall fraction of “confident” reports (Fig. 2b, bottom right). In119

contrast, the parameters that control the model’s second-stage operations do not affect the primary choice behavior but only the120

confidence reports. Specifically, changing the confidence criterion (Fig. 2c, bottom left, purple vs grey lines) mainly impacts121

the confidence function by shifting it vertically (Fig. 2c, bottom right). Changing the level of meta-uncertainty alters the confi-122

dence variable distribution’s mode, variance, and skew (Fig. 2d, bottom left, purple vs grey distribution), resulting in a complex123

pattern of changes in the confidence function (Fig. 2d, bottom right).124

What does it mean to say that someone has good or bad self-knowledge? The CASANDRE model provides a principled answer125

that is at once intuitive and revealing. Everything held equal, increasing meta-uncertainty makes the confidence variable126

distribution more heavy-tailed (Fig. 2d, bottom left). This in turn leads to an increase in the fraction of “confident” reports127

for weak stimuli, but has the opposite effect for strong stimuli (Fig. 2d, bottom right). As a consequence, the dynamic range128

of the confidence-consistency relation decreases (Fig. 2e). However, these effects are not balanced. In particular, when meta-129

uncertainty is high, there is a dramatic increase in “confident” reports for the most difficult conditions (Fig. 2e, full black130

line). This increase does not reflect an actual change in task performance (Fig. 2d, top right). Rather, the association between131

confidence and choice consistency has weakened. This can be appreciated by inspecting the psychometric function split out132

by confidence report. When meta-uncertainty is low, “confident” decisions tend to be much more reliable than “not confident”133

decisions (Fig. 2f, left, green vs red). As meta-uncertainty increases, this distinction weakens and eventually disappears (Fig. 2f,134

middle-right). In sum, under the CASANDRE model, a lack of self-knowledge means having a limited capacity to distinguish135

reliable from unreliable decisions (note that this is not the same as distinguishing correct from incorrect decisions)20. This is a136

practical and useful insight. However, the magnitude of the effects shown in Fig. 2e,f depends on the other model components137

as well (e.g., Fig. 2g). These components will rarely be constant across tasks, individuals, or the life-span. Determining the138

level of meta-uncertainty therefore requires directly fitting the model to data.139

Evaluating the model architecture140

We have motivated our framework on the basis of a qualitative observation (the lawful confidence-consistency relationship)141

and first principles (the inherent noisiness of perceptual and cognitive processes). To further test the central tenets of the142

CASANDRE model, we quantitatively examined the choice-confidence data collected by Adler and Ma (2018). We conducted143

several model comparisons designed to interrogate the framework’s second-stage operations. For this reason, we began by144

fitting the first-stage parameters to each subject’s choice data and then kept these parameters constant across all model variants145

(see example in Fig. 3a). We first asked whether a simpler computation can account for confidence reports. We compared146

a model variant in which confidence reflects a subject’s estimate of stimulus strength14,29–33 with one in which it reflects an147

estimate of decision reliability (i.e., stimulus strength normalized by stimulus uncertainty; Fig. 3b, left). To quantify model148

quality, we computed each model’s AIC value (see Methods). For all 19 subjects, the more complex model outperformed the149

simpler variant (median difference in AIC = 1179.5; Fig. 3c, top). We then asked whether meta-uncertainty is a necessary150

model component, and found this to be the case (Fig. 3b, middle). Including meta-uncertainty improved model quality for all151

19 subjects (median difference in AIC = 285.2; Fig. 3c, middle). These model comparisons thus provide strong and consistent152

support for the hypothesis that confidence reflects a subject’s noisy estimate of the reliability of their decision.153

Further attempts to improve the model architecture yielded comparatively weak and inconsistent results. In particular, we154

wondered whether model performance would benefit from allowing criterion-asymmetry (meaning that the confidence criteria155

depend on the primary decision) and adopting a different second-stage noise distribution (the Gamma distribution). Allowing156

criterion-asymmetry improved model performance for 16 out of 19 subjects (median difference in AIC = 27.9; Fig. 3b, right;157

Fig. 3c, bottom; different example subject shown in Supplementary Fig. 2), while the log-normal distribution was preferred over158

the Gamma distribution for 16 out of 19 subjects (median difference in AIC = 17.7). For simplicity, we chose to use symmetric159

confidence criteria for all further analyses. Finally, we compared the CASANDRE model with a model recently proposed by160

Shekhar and Rahnev (2021; the “criteria-noise model”). In this model, confidence reflects a subject’s estimate of evidence161

strength and metacognitive ability is limited by a subject’s inability to maintain constant confidence criteria across trials28.162

As this model is tailored to experiments that employ only two levels of stimulus strength, we examined the choice-confidence163

data collected by Shekhar and Rahnev (2021) and found that the CASANDRE model either matched or outperformed the164
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Figure 3 Comparison of different model architectures. (a) Proportion of "Category B" choices is plotted against stimulus orien-

tation for high and low contrast stimuli (top vs bottom). Symbols summarize observed choice behavior of an example subject

(observer 7 in experiment 2 from ref. 25), the dotted line illustrates the theoretical optimum, and the full lines show the fit of the first

stage which is shared across all model variants examined in this analysis. As previously, the model was fit to all data simultane-

ously. (b) Mean confidence level is plotted as a function of stimulus orientation for the example subject. (Left) Fits of two model

variants in which confidence either reflects an estimate of decision reliability (full lines) or of stimulus strength (dashed lines).

(Middle) Fits of two model variants in which confidence either reflects a noisy (full lines) or noiseless (dashed lines) estimate of

decision reliability. (Right) Fits of two model variants in which confidence criteria either depend (full lines) or not (dashed lines)

on the primary decision. (c) Distribution of the difference in AIC value for each model comparison across 19 subjects. Positive

values indicate evidence for the more complex model variant. Arrows indicate median of the distribution. *** P < 0.001, Wilcoxon

signed-rank test.

criteria-noise model (Supplementary Fig. 8a; see Supplementary Information).165

Estimating meta-uncertainty from sparse data166

We seek to quantify a subject’s ability to introspect about the reliability of a decision. Our method consists of interpreting human167

choice-confidence data through the lens of a principled two-stage process model. What kind of measurements are required to168

obtain robust and reliable estimates of meta-uncertainty, the model’s parameter that governs metacognitive ability? We verified169

that Adler and Ma’s experimental design affords solid parameter recovery (See Supplementary Fig. 3). However, their design170

is exceptional for its large number of stimulus conditions25. Many studies use as little as two conditions23. To test whether171

our approach generalizes to such experiments, we performed a recovery analysis. We used the CASANDRE model to generate172

synthetic data sets for five model subjects performing a 2-AFC discrimination task with binary confidence report options (see173

Methods). The model subjects only differed in their level of meta-uncertainty, which ranged from negligible to considerable174

(Fig. 4a, colored lines). We simulated data for each model subject using experimental designs that varied in the number of trials175

(100 vs 1,000) and in the number of conditions (2 vs 20; Fig. 4a, top). Figure 4b summarizes an example synthetic experiment.176

The model parameters (σd, Cd, σm, Cc) specify the relation between stimulus value and the probability of each response option177

(Fig. 4b, left). We used these probabilities to simulate a synthetic dataset of 1,000 trials distributed across 20 conditions (Fig.178

4b, middle). We then identified the set of parameter values that best describes these data (Fig. 4b, right). We repeated this179

procedure 100 times for each simulated experiment. Our method yields robust estimates of meta-uncertainty: for all model180

subjects and all experimental designs, the median estimate closely approximates the ground truth value (Fig. 4c, symbols). The181

reliability of these estimates is higher for more trials and somewhat higher for denser stimulus sampling (Fig. 4c, error bars).182

Estimation error in σm covaried with estimation error in Cc (Supplementary Fig. 7 ). We conclude that the CASANDRE model183

typically can be identified in sparse experimental designs.184
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Figure 4 Model recovery analysis. (a) We simulated choice-confidence data for five model subjects who differed in their level of

meta-uncertainty (colored lines) using experimental designs that varied in the number of trials (100 vs 1,000) and in the number

of conditions (2 vs 20, grey and black symbols). (b) An example synthetic experiment and model-based analysis. (c) The median

estimate of meta-uncertainty is plotted against the ground truth value for four experimental designs. Meta-uncertainty was limited

to a minimum value of 0.1. Error bars illustrate the interquartile range (IQR) computed from 100 simulated data sets.

