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ABSTRACT 

The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq data is Cell 

Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing 

that enables reproducible workflows, we present a suite of tools called scATAK for pre-

processing single-cell ATAC-seq data that is 18 times faster than Cell Ranger on human 

samples, and that uses 33% less RAM when 8 CPU threads are used. Our tool can also calculate 

chromatin interaction potential matrices and generate open chromatin signals and interaction 

traces for cell groups. We demonstrate the utility of scATAK in an exploration of the chromatin 

regulatory landscape of a healthy adult human brain and show that it can reveal cell-type-specific 

features.  

scATAK is available at https://github.com/pachterlab/scATAK/.  
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INTRODUCTION 

The development of automated high-throughput single-cell platforms for single-cell ATAC-seq 

(scATAC-seq) are facilitating highly resolved chromatin accessibility measurements that are 

valuable in functional genomics studies [1]. The raw data produced in scATAC-seq experiments 

consists of large numbers of reads, whose pre-processing to identify “peak” regions and counts 

can pose a formidable challenge. 10X Genomics’ Chromium-based scATAC-seq solution 

generates data that can be analyzed with companion software called Cell Ranger. While Cell 

Ranger provides a turnkey solution for labs generating data with 10X’s system, its slow runtime 

and large memory requirements hinder the development of reproducible workflows for data 

analysis. In previous work, we have presented a modular and efficient approach to single-cell 

RNA-seq (scRNA-seq) pre-processing that combines the pseudoalignment program kallisto [2] 

with a suite of tools called bustools [3]. These tools facilitate the development of highly efficient 

and modular workflows for scRNA-seq pre-processing that are easy to run using a wrapper 

called kb [4].  The analysis of single-cell ATAC-seq data requires the mapping of reads to the 

genome, a more challenging problem than transcriptome alignment due to the size of the 

genome. Recently, Giansanti et al. [5] developed a pseudoalignment approach for ATAC-seq 

based on kallisto pseudoalignment of reads to pre-defined DNAseq hypersensitive sites. With 

their workflow, they were able to produce results in-line with standard results, but much faster 

with a substantially smaller memory footprint. Motivated by their result, we have incorporated 

kallisto, bustools, and several other tools into a new scATAC-seq software suite, namely 

scATAK, that facilitates the processing of scATAC-seq data without the need for pre-defined 

genome regions. 
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RESULTS 

Overview of scATAK and benchmarking 

An overview of scATAK procedure is shown in Figure 1. As noted, scATAK is a command-line 

tool with three modules: quant, track, and hic. Module quant runs the following steps for single-

cell level quantification: 1) Raw 10X scATAC-seq FASTQ data are processed to add cell 

barcode sequences from R2 reads to the header lines of R1 and R3 biological reads; 2) Barcode-

tagged R1 and R3 FASTQ files for every sample are treated as pseudo-bulk ATAC-seq data for 

genome alignment using Minimap2 [6], converted to a name sorted BAM alignment file using 

Sambamba [7], and then subject to peak calling using Genrich [8]; 3) Called peak regions for all 

samples are merged to generate a list of accessible chromatin regions using bedtools [9] for 

creating a kallisto index file; 4) With the accessible region index as reference, raw scATAC-seq 

files are revisited to generate a single-cell region count matrix for every sample using kallisto 

and bustools; 5) To estimate gene activity for every single cell, we calculate the absolute distance 

d from the ATAC-seq peak centers to transcription start sites (TSS) and associate peak regions to 

the nearest gene TSS, a strategy similar to HOMER [10] peak annotation. Activity score S for 

gene i is calculated as weighted sum of associated peaks P, with Si = Σ Wij × Pj, where W is a 

distance-dependent step function for weight, values from 1 (d ≤ 2 kb), 0.7 (2 kb < d ≤ 5 kb), 0.5 

(5 kb < d ≤ 10 kb), 0.25 (10 kb < d ≤ 20 kb) to 0.03 (20 kb < d ≤ 50 kb). A distance-dependent 

weight was originally proposed in the MAESTRO pipeline [11] to better model gene activity. 

Instead of using computationally expensive exponential decay to calculate W, we simply 

employed a step function to speed up processing. With the accessible region and gene activity 

count matrices, further analyses can be performed within R or Python notebooks using secondary 

analyses tools like Seurat [12], snapATAC [13], or chromVAR [14]. For our proof-of-principle 

analyses, we created R notebooks with DropletUtils [15] and Seurat. After cell clustering and 

annotation are completed, the scATAK track module uses cell barcode — cell group table 

together with pseudo-bulk ATAC-seq alignment files generated by scATAK quant to create cell 

group bigwig tracks (normalized by the number of cells in the group) for visualization in a 

genome browser. An additional scATAK hic module utilizes a provided bulk HiC [16] or 

HiChIP [17] interactome map together with a single-cell accessible chromatin region matrix to 

infer potential chromatin looping events for individual cells and generate group HiC interaction 
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tracks. Thus group chromatin accessibility and interaction landscapes can be visualized side-by-

side.   

