20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.17.473249; this version posted May 19, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Confidence as a noisy decision reliability estimate
Zoe M. Boundy-Singer"?, Corey M. Ziemba'2, Robbe L. T. Goris'*

1 Center for Perceptual Systems, The University of Texas at Austin, Austin, TX USA. 2 These authors contributed equally *
email: robbe.goris @utexas.edu

Decisions vary in difficulty. Humans know this and typically report more confidence in easy than in difficult
decisions. However, confidence reports do not perfectly track decision accuracy, but also reflect response
biases and difficulty misjudgments. To isolate the quality of confidence reports, we developed a model of
the decision-making process underlying choice-confidence data. In this model, confidence reflects a sub-
ject’s estimate of the reliability of their decision. The quality of this estimate is limited by the subject’s un-
certainty about the uncertainty of the variable that informs their decision (“meta-uncertainty”). This model
provides an accurate account of choice-confidence data across a broad range of perceptual and cognitive
tasks, revealing that meta-uncertainty varies across subjects, is stable over time, generalizes across some
domains, and can be manipulated experimentally. The model offers a parsimonious explanation for the
computational processes that underlie and constrain the sense of confidence.

Humans are aware of the fallibility of perception and cognition. When we experience a high degree of confidence in a perceptual
or cognitive decision, that decision is more likely to be correct than when we feel less confident'. This “metacognitive” ability
helps us to learn from mistakes?, to plan future actions?, and to optimize group decision-making*. There is a long-standing
interest in the mental operations underlying our sense of confidence®~’, and the rapidly expanding field of metacognition seeks
to understand how metacognitive ability varies across domains®, individuals®, clinical states '°, and development ''.

Quantifying a subject’s ability to introspect about the correctness of a decision is a challenging problem >4, There exists
no generally agreed-upon method'>. Even in the simplest decision-making tasks, several distinct factors influence a subject’s
confidence reports. Consider a subject jointly reporting a binary decision about a sensory stimulus (belongs to “Category A”
vs “Category B”) and their confidence in this decision. Confidence reports will reflect the subject’s ability to discriminate
between both stimulus categories — the higher this ability, the higher the reported confidence'®. They will also reflect the
subject’s response bias (e.g., a large willingness to declare “high confidence” or “Category A”)!7"!%. Yet, neither of these
factors characterizes the subject’s metacognitive ability '*.

Here, we introduce a method to quantify metacognitive ability on the basis of choice-confidence data. We propose that confi-
dence reflects a subject’s estimate of the reliability of their decision?’, expressed in units of signal-to-noise ratio. This estimate
results from a computation involving the uncertainty of the decision variable that informed the subject’s choice?!. It follows that
metacognitive ability is determined by the subject’s knowledge about this uncertainty, or lack thereof (i.e., uncertainty about
uncertainty, hereafter termed “meta-uncertainty’’). The more certain a subject is about the uncertainty of the decision variable,
the lower their meta-uncertainty, and the better they are able to assess the reliability of a decision. We leverage modern com-
putational techniques to formalize this hypothesis in a two-stage process model that is rooted in traditional signal detection
theory?? and that can be fit to choice-confidence data (the “CASANDRE” or “Confidence AS A Noisy Decision Reliability
Estimate” model). The model predicts a systematic dependency of confidence on choice consistency >’ and naturally separates
metacognitive ability from discrimination ability and response bias.

We found that this model provides an excellent account of choice-confidence data reported in a large set of previously pub-
lished studies>*~2%. Our analysis suggests that meta-uncertainty provides a better metric for metacognitive ability than the
non-process-model based alternatives that currently prevail in the literature '!>. Specifically, meta-uncertainty has higher test-
retest reliability, is less affected by discrimination ability and response bias, and has comparable cross-domain generalizability.
Meta-uncertainty is higher in tasks that involve more levels of stimulus uncertainty, implying that it can be manipulated exper-
imentally. Together, these results illuminate the mental operations that give rise to our sense of confidence, and they provide
evidence that metacognitive ability is fundamentally limited by subjects’ uncertainty about the reliability of their decisions.

Results

In simple decision-making tasks, human confidence reports lawfully reflect choice consistency . Consider two example sub-
jects who performed a two-alternative forced choice (2-AFC) categorization task in which they judged on every trial whether a
visual stimulus belonged to category A or B, and additionally reported their confidence in this decision using a four-point rating
scale. Categories were characterized by distributions of stimulus orientation that were predominantly smaller (A) or larger (B)
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Figure 1 CASANDRE, a two-stage process model of decision confidence, accounts for the relation between confidence reports
and choice consistency. (a) Experimental design employed by ref.?°. (b) Top: Proportion of “Category B” choices is plotted
against stimulus orientation, split out by stimulus contrast (green vs yellow), for two example subjects (left, obs 1-6: Observer 6
in experiment 1 from ref.??; right, obs 1-9: Observer 9 in experiment 1 from ref.%5). Bottom: Same for mean confidence level.
Symbols summarize observed choice behavior, the dotted line illustrates the theoretical optimum, and the full lines show the
fit of the CASANDRE model. Symbol size is proportional to the number of trials. The model was fit to all data simultaneously
using a maximum likelihood estimation method. Only two out of six contrasts are shown here. Fits to all conditions are shown in
Supplementary Fig. 1. (¢) Observed and predicted confidence-consistency relationship for two example subjects. (d) Observed
and predicted choice-confidence data for an example subject performing a visuo-haptic two-interval forced choice (2-IFC) cate-
gorization task (observer 36 in experiment 1 from Arbuzova and Filevich in the Confidence Database?®). (e) Schematic of the
hierarchical decision-making process underlying choice-confidence data in the CASANDRE model.

than zero degrees. Stimuli varied in orientation and contrast (Fig. 1a). Because the category distributions overlap, errors are
inevitable. The most accurate strategy is to choose category A for all stimuli whose orientation is smaller than zero degrees, and
category B for all stimuli whose orientation exceeds zero degrees (Fig. 1b, top, dotted line). As can be seen from the aggregated
choice behavior, the more the stimulus orientation deviates from zero, the more closely human subjects approximate this ideal
(Fig. 1b, top, symbols). As can also be seen, this relationship is modulated by stimulus contrast — the lower the stimulus con-
trast, the weaker the association between orientation and choice (Fig. 1b, top, green vs yellow symbols). The distinct effects of
orientation and contrast on choice consistency are evident in the subjects’ confidence reports. Confidence is minimal for con-
ditions associated with a choice proportion near 0.5 (i.e., the most difficult conditions), and monotonically increases as choice
proportions deviate more from 0.5 (Fig. 1b, bottom). We found that the association between choice consistency and confidence
is so strong, that plotting average confidence level against the aggregated choice behavior reveals a single relationship across all
stimulus conditions (Fig. 1c¢). This is true of both example subjects, although their confidence-consistency relationships differ
in shape, offset, and range. We speculate that a lawful confidence-consistency relationship is not a coincidental feature of this
experiment, but a widespread phenomenon in confidence studies (Fig. 1d).

A monotonically increasing relation between confidence reports and choice consistency implies that subjects can assess the
reliability of their decisions. However, whether their ability to do so is excellent or poor cannot be deduced from empirical
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measurements alone. One possibility is that subjects accurately assess decision reliability on every single trial, indicating excel-
lent metacognitive ability. Alternatively, there might be a high degree of cross-trial variability in confidence reports, implying
less accurate decision reliability assessment and thus limited metacognitive ability. Of course, given the variability of the pri-
mary choice behavior, some variability in confidence reports is expected, even for flawless introspection. How much exactly?
And what might be the origin of excess variance? Answering these questions requires a quantitative model that provides an
analogy for the mental operations that underlie a subject’s primary decisions and confidence reports. In the following section,
we develop such a process model.

A two-stage process model of decision-making

Assume that a subject solves a binary decision-making task by comparing a noisy, one-dimensional decision variable, Vg, to
a fixed criterion, Cy (Fig. le, top). For some tasks, it is convenient to think of this decision variable as representing a direct
estimate of a stimulus feature (e.g., orientation for the task shown in Fig. 1a). For other tasks, it is more appropriate to think
of it as representing the accumulated evidence that favors one response alternative over the other (e.g., “Have I heard this song
before?”’). The process model specified by these assumptions has proven very useful in the study of perception and cognition.
It readily explains why repeated presentations of the same stimulus often elicit variable choices. In doing so, it clarifies how

choices reflect a subject’s underlying ability to solve the task as well as their primary response bias >>.

We expand this framework with an analogous second processing stage that informs the subject’s confidence report. Assume
that the subject is presented with a set of stimuli that elicit the same level of cross-trial variability in the decision variable.
The smaller the overlap of the stimulus-specific decision variable distribution with the decision criterion, the “stronger” the
associated stimulus is, and the more consistent choices will be. On any given trial, the distance between the decision variable and
the decision criterion provides an instantaneously available proxy for stimulus strength, and hence for choice reliability 42933,
However, in many tasks, the decision variable’s dispersion, o4, will vary across conditions, resulting in different amounts of
stimulus “uncertainty” (the larger o4, the greater this uncertainty). To be a useful proxy for choice reliability, the stimulus
strength estimate must therefore be normalized by this factor?. This operation yields a unitless, positive-valued variable, V.,
which represents the subject’s confidence in the decision:

_ Va—=C4

0d

Ve ey
where V; is the decision variable, C, the decision criterion, and ¢z the subject’s estimate of 4. We assume that the subject
is unsure about the exact level of stimulus uncertainty. Repeated trials will thus not only elicit different values of the decision
variable, but will also elicit different estimates of stimulus uncertainty. Specifically, we assume that o4 is on average correct
(i.e., its mean value equals o), but varies from trial-to-trial with standard deviation o,,, resulting in “meta-uncertainty” (the
larger o, the greater this meta-uncertainty). As we shall see, variability in the decision variable is the critical model component
that limits stimulus discriminability, while variability in the uncertainty estimate similarly limits metacognitive ability. Finally,
comparing the confidence variable with a fixed criterion, C,, yields a confidence report (Fig. le, bottom).