Meta-uncertainty: construct reliability and validity185

So far, we have presented evidence that confidence is well described as reflecting a subject’s decision-reliability estimate. In the186

CASANDRE model, the quality of this estimate is limited by meta-uncertainty. This naturally raises the question of whether187

meta-uncertainty is a "real" thing. In other words, do meta-uncertainty estimates isolate a stable property of human subjects188

that captures their metacognitive ability?189

The most straightforward form of stability is repeatability. If we were to measure a subject’s meta-uncertainty on two different190

occasions using the same experimental paradigm, we should obtain similar estimates. Navajas et al. (2017) conducted a191

perceptual confidence experiment in which 14 subjects performed the same task twice with approximately one month in between192

test sessions24. We used the CASANDRE model to analyze their data (see Methods and Supplementary Fig. 4). Measured and193

predicted choice-confidence data were strongly correlated, indicating that the model describes the data well (condition-specific194

proportion correct choices: Spearman’s rank correlation coefficient r = 0.96, P < 0.001; condition-specific mean confidence195

level: r = 0.99, P < 0.001). Critically, we found meta-uncertainty estimates to be strongly correlated across both sessions as196

well (r = 0.78, P = 0.002; Fig. 5a). This suggests that meta-uncertainty measures a stable characteristic of human confidence197

reporting behavior.198

Under the CASANDRE model, meta-uncertainty provides a measure of metacognitive ability, not of confidence reporting199

strategy. To investigate whether this idealized pattern holds true in human choice-confidence data, we analyzed data from 43200

sessions where subjects either performed a perceptual or a cognitive confidence task. They reported their confidence in a binary201

decision using a six-point rating scale24. We artificially biased these confidence reports by mapping them onto a liberal and a202

conservative 4-point rating scale (see Methods)40. This manipulation resulted in a mean confidence level of 2.89 and 2.43 –203

a substantial difference in light of the standard deviation (the effect size, expressed as Cohen’s d, is 3.16). We then used the204

model to analyze both perturbed versions of the data (see Methods). Meta-uncertainty estimates were strongly correlated (r =205

0.84, P < 0.001; Fig. 5b), though note that they were on average higher for the conservatively biased version of the data (mean206

increase: 47%, median increase: 0%, P = 0.002, Wilcoxon signed rank test). This suggests that meta-uncertainty estimates are207

largely, but not fully, independent of subjects’ confidence reporting strategy.208

We wondered whether meta-uncertainty depends on the absolute level of stimulus uncertainty41. We analyzed data from 43209

sessions where subjects either performed a perceptual or cognitive confidence task. In both tasks, stimulus uncertainty was210

manipulated by varying the variance of the category distributions over four levels24. We used the CASANDRE model to211

analyze these data and estimated meta-uncertainty separately for the two lowest and the two highest levels of stimulus variance212

(see Methods). The former conditions resulted in a much higher task performance than the latter (average proportion correct213

decisions: 87% vs 70%). According to the model, the corresponding underlying levels of stimulus uncertainty, σd, averaged214

2.61 and 8.71. While increasing stimulus variance tripled stimulus uncertainty, meta-uncertainty estimates did not change215

much (median change: –14.76%, P = 0.004, Wilcoxon signed rank test). Moreover, meta-uncertainty estimates were strongly216

correlated across both sets of conditions (r = 0.70, P < 0.001; Fig. 5c). This suggests that meta-uncertainty is largely, but not217

fully, independent of the absolute level of stimulus uncertainty.218

Whether metacognitive ability is domain-specific or domain-general is a debated question8,42–44. We analyzed data from 20219

subjects who performed a perceptual and cognitive confidence task. Both tasks had the same experimental design. Stimulus220

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2021.12.17.473249doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473249
http://creativecommons.org/licenses/by/4.0/


σ
m
 – test 

0.1 0.4

σ m
 –

 r
e
te

s
t

0.1

0.4

2.0

a

σ
m
 – perceptual task

σ m
 –

 c
o
g
n
iti

v
e
 t
a
s
k

dIs meta-uncertainty...stable? ...domain-general?

Test Retest Perception Cognition

2.0 0.1 0.4 2.0

0.1

0.4

2.0r = 0.78
P = 0.002

r = 0.64
P = 0.003

σ
m
 – liberal criterion

σ m
 –

 c
o
n
s
e
rv

a
tiv

e
 c

ri
te

ri
o
n

b ...criterion-independent?

0.1 0.4 2.0

0.1

0.4

2.0 r = 0.84
P < 0.001

σ
m
 – uncertainty low

σ m
 –

 u
n
c
e
rt

a
in

ty
 h

ig
h

c ...uncertainty-independent?

0.1 0.4 2.0

0.1

0.4

2.0 r = 0.70
P < 0.001

Figure 5 Evaluating meta-uncertainty as a psychological construct. (a) Comparison of meta-uncertainty estimates for 14 subjects

who performed the same perceptual confidence task on two different occasions, separated by 1 month. We added a small

amount of jitter to get a better view of overlapping data points in the lower left region of the plot. Meta-uncertainty was limited

to a minimum value of 0.1. (b) Comparison of meta-uncertainty estimates for 43 sessions (performed by 32 subjects, see

methods) whose 6-point confidence ratings were mapped onto a liberal and conservative 4-point rating scale. (c) Comparison of

meta-uncertainty estimates for 43 sessions where subjects performed a confidence task involving low and high levels of stimulus

uncertainty. (d) Comparison of meta-uncertainty estimates for 20 subjects who performed a perceptual and cognitive confidence

task.

categories were either defined by the average orientation of a series of rapidly presented gratings, or by the average value221

of a series of rapidly presented numbers24. Subjects’ performance level was correlated across both tasks (condition-specific222

proportion correct choices: r = 0.69, P < 0.001), and so were their reported confidence levels, albeit to a lesser degree (r =223

0.53, P < 0.001). We used the CASANDRE model to analyze both data-sets (see Methods). Meta-uncertainty estimates were224

strongly correlated (r = 0.64, P = 0.003; Fig. 5d). Thus, meta-uncertainty appears to capture an aspect of confidence-reporting225

behavior that generalizes across at least some domains.226

Comparison with other metrics for metacognitive ability227

Our method to analyze choice-confidence data is built on the hypothesis that metacognitive ability is determined by meta-228

uncertainty. It is natural to ask how this metric of metacognitive ability relates to alternatives. We approach this question in229

two ways. First, by investigating this relationship in silico whilst using the CASANDRE model as generative model of choice-230

confidence reports. And second, by comparing performance of these different candidate-metrics on a set of real bench-marking231

experiments (the tests shown in Fig. 5a-d).232

One historically popular approach to quantify metacognitive ability consists of measuring the trial-by-trial correlation between233

choice accuracy and the confidence report (this metric is sometimes termed “phi”)12. Consider an analysis of the choice-234

confidence reports of five model subjects who differed in their level of meta-uncertainty. We additionally varied the other235

model components in a step-wise fashion and computed phi for each simulated experiment. This analysis revealed a complex236

interdependence of the effects of the different model components on phi (Fig. 6a, top). An alternative method to quantify237

metacognitive ability that has gained popularity in recent years seeks to estimate how well confidence judgements distinguish238

correct from incorrect decisions13,45. This estimate is expressed in signal-to-noise units and often termed “meta-d′”. The239

ratio of meta-d′ and stimulus discrimination ability (d′) theoretically provides a measure of metacognitive efficiency and is240

often considered the quantity of interest45. Under the CASANDRE model, the meta-d′/d′ metric does not provide a direct241

measurement of meta-uncertainty, but instead reflects a complex mixture of model components (Fig. 6a, middle).242

Finally, a recently introduced model of confidence judgments attributes metacognitive inefficiencies to perfectly correlated243

cross-trial variability in the confidence criteria28. For experiments involving only two levels of stimulus strength, criteria noise244

can be estimated by fitting this model to choice-confidence data28. In a practical sense, correlated criteria noise resembles meta-245

uncertainty in that it solely impacts confidence reports. However, assuming noisy uncertainty estimates versus noisy confidence246

criteria results in metrics that behave somewhat differently (Fig. 6a, bottom).247

Now consider the relationship between these metrics and meta-uncertainty for the three experiments performed by Navajas et al.248

(2017). Meta-uncertainty estimates and phi are well correlated (r = –0.60, P < 0.001, Spearman correlation, Fig. 6b, top). But249

the correlation of two other model components with phi also reaches statistical significance: stimulus uncertainty (r = –0.59,250

P < 0.001) and the confidence criterion (r = –0.24, P = 0.028). Likewise, meta-uncertainty and meta-d′/d′ are well correlated251

(r = –0.52, P < 0.001, Fig. 6b, middle). But the confidence criterion is also correlated with meta-d′/d′ (r = –0.29, P = 0.008).252
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Figure 6 Comparing meta-uncertainty with three existing metrics of metacognitive ability. (a) We simulated choice-confidence

data for a set of model observers who differed in their level of meta-uncertainty (colored lines) and additionally varied the

decision criterion (left), the level of stimulus uncertainty (middle), and the confidence criterion (right). We estimated phi (top),

meta-d′/d′ (middle), and criteria noise (bottom) for each simulated experiment. (b) Phi (top), meta-d′/d′ (middle), and criteria

noise (bottom) plotted against meta-uncertainty estimates for three confidence experiments. Each symbol summarizes data from

a single session (84 total sessions across 50 subjects, see methods). Meta-uncertainty was limited to a minimum value of 0.1.

