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ABSTRACT

The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq datais Cell
Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing
that enables reproducible workflows, we present a suite of tools called scATAK for pre-
processing single-cell ATAC-seq datathat is 18 times faster than Cell Ranger on human
samples, and that uses 33% less RAM when 8 CPU threads are used. Our tool can also calculate
chromatin interaction potential matrices and generate open chromatin signals and interaction
traces for cell groups. We demonstrate the utility of SSATAK in an exploration of the chromatin
regulatory landscape of a healthy adult human brain and show that it can reveal cell-type-specific
features.

scATAK isavailable at https://github.com/pachterlab/scATAK/.
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INTRODUCTION

The development of automated high-throughput single-cell platforms for single-cell ATAC-seq
(scATAC-seq) are facilitating highly resolved chromatin accessibility measurements that are
valuable in functional genomics studies [1]. The raw data produced in sScATAC-seq experiments
consists of large numbers of reads, whose pre-processing to identify “peak” regions and counts
can pose aformidable challenge. 10X Genomics' Chromium-based scATAC-seq solution
generates data that can be analyzed with companion software called Cell Ranger. While Cell
Ranger provides aturnkey solution for labs generating data with 10X’ s system, its slow runtime
and large memory requirements hinder the development of reproducible workflows for data
analysis. In previous work, we have presented a modular and efficient approach to single-cell
RNA-seq (scRNA-seq) pre-processing that combines the pseudoalignment program kallisto [2]
with a suite of tools called bustools [3]. These tools facilitate the development of highly efficient
and modular workflows for scRNA-seq pre-processing that are easy to run using a wrapper
called kb [4]. The analysisof single-cell ATAC-seq data requires the mapping of readsto the
genome, a more challenging problem than transcriptome alignment due to the size of the
genome. Recently, Giansanti et al. [5] developed a pseudoalignment approach for ATAC-seq
based on kallisto pseudoalignment of reads to pre-defined DNAseq hypersensitive sites. With
their workflow, they were able to produce results in-line with standard results, but much faster
with asubstantially smaller memory footprint. Motivated by their result, we have incorporated
kallisto, bustools, and several other toolsinto a new scATAC-seq software suite, namely
SCATAK, that facilitates the processing of SCATAC-seq data without the need for pre-defined
genome regions.
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RESULTS

Overview of ScCATAK and benchmarking

An overview of sSCATAK procedureis shown in Figure 1. Asnoted, sSCATAK isacommand-line
tool with three modules: quant, track, and hic. Module quant runs the following steps for single-
cell level quantification: 1) Raw 10X scATAC-seq FASTQ data are processed to add cell
barcode sequences from R2 reads to the header lines of R1 and R3 biological reads; 2) Barcode-
tagged R1 and R3 FASTQ files for every sample are treated as pseudo-bulk ATAC-seq data for
genome alignment using Minimap2 [6], converted to a name sorted BAM alignment file using
Sambamba [7], and then subject to peak calling using Genrich [8]; 3) Called peak regions for all
samples are merged to generate a list of accessible chromatin regions using bedtools [9] for
creating akallisto index file; 4) With the accessible region index as reference, raw scATAC-seq
files arerevisited to generate a single-cell region count matrix for every sample using kallisto
and bustoals; 5) To estimate gene activity for every single cell, we calculate the absol ute distance
d from the ATAC-seq peak centersto transcription start sites (TSS) and associate peak regionsto
the nearest gene TSS, a strategy similar to HOMER [10] peak annotation. Activity score Sfor
genei iscalculated as weighted sum of associated peaks P, with § =X W;; x P;, where W isa
distance-dependent step function for weight, values from 1 (d <2 kb), 0.7 (2 kb <d <5kb), 0.5
(5kb<d<10kb), 0.25 (10 kb < d <20 kb) to 0.03 (20 kb < d <50 kb). A distance-dependent
weight was originally proposed in the MAESTRO pipeline [11] to better model gene activity.
Instead of using computationally expensive exponential decay to calculate W, we simply
employed a step function to speed up processing. With the accessible region and gene activity
count matrices, further analyses can be performed within R or Python notebooks using secondary
analyses tools like Seurat [12], snapATAC [13], or chromV AR [14]. For our proof-of-principle
analyses, we created R notebooks with DropletUtils [15] and Seurat. After cell clustering and
annotation are completed, the sScATAK track module uses cell barcode — cell group table
together with pseudo-bulk ATAC-seq alignment files generated by scCATAK quant to create cell
group bigwig tracks (normalized by the number of cellsin the group) for visualizationin a
genome browser. An additional sSCATAK hic module utilizes a provided bulk HiC [16] or
HiChIP [17] interactome map together with a single-cell accessible chromatin region matrix to

infer potential chromatin looping events for individual cells and generate group HiC interaction
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tracks. Thus group chromatin accessibility and interaction landscapes can be visualized side-by-
side.