To fit this model to data, the form of the noise distributions must be specified. A common choice for the first-stage noise is the
normal distribution. This choice is principled, as the normal distribution is the maximum entropy distribution for real-valued
signals with a specified mean and variance®*. It is also convenient, as it results in fairly simple data-analysis recipes??. The
second-stage noise describes variability of a positive-valued signal (o4 cannot be smaller than zero by definition). A suitable
maximum entropy distribution for such a variable is the log-normal distribution?®**, Under these assumptions, the confidence
variable is a probability distribution constructed as the distribution of the ratio of a normally and log-normally distributed
variable. There exists no closed form description of this ratio distribution, ruling out simple data-analysis recipes. However,
we can leverage modern computational tools to quickly compute the confidence variable’s probability density function by
describing it as a mixture of Gaussian distributions (see Methods). This mathematical street-fighting maneuver® enables us
to fit this two-stage process model to choice data (Fig. 1b-d, full lines). Before doing so, we first derive a set of basic model
predictions.

Deriving model predictions

To gain a deeper understanding of the impact of the different model components on confidence reports, we investigated the
model’s behavior in a continuous 2-AFC discrimination task with binary confidence report options (“confident” or “not confi-
dent”). We assumed the decision variable’s mean value to be stimulus-dependent (in this simulation, it is identical to the true
stimulus value). All other model components were varied independently of the stimulus (see Methods). Altering the first-stage
decision criterion (Fig. 2a, top left, orange vs grey line) affects the confidence variable distribution by shifting its mode and,
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Figure 2 Impact of the different model components on primary choice behavior and confidence reports. (a) Top left: illustration of
the decision criterion (orange line) and the decision variable distribution elicited by repeated presentations of the same stimulus
(orange distribution). Bottom left: the associated confidence variable distribution (purple distribution). V. is a positive-valued
variable. As plotting convention, we reserve negative values for “Category A” choices, and positive values for “Category B”
choices. The confidence criterion (purple line) therefore shows up twice in this graph. Top right: the resulting psychometric
function over a range of stimulus values (orange line). The filled symbol corresponds to the condition depicted on the left
hand side. Bottom right: same for the resulting confidence function. All panels: the grey dotted line illustrates how the model
predictions change when a specific model component (here, the decision criterion) is altered. The open symbol corresponds to
the condition depicted on the left hand side. (b) Increasing the level of stimulus uncertainty affects both primary decisions and
confidence reports. (¢) Lowering the confidence criterion yields more “confident” reports at all stimulus values. (d) Increasing
meta-uncertainty increases the fraction of “confident” reports for weak stimuli, but has the opposite effect for strong stimuli.
(e) The confidence-consistency relation for two levels of meta-uncertainty. All other model parameters held equal. (f) The
psychometric function, split out by confidence report (“confident” in green vs “not confident” in red), for three levels of meta-
uncertainty. (g) The confidence-consistency relation under a liberal vs a conservative confidence criterion. All other model
parameters held equal, 0., = 0.25.
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in the presence of meta-uncertainty, its spread and skew (Fig. 2a, bottom left, purple vs grey distribution). At the level of ob-
servables, this manipulation results in a horizontal shift of the “psychometric function” that characterizes how choices depend
on stimulus value (Fig. 2a, top right). This shift is accompanied by an identical shift of the “confidence function” that char-
acterizes how confidence reports depend on stimulus value (Fig. 2a, bottom right). Effects of this kind have been documented
for human %3637 and animal *8° subjects. Altering the level of first-stage noise (Fig. 2b, top left, orange vs grey distribution)
affects the confidence variable distribution by changing its mode and, in the presence of meta-uncertainty, its spread and skew
(Fig. 2b, bottom left, purple vs grey distribution). At the level of choice behavior, this manipulation changes the slope of the
psychometric function (Fig. 2b, top right) as well as the overall fraction of “confident” reports (Fig. 2b, bottom right). In
contrast, the parameters that control the model’s second-stage operations do not affect the primary choice behavior but only the
confidence reports. Specifically, changing the confidence criterion (Fig. 2c, bottom left, purple vs grey lines) mainly impacts
the confidence function by shifting it vertically (Fig. 2c, bottom right). Changing the level of meta-uncertainty alters the confi-
dence variable distribution’s mode, variance, and skew (Fig. 2d, bottom left, purple vs grey distribution), resulting in a complex
pattern of changes in the confidence function (Fig. 2d, bottom right).

What does it mean to say that someone has good or bad self-knowledge? The CASANDRE model provides a principled answer
that is at once intuitive and revealing. Everything held equal, increasing meta-uncertainty makes the confidence variable
distribution more heavy-tailed (Fig. 2d, bottom left). This in turn leads to an increase in the fraction of “confident” reports
for weak stimuli, but has the opposite effect for strong stimuli (Fig. 2d, bottom right). As a consequence, the dynamic range
of the confidence-consistency relation decreases (Fig. 2e). However, these effects are not balanced. In particular, when meta-
uncertainty is high, there is a dramatic increase in “confident” reports for the most difficult conditions (Fig. 2e, full black
line). This increase does not reflect an actual change in task performance (Fig. 2d, top right). Rather, the association between
confidence and choice consistency has weakened. This can be appreciated by inspecting the psychometric function split out
by confidence report. When meta-uncertainty is low, “confident” decisions tend to be much more reliable than “not confident”
decisions (Fig. 2f, left, green vs red). As meta-uncertainty increases, this distinction weakens and eventually disappears (Fig. 2f,
middle-right). In sum, under the CASANDRE model, a lack of self-knowledge means having a limited capacity to distinguish
reliable from unreliable decisions (note that this is not the same as distinguishing correct from incorrect decisions)?’. This is a
practical and useful insight. However, the magnitude of the effects shown in Fig. 2e,f depends on the other model components
as well (e.g., Fig. 2g). These components will rarely be constant across tasks, individuals, or the life-span. Determining the
level of meta-uncertainty therefore requires directly fitting the model to data.

Evaluating the model architecture

We have motivated our framework on the basis of a qualitative observation (the lawful confidence-consistency relationship)
and first principles (the inherent noisiness of perceptual and cognitive processes). To further test the central tenets of the
CASANDRE model, we quantitatively examined the choice-confidence data collected by Adler and Ma (2018). We conducted
several model comparisons designed to interrogate the framework’s second-stage operations. For this reason, we began by
fitting the first-stage parameters to each subject’s choice data and then kept these parameters constant across all model variants
(see example in Fig. 3a). We first asked whether a simpler computation can account for confidence reports. We compared
a model variant in which confidence reflects a subject’s estimate of stimulus strength '4?°-33 with one in which it reflects an
estimate of decision reliability (i.e., stimulus strength normalized by stimulus uncertainty; Fig. 3b, left). To quantify model
quality, we computed each model’s AIC value (see Methods). For all 19 subjects, the more complex model outperformed the
simpler variant (median difference in AIC = 1179.5; Fig. 3c, top). We then asked whether meta-uncertainty is a necessary
model component, and found this to be the case (Fig. 3b, middle). Including meta-uncertainty improved model quality for all
19 subjects (median difference in AIC = 285.2; Fig. 3c, middle). These model comparisons thus provide strong and consistent
support for the hypothesis that confidence reflects a subject’s noisy estimate of the reliability of their decision.

Further attempts to improve the model architecture yielded comparatively weak and inconsistent results. In particular, we
wondered whether model performance would benefit from allowing criterion-asymmetry (meaning that the confidence criteria
depend on the primary decision) and adopting a different second-stage noise distribution (the Gamma distribution). Allowing
criterion-asymmetry improved model performance for 16 out of 19 subjects (median difference in AIC = 27.9; Fig. 3b, right;
Fig. 3c, bottom; different example subject shown in Supplementary Fig. 2), while the log-normal distribution was preferred over
the Gamma distribution for 16 out of 19 subjects (median difference in AIC = 17.7). For simplicity, we chose to use symmetric
confidence criteria for all further analyses. Finally, we compared the CASANDRE model with a model recently proposed by
Shekhar and Rahnev (2021; the “criteria-noise model”). In this model, confidence reflects a subject’s estimate of evidence
strength and metacognitive ability is limited by a subject’s inability to maintain constant confidence criteria across trials?®.
As this model is tailored to experiments that employ only two levels of stimulus strength, we examined the choice-confidence
data collected by Shekhar and Rahnev (2021) and found that the CASANDRE model either matched or outperformed the
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Figure 3 Comparison of different model architectures. (a) Proportion of "Category B" choices is plotted against stimulus orien-
tation for high and low contrast stimuli (top vs bottom). Symbols summarize observed choice behavior of an example subject
(observer 7 in experiment 2 from ref.?%), the dotted line illustrates the theoretical optimum, and the full lines show the fit of the first
stage which is shared across all model variants examined in this analysis. As previously, the model was fit to all data simultane-
ously. (b) Mean confidence level is plotted as a function of stimulus orientation for the example subject. (Left) Fits of two model
variants in which confidence either reflects an estimate of decision reliability (full lines) or of stimulus strength (dashed lines).
(Middle) Fits of two model variants in which confidence either reflects a noisy (full lines) or noiseless (dashed lines) estimate of
decision reliability. (Right) Fits of two model variants in which confidence criteria either depend (full lines) or not (dashed lines)
on the primary decision. (¢) Distribution of the difference in AIC value for each model comparison across 19 subjects. Positive
values indicate evidence for the more complex model variant. Arrows indicate median of the distribution. *** P < 0.001, Wilcoxon
signed-rank test.

criteria-noise model (Supplementary Fig. 8a; see Supplementary Information).