(c) Wedges indicate the proportion of variance in meta-uncertainty (left), phi, meta-d′/d′, and criteria noise explained by each

model component. (d) Comparison of the performance of four metrics of metacognitive ability in four bench-marking tests. Top:

analysis of estimation bias. Bottom: analysis of estimation robustness. Error bars illustrate the interquartile range (IQR) across

subjects.

Finally, meta-uncertainty and criteria noise are well correlated (r = 0.64, P < 0.001, Fig. 6b, bottom). But the confidence253

criterion is also correlated with criteria noise (r = 0.37, P < 0.001). Variability in each of these metrics of metacognitive ability254

thus in part reflects variability in meta-uncertainty, and in part variability in other components of the CASANDRE model.255

To identify the relative importance of the different model components, we decomposed the variance of these metrics using256

the averaging-over-orderings technique (see Methods)46,47. We first asked whether variability in meta-uncertainty could be257

explained by other model components, but found this not be be the case (fraction of explained variance: 13%, Fig. 6c). In258

contrast, variability in phi is predominantly explained by stimulus uncertainty (27%), followed by meta-uncertainty (22%). For259

meta-d′/d′ and criteria noise, most variance is explained by meta-uncertainty (24% and 26%) while the contribution of the other260

model components is rather small (Fig. 6c). In summary, for all three alternative metrics, about three quarters of the variance261

arises from factors other than meta-uncertainty.262

Our analysis suggest that phi, meta-d′/d′ , and criteria noise do not isolate the factors that limit metacognitive ability but instead263

measure a complex mixture of factors underlying choice-confidence data. We wondered how the performance of these mixtures264

in bench-marking experiments compares to that of meta-uncertainty. We computed phi, meta-d′/d′, and criteria noise for the265

data sets shown in Fig. 5a-d. For each test, we first asked whether the manipulation induced a systematic change in the range266

of the different metrics. This was generally not the case. Change, expressed in units of standard deviation, tended to be small267

for all four metrics (Fig. 6d, top). We then asked for each test whether the different metrics were correlated across both test268

conditions. Correlations ranged from weak to strong levels, with three tests failing to reach statistical significance (uncertainty269

independence of criteria noise: r = 0.23, P = 0.145; test-retest reliability of criteria noise: r = 0.50, P = 0.072; and domain270

generality of meta-d′/d′: r = 0.44, P = 0.056). Overall, meta-uncertainty compared favorably to the alternative metrics. The271

mean correlation value across the four tests was 0.74 for meta-uncertainty, 0.67 for phi, 0.52 for meta-d′/d′, and 0.50 for criteria272

noise (all correlations are shown in Fig. 6d, bottom).273
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Figure 7 Meta-uncertainty depends on task structure. (a) We studied how meta-uncertainty depends on the number of un-

certainty levels under an ideal Bayesian uncertainty estimation strategy. The likelihood of each uncertainty value is computed

from a sensory measurement (left) while a prior belief function specifies task-specific knowledge of possible uncertainty values

(middle). The product of the prior and likelihood gives the posterior (right). Due to noise, the likelihood function will differ across

repeated trials (left: full vs dotted line). The impact of this variability on the posterior depends on the dispersion of the prior (right:

top vs bottom panel). (b) Meta-uncertainty plotted against number of uncertainty levels for the ideal Bayesian estimator. The

upper bound (dotted line) is set by the cross-trial variability of the maximum of the likelihood function and is reached when the

prior is a uniform distribution. (c) Median level of meta-uncertainty plotted against number of uncertainty levels for six confidence

experiments. Meta-uncertainty was limited to a minimum value of 0.1. Error bars illustrate the interquartile range (IQR) across

subjects (Adler and Ma (2018) task 1: 19 subjects; task 2: 34 subjects; Navajas et al. (2017): 50 subjects; Shekhar and Rahnev

(2021): 20 subjects; Denison et al. (2018): 12 subjects; Rausch et al. (2020): 25 subjects).

Manipulating meta-uncertainty274

Can metacognitive ability be manipulated experimentally? Key to our framework is that confidence judgements require a subject275

to estimate uncertainty on a trial-by-trial basis. This becomes more difficult when experiments involve more confusable levels276

of stimulus uncertainty. We therefore expect that meta-uncertainty will grow with the number of stimulus uncertainty levels.277

To appreciate our logic, consider the ideal Bayesian uncertainty estimation strategy which consists of combining information278

obtained from ambiguous sensory measurements with prior task-specific knowledge. Specifically, the sensory measurement279

informs the uncertainty likelihood function, while knowledge of task statistics (i.e., the distribution of stimulus uncertainty280

levels) is summarized in a prior uncertainty belief function (Fig. 7a). The combination of both yields a posterior uncertainty281

belief function, the maximum of which is the "best possible" uncertainty estimate (Fig. 7a). Due to noise, repeated presentations282

of the same condition will yield different likelihood functions (Fig. 7a, see Methods). If the task involves only one level of283

stimulus uncertainty, the prior is a fixed delta function, and so is the posterior. Consequently, the maximum posterior estimate284

will not vary across trials and the ideal estimation strategy results in zero meta-uncertainty. However, when a task involves285

multiple levels of stimulus uncertainty, the prior will be more dispersed, causing the resulting maximum posterior estimate to be286

more variable across trials. Under an ideal Bayesian estimation strategy, meta-uncertainty thus initially grows with the number287

of uncertainty levels (Fig. 7b). We wondered whether this normative prediction affords insight into human metacognition.288

To test this hypothesis, we used the CASANDRE model to analyze six confidence experiments that varied in the number of289

randomly interleaved uncertainty levels (see Methods). These experiments utilized different stimuli and employed different290

experimental designs24–28. Yet, as expected, meta-uncertainty appears to grow lawfully with the number of uncertainty levels291

(Fig. 7e).292

Discussion293

It has long been known that humans and other animals can meaningfully introspect about the quality of their decisions294

and actions5–7,31,48. Quantifying this ability has remained a significant challenge, even for simple binary decision-making295

tasks12,13,15,28,40,41. The core problem is that observable choice-confidence data reflect metacognitive ability as well as task296
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difficulty and response bias. To overcome this problem, we introduced a metric that is anchored in an explicit hypothesis about297

the decision-making process that underlies behavioral reports. Our method is based on likening choice-confidence data to the298

outcome of an abstract mathematical process in which confidence reflects a subject’s noisy estimate of their choice reliability,299

expressed in signal-to-noise units14,20,49. This framework allowed us to specify the effects of factors that limit metacognitive300

ability and to summarize this loss in a single, interpretable parameter: meta-uncertainty. We showed that this process model301

(which we term the CASANDRE model) can explain the effects of stimulus strength and stimulus reliability on confidence302

reports and that meta-uncertainty can be estimated from conventional experimental designs. We found that a subject’s level of303

meta-uncertainty is stable over time and across at least some domains. Meta-uncertainty can be manipulated experimentally: it304

is higher in tasks that involve more levels of stimulus reliability. Meta-uncertainty appears to be mostly independent of task dif-305

ficulty and confidence reporting strategy. Widely used metrics for metacognitive ability are poor proxies for meta-uncertainty.306

