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Abstract

Like neocortical structures, the archicortical hippocampus differs in its folding patterns
across individuals. Here, we present an automated and robust BIDS-App, HippUnfold, for
defining and indexing individual-specific hippocampal folding in MRI, analogous to popular tools
used in neocortical reconstruction. Such tailoring is critical for inter-individual alignment, with
topology serving as the basis for homology. This topological framework enables qualitatively
new analyses of morphological and laminar structure in the hippocampus or its subfields. It is
critical for refining current neuroimaging analyses at a meso- as well as micro-scale. HippUnfold
uses state-of-the-art deep learning combined with previously developed topological constraints
to generate uniquely folded surfaces to fit a given subject’s hippocampal conformation. It is
designed to work with commonly employed sub-millimetric MRI acquisitions, with possible
extension to microscopic resolution. In this paper we describe the power of HippUnfold in
feature extraction, and highlight its unique value compared to several extant hippocampal
subfield analysis methods.

Introduction

Most neurological or psychiatric diseases with widespread effects on the brain show
strong and early impact on the hippocampus (e.g. [1]). This highly plastic grey matter (GM)
structure is also critical in the fast formation of episodic and spatial memories (e.qg. [2]).
Examination of this structure with non-invasive neuroimaging, such as MRI, provides great
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promise for furthering our understanding, diagnosis, and subtyping of these diseases and
cognitive processes in the hippocampus and its component subfields [3].

In current neuroimaging analyses the hippocampus is typically modelled as a subcortical
volume, but it is actually made up of a folded archicortical mantle, or ‘ribbon’ [4]. Representing
the hippocampus as such can be leveraged to enable qualitatively new analyses, such as
registration, despite inter-individual differences in gyrification or folding structure, through
topological alignment. In previous work, this was shown to account for much inter-individual
variability in MRI-based manual subfield segmentations [5]. Additionally, representation as a
ribbon allows the hippocampus to be factorized into surface area and thickness, which can be
further subdivided for laminar analyses. These methods are thus critical in advancing MRI
research from the macroscopic scale to the subfield, cortical column, and laminar scales.
Similar approaches have already yielded advances in neocortical analysis methods [6,7].

Denoting the hippocampal archicortical ribbon is challenging because it is thin (0.5-
2mm), its folding pattern varies considerably between individuals [8,9], and this folding may
even continue to change from early development through adulthood [10]. We present here a set
of tools to overcome these challenges using a highly sensitive and generalizable “U-Net’ deep
learning architecture [11], combined with previous work that enforces topological constraints on
hippocampal tissue [12].

In previous work [12], we developed a method to computationally unfold the
hippocampus along its geodesic anterior-posterior (AP) and proximal-distal (PD, i.e., proximal to
the neocortex, with the dentate gyrus being most distal) axes. We demonstrated for the first time
several qualitative properties using in vivo MRI, such as the contiguity of all subfields along the
curvature of the hippocampal head (anterior) and tail (posterior), previously described only in
histology. This pioneering work relied heavily on detailed manual tissue segmentations including
the high-myelinated stratum radiatum, lacunosum, and moleculaire (SRLM), a commonly used
landmark that separates hippocampal folds along the inward ‘curl’ of the hippocampus. In this
work we also considered curvature and digitations along the AP axis of the hippocampus, most
prominently occurring in the hippocampal head [4,8,9,12]. Each of these features are highly
variable between individuals, making them difficult to capture using automated volumetric atlas-
based methods and time-consuming to detect manually.

The current work automates the detailed tissue segmentation required for hippocampal
unfolding using a state-of-the-art ‘U-Net’ deep convolutional neural network [11]. In particular,
we aimed to capture morphological variability between hippocampi at the level of digitations or
gyrifications which are not typically considered using existing automated methods which employ
either a single atlas or multi-atlas fusion (e.g. [13-15]). U-Net architectures have been shown to
be generalizable and sensitive to anatomical variations in many medical image processing tasks
[16], making them ideal to overcome this challenge.