Estimating meta-uncertainty from sparse data

We seek to quantify a subject’s ability to introspect about the reliability of a decision. Our method consists of interpreting human
choice-confidence data through the lens of a principled two-stage process model. What kind of measurements are required to
obtain robust and reliable estimates of meta-uncertainty, the model’s parameter that governs metacognitive ability? We verified
that Adler and Ma’s experimental design affords solid parameter recovery (See Supplementary Fig. 3). However, their design
is exceptional for its large number of stimulus conditions?. Many studies use as little as two conditions?3. To test whether
our approach generalizes to such experiments, we performed a recovery analysis. We used the CASANDRE model to generate
synthetic data sets for five model subjects performing a 2-AFC discrimination task with binary confidence report options (see
Methods). The model subjects only differed in their level of meta-uncertainty, which ranged from negligible to considerable
(Fig. 4a, colored lines). We simulated data for each model subject using experimental designs that varied in the number of trials
(100 vs 1,000) and in the number of conditions (2 vs 20; Fig. 4a, top). Figure 4b summarizes an example synthetic experiment.
The model parameters (o4, Cq4, o0, C.) specify the relation between stimulus value and the probability of each response option
(Fig. 4b, left). We used these probabilities to simulate a synthetic dataset of 1,000 trials distributed across 20 conditions (Fig.
4b, middle). We then identified the set of parameter values that best describes these data (Fig. 4b, right). We repeated this
procedure 100 times for each simulated experiment. Our method yields robust estimates of meta-uncertainty: for all model
subjects and all experimental designs, the median estimate closely approximates the ground truth value (Fig. 4c, symbols). The
reliability of these estimates is higher for more trials and somewhat higher for denser stimulus sampling (Fig. 4c, error bars).
Estimation error in o, covaried with estimation error in C,. (Supplementary Fig. 7 ). We conclude that the CASANDRE model
typically can be identified in sparse experimental designs.
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Figure 4 Model recovery analysis. (a) We simulated choice-confidence data for five model subjects who differed in their level of
meta-uncertainty (colored lines) using experimental designs that varied in the number of trials (100 vs 1,000) and in the number
of conditions (2 vs 20, grey and black symbols). (b) An example synthetic experiment and model-based analysis. (¢) The median
estimate of meta-uncertainty is plotted against the ground truth value for four experimental designs. Meta-uncertainty was limited
to a minimum value of 0.1. Error bars illustrate the interquartile range (IQR) computed from 100 simulated data sets.

Meta-uncertainty: construct reliability and validity

So far, we have presented evidence that confidence is well described as reflecting a subject’s decision-reliability estimate. In the
CASANDRE model, the quality of this estimate is limited by meta-uncertainty. This naturally raises the question of whether
meta-uncertainty is a "real” thing. In other words, do meta-uncertainty estimates isolate a stable property of human subjects
that captures their metacognitive ability?

The most straightforward form of stability is repeatability. If we were to measure a subject’s meta-uncertainty on two different
occasions using the same experimental paradigm, we should obtain similar estimates. Navajas et al. (2017) conducted a
perceptual confidence experiment in which 14 subjects performed the same task twice with approximately one month in between
test sessions>*. We used the CASANDRE model to analyze their data (see Methods and Supplementary Fig. 4). Measured and
predicted choice-confidence data were strongly correlated, indicating that the model describes the data well (condition-specific
proportion correct choices: Spearman’s rank correlation coefficient r = 0.96, P < 0.001; condition-specific mean confidence
level: r =0.99, P < 0.001). Critically, we found meta-uncertainty estimates to be strongly correlated across both sessions as
well (r =0.78, P = 0.002; Fig. 5a). This suggests that meta-uncertainty measures a stable characteristic of human confidence
reporting behavior.

Under the CASANDRE model, meta-uncertainty provides a measure of metacognitive ability, not of confidence reporting
strategy. To investigate whether this idealized pattern holds true in human choice-confidence data, we analyzed data from 43
sessions where subjects either performed a perceptual or a cognitive confidence task. They reported their confidence in a binary
decision using a six-point rating scale?*. We artificially biased these confidence reports by mapping them onto a liberal and a
conservative 4-point rating scale (see Methods)*’. This manipulation resulted in a mean confidence level of 2.89 and 2.43 —
a substantial difference in light of the standard deviation (the effect size, expressed as Cohen’s d, is 3.16). We then used the
model to analyze both perturbed versions of the data (see Methods). Meta-uncertainty estimates were strongly correlated (r =
0.84, P < 0.001; Fig. 5b), though note that they were on average higher for the conservatively biased version of the data (mean
increase: 47%, median increase: 0%, P = 0.002, Wilcoxon signed rank test). This suggests that meta-uncertainty estimates are
largely, but not fully, independent of subjects’ confidence reporting strategy.

We wondered whether meta-uncertainty depends on the absolute level of stimulus uncertainty*'. We analyzed data from 43
sessions where subjects either performed a perceptual or cognitive confidence task. In both tasks, stimulus uncertainty was
manipulated by varying the variance of the category distributions over four levels?*. We used the CASANDRE model to
analyze these data and estimated meta-uncertainty separately for the two lowest and the two highest levels of stimulus variance
(see Methods). The former conditions resulted in a much higher task performance than the latter (average proportion correct
decisions: 87% vs 70%). According to the model, the corresponding underlying levels of stimulus uncertainty, o4, averaged
2.61 and 8.71. While increasing stimulus variance tripled stimulus uncertainty, meta-uncertainty estimates did not change
much (median change: —14.76%, P = 0.004, Wilcoxon signed rank test). Moreover, meta-uncertainty estimates were strongly
correlated across both sets of conditions (r = 0.70, P < 0.001; Fig. 5c). This suggests that meta-uncertainty is largely, but not
fully, independent of the absolute level of stimulus uncertainty.

Whether metacognitive ability is domain-specific or domain-general is a debated question®**~**. We analyzed data from 20
subjects who performed a perceptual and cognitive confidence task. Both tasks had the same experimental design. Stimulus
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Figure 5 Evaluating meta-uncertainty as a psychological construct. (a) Comparison of meta-uncertainty estimates for 14 subjects
who performed the same perceptual confidence task on two different occasions, separated by 1 month. We added a small
amount of jitter to get a better view of overlapping data points in the lower left region of the plot. Meta-uncertainty was limited
to a minimum value of 0.1. (b) Comparison of meta-uncertainty estimates for 43 sessions (performed by 32 subjects, see
methods) whose 6-point confidence ratings were mapped onto a liberal and conservative 4-point rating scale. (¢) Comparison of
meta-uncertainty estimates for 43 sessions where subjects performed a confidence task involving low and high levels of stimulus
uncertainty. (d) Comparison of meta-uncertainty estimates for 20 subjects who performed a perceptual and cognitive confidence
task.

categories were either defined by the average orientation of a series of rapidly presented gratings, or by the average value
of a series of rapidly presented numbers?*. Subjects’ performance level was correlated across both tasks (condition-specific
proportion correct choices: » = 0.69, P < 0.001), and so were their reported confidence levels, albeit to a lesser degree (r =
0.53, P < 0.001). We used the CASANDRE model to analyze both data-sets (see Methods). Meta-uncertainty estimates were
strongly correlated (r = 0.64, P = 0.003; Fig. 5d). Thus, meta-uncertainty appears to capture an aspect of confidence-reporting
behavior that generalizes across at least some domains.

Comparison with other metrics for metacognitive ability

Our method to analyze choice-confidence data is built on the hypothesis that metacognitive ability is determined by meta-
uncertainty. It is natural to ask how this metric of metacognitive ability relates to alternatives. We approach this question in
two ways. First, by investigating this relationship in silico whilst using the CASANDRE model as generative model of choice-
confidence reports. And second, by comparing performance of these different candidate-metrics on a set of real bench-marking
experiments (the tests shown in Fig. 5a-d).

One historically popular approach to quantify metacognitive ability consists of measuring the trial-by-trial correlation between
choice accuracy and the confidence report (this metric is sometimes termed “phi”’)'?. Consider an analysis of the choice-
confidence reports of five model subjects who differed in their level of meta-uncertainty. We additionally varied the other
model components in a step-wise fashion and computed phi for each simulated experiment. This analysis revealed a complex
interdependence of the effects of the different model components on phi (Fig. 6a, top). An alternative method to quantify
metacognitive ability that has gained popularity in recent years seeks to estimate how well confidence judgements distinguish
correct from incorrect decisions'>#3. This estimate is expressed in signal-to-noise units and often termed “meta-d’”. The
ratio of meta-d’ and stimulus discrimination ability (d’) theoretically provides a measure of metacognitive efficiency and is
often considered the quantity of interest®>. Under the CASANDRE model, the meta-d’/d’ metric does not provide a direct
measurement of meta-uncertainty, but instead reflects a complex mixture of model components (Fig. 6a, middle).