As such, the CASANDRE model represents a notable advance toward realizing crucial medium and long-term goals in the field307

of metacognition50.308

The mental operations underlying confidence in a decision have long intrigued psychologists. Two key unresolved issues are309

the structure and nature of the confidence computation50. At stake are two intertwined questions: (1) Does confidence arise310

from a single, dual, or hierarchical process? and (2) What exactly does confidence reflect? Some authors have proposed that311

decision outcome and confidence both arise from a single stimulus strength estimation process31,51–53. Such models can explain312

the effects of stimulus strength, but not of stimulus reliability. Others have argued in favor of a dual process in which decision313

outcome and confidence are based on different stimulus strength estimates54–56,56,57. This may be the appropriate framework314

for cases in which subjects acquire additional task-relevant information after reporting their choice57–60. For all other cases, it315

appears overly complex. Instead, we have modeled confidence judgements as arising from a hierarchical process61. The first316

stage determines the choice, the second stage determines confidence (Fig. 1e). We found that this model structure systematically317

outperforms a single stage alternative (Fig. 3c, top). The structure of the computation clarifies its nature. Many previous318

studies are built on the premise that confidence reflects a subject’s assessment of decision accuracy ("What is the probability319

that my choice is correct?"). This premise directly motivates Bayesian models of confidence1,25,31,62–68 and tacitly underlies320

popular metrics of metacognitive ability13,20. However, when experimental manipulations bias perceptual choices, aggregated321

confidence reports do not track choice accuracy but choice consistency20,36,37. At the single trial level, this suggests that322

confidence reflects a subject’s assessment of decision reliability ("What is the probability that I would make the same choice323

again?", see equation 1). For an unbiased subject who is choosing between two alternatives, decision accuracy and decision324

reliability are indistinguishable20,67. Yet, the distinction matters greatly, as it implies that the same computation that underlies325

confidence in decisions with a well-defined correct and incorrect option may generalize to subjective domains that lack this326

feature ("Which political candidate will I support?", "Which beer will I have?", "Should I skip class today?").69
327

Key to our proposal is that assessing the reliability of a decision requires the use of additional information (stimulus un-328

certainty)21 that in most tasks has no relevance for the choice as such. The notion that subjects can incorporate a stimulus329

uncertainty estimate when making perceptual inferences is well established25,70–72. And there is considerable evidence that330

neural activity in sensory areas of the brain conveys information about stimulus features as well as the uncertainty of those331

features68,73–78. Our proposed confidence computation yielded a new prediction: the more levels of stimulus uncertainty a task332

involves, the more variable uncertainty estimates will be. We validated this prediction by analyzing data from six different con-333

fidence experiments in which 160 subjects completed a total of 243,000 trials (Fig. 7c). This finding is arguably the strongest334

piece of empirical evidence that meta-uncertainty is the critical factor that limits human metacognitive ability. It was enabled335

by the use of modern computational tools to quickly compute the approximate ratio of two distributions (i.e., the confidence336

variable distribution) and by the availability of the confidence database23. This phenomenon also raises the question to what337

degree metacognitive ability estimates are influenced by experimental design. For example, studies that increase the volatility338

of stimuli within a trial (thereby making uncertainty more difficult to estimate) report confidence distortions that could likely339

be captured by the CASANDRE model79–81. An important future direction will be to investigate the effect of different stimulus340

uncertainty distributions on metacognitive ability.341

The CASANDRE model provides a static description of the outcome of a hierarchical decision-making process. However,342

making a decision requires time. The more difficult the decision, the more time it requires82,83. For this reason, some authors343

have suggested that decision time directly informs confidence58,84. This proposal enjoys strong empirical support38,63,80,84. It344

is related to our proposed confidence computation, provided that the decision variable results from a mechanism that resembles345

bounded evidence accumulation7. For these mechanisms, time to reach the bound reflects the drift rate of a drift diffusion346

process. Drift rate is governed by stimulus strength, normalized by stimulus uncertainty and thus determines decision reliability.347

Moreover, just like our second stage involves an additional factor to reflect on the quality of the decision (the uncertainty348

estimate), time measurements are not inherent to bounded accumulation. Like uncertainty estimates, neural and behavioral349

time measurements are strictly positive and noisy85–87. This noisiness provides the conceptual dynamic analogue for meta-350
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uncertainty in our static model. How it affects confidence reporting behavior in the diffusion-to-bound framework has not351

yet been studied. It remains to be seen whether choice outcome, reaction time, and metacognitive ability can all be modeled352

simultaneously.353

Process models are powerful tools to study cognition and perception. Here we leveraged a process model to interrogate the354

computations underlying our sense of confidence, to determine the effectiveness of various experimental designs, and to exam-355

ine model recoverability. However, the usefulness of process models far exceeds our current application. Specifically, when356

coupled to an explicit goal such as maximizing choice accuracy, process models can be used to derive the optimal task strategy.357

The resulting predictions offer a critical point of reference for human behavior88. This approach has revealed that humans358

improve the quality of uncertain decisions by accumulating evidence over time82, by combining information acquired through359

different sensory modalities70, and by exploiting knowledge of statistical regularities in the environment89. Might the same360

hold true for uncertain confidence judgments? Stated more generally: Does our brain attempt to maximize the precision of our361

sense of confidence? This is a fundamental question that is ripe to be addressed. Doing so will require experiments that ma-362

nipulate meta-uncertainty and incentivize the confidence reporting strategy (e.g., refs.31,48,53,55,63,90–92). The process model we363

have developed provides a vehicle to derive the reward-maximizing strategy and to evaluate whether human meta-uncertainty364

changes as expected for theoretically ideal introspection. We took a first step in this direction and validated a novel prediction:365

meta-uncertainty changes with task-structure as expected under an ideal Bayesian uncertainty estimation strategy.366

Methods367

Modeling: Hierarchical decision-making process368

We model choice-confidence data in binary decision-making tasks as arising from a hierarchical process. The first stage follows369

conventional signal detection theory applications22 and describes the primary decision as resulting from the comparison of a370

one-dimensional decision variable, Vd, with a fixed criterion, Cd. The decision variable is subject to zero-mean Gaussian noise371

and hence follows a normal distribution with mean µd and standard deviation σd. The decision variable is converted into a372

signed confidence variable, V ′

c
, by taking the difference of Vd and Cd, and dividing this difference by σ̂d, the subject’s estimate373

of σd. The family of normal distributions is closed under linear transformations. This means that, if σ̂d were a constant, V ′

c
374

would also follow a normal distribution with mean µ′

c
= (µd − Cd)/σ̂d and standard deviation σ′

c
= σd/σ̂d. The confidence375

report results from the comparison of the confidence variable with a single fixed criterion, Cc (or with a set of criteria if the376

confidence scale has more than two levels). It follows that the probability of a “confident” judgement given a “Category A”377

decision is given by P (C = 1|D = 0) = Φ(−Cc), where Φ(.) is the cumulative normal distribution with mean µ′

c
and378

standard deviation σ′

c
. By the same logic, P (C = 0|D = 0) = Φ(0) − Φ(−Cc), P (C = 0|D = 1) = Φ(Cc) − Φ(0), and379

P (C = 1|D = 1) = 1−Φ(Cc). Key to the CASANDRE model is that σ̂d is not a constant, but a random variable that follows380

a log-normal distribution with mean σd and standard deviation σm. Consequently, the signed confidence variable is a mixture381

of normal distributions, with mixing weights determined by σm. To obtain the probability of each response option under this382

mixture, we sample σ̂d in steps of constant cumulative density (using the Matlab function ‘logninv’), compute the probability383

of each response option under each sample’s resulting normal distribution (using the Matlab function ‘normcdf’), and average384

these probabilities across all samples. We found that this procedure yields stable probability estimates once the number of385

samples exceeds 25 (i.e., sampling the log-normal distribution in steps no greater than 4%). For all applications in this paper,386

we used 100 samples, thus sampling σ̂d at a cumulative density of 0.5%, 1.5%, 2.5%,..., and 99.5%. Finally, note that whenever387

we report values for σm, we use the coefficient of variation (σm/σd), as this ratio is identifiable under the model (the absolute388

level of meta-uncertainty is not, just like the absolute level of σd cannot be uniquely estimated from choice data).389