Estimating hippocampal subfield boundaries in MRl is challenging since their histological
hallmarks are not directly available in MRI due to lower spatial resolution and lack of appropriate
contrasts, which is an ongoing hurdle in neuroimaging [17,18]. However, post-mortem studies
show that the subfields are topologically constrained according to their differentiation from a
common flat cortical mantle [4]. Thus a folded representation of hippocampal tissue provides a
powerful intermediate between a raw MRI and subfield labels [19], analogous to the
reconstruction of a 3D neocortical surface. This surface can then be parcellated into subregions
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without topological breaks [6], overcoming many limitations of current subfield segmentation
methods [18]. Here, we apply surface-based subfield boundary definitions obtained via manual
segmentation of BigBrain 3D histology [20] which was additionally supported by a data-driven
parcellation [21]. We additionally demonstrate how labels used in the popular Freesurfer (FS7)
[22] and Automatic Segmentation of Hippocampal Subfields (ASHS) [13] software packages can
be applied under our topologically-constrained framework.

Altogether, we combine novel U-Net tissue classification, previously developed
hippocampal unfolding [12], and topologically-constrained subfield labelling [21] together into a
single pipeline which we refer to as ‘HippUnfold’ hereinafter. We designed this pipeline to
employ FAIR principles (findability, accessibility, interoperability, reusability) with support across
a wide range of use-cases centered around sub-millimetric MRI.

Results

HippUnfold aligns and visualizes data on folded or unfolded surfaces

HippUnfold is presented here as a fully-automated pipeline with outputs including
hippocampal tissue and subfield segmentations, geodesic Laplace coordinates spanning over
hippocampal GM voxels, and inner, midthickness and outer hippocampal surfaces. These
surfaces have corresponding vertices, providing an implicit topological registration between
individuals.

The overall pipeline for HippUnfold is illustrated briefly in Figure 1. A comprehensive
breakdown of each step is provided in the Materials and Methods.
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Figure 1. Overview of HippUnfold pipeline. First, input MRI images are preprocessed and cropped around
the left and right hippocampi. Second, a U-Net neural network architecture (nnUNet [11]) is used to
segment hippocampal grey matter (GM), the high-myelinated stratum radiatum, lacunosum, and
moleculare (SRLM), and structures surrounding the hippocampus. Segmentations are post-processed via
template shape injection. Third, Laplace’s equation is solved across the anterior-posterior (AP), proximal-
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distal (PD) and inner-outer (lI0) extent of hippocampal GM, making up a geodesic coordinate framework.
Fourth, scattered interpolants are used to determine equivalent coordinates between native Cartesian
space and unfolded space. Fifth, unfolded surfaces with template subfield labels [21] are transformed to
subjects’ native folded hippocampal configurations. Morphological features (e.g. thickness) are extracted
using Connectome Workbench [23] on these folded native space surfaces. Sixth, volumetric subfields are
generated by filling the voxels between inner and outer surfaces with the corresponding subfield labels.
Additional details on this pipeline can be found in the Materials and Methods.
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Figure 1 - figure supplement 1. Diagram of the nnU-net architecture used for HippUnfold. This
architecture was automatically configured as the 3D_fullres network, using the 128x256x128
(0.3x0.3x0.3mm) hippocampal subregion images as training data. All conv3D blocks have stride=1,1,1
(unless otherwise specified), padding=(1,1,1), instance normalization, and leaky ReLu activation functions
(negative slope=0.01). Output layers for the 9-label (including background) tissue segmentation are
present at 5 feature-map resolutions (deep supervision), and the loss function used for training is an
average of a Dice and cross-entropy loss functions. For full details on the training scheme, we refer
readers to the supplementary material provided in [7].

In addition to subfield segmentation, HippUnfold extracts morphological features and can
be used to sample quantitative MRI data along a midthickness surface to minimize patrtial
voluming with surrounding structures (see Materials and Methods section “HippUnfold detailed
pipeline” for details). This is visualized across n=148 test subjects on an unfolded surface and
group-averaged folded surface in Figure 2. Note that the group averaging takes place on a
surface and so does not break individual subjects’ topologies. Quantitative MRI features
examined here include T1w/T2w ratio as a proxy measure for intracortical myelin [24], mean
diffusivity, and fractional anisotropy [25,26].
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Figure 2. Average hippocampal folded and unfolded surfaces showing subfields, morphometric and
quantitative MRI measures from the HCP-YA test dataset (see Table 1 of Materials and Methods). The
same topologically defined subfields were applied in unfolded space to all subjects (top), which are also
overlaid on quantitative MRI plots (black lines). The dentate gyrus (DG) is represented as a distinct
surface, reflecting its unique topology, and is mostly occluded in native space. Thickness was not
measured across the dentate gyrus surface. Note that many morphological and quantitative MRI
measures show clear distinctions across subfield boundaries.
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Figure 2 - figure supplement 1. Examination of distortions (or difference in vertex spacing) between an
average folded and unfolded space. Distortions were greatest in the tail of the hippocampus where its
proximal-distal distance becomes quite narrow.