Finally, a recently introduced model of confidence judgments attributes metacognitive inefficiencies to perfectly correlated
cross-trial variability in the confidence criteria®®. For experiments involving only two levels of stimulus strength, criteria noise
can be estimated by fitting this model to choice-confidence data?®. In a practical sense, correlated criteria noise resembles meta-
uncertainty in that it solely impacts confidence reports. However, assuming noisy uncertainty estimates versus noisy confidence
criteria results in metrics that behave somewhat differently (Fig. 6a, bottom).

Now consider the relationship between these metrics and meta-uncertainty for the three experiments performed by Navajas et al.
(2017). Meta-uncertainty estimates and phi are well correlated (r = —0.60, P < 0.001, Spearman correlation, Fig. 6b, top). But
the correlation of two other model components with phi also reaches statistical significance: stimulus uncertainty (r = —0.59,
P < 0.001) and the confidence criterion (r = —0.24, P = 0.028). Likewise, meta-uncertainty and meta-d’/d’ are well correlated
(r=-0.52, P <0.001, Fig. 6b, middle). But the confidence criterion is also correlated with meta-d'/d’ (r = —-0.29, P = 0.008).
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Figure 6 Comparing meta-uncertainty with three existing metrics of metacognitive ability. (a) We simulated choice-confidence
data for a set of model observers who differed in their level of meta-uncertainty (colored lines) and additionally varied the
decision criterion (left), the level of stimulus uncertainty (middle), and the confidence criterion (right). We estimated phi (top),
meta-d'/d’ (middle), and criteria noise (bottom) for each simulated experiment. (b) Phi (top), meta-d'/d’ (middle), and criteria
noise (bottom) plotted against meta-uncertainty estimates for three confidence experiments. Each symbol summarizes data from
a single session (84 total sessions across 50 subjects, see methods). Meta-uncertainty was limited to a minimum value of 0.1.
(c) Wedges indicate the proportion of variance in meta-uncertainty (left), phi, meta-d'/d’, and criteria noise explained by each
model component. (d) Comparison of the performance of four metrics of metacognitive ability in four bench-marking tests. Top:
analysis of estimation bias. Bottom: analysis of estimation robustness. Error bars illustrate the interquartile range (IQR) across
subjects.

Finally, meta-uncertainty and criteria noise are well correlated (r = 0.64, P < 0.001, Fig. 6b, bottom). But the confidence
criterion is also correlated with criteria noise (r = 0.37, P < 0.001). Variability in each of these metrics of metacognitive ability
thus in part reflects variability in meta-uncertainty, and in part variability in other components of the CASANDRE model.

To identify the relative importance of the different model components, we decomposed the variance of these metrics using
the averaging-over-orderings technique (see Methods)*®*7. We first asked whether variability in meta-uncertainty could be
explained by other model components, but found this not be be the case (fraction of explained variance: 13%, Fig. 6c¢). In
contrast, variability in phi is predominantly explained by stimulus uncertainty (27%), followed by meta-uncertainty (22%). For
meta-d’/d’ and criteria noise, most variance is explained by meta-uncertainty (24% and 26%) while the contribution of the other
model components is rather small (Fig. 6¢). In summary, for all three alternative metrics, about three quarters of the variance
arises from factors other than meta-uncertainty.

Our analysis suggest that phi, meta-d’/d’ , and criteria noise do not isolate the factors that limit metacognitive ability but instead
measure a complex mixture of factors underlying choice-confidence data. We wondered how the performance of these mixtures
in bench-marking experiments compares to that of meta-uncertainty. We computed phi, meta-d’/d’, and criteria noise for the
data sets shown in Fig. 5a-d. For each test, we first asked whether the manipulation induced a systematic change in the range
of the different metrics. This was generally not the case. Change, expressed in units of standard deviation, tended to be small
for all four metrics (Fig. 6d, top). We then asked for each test whether the different metrics were correlated across both test
conditions. Correlations ranged from weak to strong levels, with three tests failing to reach statistical significance (uncertainty
independence of criteria noise: r = 0.23, P = 0.145; test-retest reliability of criteria noise: r = 0.50, P = 0.072; and domain
generality of meta-d’/d’: r = 0.44, P = 0.056). Overall, meta-uncertainty compared favorably to the alternative metrics. The
mean correlation value across the four tests was 0.74 for meta-uncertainty, 0.67 for phi, 0.52 for meta-d’/d’, and 0.50 for criteria
noise (all correlations are shown in Fig. 6d, bottom).
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Figure 7 Meta-uncertainty depends on task structure. (a) We studied how meta-uncertainty depends on the number of un-
certainty levels under an ideal Bayesian uncertainty estimation strategy. The likelihood of each uncertainty value is computed
from a sensory measurement (left) while a prior belief function specifies task-specific knowledge of possible uncertainty values
(middle). The product of the prior and likelihood gives the posterior (right). Due to noise, the likelihood function will differ across
repeated trials (left: full vs dotted line). The impact of this variability on the posterior depends on the dispersion of the prior (right:
top vs bottom panel). (b) Meta-uncertainty plotted against number of uncertainty levels for the ideal Bayesian estimator. The
upper bound (dotted line) is set by the cross-trial variability of the maximum of the likelihood function and is reached when the
prior is a uniform distribution. (¢) Median level of meta-uncertainty plotted against number of uncertainty levels for six confidence
experiments. Meta-uncertainty was limited to a minimum value of 0.1. Error bars illustrate the interquartile range (IQR) across
subjects (Adler and Ma (2018) task 1: 19 subjects; task 2: 34 subjects; Navajas et al. (2017): 50 subjects; Shekhar and Rahnev
(2021): 20 subjects; Denison et al. (2018): 12 subjects; Rausch et al. (2020): 25 subjects).

Manipulating meta-uncertainty

Can metacognitive ability be manipulated experimentally? Key to our framework is that confidence judgements require a subject
to estimate uncertainty on a trial-by-trial basis. This becomes more difficult when experiments involve more confusable levels
of stimulus uncertainty. We therefore expect that meta-uncertainty will grow with the number of stimulus uncertainty levels.
To appreciate our logic, consider the ideal Bayesian uncertainty estimation strategy which consists of combining information
obtained from ambiguous sensory measurements with prior task-specific knowledge. Specifically, the sensory measurement
informs the uncertainty likelihood function, while knowledge of task statistics (i.e., the distribution of stimulus uncertainty
levels) is summarized in a prior uncertainty belief function (Fig. 7a). The combination of both yields a posterior uncertainty
belief function, the maximum of which is the "best possible" uncertainty estimate (Fig. 7a). Due to noise, repeated presentations
of the same condition will yield different likelihood functions (Fig. 7a, see Methods). If the task involves only one level of
stimulus uncertainty, the prior is a fixed delta function, and so is the posterior. Consequently, the maximum posterior estimate
will not vary across trials and the ideal estimation strategy results in zero meta-uncertainty. However, when a task involves
multiple levels of stimulus uncertainty, the prior will be more dispersed, causing the resulting maximum posterior estimate to be
more variable across trials. Under an ideal Bayesian estimation strategy, meta-uncertainty thus initially grows with the number
of uncertainty levels (Fig. 7b). We wondered whether this normative prediction affords insight into human metacognition.
To test this hypothesis, we used the CASANDRE model to analyze six confidence experiments that varied in the number of
randomly interleaved uncertainty levels (see Methods). These experiments utilized different stimuli and employed different
experimental designs>*28. Yet, as expected, meta-uncertainty appears to grow lawfully with the number of uncertainty levels
(Fig. 7e).

Discussion

It has long been known that humans and other animals can meaningfully introspect about the quality of their decisions
and actions>**8_ Quantifying this ability has remained a significant challenge, even for simple binary decision-making
tasks 121315284041 " The core problem is that observable choice-confidence data reflect metacognitive ability as well as task
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difficulty and response bias. To overcome this problem, we introduced a metric that is anchored in an explicit hypothesis about
the decision-making process that underlies behavioral reports. Our method is based on likening choice-confidence data to the
outcome of an abstract mathematical process in which confidence reflects a subject’s noisy estimate of their choice reliability,
expressed in signal-to-noise units '+2%4°, This framework allowed us to specify the effects of factors that limit metacognitive
ability and to summarize this loss in a single, interpretable parameter: meta-uncertainty. We showed that this process model
(which we term the CASANDRE model) can explain the effects of stimulus strength and stimulus reliability on confidence
reports and that meta-uncertainty can be estimated from conventional experimental designs. We found that a subject’s level of
meta-uncertainty is stable over time and across at least some domains. Meta-uncertainty can be manipulated experimentally: it
is higher in tasks that involve more levels of stimulus reliability. Meta-uncertainty appears to be mostly independent of task dif-
ficulty and confidence reporting strategy. Widely used metrics for metacognitive ability are poor proxies for meta-uncertainty.
As such, the CASANDRE model represents a notable advance toward realizing crucial medium and long-term goals in the field

of metacognition®’.