For benchmarking purposes, we downloaded two 10X scATAC-seq datasets that are hosted on 

the 10X Genomics dataset website [18] [19]. We processed 224,636,372 raw read pairs from a 

human PBMC 5k data and 244,056,346 raw read pairs from an adult mouse brain 5k data using 

both scATAK quant and the CellRanger (atac-1.2.0) software. With 2, 4, 8 CPU threads, real run 

time and memory usage were monitored by snakemake pipeline [20]. As shown in Table 1, 

when PBMC data was processed, scATAK quant was roughly 18, 24, 25 times faster than 

Cellranger with 8, 4, 2 CPU threads employed. For mouse brain data, scATAK was about 15, 18, 

and 19 times faster when using 8, 4, and 2 CPU threads respectively. With only 2 threads, 

scATAK quant finished PBMC data pre-processing within two and half hours, a reasonable time 

window for users with limited computational resources to process scATAC-seq data. In contrast, 

Cellranger took almost 58 hours to process the same data. Also noted from Table 2, kallisto bus 

pseudo-alignment method works well for mapping raw reads to ATAC-seq peak regions, with 

45% and 49% pseudo-alignment rates for human and mouse data, respectively. Statistics from 

bustools showed most of the aligned read pairs ( 90% for human and 96% for mouse) contain the 

precise whitelist cell barcodes. With 1-base mismatch barcode error correction method 

embedded in bustools, 94% and 97% of aligned read pairs remained for single-cell 

quantification. Inspired by the ultrafast processing speed of scATAK quant, we next loaded 

accessible region count matrices from both scATAK and Cell Ranger to DropletUtils tool to 

identify cells from empty droplets (FDR ≤ 1e-5, Figure 2A). As noted, 3,528 cell barcodes were 

shared between 3,595 filtered barcodes from scATAK and 3,653 filtered barcodes from Cell 

Ranger, suggesting a similar data structure of the two matrices. Regions detected in more than 

10% of total cells were used for further dimensional reduction and cell clustering. Separate runs 

of scATAK and Cell Ranger matrices using the default settings of Seurat (with Latent Semantic 

Indexing to learn the structure of the data [21]) both resulted in 10 cell clusters. The adjusted 

RAND index for similarity measurement reported a value of 0.915 for cell clustering resulting 

from scATAK and Cell Ranger. Within each cluster, the vast majority of cells clustered with the 

scATAK pre-processing were still grouped the same way as the cells clustered after Cell Ranger 

pre-processing (Figure 2B). In other words, cell clusters generated from the two different 

workflows are highly concordant with each other. 
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We next loaded gene score information from scATAK quant to guide cell type annotation, with 

IL7R, CD8A for T cells, MS4A1 for B cells, NCR1 for NK cells, MS4A7 for monocytes, and 

ITGAM for dendritic cells (Figure 2C). 10 cell clusters were then merged into 5 groups for 

different cell types. With chromVAR, we scanned consensus sequences of 386 known human 

TFs in JASPAR core database (2018 version) and calculated normalized z-scores as a measure 

for the enrichment of TF motifs at accessible sites of individual cells. With Seurat Findmarkers 

function, signature motifs for different cell clusters were identified (Wilcox test, adjusted p-value 

< 0.05). Interestingly, MA0824.1_ID4 (Figure 2D) showed up as one of the top 20 TF motifs in 

both c5 (B cell) and c9 (dendritic cell) clusters. This observation is consistent with the regulatory 

roles of Id proteins in lymphocyte development [22]. Overall, secondary analyses using pre-

processed results from the scATAK pipeline revealed expected biological insight from PBMC 

cells.   

  

Exploration of chromatin accessibility and interaction landscapes in human brain 

The brain is a complex organ with highly diversified cell populations.  Distinct chromatin 

landscapes drive cell-type-specific gene expression patterns. Previous large cohort genome-wide 

association studies (GWAS) unveiled thousands of single nucleotide polymorphisms (SNPs) 

associated with different neurological disorders, with the majority of SNPs being non-coding 

variants. Although potential regulatory gene targets of non-coding SNP regions can be identified 

with high-resolution genome-wide chromatin interactome maps, such analyses do not provide 

cell-type specificity. As mentioned above, with scATAK we developed a module called hic to 

infer single-cell chromatin looping from bulk chromosome conformation capture (3C) data and 

scATAC-seq data. Recent technological advances in the 3C field have led to  HiChIP [17] – a 

technology combining chromosome conformation capture with immunoprecipitation- and 

tagmentation-based library preparation, as a highly sensitive and specific assay to profile 

chromatin interactions of regulatory chromatin regions. In our analysis, we downloaded a human 

hippocampal scATAC-seq data together with histone H3K27ac HiChIP data generated from the 

same brain region of the same individual for integrative analysis [23] (GEO accession numbers 
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GSM4441823 and GSM4441836). A total of 6,244 cell nuclei were recovered from DropletUtils 

and 13 cell clusters were generated using Seurat with latent semantic indexing (LSI) to reduce 

the dimensionality of the scATAC-seq data. Guided by gene activity scores of known brain cell-

type-specific marker genes SLC17A7 (excitatory neurons), GAD2 (inhibitory neurons), MAG 