Clear differences in morphological and quantitative MRI features can be seen across the
hippocampus, particularly across subfields as defined here from a histologically-derived
unfolded reference atlas (3D BigBrain) [21]. This highlights the advantages of the present
method. These folded and unfolded representations of hippocampal characteristics are broadly
in line with previous work examining differences in such morphological and quantitative MRl
features across hippocampal subfields or along the hippocampal AP extent (e.g. [27,28]).
However, in previous work these features differed between predefined subfields on average, but
did not necessarily follow subfield contours as seen here. Some advantages of the current
pipeline that likely contribute to this clarity include i) the detail of the hippocampal GM
segmentation, ii) sampling along a midthickness surface to minimize partial voluming with
surrounding structures, and iii) the fact that subjects are topologically aligned across digitations
or gyri, leading to less blurring of features after group-averaging.

Extant methods do not respect the topological continuity of hippocampal
subfields

Several automatic methods for labelling hippocampal subfields in MRI exist, of which
Freesurfer v7.2.0 (FS7) [22] and Automatic Segmentation of Hippocampal Subfields [13]
(ASHS) are among the most widely adopted. These methods rely on volumetric registrations
between a target hippocampus and a reference or atlas. Specifically, ASHS makes use of multi-
atlas registration, wherein multiple gold standard manual hippocampal subfield segmentations
are registered to a target sample. Typically the multi-atlas consists of roughly a dozen samples
which are then fused together to generate a reliable yet oftentimes smooth or simplified final
product. FS uses a combination of voxel-wise classification and, bijectively, volumetric
registration between a target hippocampus and a probabilistic reference atlas, which is
generated via combined in vivo MRl and 9.4T ex vivo hippocampal subfield segmentations [22].
When hippocampi take on different folding configurations, such registrations can become ill-
posed. HippUnfold overcomes these limitations in two ways: with extensive training (in this case
n=590), U-Net can capture detailed inter-individual differences in folding and, secondly, our
unfolding technique ensures that subfield labelling is topologically constrained [19].

We made use of 100 randomly-chosen subjects from the HCP-Aging dataset to compare
the approach with the FS7 hippocampal subfields pipeline and ASHS using a recent manual
subfield multi-atlas [29] . Figure 3A shows a side-by-side comparison of HippUnfold, ASHS, and
FS7 to one representative 81 y.o. female. Figure 3B shows Bland-Altmann plots comparing
subfields CA1, CA3, and subiculum volume across the three methods in all 100 subjects, as
well as their correlation with subjects’ ages. Quantitative comparison between methods shows
an age-related decline in subfield volumes for all methods, with a relative sparing of CA3. Thus,
HippUnfold replicates the widely observed phenomenon of age-related decline, with similar
effect sizes to FS and ASHS (Figure 3 supplement 1). A similar pattern can be seen across the
other subfield volumes and in total hippocampal volume. Bland-Altman plots show major
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differences in hippocampal subfield sizes between methods, which most likely results from
inclusion of the hippocampal tail in HippUnfold.

A 81 yo female, HCP-Aging, right hippocampus
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Figure 3. Out of sample performance of HippUnfold, ASHS, and Freesurfer (FS7). A) side-by-side
comparison of results obtained from each method from one representative individual from the HCP-A
datasets, which was not seen during training. B) Quantitative comparison of subfield volumes (left) and
age-related volume changes (right) between methods. For a full set of snapshots illustrating the
differences between these methods, see Supplemental files 2 and 3.
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Figure 3 - figure supplement 1. Additional comparisons of results obtained from FS7, ASHS, and
HippUnfold in 100 Human Connectome Project - Aging (HCP-A) subjects. All three methods showed a
moderate correlation with age, as expected based on previous literature. Volumetric comparison of each
method to HippUnfold directly revealed that there is a strong correlation between total hippocampal
volumes obtained using HippUnfold and those obtained using FS7 or ASHS. HippUnfold and FS7 showed
a moderate difference in overall volume (FS7 being on average 540mma3 larger), whereas ASHS volumes
were consistently smaller (by an average of 270mm3). At the subfield level, using an unfolded subfield
atlas from the corresponding method, there was relatively low Dice overlap between labels obtained using
these three different methods in native space, which is likely driven by the gross volume differences

between methods (ie. which tissues are included or excluded prior to unfolding) since subfield definitions
are nearly identical after unfolding.