The mental operations underlying confidence in a decision have long intrigued psychologists. Two key unresolved issues are
the structure and nature of the confidence computation®’. At stake are two intertwined questions: (1) Does confidence arise
from a single, dual, or hierarchical process? and (2) What exactly does confidence reflect? Some authors have proposed that
decision outcome and confidence both arise from a single stimulus strength estimation process*''=33. Such models can explain
the effects of stimulus strength, but not of stimulus reliability. Others have argued in favor of a dual process in which decision
outcome and confidence are based on different stimulus strength estimates>*>%3637_ This may be the appropriate framework
for cases in which subjects acquire additional task-relevant information after reporting their choice®’~°". For all other cases, it
appears overly complex. Instead, we have modeled confidence judgements as arising from a hierarchical process®'. The first
stage determines the choice, the second stage determines confidence (Fig. 1e). We found that this model structure systematically
outperforms a single stage alternative (Fig. 3c, top). The structure of the computation clarifies its nature. Many previous
studies are built on the premise that confidence reflects a subject’s assessment of decision accuracy ("What is the probability
that my choice is correct?"). This premise directly motivates Bayesian models of confidence !">>31:62-68 and tacitly underlies
popular metrics of metacognitive ability '>?°. However, when experimental manipulations bias perceptual choices, aggregated
confidence reports do not track choice accuracy but choice consistency?*3%37. At the single trial level, this suggests that
confidence reflects a subject’s assessment of decision reliability ("What is the probability that I would make the same choice
again?", see equation 1). For an unbiased subject who is choosing between two alternatives, decision accuracy and decision
reliability are indistinguishable?*®’. Yet, the distinction matters greatly, as it implies that the same computation that underlies
confidence in decisions with a well-defined correct and incorrect option may generalize to subjective domains that lack this
feature ("Which political candidate will I support?", "Which beer will I have?", "Should I skip class today?").%

Key to our proposal is that assessing the reliability of a decision requires the use of additional information (stimulus un-
certainty)?! that in most tasks has no relevance for the choice as such. The notion that subjects can incorporate a stimulus
uncertainty estimate when making perceptual inferences is well established?’%72. And there is considerable evidence that
neural activity in sensory areas of the brain conveys information about stimulus features as well as the uncertainty of those
features ®7378_ Our proposed confidence computation yielded a new prediction: the more levels of stimulus uncertainty a task
involves, the more variable uncertainty estimates will be. We validated this prediction by analyzing data from six different con-
fidence experiments in which 160 subjects completed a total of 243,000 trials (Fig. 7c). This finding is arguably the strongest
piece of empirical evidence that meta-uncertainty is the critical factor that limits human metacognitive ability. It was enabled
by the use of modern computational tools to quickly compute the approximate ratio of two distributions (i.e., the confidence
variable distribution) and by the availability of the confidence database?’. This phenomenon also raises the question to what
degree metacognitive ability estimates are influenced by experimental design. For example, studies that increase the volatility
of stimuli within a trial (thereby making uncertainty more difficult to estimate) report confidence distortions that could likely
be captured by the CASANDRE model "*-®!. An important future direction will be to investigate the effect of different stimulus
uncertainty distributions on metacognitive ability.

The CASANDRE model provides a static description of the outcome of a hierarchical decision-making process. However,
making a decision requires time. The more difficult the decision, the more time it requires>%3. For this reason, some authors
have suggested that decision time directly informs confidence>®%*. This proposal enjoys strong empirical support 38:63-80:84 Tt
is related to our proposed confidence computation, provided that the decision variable results from a mechanism that resembles
bounded evidence accumulation’. For these mechanisms, time to reach the bound reflects the drift rate of a drift diffusion
process. Drift rate is governed by stimulus strength, normalized by stimulus uncertainty and thus determines decision reliability.
Moreover, just like our second stage involves an additional factor to reflect on the quality of the decision (the uncertainty
estimate), time measurements are not inherent to bounded accumulation. Like uncertainty estimates, neural and behavioral
time measurements are strictly positive and noisy®®7. This noisiness provides the conceptual dynamic analogue for meta-
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uncertainty in our static model. How it affects confidence reporting behavior in the diffusion-to-bound framework has not
yet been studied. It remains to be seen whether choice outcome, reaction time, and metacognitive ability can all be modeled
simultaneously.

Process models are powerful tools to study cognition and perception. Here we leveraged a process model to interrogate the
computations underlying our sense of confidence, to determine the effectiveness of various experimental designs, and to exam-
ine model recoverability. However, the usefulness of process models far exceeds our current application. Specifically, when
coupled to an explicit goal such as maximizing choice accuracy, process models can be used to derive the optimal task strategy.
The resulting predictions offer a critical point of reference for human behavior®®. This approach has revealed that humans
improve the quality of uncertain decisions by accumulating evidence over time®, by combining information acquired through
different sensory modalities’’, and by exploiting knowledge of statistical regularities in the environment®. Might the same
hold true for uncertain confidence judgments? Stated more generally: Does our brain attempt to maximize the precision of our
sense of confidence? This is a fundamental question that is ripe to be addressed. Doing so will require experiments that ma-
nipulate meta-uncertainty and incentivize the confidence reporting strategy (e.g., refs.31:48:93:3563.90-92) "The process model we
have developed provides a vehicle to derive the reward-maximizing strategy and to evaluate whether human meta-uncertainty
changes as expected for theoretically ideal introspection. We took a first step in this direction and validated a novel prediction:
meta-uncertainty changes with task-structure as expected under an ideal Bayesian uncertainty estimation strategy.

Methods

Modeling: Hierarchical decision-making process

We model choice-confidence data in binary decision-making tasks as arising from a hierarchical process. The first stage follows
conventional signal detection theory applications?? and describes the primary decision as resulting from the comparison of a
one-dimensional decision variable, V;, with a fixed criterion, Cyy. The decision variable is subject to zero-mean Gaussian noise
and hence follows a normal distribution with mean 4 and standard deviation 4. The decision variable is converted into a
signed confidence variable, V, by taking the difference of V; and Cy, and dividing this difference by &, the subject’s estimate
of o4. The family of normal distributions is closed under linear transformations. This means that, if &, were a constant, V
would also follow a normal distribution with mean u, = (uq — Cy)/0 and standard deviation o/, = 04/d4. The confidence
report results from the comparison of the confidence variable with a single fixed criterion, C.. (or with a set of criteria if the
confidence scale has more than two levels). It follows that the probability of a “confident” judgement given a “Category A”
decision is given by P(C' = 1|D = 0) = ®(—C.), where ®(.) is the cumulative normal distribution with mean p, and
standard deviation o/,. By the same logic, P(C' = 0|D = 0) = ®(0) — ®(-C,), P(C = 0|D = 1) = ®(C,) — ®(0), and
P(C=1|D=1)=1-®(C,). Key to the CASANDRE model is that ¢ is not a constant, but a random variable that follows
a log-normal distribution with mean o4 and standard deviation o,,,. Consequently, the signed confidence variable is a mixture
of normal distributions, with mixing weights determined by o,,,. To obtain the probability of each response option under this
mixture, we sample ¢4 in steps of constant cumulative density (using the Matlab function ‘logninv’), compute the probability
of each response option under each sample’s resulting normal distribution (using the Matlab function ‘normcdf”), and average
these probabilities across all samples. We found that this procedure yields stable probability estimates once the number of
samples exceeds 25 (i.e., sampling the log-normal distribution in steps no greater than 4%). For all applications in this paper,
we used 100 samples, thus sampling &4 at a cumulative density of 0.5%, 1.5%, 2.5%,..., and 99.5%. Finally, note that whenever
we report values for o,,,, we use the coefficient of variation (¢,,/04), as this ratio is identifiable under the model (the absolute
level of meta-uncertainty is not, just like the absolute level of o4 cannot be uniquely estimated from choice data).

Modeling: Parameterization, simulations, and fitting

We analyzed data from a large set of previously published studies that employed different task designs. The simplest designs
involve the combination of a 2-AFC categorization decision and a binary confidence report (i.e. the model simulations shown
in Fig. 2 and 4). Under the CASANDRE model, the predicted probability of each response option is fully specified by five
parameters: the mean of the decision variable (1), the standard deviation of the decision variable (o), the decision criterion
(Cy), the level of meta-uncertainty (o), and the confidence criterion (C..). It is not possible to estimate each of these parameters
for every unique experimental condition. To make the model identifiable, we generally assume that (4 is identical to the true
stimulus value, that o, is constant for a given level of stimulus reliability, and that Cy, 0,,, and C,, are constant across multiple
conditions.We limited o, to a minimum value of 0.1, as values below this had indistinguishable effects on model behavior.
Figure 2 shows how each of the parameters affects the model’s behavior. Finally, when fitting data, we use one additional
parameter, )\, to account for stimulus-independent lapses®?, which we assume to be uniformly distributed across all response
options. We fit the model on a subject-by-subject basis. For each subject, we compute the log-likelihood of a given set of model
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parameters across all choice-confidence reports and use an iterative procedure to identify the most likely set of parameter values
(specifically, the interior point algorithm used by the Matlab function ‘fmincon’). Figure 4b shows an example model fit to a
synthetic data set whereby we used 5 free parameters (A, o4, Cq, 01, and C.) to capture data across 20 experimental conditions.

Some studies used a task design that combined a 2-AFC categorization decision with a multi-level confidence rating scale (i.e.,
ref.2#2327:28) " To model these data, we used the same approach as described above but we used multiple confidence criteria
(one less than the number of confidence levels). We modeled the data from ref.? using seven free parameters: \, o4, Cy, o,
and C, (4-point confidence rating scale, thus three in total) (see Fig. 7c and Supplementary Fig. 5a). We modeled some data
from ref.? (task 1) using seventeen free parameters: A, o4 (one per contrast level, six in total), Cyy (one per contrast level,
six in total), 0,,, and C. (4-point confidence rating scale, thus three in total). Example fits are shown in Fig. 1b,c and in
Supplementary Fig. 1 (also see Fig. 7c, task 1 and Supplementary Fig. 5e). We modeled the data from ref.?* using twelve free
parameters: \, o4 (one per stimulus variance level, four in total), Cy, o,,,, and C, (6-point confidence rating scale, thus five in
total). Example fits are shown in Supplementary Fig. 4 (also see Fig. 7c, Fig. 6b-d, and Supplementary Fig. 5d). We modeled
the data from ref. 28 using 10 free parameters: o4 (one per stimulus reliability level, three in total), Cy, 0., and C,. (continuous
confidence rating scale, discretized into 6-point confidence rating scale, thus five in total). See Fig. 7c, and Supplementary Fig.
5b).