For benchmarking purposes, we downloaded two 10X scATAC-seq datasets that are hosted on
the 10X Genomics dataset website [18] [19]. We processed 224,636,372 raw read pairs from a
human PBMC 5k data and 244,056,346 raw read pairs from an adult mouse brain 5k data using
both scATAK gquant and the CellRanger (atac-1.2.0) software. With 2, 4, 8 CPU threads, real run
time and memory usage were monitored by snakemake pipeline [20]. Asshown in Table 1,
when PBMC data was processed, sScATAK quant was roughly 18, 24, 25 times faster than
Cdlranger with 8, 4, 2 CPU threads employed. For mouse brain data, SCATAK was about 15, 18,
and 19 times faster when using 8, 4, and 2 CPU threads respectively. With only 2 threads,
scATAK quant finished PBMC data pre-processing within two and half hours, a reasonable time
window for users with limited computational resources to process sSCATAC-seq data. In contrast,
Cellranger took almost 58 hours to process the same data. Also noted from Table 2, kallisto bus
pseudo-alignment method works well for mapping raw reads to ATAC-seq peak regions, with
45% and 49% pseudo-alignment rates for human and mouse data, respectively. Statistics from
bustools showed most of the aligned read pairs ( 90% for human and 96% for mouse) contain the
precise whitelist cell barcodes. With 1-base mismatch barcode error correction method
embedded in bustools, 94% and 97% of aligned read pairs remained for single-cell
guantification. Inspired by the ultrafast processing speed of SCATAK quant, we next loaded
accessible region count matrices from both sScCATAK and Cell Ranger to DropletUtils tool to
identify cells from empty droplets (FDR < 1e-5, Figure 2A). As noted, 3,528 cell barcodes were
shared between 3,595 filtered barcodes from scATAK and 3,653 filtered barcodes from Cell
Ranger, suggesting a smilar data structure of the two matrices. Regions detected in more than
10% of total cells were used for further dimensional reduction and cell clustering. Separate runs
of sScATAK and Cell Ranger matrices using the default settings of Seurat (with Latent Semantic
Indexing to learn the structure of the data[21]) both resulted in 10 cell clusters. The adjusted
RAND index for similarity measurement reported a value of 0.915 for cell clustering resulting
from scATAK and Cell Ranger. Within each cluster, the vast majority of cells clustered with the
SCATAK pre-processing were still grouped the same way as the cells clustered after Cell Ranger
pre-processing (Figur e 2B). In other words, cell clusters generated from the two different

workflows are highly concordant with each other.
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We next |oaded gene score information from scATAK quant to guide cell type annotation, with
IL7R, CD8A for T cells, MAAL for B cells, NCR1 for NK cells, MSAA7 for monocytes, and
ITGAM for dendritic cells (Figure 2C). 10 cell clusters were then merged into 5 groups for
different cell types. With chromV AR, we scanned consensus sequences of 386 known human
TFsin JASPAR core database (2018 version) and calculated normalized z-scores as a measure
for the enrichment of TF motifs at accessible sites of individual cells. With Seurat Findmarkers
function, signature motifs for different cell clusters were identified (Wilcox test, adjusted p-value
< 0.05). Interestingly, MA0824.1 1D4 (Figure 2D) showed up as one of the top 20 TF motifsin
both c5 (B cell) and c9 (dendritic cell) clusters. This observation is cons stent with the regulatory
roles of Id proteins in lymphocyte development [22]. Overall, secondary analyses using pre-
processed results from the sScATAK pipeline revealed expected biological insight from PBMC
cells.

Exploration of chromatin accessibility and interaction landscapesin human brain

The brain is a complex organ with highly diversified cell populations. Distinct chromatin
landscapes drive cell-type-specific gene expression patterns. Previous large cohort genome-wide
association studies (GWAS) unvelled thousands of single nucleotide polymorphisms (SNPs)
associated with different neurological disorders, with the majority of SNPs being non-coding
variants. Although potential regulatory gene targets of non-coding SNP regions can be identified
with high-resolution genome-wide chromatin interactome maps, such analyses do not provide
cell-type specificity. As mentioned above, with sScATAK we developed a module called hic to
infer single-cell chromatin looping from bulk chromosome conformation capture (3C) data and
SCATAC-seq data. Recent technological advancesin the 3C field haveled to HIChIP[17] —a
technology combining chromosome conformation capture with immunoprecipitation- and
tagmentation-based library preparation, as a highly sensitive and specific assay to profile
chromatin interactions of regulatory chromatin regions. In our analysis, we downloaded a human
hippocampal scATAC-seq data together with histone H3K27ac HiChlP data generated from the