Within the HCP-YA test set, we compared subfield segmentations from ASHS and FS7
to those generated via HippUnfold in unfolded space, which is shown in Figure 4 in one
representative subject. We then generated an unfolded subfield atlas using the maximum
probability labels from all ASHS and FS7 subjects, which can be used in place of the default
HippUnfold atlas generated via 3D BigBrain histology [21]. For comparison, we additionally
show native space HippUnfold results obtained when using these alternative unfolded atlases..
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Figure 4. Comparison of HippUnfold, ASHS, and Freesurfer (FS7) subfield segmentations in native and
unfolded space. Sagittal and coronal slices and 3D models are shown for one representative subject.
Note that for HippUnfold hippocampal subfields are the same for all individuals in unfolded space, but for
ASHS and FS we mapped all subjects’ subfield boundaries which are shown in the black lines in column
4 rows 2 and 4. We then took the maximum probability subfield label from ASHS and FS in unfolded
space and used it for HippUnfold subfield segmentation in native space, which is shown in rows 3 and 5.
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Figure 4 - figure supplement 1. Comparison of HippUnfold and fully manual subfield segmentations (data
from [1]) in native and unfolded space from one representative subject. Sagittal and coronal slices and 3D
models are shown for one representative subject. Note that the 3D model of a fully manual segmentation
shows clear anterior and posterior digitations which were also present but considerably smoothed in
HippUnfold.

Both ASHS and FS showed subfield discontinuities in unfolded space in at least some
subjects, and FS even showed discontinuities in the group-averaged unfolded subfields. That is,
some pieces of a given label were separated from the rest of that label. ASHS does not include
an SRLM label and the SRLM produced by FS was not consistently aligned with that used in
unfolding. Thus, subfields sometimes erroneously crossed the SRLM, breaking topology and
explaining why discontinuities were sometimes observed in unfolded space. Ordering of labels
was also not consistent in ASHS and FS. For example, sometimes CA1 would border not only
CA2 but also CA3, CA4, and/or DG. Additionally, neither ASHS nor FS extends all subfields to
the full anterior and posterior extent of the hippocampus. Instead, both methods simplify most of
the anterior hippocampus as being CA1 and opt not to label subfields in the posterior
hippocampus at all. These qualities are not in line with the anatomical ground truth shown in
both classic and contemporary ex-vivo histological studies [4,9], which were indeed well
captured by HippUnfold. FS also over-labelled hippocampal tissue, which can be seen reaching
laterally into the ventricles in the coronal view. Similar errors have been documented for FS in
other recent work [30,31].

Trained U-Net performance is similar to manual segmentation

From the HCP-YA dataset, a set of 738 (left and right from 369 subjects) gold standard
hippocampal tissue (that is, hippocampal GM and surrounding structures) segmentations were
generated according to the manual protocol defined in [21]. Specifically, this was done by raters
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JD, MY, and BK using an incremental learning U-Net training regime described in the Materials
and Methods nnUNet training section. Automated tissue segmentation was performed using
nnUNet, a recent and highly generalizable implementation of a U-Net architecture [11]. This
software was trained on 80% (n=590) of the gold standard segmentation data described above,
with the remaining 20% (n=148) making up a test set. Left and right hippocampi from the same
participant were never split across training and testing sets due to their high symmetry. Note
that all input images were preprocessed, resampled, and cropped (see Figure 1 and Materials
and Methods) prior to training. Within the training set, 5-fold cross-validation was performed as
implemented in the nnUNet code. Training took place on an NVIDIA T4 Turing GPU over 72
hours. This process was carried out using either T1w or T2w input data with the same
training/testing data split. All default nnUNet data augmentation and hyperparameters were
used.

Sub
CA2
0.2 0; &E}

0.1| —Mean ‘ 0.1/ —Mean SRIM

——Median '
]

Figure 5. Test set performance in Dice overlaps between HippUnfold and manually unfolded subfields. All
values are compared to ground truth manually defined tissues followed by unfolded subfield definition
(manual unfold) to determine how small differences in gray matter parcellation propagate through the
unfolding, subfield definition, and re-folding. Two models were trained in parallel using the same labels
but different input MRI data modalities consisting of T1w or T2w data. Dotted black lines indicate
corresponding values from [13], who include SRLM in all labels and combine CA4 and DG into one label.