Some studies used a task design in which the 2-AFC categorization decision pertained to two category distributions with
the same mean but different spread (i.e., ref.?>?). To model these data, we assumed that the primary decision results from
a comparison of the decision variable with two decision criteria, and that the confidence estimate is based on the distance
between the decision variable and the nearest decision criterion. We modeled some data from ref.?* (task 2) using twenty-three
free parameters: A\, o4 (one per contrast level, six in total), Cy (two per contrast level, twelve in total), o,,, and C. (4-point
confidence rating scale, thus three in total). See Fig. 7c, task 2. Example fits are shown in Supplementary Fig. 6 (also see
Supplementary Fig. Se). We modeled data from ref.?® using twenty-two free parameters: ), o4 (one per attention level, three
in total), Cy (two per attention level, six in total), o,,, (one per attention level, three in total), and C.. (4-point confidence rating
scale, one set per attention level, thus nine in total). See Fig. 7c and Supplementary Fig. Sc.

Some studies used a task design that combined a 2-IFC categorization decision with a confidence report (i.e., Arbuzova and
Filevich, unpublished but available in the Confidence Database?®). In these tasks, a subject is shown two stimulus intervals
and judges which interval contained the “signal” stimulus. To model such data, we assume that the decision is based on
a comparison of the evidence provided by each stimulus interval. The one-dimensional decision variable, V;, reflects the
outcome of this comparison, which we model as a difference operation??. The difference of two Gaussian distributions is itself
a Gaussian with mean equal to the difference of the means and standard deviation equal to the square root of the sum of the
variances. Everything else is the same as for the 2-AFC task. When different from zero, C; now reflects an interval bias (e.g.,
a preference for “interval 1” choices). See example fit in Fig. 1d.

Modeling: Model comparison

We evaluated CASANDRE'’s assumed confidence computation and overall model architecture by fitting different model variants
to an experiment that involved joint manipulations of stimulus strength and stimulus reliability (ref.?>, task 1, 19 subjects). For
each model comparison, we computed the Akaike Information Criterion, given by:

AIC = —2In(L) + 2k,

where L is the maximum value of a model’s likelihood function and % is the number of fitted parameters. To focus this analysis
on the model’s second-stage operations, we began by fitting 13 first-stage parameters to each subject’s choice data: A, o4
(one per contrast level, six in total), Cy (one per contrast level, six in total). These parameters were kept constant across all
model variants. The head-to-head model comparisons consisted of (1) confidence as a noiseless stimulus strength estimate vs
confidence as a noiseless decision reliability estimate, (2) confidence as a noiseless decision reliability estimate vs confidence as
a noisy decision reliability estimate, (3) symmetric confidence criteria vs asymmetric confidence criteria, and (4) a log-normal
vs Gamma second-stage noise distribution.

Datasets

The majority of our analyses focus on two studies>*?3. To test the effect of task structure on meta-uncertainty, we additionally
analyzed data from three other studies>-2%. The data from Navajas et al. (2017) were provided by an author?*. All other datasets
were obtained from the Confidence Database?* (available at: https://osf.io/s46pr/). Given that the CASANDRE model
yields more reliable parameter estimates for longer experiments with more stimulus conditions (error bars in Fig. 4c), we
included all experiments from the database that involved a large number of subjects, several hundred trials per subject, and
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multiple levels of stimulus strength and/or stimulus reliability. All detailed experimental designs and procedures are available
in the original publications or in abbreviated form in the Confidence Database. We briefly describe each data set below.

We analyzed data from all three experiments in ref.?3. All subjects in experiments 1 and 2 performed both task 1 (discrimi-
nating categories of orientation distributions with different means but the same standard deviation; their “Task A”) and task 2
(discriminating categories of orientation distributions with the same mean but different standard deviations; their “Task B”).
Since stimulus orientations were drawn from a continuous distribution, to plot the data we grouped nearby orientations into
9 bins with similar numbers of trials. Data and model fits from two example subjects performing task 1 in experiment 1 are
shown in Fig. 1b-c and Supplementary Fig. 1. Fitted parameters from all 19 subjects who performed experiments 1 and 2 are
included in Fig. 7c (task 1) and Supplementary Fig. 5f. Subjects in experiment 3 performed only task 2. Data and model fits
from an example subject performing task 2 in experiment 3 are shown in Supplementary Fig. 6. Fitted parameters from all 34
subjects who performed task 2 in experiments 1, 2, and 3 are included in Fig. 7c (task 2) and Supplementary Fig. Se.

We analyzed data from all 3 experiments in ref.?*. 30 subjects performed experiment 1. 14 of those 30 subjects returned about
a month after their first session to perform the same task again as experiment 2. Finally, 20 subjects performed experiment
3, participating in a perceptual (experiment 3A) and cognitive (experiment 3B) task in two different sessions. We analyzed
each of these 84 different experimental sessions independently. Data and model fits from an example subject are shown in
Supplementary Fig. 4. Fitted parameters and alternative metacognitive metrics from all 14 subjects who performed both
experiments 1 and 2 are included in Fig. 5a and Fig. 6d (Test-retest stability). Fitted parameters and alternative metacognitive
metrics from all 20 subjects who performed experiment 3 are included in Fig. 5d and Fig. 6d (Domain generality). Fitted
parameters from 50 subjects performing experiment 1 and the perceptual task of experiment 3 (experiment 3A) are included
in Fig. 7c and Supplementary Fig. 5d. Further analyses using these data to test the independence of meta-uncertainty from
confidence reporting strategy and uncertainty are explained in the next section.

We analyzed unpublished data from Arbuzova and Filevich (available in the Confidence Database under the name Arbu-
zova_unpub_1)%3. This experiment demonstrates the generalization of the CASANDRE model to a visuomotor estimation
task as well as 2-IFC experimental designs. Data and model fits from a representative subject are shown in Fig. 1d.

f. 27 f28

Fitted parameters from all 25 subjects from ref. <’ and from all 20 subjects from ref-° are included in Fig. 7c. We analyzed data
from 12 subjects performing a version of task 2 in ref.?> with an added attention manipulation from ref.?¢. To get the single
estimate of meta-uncertainty included in Fig. 7c for each subject, we averaged the values estimated from all three attention
conditions, as these were not significantly different.

Construct validity analyses

To test the independence between confidence reporting strategy and measures of metacognitive ability, we manipulated the
confidence reporting behavior of subjects across all sessions from ref.?* (following an analysis developed by ref.). In these
experiments, confidence reports were measured using a six-point rating scale. We remapped responses into a four point rating
scale using two different grouping rules (one conservative, one liberal). The conservative mapping is [112 3 4I516], the liberal
mapping is [112I3 4 5I6] (i.e., for the conservative mapping, ratings 2, 3 and 4 were combined, and for the liberal mapping,
ratings 3, 4, and 5 were combined.) To limit the model comparison to the second stage of the decision making process, the
lapse rate, stimulus sensitivity, and perceptual criterion were shared across both model variants. Only the meta-uncertainty
and confidence criteria differed across both model variants. To obtain adequately constrained and stable model fits to these
manipulated data, we only included a session in the analysis if at least 10 responses were recorded at the highest level of the
confidence scale. This reduced a total of 84 sessions to 43 (and 50 subjects to 32), shown in Fig. 5b.

To test the independence between stimulus uncertainty and measures of metacognitive ability, we split experimental data from
each session in half>*. We estimated meta-uncertainty independently for the two easiest and the two hardest stimulus conditions.
To limit the model comparison to the question of whether meta-uncertainty is independent of stimulus reliability, all other model
parameters were fixed across conditions. For consistency with the criterion analysis, we applied the same inclusion criteria,
yielding data from 43 sessions included in Fig. Sc.

Calculating alternative metacognitive metrics

We probed the relation between meta-uncertainty and three alternative metrics of metacognitive ability under the CASANDRE
model. We used two distinct procedures for this. First, to obtain estimates of “meta-d’”, we used the CASANDRE model
to specify the probability of each response option in a 2-AFC discrimination task with binary confidence report options for
an experiment that included two stimulus conditions. We calculated meta-d’ following ref.*>. Briefly, we searched for the
level of sensory noise and the confidence criterion that best explained the distribution of confidence reports conditioned on the
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primary choice, assuming a normally distributed confidence variable. The ratio of the ground truth sensory noise level and this
estimate is plotted in the middle panels of Fig. 6a. Second, to obtain the expected value of phi, we simulated 200,000 trials in
an experiment that included 20 levels of stimulus strength. We then calculated the Pearson correlation between the resulting
choice accuracy and confidence vectors (Fig 6a, top panels). We used these same simulated trials to fit the criteria-noise model
of Shekhar and Rahnev 8. We downloaded their parameter optimization code and modified it as appropriate to fit our simulated
data (available at https://osf.io/s8fnb/). In their procedure, a nested two-step, coarse-to-fine search algorithm is used
to optimize the estimated confidence criteria and the confidence criteria noise level. The resulting criteria noise estimates are
plotted in the bottom panels of Fig 6a. The non-smooth appearance of the curves is a consequence of instabilities in the fitting
procedure.