same brain region of the same individual for integrative analysis [23] (GEO accession numbers
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GSM 4441823 and GSM 4441836). A total of 6,244 cell nuclel were recovered from DropletUtils
and 13 cdll clusters were generated using Seurat with latent semantic indexing (LSI) to reduce
the dimensionality of the sScATAC-seq data. Guided by gene activity scores of known brain cell-
type-specific marker genes SLC17A7 (excitatory neurons), GAD2 (inhibitory neurons), MAG
(oligodendrocytes), PDGFRA (OPC), GFAP (astrocytes), and CX3CR1 (microglia) (Figure 3A,
B), cells were assigned to one of six major brain cell types. In this sScATAC-seq dataset, we
found the oligodendrocytes as the major cell population, cons stent with Figure 1e of the original
paper [23]. Also noted, the complex structure (several clusters) of the open chromatin landscape
in excitatory neurons is consistent with multi subtypes of excitatory neurons observed from brain
single-cell RNAseq data[24,25], demonstrating chromatin accessibility as a useful molecular

marker for sub-clustering of excitatory neurons.

We next asked how genetic variants could explain the susceptibility of hippocampal cellsto AD.
The scATAK track module generated group ATAC signal tracks (normalized by the mapped
group read counts) from cell barcode — cell group table and sample pseudo-bulk alignment file.
A circos plot (Figure 3C) provided a genome-wide view of human GWAS AD risk SNPs[26]
(https://ctg.cner.nl/documents/p1651/AD_sumstats Jansenetal 2019sept.txt.gz, SNPs with
p<1x10?included) and ATAC signalsin different cell types (signals binned for every 200kb

genomic window). AD risk SNPs were further associated with 2kb genomic binsto calculate

chromatin accessibility in different cell types. A density plot of astrocytes, microglia, and
oligodendrocytes are enriched with subsets of SNP regions that are highly accessible
(logio(ATAC-signal + 1)>3, Figure 3D). This observation suggests these cell types are
vulnerable to AD-associated genetic variation. We next loaded the ScATAK hic module to subset
genomic looping bin pairs (10 kb resolution interaction map (GSM 4441836 ) identified from
bulk histone H3K27ac HiChlP data using single-cell chromatin accessibility map already created
in scATAK gquant step. The downloaded map was generated by HiC-Pro [27] to include cis-
interactions between 20kb and 2Mb. We further filtered the table and only included bias-
corrected significant interactions (Q-Value_Bias <0.05). Assuming open chromatin regions
carrying active histone enhancer marks frequently loop together for transcriptional regulation,
interacting chromatin pairs (detected in bulk data) that both are accessible regions in individual
cells are given abinary potential score for that particular cell. This assumption originated from

the observation that the pattern of accessibility variation in cis recapitulates chromosome
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compartments, linking single-cell accessibility to 3D genome organization, reported by
Greenleaf’s lab [28]. For N accessible regions in asingle cell, Nx(N-1)/2 possible combinations
will be scanned to find potential looping pairs. The resulting matrix of chromatin interaction
potential was loaded to Seurat for signature feature analysis (wilcox significance test, with
adjusted p-value < 0.05) for different cell groups, and the top 5 interactions for each cell group
were visualized in a heatmap (Figure 4A). Within the cell-type-specific chromatin interactions,
one specific chromatin interaction (chr19:44,900,000-44,910,000 and chr19:44,950,000-
44,960,000) connects APOE gene locus to 50 kb downstream. Interestingly, AD risk SNP
rs117316645 (p < 4.8x10%*) resides in an ATAC peak region of chr19:44,950,000-44,960,000
bin (IGV traces shown in Figure 4B), and isthe most significant variant within this bin.
Considering that APOE isthe mgor genetic driver for amyloid pathology of AD, the predicted
chromatin loop connecting rs117316645 with APOE in astrocytes (Figur e 4C) points to possible
disrupted astrocyte function in amyloid- clearance.