Modeling: Parameterization, simulations, and fitting390

We analyzed data from a large set of previously published studies that employed different task designs. The simplest designs391

involve the combination of a 2-AFC categorization decision and a binary confidence report (i.e. the model simulations shown392

in Fig. 2 and 4). Under the CASANDRE model, the predicted probability of each response option is fully specified by five393

parameters: the mean of the decision variable (µd), the standard deviation of the decision variable (σd), the decision criterion394

(Cd), the level of meta-uncertainty (σm), and the confidence criterion (Cc). It is not possible to estimate each of these parameters395

for every unique experimental condition. To make the model identifiable, we generally assume that µd is identical to the true396

stimulus value, that σd is constant for a given level of stimulus reliability, and that Cd, σm and Cc are constant across multiple397

conditions.We limited σm to a minimum value of 0.1, as values below this had indistinguishable effects on model behavior.398

Figure 2 shows how each of the parameters affects the model’s behavior. Finally, when fitting data, we use one additional399

parameter, λ, to account for stimulus-independent lapses93, which we assume to be uniformly distributed across all response400

options. We fit the model on a subject-by-subject basis. For each subject, we compute the log-likelihood of a given set of model401
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parameters across all choice-confidence reports and use an iterative procedure to identify the most likely set of parameter values402

(specifically, the interior point algorithm used by the Matlab function ‘fmincon’). Figure 4b shows an example model fit to a403

synthetic data set whereby we used 5 free parameters (λ, σd, Cd, σm, and Cc) to capture data across 20 experimental conditions.404

Some studies used a task design that combined a 2-AFC categorization decision with a multi-level confidence rating scale (i.e.,405

ref.24,25,27,28). To model these data, we used the same approach as described above but we used multiple confidence criteria406

(one less than the number of confidence levels). We modeled the data from ref.27 using seven free parameters: λ, σd, Cd, σm,407

and Cc (4-point confidence rating scale, thus three in total) (see Fig. 7c and Supplementary Fig. 5a). We modeled some data408

from ref.25 (task 1) using seventeen free parameters: λ, σd (one per contrast level, six in total), Cd (one per contrast level,409

six in total), σm, and Cc (4-point confidence rating scale, thus three in total). Example fits are shown in Fig. 1b,c and in410

Supplementary Fig. 1 (also see Fig. 7c, task 1 and Supplementary Fig. 5e). We modeled the data from ref.24 using twelve free411

parameters: λ, σd (one per stimulus variance level, four in total), Cd, σm, and Cc (6-point confidence rating scale, thus five in412

total). Example fits are shown in Supplementary Fig. 4 (also see Fig. 7c, Fig. 6b-d, and Supplementary Fig. 5d). We modeled413

the data from ref.28 using 10 free parameters: σd (one per stimulus reliability level, three in total), Cd, σm, and Cc (continuous414

confidence rating scale, discretized into 6-point confidence rating scale, thus five in total). See Fig. 7c, and Supplementary Fig.415

5b).416

Some studies used a task design in which the 2-AFC categorization decision pertained to two category distributions with417

the same mean but different spread (i.e., ref.25,26). To model these data, we assumed that the primary decision results from418

a comparison of the decision variable with two decision criteria, and that the confidence estimate is based on the distance419

between the decision variable and the nearest decision criterion. We modeled some data from ref.25 (task 2) using twenty-three420

free parameters: λ, σd (one per contrast level, six in total), Cd (two per contrast level, twelve in total), σm, and Cc (4-point421

confidence rating scale, thus three in total). See Fig. 7c, task 2. Example fits are shown in Supplementary Fig. 6 (also see422

Supplementary Fig. 5e). We modeled data from ref.26 using twenty-two free parameters: λ, σd (one per attention level, three423

in total), Cd (two per attention level, six in total), σm (one per attention level, three in total), and Cc (4-point confidence rating424

scale, one set per attention level, thus nine in total). See Fig. 7c and Supplementary Fig. 5c.425

Some studies used a task design that combined a 2-IFC categorization decision with a confidence report (i.e., Arbuzova and426

Filevich, unpublished but available in the Confidence Database23). In these tasks, a subject is shown two stimulus intervals427

and judges which interval contained the “signal” stimulus. To model such data, we assume that the decision is based on428

a comparison of the evidence provided by each stimulus interval. The one-dimensional decision variable, Vd, reflects the429

outcome of this comparison, which we model as a difference operation22. The difference of two Gaussian distributions is itself430

a Gaussian with mean equal to the difference of the means and standard deviation equal to the square root of the sum of the431

variances. Everything else is the same as for the 2-AFC task. When different from zero, Cd now reflects an interval bias (e.g.,432

a preference for “interval 1” choices). See example fit in Fig. 1d.433

Modeling: Model comparison434

We evaluated CASANDRE’s assumed confidence computation and overall model architecture by fitting different model variants435

to an experiment that involved joint manipulations of stimulus strength and stimulus reliability (ref.25, task 1, 19 subjects). For436

each model comparison, we computed the Akaike Information Criterion, given by:437

AIC = −2ln(L) + 2k,438

where L is the maximum value of a model’s likelihood function and k is the number of fitted parameters. To focus this analysis439

on the model’s second-stage operations, we began by fitting 13 first-stage parameters to each subject’s choice data: λ, σd440

(one per contrast level, six in total), Cd (one per contrast level, six in total). These parameters were kept constant across all441

model variants. The head-to-head model comparisons consisted of (1) confidence as a noiseless stimulus strength estimate vs442

confidence as a noiseless decision reliability estimate, (2) confidence as a noiseless decision reliability estimate vs confidence as443

a noisy decision reliability estimate, (3) symmetric confidence criteria vs asymmetric confidence criteria, and (4) a log-normal444

vs Gamma second-stage noise distribution.445

Datasets446

The majority of our analyses focus on two studies24,25. To test the effect of task structure on meta-uncertainty, we additionally447

analyzed data from three other studies26–28. The data from Navajas et al. (2017) were provided by an author24. All other datasets448

were obtained from the Confidence Database23 (available at: https://osf.io/s46pr/). Given that the CASANDRE model449

yields more reliable parameter estimates for longer experiments with more stimulus conditions (error bars in Fig. 4c), we450

included all experiments from the database that involved a large number of subjects, several hundred trials per subject, and451

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2022. ; https://doi.org/10.1101/2021.12.17.473249doi: bioRxiv preprint 

 https://osf.io/s46pr/
https://doi.org/10.1101/2021.12.17.473249
http://creativecommons.org/licenses/by/4.0/


multiple levels of stimulus strength and/or stimulus reliability. All detailed experimental designs and procedures are available452

in the original publications or in abbreviated form in the Confidence Database. We briefly describe each data set below.453

We analyzed data from all three experiments in ref.25. All subjects in experiments 1 and 2 performed both task 1 (discrimi-454

nating categories of orientation distributions with different means but the same standard deviation; their “Task A”) and task 2455

(discriminating categories of orientation distributions with the same mean but different standard deviations; their “Task B”).456

Since stimulus orientations were drawn from a continuous distribution, to plot the data we grouped nearby orientations into457

9 bins with similar numbers of trials. Data and model fits from two example subjects performing task 1 in experiment 1 are458

shown in Fig. 1b-c and Supplementary Fig. 1. Fitted parameters from all 19 subjects who performed experiments 1 and 2 are459

included in Fig. 7c (task 1) and Supplementary Fig. 5f. Subjects in experiment 3 performed only task 2. Data and model fits460

from an example subject performing task 2 in experiment 3 are shown in Supplementary Fig. 6. Fitted parameters from all 34461

subjects who performed task 2 in experiments 1, 2, and 3 are included in Fig. 7c (task 2) and Supplementary Fig. 5e.462

We analyzed data from all 3 experiments in ref.24. 30 subjects performed experiment 1. 14 of those 30 subjects returned about463

a month after their first session to perform the same task again as experiment 2. Finally, 20 subjects performed experiment464

3, participating in a perceptual (experiment 3A) and cognitive (experiment 3B) task in two different sessions. We analyzed465

each of these 84 different experimental sessions independently. Data and model fits from an example subject are shown in466

Supplementary Fig. 4. Fitted parameters and alternative metacognitive metrics from all 14 subjects who performed both467

experiments 1 and 2 are included in Fig. 5a and Fig. 6d (Test-retest stability). Fitted parameters and alternative metacognitive468

metrics from all 20 subjects who performed experiment 3 are included in Fig. 5d and Fig. 6d (Domain generality). Fitted469

parameters from 50 subjects performing experiment 1 and the perceptual task of experiment 3 (experiment 3A) are included470

in Fig. 7c and Supplementary Fig. 5d. Further analyses using these data to test the independence of meta-uncertainty from471

confidence reporting strategy and uncertainty are explained in the next section.472