We also computed these alternative metrics for each session from ref.?* (see Fig. 6b-d). As is conventional, we estimated d’
for each stimulus condition from the observed hit and false alarm rates??. To obtain estimates of “meta-d’”, we searched for
the decision criterion, the set of confidence criteria, and the level of sensory noise that best explained the choice-conditioned
data, assuming a normally distributed confidence variable. To obtain a single meta-d’/d’ estimate per session, we computed the
arithmetic mean across the four stimulus conditions. We computed phi for each session by calculating the Pearson correlation
between choice accuracy and raw confidence report. We again used the fitting procedure of Shekhar and Rahnev 28, estimating
decision criterion and four values of d’ and optimizing four sets of confidence criteria and the value of criteria noise across the
four stimulus conditions (Fig. 6b-d).

To compute the proportion of variance in each alternative metric across 84 sessions’* explained by different components of
the CASANDRE model, we used the averaging-over-orderings technique*®*’. We used multiple linear regression to obtain
the variance in a metric explained by the CASANDRE model. Then, for each model parameter we compute the difference in
explained variance when the parameter is included and when it is not. The resulting estimates of explained variance for each
parameter are plotted in Fig. 6c.

Bayesian uncertainty estimation

We examined a simple model of Bayesian uncertainty estimation (Fig. 7a-b.). We modeled the uncertainty likelihood function
as a Gaussian function with a mean value, y,,, that varied from trial-to-trial. Each trial, yi,, was randomly drawn from a Gaussian
distribution whose average matched the true level of stimulus uncertainty, .S,,, and with standard deviation o,,. As is typical for
a well-calibrated model, the spread of the likelihood function equalled o,,. We assumed three different experimental designs
that yielded a prior uncertainty belief function composed of a single delta function (N = 1), three delta functions (N = 3), and
five delta functions (N = 5). We simulated 1000 trials per design. In this simulation, we computed the posterior on a single
trial basis and selected its maximum as the MAP uncertainty estimate. Fig 7b summarizes a simulation in which S,, = 2.5,
o, = 1.5, and the prior belief function peaked at 2.5 for N = 1, at 1.67, 2.5, and 3.33 for N = 3, and at 0.83, 1.67, 2.5, 3.33, and
4.17 for N =5.

Data availability

This study generated no new data. The data used in this study are available from the Confidence Database (available at:
https://osf.io/s46pr/).

Code availability

The code supporting the findings of this study and a software package implementing the CASANDRE model is publicly
available (https://github.com/gorislab/CASANDRE.git).
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Supplementary information
Adler and Ma (2018), task 1

Figure 1b,c shows data from two subjects who performed a perceptual 2-AFC categorization task and additionally reported
their confidence using a four-point rating scale. Data were collected by Adler and Ma (2018). Supplementary Figure la,b
illustrates model fits by plotting the psychometric function (top row) and accompanying confidence function (bottom row) for
each stimulus contrast (columns). Subjects completed 2,160 trials each. To model these data, we used one lapse rate parameter
(obs 1-6: 5%; obs 1-9: 0.5%), one contrast-specific sensitivity parameter (obs 1-6: 0.21, 0.15, 0.14, 0.11, 0.07, and 0.06; obs
1-9: 0.55, 0.42, 0.36, 0.24, 0.16, and 0.10), one contrast-specific decision criterion parameter (obs 1-6: 0.62, 0.55, 0.00, 1.49,
0.45, and 1.28 degrees; obs 1-9: 0.03, -0.08, -0.32, 0.05, -0.35, and -1.33 degrees), one meta-uncertainty parameter (obs 1-6:
0.21; obs 1-9: 0.51), and three confidence criterion parameters (obs 1-6: 0.02, 0.40, and 1.92; obs 1-9: 1.42, 3.30, and 10.99).
The log-probability of the data under the model was —3,462.1 for obs 1-6, and —2,654.0 for obs 1-9.
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Supplementary Figure 1 Model fits for two example subjects from Adler and Ma (2018). Both subjects judged whether a
stimulus belonged to category A or B. Category A stimuli typically had an orientation smaller than zero, while category B stimuli
typically had an orientation larger than zero. Stimuli varied in orientation and contrast. (a) Top: Proportion of “Category B”
choices is plotted against stimulus orientation, split out by stimulus contrast (columns, contrast decreases from left to right), for
one example subject (observer 6 in experiment 1 from ref.?%). Bottom: Same for mean confidence level. Symbols summarize
observed choice behavior, the dotted line illustrates the theoretical optimum, and the full lines show the fit of a two-stage process
model of decision-making. Symbol size is proportional to the number of trials. (b) Same for a different example subject (observer
9 in experiment 1 from ref.%).
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Evaluating the ideal of criterion-symmetry

Figure 3a,b shows data for one example subject (2-7) from Adler and Ma (2018) fit with different model variants. This
example subject’s data were marginally better fit with a model with asymmetrical rather than symmetric confidence criteria
(AIC difference = 10.9). Supplementary Figure 2 illustrates data from another example subject (2-2) for whom the difference
in model performance is more substantial (AIC difference = 149.2).
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Supplementary Figure 2 Following the same conventions as Figure 3. Left: proportion of "Category B" choices is plotted
against stimulus orientation for high contrast (top, green) and low contrast (bottom, yellow) for example subject (observer 2 in
experiment 2 from ref.?%). Right: Mean confidence level is plotted as a function of stimulus orientation for the same example
observer. Symbols indicate data; lines indicate model fits. Solid lines indicate CASANDRE model fit with asymmetric confidence
criteria. Dashed lines indicate CASANDRE model fit with symmetric confidence criteria.
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Meta-uncertainty recovery, Adler and Ma (2018) task 1

We verified that meta-uncertainty can be reliably recovered for the datasets used to evaluate the model’s architecture. These
datasets came from the 19 subjects who participated in ref.?3’s experiment 1 and 2. For each subject, we simulated 100 choice-
confidence datasets using the CASANDRE model and the best-fitting parameter values. Each simulated experiment exactly
matched the set of trials completed by the subject. We then analyzed the synthetic data in the same manner as the real data. As
can be seen in Supplementary Figure 3, under this experimental design, meta-uncertainty is recoverable.
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Supplementary Figure 3 Model recovery analysis for Adler and Ma (2018) task 1 data. The median estimate of meta-uncertainty
is plotted against the ground truth value for each subject. Error bars illustrate the interquartile range (IQR) computed from 100

simulated data sets.
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Navajas et al. (2017), experiment 1

Figure 5a-d shows an analysis of data from subjects who performed either a perceptual or cognitive 2-AFC categorization
task and additionally reported their confidence using a six-point rating scale. Data were collected by Navajas et al. (2017).
Supplementary Figure 4 illustrates the model fit for an example subject by plotting the data in the format used in the original
publication?*. Proportion correct and confidence level are plotted against stimulus variance. The confidence reports are split
out by decision accuracy. The experiment consisted of 400 trials. To model these data, we used one lapse rate parameter
(0%), one stimulus variance-specific sensitivity parameter (0.67, 0.53, 0.33, and 0.19), one decision criterion parameter (—0.59
degrees), one meta-uncertainty parameter (0.10), and five confidence criterion parameters (0.35, 1.19, 1.64, 2.29, and 3.36).
The log-probability of the data under the model was —733.50.
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Supplementary Figure 4 Model fit for an example subject from Navajas et al. (2017) (observer 1 in experiment 1). The subject
judged whether the mean orientation of a sequence of 30 rapidly presented Gabor stimuli was tilted right or left. Left: Stimulus
sequences were sampled from distributions with different orientation variance. Middle: Proportion correct choices is plotted
against stimulus variance for an example subject. Right: Mean confidence level is plotted against stimulus variance, split out
by decision accuracy. Symbols summarize observed choice behavior, the full line shows the fit of a two-stage process model of
decision-making.
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s (Goodness-of-fit across datasets

78 Supplementary Figure 5 shows a comparison of the model predicted and observed choice behavior and confidence reports for
7e5  the six tasks included in figure 7c.
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Supplementary Figure 5 Each symbol summarizes a single stimulus condition for a single subject. Color indicates stimulus
reliability. Left: Observed versus predicted choice behavior. Right: Observed versus predicted confidence level. (a) Data from
Rausch et al. (2020): 25 subjects. (b) Shekhar and Rahnev (2021): 20 subjects. ¢) Denison et al. (2018): 12 subjects. d)
Navajas et al. (2017): 50 subjects; e) Adler and Ma (2018) task 2: 34 subjects; f) Adler and Ma (2018) task 1: 19 subjects;
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Adler and Ma (2018), task 2

Figure 7c includes a data-point for task 2 from Adler and Ma (2018) and one for Denison et al. (2018). Both studies employed
a task design in which subjects discriminated two categories of orientation distributions with the same mean but different
standard deviations. Supplementary Figure 6 illustrates an example model fit for this task by plotting the psychometric function
(top row) and accompanying confidence function (bottom row) for each stimulus contrast (columns). The subject completed
3,240 trials. To model these data, we used one lapse rate parameter (2.17%), one contrast-specific sensitivity parameter (0.68,
0.55, 0.46, 0.28, 0.20, and 0.07), one contrast-specific low decision criterion parameter (-4.05, -4.27, -4.35, -5.21, -7.30, and
-11.34 degrees), one contrast-specific high decision criterion parameter (3.62, 3.76, 4.26, 5.36, 5.38, and 9.66 degrees), one
meta-uncertainty parameter (0.69), three confidence criterion parameters for “Category A” choices (0.69, 1.15, and 1.89), and
three confidence criterion parameters for “Category B” choices (0.65, 1.78, and 4.53). The log-probability of the data under the
model was —4,842.5. (Note: while the model fit illustrated here employs asymmetric confidence criteria, all fits in Figure 7c
were with symmetric confidence criteria for consistency.)
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Supplementary Figure 6 Model fits for an example subject from Adler and Ma (2018) (observer 7 in experiment 3). The subject
judged whether a stimulus belonged to category A or B. Category A stimuli were drawn from a distribution with small orientation
spread, category B stimuli were drawn from a distribution with large orientation spread. Stimuli varied in orientation and contrast.
Top: Proportion of “Category B” choices is plotted against stimulus orientation, split out by stimulus contrast (columns, contrast
decreases from left to right), for one example subject. Bottom: Same for mean confidence level. Symbols summarize observed
choice behavior, the full lines show the fit of the CASANDRE model.
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Parameter trade-offs