(oligodendrocytes), PDGFRA (OPC), GFAP (astrocytes), and CX3CR1 (microglia) (Figure 3A, 

B), cells were assigned to one of six major brain cell types. In this scATAC-seq dataset, we 

found the oligodendrocytes as the major cell population, consistent with Figure 1e of the original 

paper [23]. Also noted, the complex structure (several clusters) of the open chromatin landscape 

in excitatory neurons is consistent with multi subtypes of excitatory neurons observed from brain 

single-cell RNAseq data [24,25], demonstrating chromatin accessibility as a useful molecular 

marker for sub-clustering of excitatory neurons.  

We next asked how genetic variants could explain the susceptibility of hippocampal cells to AD.  

The scATAK track module generated group ATAC signal tracks (normalized by the mapped 

group read counts) from cell barcode – cell group table and sample pseudo-bulk alignment file. 

A circos plot (Figure 3C) provided a genome-wide view of human GWAS AD risk SNPs [26] 

(https://ctg.cncr.nl/documents/p1651/AD_sumstats_Jansenetal_2019sept.txt.gz, SNPs with 

p<1×10-9 included) and ATAC signals in different cell types (signals binned for every 200kb 

genomic window). AD risk SNPs were further associated with 2kb genomic bins to calculate 

chromatin accessibility in different cell types. A density plot of astrocytes, microglia, and 

oligodendrocytes are enriched with subsets of SNP regions that are highly accessible 

(log10(ATAC-signal + 1)>3, Figure 3D). This observation suggests these cell types are 

vulnerable to AD-associated genetic variation. We next loaded the scATAK hic module to subset 

genomic looping bin pairs (10 kb resolution interaction map (GSM4441836 ) identified from 

bulk histone H3K27ac HiChIP data using single-cell chromatin accessibility map already created 

in scATAK quant step. The downloaded map was generated by HiC-Pro [27] to include cis-

interactions between 20kb and 2Mb. We further filtered the table and only included bias-

corrected significant interactions (Q-Value_Bias <0.05). Assuming open chromatin regions 

carrying active histone enhancer marks frequently loop together for transcriptional regulation, 

interacting chromatin pairs (detected in bulk data) that both are accessible regions in individual 

cells are given a binary potential score for that particular cell. This assumption originated from 

the observation that the pattern of accessibility variation in cis recapitulates chromosome 
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compartments, linking single-cell accessibility to 3D genome organization, reported by 

Greenleaf’s lab [28]. For N accessible regions in a single cell, N×(N-1)/2 possible combinations 

will be scanned to find potential looping pairs. The resulting matrix of chromatin interaction 

potential was loaded to Seurat for signature feature analysis (wilcox significance test, with 

adjusted p-value < 0.05) for different cell groups, and the top 5 interactions for each cell group 

were visualized in a heatmap (Figure 4A). Within the cell-type-specific chromatin interactions, 

one specific chromatin interaction (chr19:44,900,000-44,910,000 and chr19:44,950,000-

44,960,000) connects APOE gene locus to 50 kb downstream. Interestingly, AD risk SNP 

rs117316645 (p < 4.8×10-24) resides in an ATAC peak region of chr19:44,950,000-44,960,000 

bin (IGV traces shown in Figure 4B), and is the most significant variant within this bin. 

Considering that APOE is the major genetic driver for amyloid pathology of AD, the predicted 

chromatin loop connecting rs117316645 with APOE in astrocytes (Figure 4C) points to possible 

disrupted astrocyte function in amyloid-β clearance.         

 

DISCUSSION 

As interest in scATAC-seq continues to grow [29], there is an increasing need for efficient and 

accurate pre-processing and analysis software that can facilitate reproducible workflows. Our 

approach to scATAC-seq analysis draws on previously published tools that have been optimized 

for efficiency and accuracy, and should be useful for researchers grappling with increasingly 

large datasets. We have shown, via analysis of published 10X human PBMC and mouse brain 

scATAC-seq data, that scATAK compares favorably in terms of processing speed and memory 

usage to Cell Ranger. Furthermore, we have developed an R notebook for scATAC-seq PBMC 

cell clustering and cell type annotation that should be generally useful, and we have 

demonstrated the possibility of combined analysis of genome-wide bulk HiC type interaction 

map data with scATAC-seq data to calculate single-cell chromatin interaction potential matrices. 