We analyzed unpublished data from Arbuzova and Filevich (available in the Confidence Database under the name Arbu-473

zova_unpub_1)23. This experiment demonstrates the generalization of the CASANDRE model to a visuomotor estimation474

task as well as 2-IFC experimental designs. Data and model fits from a representative subject are shown in Fig. 1d.475

Fitted parameters from all 25 subjects from ref.27 and from all 20 subjects from ref28 are included in Fig. 7c. We analyzed data476

from 12 subjects performing a version of task 2 in ref.25 with an added attention manipulation from ref.26. To get the single477

estimate of meta-uncertainty included in Fig. 7c for each subject, we averaged the values estimated from all three attention478

conditions, as these were not significantly different.479

Construct validity analyses480

To test the independence between confidence reporting strategy and measures of metacognitive ability, we manipulated the481

confidence reporting behavior of subjects across all sessions from ref.24 (following an analysis developed by ref.40). In these482

experiments, confidence reports were measured using a six-point rating scale. We remapped responses into a four point rating483

scale using two different grouping rules (one conservative, one liberal). The conservative mapping is [1|2 3 4|5|6], the liberal484

mapping is [1|2|3 4 5|6] (i.e., for the conservative mapping, ratings 2, 3 and 4 were combined, and for the liberal mapping,485

ratings 3, 4, and 5 were combined.) To limit the model comparison to the second stage of the decision making process, the486

lapse rate, stimulus sensitivity, and perceptual criterion were shared across both model variants. Only the meta-uncertainty487

and confidence criteria differed across both model variants. To obtain adequately constrained and stable model fits to these488

manipulated data, we only included a session in the analysis if at least 10 responses were recorded at the highest level of the489

confidence scale. This reduced a total of 84 sessions to 43 (and 50 subjects to 32), shown in Fig. 5b.490

To test the independence between stimulus uncertainty and measures of metacognitive ability, we split experimental data from491

each session in half24. We estimated meta-uncertainty independently for the two easiest and the two hardest stimulus conditions.492

To limit the model comparison to the question of whether meta-uncertainty is independent of stimulus reliability, all other model493

parameters were fixed across conditions. For consistency with the criterion analysis, we applied the same inclusion criteria,494

yielding data from 43 sessions included in Fig. 5c.495

Calculating alternative metacognitive metrics496

We probed the relation between meta-uncertainty and three alternative metrics of metacognitive ability under the CASANDRE497

model. We used two distinct procedures for this. First, to obtain estimates of “meta-d′”, we used the CASANDRE model498

to specify the probability of each response option in a 2-AFC discrimination task with binary confidence report options for499

an experiment that included two stimulus conditions. We calculated meta-d′ following ref.45. Briefly, we searched for the500

level of sensory noise and the confidence criterion that best explained the distribution of confidence reports conditioned on the501
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primary choice, assuming a normally distributed confidence variable. The ratio of the ground truth sensory noise level and this502

estimate is plotted in the middle panels of Fig. 6a. Second, to obtain the expected value of phi, we simulated 200,000 trials in503

an experiment that included 20 levels of stimulus strength. We then calculated the Pearson correlation between the resulting504

choice accuracy and confidence vectors (Fig 6a, top panels). We used these same simulated trials to fit the criteria-noise model505

of Shekhar and Rahnev28. We downloaded their parameter optimization code and modified it as appropriate to fit our simulated506

data (available at https://osf.io/s8fnb/). In their procedure, a nested two-step, coarse-to-fine search algorithm is used507

to optimize the estimated confidence criteria and the confidence criteria noise level. The resulting criteria noise estimates are508

plotted in the bottom panels of Fig 6a. The non-smooth appearance of the curves is a consequence of instabilities in the fitting509

procedure.510

We also computed these alternative metrics for each session from ref.24 (see Fig. 6b-d). As is conventional, we estimated d
′

511

for each stimulus condition from the observed hit and false alarm rates22. To obtain estimates of “meta-d′”, we searched for512

the decision criterion, the set of confidence criteria, and the level of sensory noise that best explained the choice-conditioned513

data, assuming a normally distributed confidence variable. To obtain a single meta-d′/d′ estimate per session, we computed the514

arithmetic mean across the four stimulus conditions. We computed phi for each session by calculating the Pearson correlation515

between choice accuracy and raw confidence report. We again used the fitting procedure of Shekhar and Rahnev28, estimating516

decision criterion and four values of d
′ and optimizing four sets of confidence criteria and the value of criteria noise across the517

four stimulus conditions (Fig. 6b-d).518

To compute the proportion of variance in each alternative metric across 84 sessions24 explained by different components of519

the CASANDRE model, we used the averaging-over-orderings technique46,47. We used multiple linear regression to obtain520

the variance in a metric explained by the CASANDRE model. Then, for each model parameter we compute the difference in521

explained variance when the parameter is included and when it is not. The resulting estimates of explained variance for each522

parameter are plotted in Fig. 6c.523

Bayesian uncertainty estimation524

We examined a simple model of Bayesian uncertainty estimation (Fig. 7a-b.). We modeled the uncertainty likelihood function525

as a Gaussian function with a mean value, µu, that varied from trial-to-trial. Each trial, µu was randomly drawn from a Gaussian526

distribution whose average matched the true level of stimulus uncertainty, Su, and with standard deviation σu. As is typical for527

a well-calibrated model, the spread of the likelihood function equalled σu. We assumed three different experimental designs528

that yielded a prior uncertainty belief function composed of a single delta function (N = 1), three delta functions (N = 3), and529

five delta functions (N = 5). We simulated 1000 trials per design. In this simulation, we computed the posterior on a single530

trial basis and selected its maximum as the MAP uncertainty estimate. Fig 7b summarizes a simulation in which Su = 2.5,531

σu = 1.5, and the prior belief function peaked at 2.5 for N = 1, at 1.67, 2.5, and 3.33 for N = 3, and at 0.83, 1.67, 2.5, 3.33, and532

4.17 for N = 5.533

Data availability534

This study generated no new data. The data used in this study are available from the Confidence Database (available at:535

https://osf.io/s46pr/).536

Code availability537

The code supporting the findings of this study and a software package implementing the CASANDRE model is publicly538

available (https://github.com/gorislab/CASANDRE.git).539
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Supplementary information752

Adler and Ma (2018), task 1753

Figure 1b,c shows data from two subjects who performed a perceptual 2-AFC categorization task and additionally reported754

their confidence using a four-point rating scale. Data were collected by Adler and Ma (2018). Supplementary Figure 1a,b755

illustrates model fits by plotting the psychometric function (top row) and accompanying confidence function (bottom row) for756

each stimulus contrast (columns). Subjects completed 2,160 trials each. To model these data, we used one lapse rate parameter757

(obs 1-6: 5%; obs 1-9: 0.5%), one contrast-specific sensitivity parameter (obs 1-6: 0.21, 0.15, 0.14, 0.11, 0.07, and 0.06; obs758

1-9: 0.55, 0.42, 0.36, 0.24, 0.16, and 0.10), one contrast-specific decision criterion parameter (obs 1-6: 0.62, 0.55, 0.00, 1.49,759

0.45, and 1.28 degrees; obs 1-9: 0.03, -0.08, -0.32, 0.05, -0.35, and -1.33 degrees), one meta-uncertainty parameter (obs 1-6:760

0.21; obs 1-9: 0.51), and three confidence criterion parameters (obs 1-6: 0.02, 0.40, and 1.92; obs 1-9: 1.42, 3.30, and 10.99).761

The log-probability of the data under the model was –3,462.1 for obs 1-6, and –2,654.0 for obs 1-9.762
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Supplementary Figure 1 Model fits for two example subjects from Adler and Ma (2018). Both subjects judged whether a

stimulus belonged to category A or B. Category A stimuli typically had an orientation smaller than zero, while category B stimuli

typically had an orientation larger than zero. Stimuli varied in orientation and contrast. (a) Top: Proportion of “Category B”

choices is plotted against stimulus orientation, split out by stimulus contrast (columns, contrast decreases from left to right), for

one example subject (observer 6 in experiment 1 from ref. 25). Bottom: Same for mean confidence level. Symbols summarize

observed choice behavior, the dotted line illustrates the theoretical optimum, and the full lines show the fit of a two-stage process

model of decision-making. Symbol size is proportional to the number of trials. (b) Same for a different example subject (observer