DISCUSSION

As interest in SCATAC-seq continues to grow [29], thereis an increasing need for efficient and
accurate pre-processing and analysis software that can facilitate reproducible workflows. Our
approach to sStcATAC-seq analysis draws on previously published tools that have been optimized
for efficiency and accuracy, and should be useful for researchers grappling with increasingly
large datasets. We have shown, via analysis of published 10X human PBMC and mouse brain
SCATAC-seq data, that SSATAK compares favorably in terms of processing speed and memory
usage to Cell Ranger. Furthermore, we have developed an R notebook for SsSATAC-seq PBMC
cell clustering and cell type annotation that should be generally useful, and we have
demonstrated the possibility of combined analysis of genome-wide bulk HiC type interaction
map data with sSSATAC-seq data to calculate single-cell chromatin interaction potential matrices.
Using hippocampal scATAC-seq and bulk HiChlIP data from a healthy adult human brain, we
presented chromatin accessibility and interaction landscapes for major brain cell types and
proposed that a non-coding risk variant of Alzheimer’s disease (AD) may disrupt chromatin

interaction between a distal enhancer and APOE gene in astrocytes. We note that astools are


https://doi.org/10.1101/2021.12.08.471788
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.08.471788; this version posted December 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

further optimized, or when new tools are developed, it should be straightforward to replace
components of our modular workflow with better alternatives.

METHODS
Software

The following software tools were used in running the SSATAK workflow to generate the results
and figures of this paper: kallisto (v0.46.1); bustools (v.0.40.0); minimap2 (v2.15); sambamba
(v.0.7.1); Genrich; bedtools (v.2.25.0); bedGraphToBigwig. Notebooks reproducing the results
and figures are available at: https://github.com/pachterlab/GP_2021 4

Hardware

All computational work was performed on a Supermicro server computer (2xXeon® Gold 6152
22-Core 2.1, 3.7GHz Turbo, 12 x 64GB Quad-Rank DDR4 2666MHz memory, 16 x 12TB
Ultrastar He12 HUH721212ALE600, 7200 RPM, SATA 6Gb/s HDD) with CentOS7 operating
system installed.
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Figure 1. The scATAK workflow.
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Figure 2. Benchmarking of sScATAK using the human PBMC 5k data.

(A) Barcode rank plot (knee plot) showing the total UMI count vs. the rank of the barcode; (B)
Percentage of overlapping barcodes between scATAK and Cell Ranger for each cell type; (C)
Violin plots showing the distribution of the sScCATAK gene scores for known PBMC cell marker

genes across different cell clusters; (D) The ID4 motif scores for the accessible chromatin
regions of individual cells across cdll clusters.
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Figure 3. Cell-type-specific open chromatin landscape of the human hippocampus.

(A) Violin plots showing the distribution of the sScATAK gene scores for known brain cell
marker genes across different cell clusters; (B) A pie chart depicting proportions of the annotated
brain cell types; (C) A circos plot visualizing AD GWAS loci together with open chromatin
landscapes for different cell types; (D) A density plot for the calculated cell-type-specific open
chromatin signals of AD GWAS SNPs).
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Figure 4. Predicted cell-type-specific chromatin interactions and connection between the AD risk
variant rs117316645 and the APOE gene.

(A) Thetop 5 predicted signature chromatin-chromatin interactions for each cell type; (B) IGV
browser view of predicted cell-type-specific chromatin loop and open chromatin tracks around
APOE genelocus; (C) Cell type specificity of achromatin looping that links rs117316645 to the
APOE gene in astrocytes.
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PBMC Total read pairs: 224,636,372

CPU threads Real time (scATAK) Real time (Cell Ranger) Fold change
8 64 min 1171 min 18.3

4 81 min 1955 min 241

2 139 min 3456 min 24.9

CPU threads Max RSS (scATAK) Max RSS (Cell Ranger) Fold change
8 8.66 GB 12.99 GB 0.67

4 8.66 GB 9.31GB 0.93

2 8.66 GB 8.35GB 1.04

Adult mouse brain

Total read pairs: 244,056,346

CPU threads Real time (scATAK) Real time (Cell Ranger) Fold change
8 72 min 1045 min 14.5

4 98 min 1752 min 179

2 164 min 3027 min 185

CPU threads Max RSS (scATAK) Max RSS (Cell Ranger) Fold change
8 7.86 GB 12.17 GB 0.65

4 8.46 GB 9.79 GB 0.86

2 8.03GB 9.58 GB 0.84
Running time breakdown in seconds (scATAK, CPU threads = 8)

Sample ID PBMC Adult mouse brain
genome indexing 61 55

genome alignment and peak calling 2823 3243

kallisto indexing 47 127

kallisto / bustools quantification 892 958

gene activity quantification 86 74

Table 1. Comparison of running time for the sScATAK and CellRanger pipelines.
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Sample ID PBMC adult mouse brain
Processed reads 224,636,372 244,056,346
Pseudoaligned reads 100,549,039 118,667,309
Pseudoalignment rate % 44.76% 48.62%
Pseudoaligned reads in the whitelist 90,210,039 114,063,492
Whitelist read rate % 89.72% 96.12%
Pseudoaligned reads with BC corrected 4129483 1,504,416
Correction rate % 4.11% 1.27%

Table 2. Read pseudoalignment statistics for kallisto bus and bustools.
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