Figure 4 illustrates a recovery analysis for the meta-uncertainty parameter of the CASANDRE model. Supplementary Figure 7
illustrates an additional analysis of the trade-off between meta-uncertainty and the other parameters of the CASANDRE model
using the same generated data and model fits as in Figure 4c. Although the variance in meta-uncertainty explained by trade-
offs with confidence criterion can reach high levels, this is somewhat mitigated by denser stimulus sampling (Supplementary
Fig. 7b, bottom) and is reasonable for datasets with a larger number of trials (Supplementary Fig. 7b, right) and for values of
meta-uncertainty that are empirically observed more often (less than 1).
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Supplementary Figure 7 Trade-off between meta-uncertainty and other CASANDRE model parameters. (a) Parameter cor-
relation for an example condition. Recovered meta-uncertainty and confidence criterion are plotted against each other for 100
model-generated datasets. The dashed lines represent the ground truth values for confidence criterion (C. = 0.75) and meta-
uncertainty (o, = 0.8). Each symbol represents one dataset generated with 100 trials and a dense stimulus sampling regime.
(b) Trade-off between meta-uncertainty and confidence criterion. (c¢) Trade-off between meta-uncertainty and stimulus uncer-
tainty. (d Trade-off between meta-uncertainty and decision criterion.)
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Comparison with a criteria-noise model

Shekhar and Rahnev recently described a hierarchical process model of confidence with desirable properties that dissociate
a parameter capturing metacognitive ability from stimulus sensitivity and confidence reporting strategy>®. They refer to the
parameter capturing metacognitive ability as “meta-noise” and find that log-normally distributed meta-noise provides a better
quantitative and qualitative match to empirical data than normally distributed noise. In the CASANDRE model, the standard
deviation of a log-normal distribution also serves as a metric for the metacognitive ability of an observer, however these two
uses of log-normal noise, like the models themselves, are not equivalent. In the CASANDRE model, the confidence variable
is distributed according to the ratio of a normally and log-normally distributed variable, whereas in the model of Shekhar and
Rahnev the confidence variable has a normal distribution identical to the decision variable but the positions of the confidence
criteria are subject to log-normally distributed noise. We thus refer to the model of Shekhar and Rahnev as the “criteria-noise”
model.

We quantitatively compared the criteria-noise model with the CASANDRE model. Because the criteria-noise model is currently
limited to experiments with two stimulus strengths, we did not apply it to data from ref.?> (as we did for comparing other
model variants in Fig. 3), but instead fit the CASANDRE model to the data reported in their original paper?®. For purposes of
quantitative comparison to the criteria-noise model, we fit the CASANDRE model with asymmetric confidence criteria (yielding
15 total parameters, see Methods). First, we compared the CASANDRE model to the criteria-noise model as described by
Shekhar and Rhanev, with a different set of confidence criteria for each of three contrast values (yielding 35 total parameters).
The CASANDRE model significantly outperformed the criteria-noise model (median difference in AIC = 7.8; P = 0.002,
Wilcoxon signed-rank test; Supplementary Fig. 8a, top). Second, we compared the CASANDRE model to a simpler version
of the criteria-noise model with only one set of confidence critiera (yielding 15 total parameters). There was no difference in
performance between the CASANDRE model and this variant of the criteria-noise model (median difference in AIC =-0.1; P
= 1, Wilcoxon signed-rank test; Supplementary Fig. 8a, bottom). Note: we discovered an incorrect scaling of likelihood values
in the original code accompanying ref.?®. We fixed this scaling and thus the AIC values used in this model comparison for the
criteria-noise model differ from those reported in ref. 2%,

Shekhar and Rahnev demonstrated that the level of confidence criteria noise can serve as a measure of metacognitive ability
uncontaminated by stimulus sensitivity or confidence reporting strategy>®. For comparison, we performed the same analysis
using the CASANDRE model. Following their procedure, we mapped each subject’s continuous confidence reports into five
different binary confidence rating scales, biasing confident reports to be more liberal or conservative. For each subject, we fit
the CASANDRE model independently to each of these five remapped datasets across the three contrast levels. We removed one
subject that in some conditions did not generate a single response to one of the four possible response options. Meta-uncertainty
was largely insensitive to both confidence reporting strategy and stimulus sensitivity (Supplementary Fig. 8b; compare to Fig.
11a in Shekhar and Rahnev?®). A two-way ANOVA revealed no main effect of confidence criterion (F(4, 18) = 1.97, P =0.11)
or stimulus contrast (F(2, 18) = 0.04, P = 0.96) on meta-uncertainty. Further, the interaction between confidence reporting
strategy and stimulus sensitivity was not significant (F(2, 4) = 1.57, P = 0.14). These results along with the model comparison
(Supplementary Fig. 8a) demonstrate that the CASANDRE model performs quantitatively at least as well as the criteria-noise
model in explaining the data reported in ref.?s.

We now turn to several more qualitative considerations that favor the CASANDRE model compared with the criteria-noise
model. First, Shekhar and Rahnev show that empirical, averaged zZROC functions have significant curvature compared with the
straight zZROC functions predicted by signal detection theory (their Fig. 4 and 5b). The criteria-noise model shows curved zZROC
functions but, as the authors note, they resemble piecewise linear functions rather than the smoothly curving zZROC functions
of the empirical data (see their Fig. 11, bottom left). The CASANDRE model generates smoothly curving averaged zZROC
functions that more closely resemble the empirically estimated zZROC curves (Supplementary Fig. 8c; compare with Fig. 4 and
5b in ref.?®). Second, the CASANDRE model is easier to fit to data given that its parameters can be optimized using standard
maximum likelihood estimation procedures, rather than the purpose-built, two-stage parameter search algorithm developed by
Shekhar and Rahnev. Third, the CASANDRE model is more general and can be applied to experiments that vary stimulus
strength in addition to stimulus uncertainty (such as ref.?’), whereas the criteria-noise model is limited to experiments with two
stimulus strengths. This is because the criteria-noise model makes the assumption that confidence is measured in units of d’, but
does not specify the computation that transforms units of stimulus to units of d’. Fourth, the CASANDRE model specifies this
confidence computation and posits that it is exactly noise in this transformation that can lead to limited metacognitive ability.
Analogous to stimulus discrimination ability being limited by variation in the estimation of the stimulus, the CASANDRE
model posits that metacognition is limited by variation in the estimation of the uncertainty required to compute confidence.
In contrast, the criteria-noise model posits that lower metacognitive ability arises from the inability of subjects to maintain
constant confidence criteria. Stochastic confidence criteria cause problems for model tractability, allowing for them to cross
both the decision criterion and each other. By casting criteria-noise as log-normally distributed, Shekhar and Rahnev avoid the
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problem of crossovers with the decision criterion, but to solve the problem of crossovers between confidence criteria they make
the questionable assumption that noise is perfectly correlated across criteria. The CASANDRE model naturally avoids both of
these issues. Fifth, the process captured by the CASANDRE model leads to new predictions about how metacognitive ability
can be experimentally manipulated. Figure 7 illustrates how increasing the number of uncertainty levels in a task increases
meta-uncertainty. If an inability to maintain stable criteria were a source of lower metacognitive ability instead, increasing the
number of confidence response levels on the rating scale used by subjects should lower metacognitive ability (and increase meta-
uncertainty estimated from the CASANDRE model). We see no evidence for this prediction when rearranging the estimated
meta-uncertainty across tasks according to the number confidence response levels(Supplementary Fig. 8d).
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Supplementary Figure 8 Comparison with Shekhar and Rahnev (2021). (a) Distribution of the difference in AIC value across 20
subjects for the CASANDRE model compared with the criteria-noise model with a different set of confidence criteria for each of
three contrast levels (top) or with one shared set of confidence criteria across all three contrasts (bottom). Positive values indicate
evidence favoring the CASANDRE model. Arrows indicate the median of the distribution. ** P < 0.01, Wilcoxon signed-rank test.
(b) Median meta-uncertainty across 20 subjects estimated independently for each contrast and confidence criterion location.
Error bars illustrate the interquartile range (IQR) across subjects. Compare to Fig. 11a in ref.?. (c) Averaged zROC functions
across 20 subjects generated from fits of the CASANDRE model. The location of the decision criterion is indicated by an asterisk,
and the location of each confidence criterion is indicated by an x. The dashed lines illustrate the linear zZROC functions predicted
from signal detection theory. Compare to Fig. 4, 5b, and 10 in ref.%8. (d) Median level of meta-uncertainty plotted against number
of confidence response levels for six confidence experiments. Error bars illustrate the interquartile range (IQR) across subjects.
Note the symbol representing ref. is plotted at 50 although subjects rated their confidence on a continuous scale ranging from
50-100.
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