9 in experiment 1 from ref. 25).
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Evaluating the ideal of criterion-symmetry763

Figure 3a,b shows data for one example subject (2-7) from Adler and Ma (2018) fit with different model variants. This764

example subject’s data were marginally better fit with a model with asymmetrical rather than symmetric confidence criteria765

(AIC difference = 10.9). Supplementary Figure 2 illustrates data from another example subject (2-2) for whom the difference766

in model performance is more substantial (AIC difference = 149.2).767
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Supplementary Figure 2 Following the same conventions as Figure 3. Left: proportion of "Category B" choices is plotted

against stimulus orientation for high contrast (top, green) and low contrast (bottom, yellow) for example subject (observer 2 in

experiment 2 from ref.25). Right: Mean confidence level is plotted as a function of stimulus orientation for the same example

observer. Symbols indicate data; lines indicate model fits. Solid lines indicate CASANDRE model fit with asymmetric confidence

criteria. Dashed lines indicate CASANDRE model fit with symmetric confidence criteria.
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Meta-uncertainty recovery, Adler and Ma (2018) task 1768

We verified that meta-uncertainty can be reliably recovered for the datasets used to evaluate the model’s architecture. These769

datasets came from the 19 subjects who participated in ref.25’s experiment 1 and 2. For each subject, we simulated 100 choice-770

confidence datasets using the CASANDRE model and the best-fitting parameter values. Each simulated experiment exactly771

matched the set of trials completed by the subject. We then analyzed the synthetic data in the same manner as the real data. As772

can be seen in Supplementary Figure 3, under this experimental design, meta-uncertainty is recoverable.773

Ground truth σ
m
 

0.1 0.4

 
E

s
ti
m

a
te

d
 σ

m

0.1

0.4

2.0

2.0

Supplementary Figure 3 Model recovery analysis for Adler and Ma (2018) task 1 data. The median estimate of meta-uncertainty

is plotted against the ground truth value for each subject. Error bars illustrate the interquartile range (IQR) computed from 100

simulated data sets.
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Navajas et al. (2017), experiment 1774

Figure 5a-d shows an analysis of data from subjects who performed either a perceptual or cognitive 2-AFC categorization775

task and additionally reported their confidence using a six-point rating scale. Data were collected by Navajas et al. (2017).776

Supplementary Figure 4 illustrates the model fit for an example subject by plotting the data in the format used in the original777

publication24. Proportion correct and confidence level are plotted against stimulus variance. The confidence reports are split778

out by decision accuracy. The experiment consisted of 400 trials. To model these data, we used one lapse rate parameter779

(0%), one stimulus variance-specific sensitivity parameter (0.67, 0.53, 0.33, and 0.19), one decision criterion parameter (–0.59780

degrees), one meta-uncertainty parameter (0.10), and five confidence criterion parameters (0.35, 1.19, 1.64, 2.29, and 3.36).781

The log-probability of the data under the model was –733.50.782
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Supplementary Figure 4 Model fit for an example subject from Navajas et al. (2017) (observer 1 in experiment 1). The subject

judged whether the mean orientation of a sequence of 30 rapidly presented Gabor stimuli was tilted right or left. Left: Stimulus

sequences were sampled from distributions with different orientation variance. Middle: Proportion correct choices is plotted

against stimulus variance for an example subject. Right: Mean confidence level is plotted against stimulus variance, split out

by decision accuracy. Symbols summarize observed choice behavior, the full line shows the fit of a two-stage process model of

decision-making.
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Goodness-of-fit across datasets783

Supplementary Figure 5 shows a comparison of the model predicted and observed choice behavior and confidence reports for784

the six tasks included in figure 7c.785

0

0.5

1.0

1

2.5

4

2.5
Predicted confidence level

  1  4  0 0.5   1

O
b
s
e
rv

e
d
 

Predicted choice proportion 

O
b
s
e
rv

e
d

a

O
b
s
e
rv

e
d

0

0.5

1.0

1

3.5

6

3.5  1  6  0 0.5   1

O
b
s
e
rv

e
d

Contrast

High

Low

b

0

0.5

1.0

1

2.5

4

2.5  1 4  0 0.5   1

O
b
s
e
rv

e
d
 

O
b
s
e
rv

e
d

e
Contrast

High

Low

0

0.5

1.0

1

2.5

4

2.5  1 4  0 0.5   1

O
b
s
e
rv

e
d

O
b
s
e
rv

e
d
 

f

Contrast

High

Low

0

0.5

1.0

1

2.5

4

2.5  1  4  0 0.5   1

O
b
s
e
rv

e
d
 

O
b
s
e
rv

e
d
 

Attention 

manipulation

c

Valid cue

Neutral

Invalid cue

0.5

.75

1.0

1

3.5

6

3.5
Predicted confidence level

  1  60.5 0.75   1

O
b
s
e
rv

e
d

Predicted performance 

O
b
s
e
rv

e
d

Stimulus 

variance
High

Low

d

Predicted confidence levelPredicted choice proportion 

Predicted confidence levelPredicted choice proportion  Predicted confidence levelPredicted choice proportion 

Predicted confidence levelPredicted choice proportion 

Supplementary Figure 5 Each symbol summarizes a single stimulus condition for a single subject. Color indicates stimulus

reliability. Left: Observed versus predicted choice behavior. Right: Observed versus predicted confidence level. (a) Data from

Rausch et al. (2020): 25 subjects. (b) Shekhar and Rahnev (2021): 20 subjects. c) Denison et al. (2018): 12 subjects. d)

Navajas et al. (2017): 50 subjects; e) Adler and Ma (2018) task 2: 34 subjects; f) Adler and Ma (2018) task 1: 19 subjects;
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Adler and Ma (2018), task 2786

Figure 7c includes a data-point for task 2 from Adler and Ma (2018) and one for Denison et al. (2018). Both studies employed787

a task design in which subjects discriminated two categories of orientation distributions with the same mean but different788

standard deviations. Supplementary Figure 6 illustrates an example model fit for this task by plotting the psychometric function789

(top row) and accompanying confidence function (bottom row) for each stimulus contrast (columns). The subject completed790

3,240 trials. To model these data, we used one lapse rate parameter (2.17%), one contrast-specific sensitivity parameter (0.68,791

0.55, 0.46, 0.28, 0.20, and 0.07), one contrast-specific low decision criterion parameter (-4.05, -4.27, -4.35, -5.21, -7.30, and792

-11.34 degrees), one contrast-specific high decision criterion parameter (3.62, 3.76, 4.26, 5.36, 5.38, and 9.66 degrees), one793

meta-uncertainty parameter (0.69), three confidence criterion parameters for “Category A” choices (0.69, 1.15, and 1.89), and794

three confidence criterion parameters for “Category B” choices (0.65, 1.78, and 4.53). The log-probability of the data under the795

model was –4,842.5. (Note: while the model fit illustrated here employs asymmetric confidence criteria, all fits in Figure 7c796

were with symmetric confidence criteria for consistency.)797
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Supplementary Figure 6 Model fits for an example subject from Adler and Ma (2018) (observer 7 in experiment 3). The subject

judged whether a stimulus belonged to category A or B. Category A stimuli were drawn from a distribution with small orientation

spread, category B stimuli were drawn from a distribution with large orientation spread. Stimuli varied in orientation and contrast.

Top: Proportion of “Category B” choices is plotted against stimulus orientation, split out by stimulus contrast (columns, contrast

decreases from left to right), for one example subject. Bottom: Same for mean confidence level. Symbols summarize observed

choice behavior, the full lines show the fit of the CASANDRE model.
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Parameter trade-offs798

Figure 4 illustrates a recovery analysis for the meta-uncertainty parameter of the CASANDRE model. Supplementary Figure 7799

illustrates an additional analysis of the trade-off between meta-uncertainty and the other parameters of the CASANDRE model800

using the same generated data and model fits as in Figure 4c. Although the variance in meta-uncertainty explained by trade-801

offs with confidence criterion can reach high levels, this is somewhat mitigated by denser stimulus sampling (Supplementary802

Fig. 7b, bottom) and is reasonable for datasets with a larger number of trials (Supplementary Fig. 7b, right) and for values of803

meta-uncertainty that are empirically observed more often (less than 1).804
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Supplementary Figure 7 Trade-off between meta-uncertainty and other CASANDRE model parameters. (a) Parameter cor-

relation for an example condition. Recovered meta-uncertainty and confidence criterion are plotted against each other for 100

model-generated datasets. The dashed lines represent the ground truth values for confidence criterion (Cc = 0.75) and meta-

uncertainty (σm = 0.8). Each symbol represents one dataset generated with 100 trials and a dense stimulus sampling regime.