Using hippocampal scATAC-seq and bulk HiChIP data from a healthy adult human brain, we 

presented chromatin accessibility and interaction landscapes for major brain cell types and 

proposed that a non-coding risk variant of Alzheimer’s disease (AD) may disrupt chromatin 

interaction between a distal enhancer and APOE gene in astrocytes. We note that as tools are 
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further optimized, or when new tools are developed, it should be straightforward to replace 

components of our modular workflow with better alternatives. 

 

METHODS 

Software 

The following software tools were used in running the scATAK workflow to generate the results 

and figures of this paper: kallisto (v0.46.1); bustools (v.0.40.0); minimap2 (v2.15); sambamba 

(v.0.7.1); Genrich; bedtools (v.2.25.0); bedGraphToBigwig. Notebooks reproducing the results 

and figures are available at: https://github.com/pachterlab/GP_2021_4 

Hardware 

All computational work was performed on a Supermicro server computer (2xXeon® Gold 6152 

22-Core 2.1, 3.7GHz Turbo, 12 × 64GB Quad-Rank DDR4 2666MHz memory, 16 × 12TB 

Ultrastar He12 HUH721212ALE600, 7200 RPM, SATA 6Gb/s HDD) with CentOS7 operating 

system installed. 
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Figure 1. The scATAK workflow.  
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Figure 2. Benchmarking of scATAK using the human PBMC 5k data.  

(A) Barcode rank plot (knee plot) showing the total UMI count vs. the rank of the barcode; (B) 
Percentage of overlapping barcodes between scATAK and Cell Ranger for each cell type; (C) 
Violin plots showing the distribution of the scATAK gene scores for known PBMC cell marker 
genes across different cell clusters; (D) The ID4 motif scores for the accessible chromatin 
regions of individual cells across cell clusters.  
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Figure 3. Cell-type-specific open chromatin landscape of the human hippocampus.  

(A) Violin plots showing the distribution of the scATAK gene scores for known brain cell 
marker genes across different cell clusters; (B) A pie chart depicting proportions of the annotated 
brain cell types; (C) A circos plot visualizing AD GWAS loci together with open chromatin 
landscapes for different cell types; (D) A density plot for the calculated cell-type-specific open 
chromatin signals of AD GWAS SNPs).  
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Figure 4. Predicted cell-type-specific chromatin interactions and connection between the AD risk 
variant rs117316645 and the APOE gene.  

(A) The top 5 predicted signature chromatin-chromatin interactions for each cell type; (B) IGV 
browser view of predicted cell-type-specific chromatin loop and open chromatin tracks around 
APOE gene locus; (C) Cell type specificity of a chromatin looping that links rs117316645 to the 
APOE gene in astrocytes.  
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PBMC    Total read pairs: 224,636,372 

CPU threads Real time (scATAK) Real time (Cell Ranger) Fold change 

8 64 min 1171 min 18.3 

4 81 min 1955 min 24.1 

2 139 min 3456 min 24.9 
 

CPU threads Max RSS (scATAK) Max RSS (Cell Ranger) Fold change 

8 8.66 GB 12.99 GB 0.67 

4 8.66 GB 9.31 GB 0.93 

2 8.66 GB 8.35 GB 1.04 

 

Adult mouse brain    Total read pairs: 244,056,346 

CPU threads Real time (scATAK) Real time (Cell Ranger) Fold change 

8 72 min 1045 min 14.5 

4 98 min 1752 min 17.9 

2 164 min 3027 min 18.5 
 

CPU threads Max RSS (scATAK) Max RSS (Cell Ranger) Fold change 

8 7.86 GB 12.17 GB 0.65 

4 8.46 GB 9.79 GB 0.86 

2 8.03 GB 9.58 GB 0.84 

 

Running time breakdown in seconds (scATAK, CPU threads = 8) 

Sample ID PBMC Adult mouse brain 

genome indexing 61 55 

genome alignment and peak calling 2823 3243 

kallisto indexing 47 127 

kallisto / bustools quantification 892 958 

gene activity quantification 86 74 

Table 1. Comparison of running time for the scATAK and CellRanger pipelines. 
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Sample ID PBMC adult mouse brain 

Processed reads 224,636,372 244,056,346 

Pseudoaligned reads 100,549,039 118,667,309 

Pseudoalignment rate  % 44.76% 48.62% 

Pseudoaligned reads in the whitelist 90,210,039 114,063,492 

Whitelist read rate % 89.72% 96.12% 

Pseudoaligned reads with BC corrected 4129483 1,504,416 

Correction rate % 4.11% 1.27% 

Table 2. Read pseudoalignment statistics for kallisto bus and bustools.  
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