(b) Trade-off between meta-uncertainty and confidence criterion. (c) Trade-off between meta-uncertainty and stimulus uncer-

tainty. (d Trade-off between meta-uncertainty and decision criterion.)
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Comparison with a criteria-noise model805

Shekhar and Rahnev recently described a hierarchical process model of confidence with desirable properties that dissociate806

a parameter capturing metacognitive ability from stimulus sensitivity and confidence reporting strategy28. They refer to the807

parameter capturing metacognitive ability as “meta-noise” and find that log-normally distributed meta-noise provides a better808

quantitative and qualitative match to empirical data than normally distributed noise. In the CASANDRE model, the standard809

deviation of a log-normal distribution also serves as a metric for the metacognitive ability of an observer, however these two810

uses of log-normal noise, like the models themselves, are not equivalent. In the CASANDRE model, the confidence variable811

is distributed according to the ratio of a normally and log-normally distributed variable, whereas in the model of Shekhar and812

Rahnev the confidence variable has a normal distribution identical to the decision variable but the positions of the confidence813

criteria are subject to log-normally distributed noise. We thus refer to the model of Shekhar and Rahnev as the “criteria-noise”814

model.815

We quantitatively compared the criteria-noise model with the CASANDRE model. Because the criteria-noise model is currently816

limited to experiments with two stimulus strengths, we did not apply it to data from ref.25 (as we did for comparing other817

model variants in Fig. 3), but instead fit the CASANDRE model to the data reported in their original paper28. For purposes of818

quantitative comparison to the criteria-noise model, we fit the CASANDRE model with asymmetric confidence criteria (yielding819

15 total parameters, see Methods). First, we compared the CASANDRE model to the criteria-noise model as described by820

Shekhar and Rhanev, with a different set of confidence criteria for each of three contrast values (yielding 35 total parameters).821

The CASANDRE model significantly outperformed the criteria-noise model (median difference in AIC = 7.8; P = 0.002,822

Wilcoxon signed-rank test; Supplementary Fig. 8a, top). Second, we compared the CASANDRE model to a simpler version823

of the criteria-noise model with only one set of confidence critiera (yielding 15 total parameters). There was no difference in824

performance between the CASANDRE model and this variant of the criteria-noise model (median difference in AIC = -0.1; P825

= 1, Wilcoxon signed-rank test; Supplementary Fig. 8a, bottom). Note: we discovered an incorrect scaling of likelihood values826

in the original code accompanying ref.28. We fixed this scaling and thus the AIC values used in this model comparison for the827

criteria-noise model differ from those reported in ref.28.828

Shekhar and Rahnev demonstrated that the level of confidence criteria noise can serve as a measure of metacognitive ability829

uncontaminated by stimulus sensitivity or confidence reporting strategy28. For comparison, we performed the same analysis830

using the CASANDRE model. Following their procedure, we mapped each subject’s continuous confidence reports into five831

different binary confidence rating scales, biasing confident reports to be more liberal or conservative. For each subject, we fit832

the CASANDRE model independently to each of these five remapped datasets across the three contrast levels. We removed one833

subject that in some conditions did not generate a single response to one of the four possible response options. Meta-uncertainty834

was largely insensitive to both confidence reporting strategy and stimulus sensitivity (Supplementary Fig. 8b; compare to Fig.835

11a in Shekhar and Rahnev28). A two-way ANOVA revealed no main effect of confidence criterion (F(4, 18) = 1.97, P = 0.11)836

or stimulus contrast (F(2, 18) = 0.04, P = 0.96) on meta-uncertainty. Further, the interaction between confidence reporting837

strategy and stimulus sensitivity was not significant (F(2, 4) = 1.57, P = 0.14). These results along with the model comparison838

(Supplementary Fig. 8a) demonstrate that the CASANDRE model performs quantitatively at least as well as the criteria-noise839

model in explaining the data reported in ref.28.840

We now turn to several more qualitative considerations that favor the CASANDRE model compared with the criteria-noise841

model. First, Shekhar and Rahnev show that empirical, averaged zROC functions have significant curvature compared with the842

straight zROC functions predicted by signal detection theory (their Fig. 4 and 5b). The criteria-noise model shows curved zROC843

functions but, as the authors note, they resemble piecewise linear functions rather than the smoothly curving zROC functions844

of the empirical data (see their Fig. 11, bottom left). The CASANDRE model generates smoothly curving averaged zROC845

functions that more closely resemble the empirically estimated zROC curves (Supplementary Fig. 8c; compare with Fig. 4 and846

5b in ref.28). Second, the CASANDRE model is easier to fit to data given that its parameters can be optimized using standard847

maximum likelihood estimation procedures, rather than the purpose-built, two-stage parameter search algorithm developed by848

Shekhar and Rahnev. Third, the CASANDRE model is more general and can be applied to experiments that vary stimulus849

strength in addition to stimulus uncertainty (such as ref.25), whereas the criteria-noise model is limited to experiments with two850

stimulus strengths. This is because the criteria-noise model makes the assumption that confidence is measured in units of d
′, but851

does not specify the computation that transforms units of stimulus to units of d
′. Fourth, the CASANDRE model specifies this852

confidence computation and posits that it is exactly noise in this transformation that can lead to limited metacognitive ability.853

Analogous to stimulus discrimination ability being limited by variation in the estimation of the stimulus, the CASANDRE854

model posits that metacognition is limited by variation in the estimation of the uncertainty required to compute confidence.855

In contrast, the criteria-noise model posits that lower metacognitive ability arises from the inability of subjects to maintain856

constant confidence criteria. Stochastic confidence criteria cause problems for model tractability, allowing for them to cross857

both the decision criterion and each other. By casting criteria-noise as log-normally distributed, Shekhar and Rahnev avoid the858
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problem of crossovers with the decision criterion, but to solve the problem of crossovers between confidence criteria they make859

the questionable assumption that noise is perfectly correlated across criteria. The CASANDRE model naturally avoids both of860

these issues. Fifth, the process captured by the CASANDRE model leads to new predictions about how metacognitive ability861

can be experimentally manipulated. Figure 7 illustrates how increasing the number of uncertainty levels in a task increases862

meta-uncertainty. If an inability to maintain stable criteria were a source of lower metacognitive ability instead, increasing the863

number of confidence response levels on the rating scale used by subjects should lower metacognitive ability (and increase meta-864

uncertainty estimated from the CASANDRE model). We see no evidence for this prediction when rearranging the estimated865

meta-uncertainty across tasks according to the number confidence response levels(Supplementary Fig. 8d).866
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Supplementary Figure 8 Comparison with Shekhar and Rahnev (2021). (a) Distribution of the difference in AIC value across 20

subjects for the CASANDRE model compared with the criteria-noise model with a different set of confidence criteria for each of

three contrast levels (top) or with one shared set of confidence criteria across all three contrasts (bottom). Positive values indicate

evidence favoring the CASANDRE model. Arrows indicate the median of the distribution. ** P < 0.01, Wilcoxon signed-rank test.

(b) Median meta-uncertainty across 20 subjects estimated independently for each contrast and confidence criterion location.

Error bars illustrate the interquartile range (IQR) across subjects. Compare to Fig. 11a in ref. 28. (c) Averaged zROC functions

across 20 subjects generated from fits of the CASANDRE model. The location of the decision criterion is indicated by an asterisk,

and the location of each confidence criterion is indicated by an x. The dashed lines illustrate the linear zROC functions predicted

from signal detection theory. Compare to Fig. 4, 5b, and 10 in ref. 28. (d) Median level of meta-uncertainty plotted against number

of confidence response levels for six confidence experiments. Error bars illustrate the interquartile range (IQR) across subjects.

Note the symbol representing ref. 28 is plotted at 50 although subjects rated their confidence on a continuous scale ranging from

50-100.
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