Dice overlap depends heavily on the size of the label in question, being lower for smaller
labels. Typically a score of >0.7 is considered good, and many fully manual protocols show dice
scores of >0.8 for the larger subfields like CA1 or the subiculum, and 0.6-0.8 for smaller
subfields like CA2 or CA3 (see [18] for overview). Within the HCP-YA test set, performance was
similar or better than most fully manual protocols for T1w and T2w data. Performance on T1w
images was only marginally poorer than T2w images which typically better show the SRLM and
are popular in manual subfield segmentation protocols [18].

Generalizability to unseen datasets and populations

We aimed to determine whether our pipeline would generalize to unseen datasets with
different acquisition protocols and sample populations. Hippocampal morphometry, integrity,
and subfields are often of interest in disease states where atrophy or other structural
abnormalities are observed [1,32-34]. For this reason, we examined the HCP-A datasets in
which we anticipated cases of severe atrophy would be present in some older subjects. Figure
6A shows results from one representative individual (an 80 y.o. female with signs of age-related
atrophy but good scan quality). Another common use-case for hippocampal subfield
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segmentation is on anisotropic T2w data which is considered optimal for performing manual
segmentation in most protocols [18], but may impose challenges for our method due to the

difference in resolution. We thus applied HippUnfold to 7T-TSE data and also illustrate one

representative subfield segmentation result in Figure 6A.

To demonstrate generalizability to pathological cases where hippocampal abnormalities
can be confirmed, we also applied HippUnfold to a surgical epilepsy patient case. A 37 year-old
female right-handed patient was investigated for surgical treatment of temporal lobe epilepsy,
and clinical MR imaging at 1.5T revealed a FLAIR hyper-intensity in the right hippocampus. The
patient was imaged pre-surgically for a 7 Tesla MRI research study, and the 0.7mm MP2RAGE
T1w (UNI-DEN) image was segmented using HippUnfold, which is shown in Figure 6B. The
patient underwent a right anterior temporal lobectomy and has been seizure-free (Engel class 1)
for 4 years. Bilateral asymmetry is a strong indicator of epileptogenesis, and so results are
examined for both the left and right hippocampi. Note that in addition to a loss in overall volume,
the afflicted hippocampus showed relative sparing of CA2 which is a common observation in
hippocampal sclerosis [35], as well reduced digitations compared to the left hemisphere.
Examining additional patients in future work may reveal whether morphometry could be a
clinical marker of epileptogenesis in patients with no remarkable clinical lesions.
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Figure 6. Examination of HippUnfold performance on additional datasets HCP-A (T1w and T2w) and
anisotropic 7T-TSE data. A) Sample subjects’ HippUnfold subfield segmentation in native resolution. The
first two rows come from the same subjects but using different input data modalities. B) HippUnfold
results from a 7T MRI of a temporal lobe epilepsy patient with surgically confirmed right hippocampal
sclerosis.

Automated error flagging

Gold standard manual segmentations under the protocol used for subsequent unfolding
were not available in novel datasets. Manually inspecting results from hundreds of subjects is
time consuming. We thus streamlined this process by flagging potential segmentation errors by
examining Dice overlap with a more conventional segmentation approach: deformable
registration. For all datasets described above, we applied deformable fast B-spline registration
[36] to the corresponding T1w or T2w template. Tissue segmentation results (generated at the
nnUNet stage) were then propagated to template space and overlap with standard template
hippocampal masks were examined, which is shown in Figure 7. Any subject with a Dice

13


https://paperpile.com/c/TpKlj8/H7bfF
https://doi.org/10.1101/2021.12.03.471134
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.03.471134; this version posted September 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

overlap score of less than 0.7 was flagged and manually inspected for quality assurance. This
made up 34/2126 (1.6%) samples in the HCP-YA T2w set (including training and testing
subsets), 188/1312 (14.3%) samples from the HCP-A T2w set, 37/1312 (2.8%) samples from
the HCP-A T1w set, and 3/92 (3.3%) samples from the 7T-TSE set. Closer inspection revealed
that the vast majority of flagged cases were due to missed tissue in the nnUNet segmentation,
an example of which is shown in Figure 7B. It is interesting to note that the most flagged cases
were seen in the HCP-A T2w dataset even though T2w is a popular acquisition protocol for
hippocampal subfield segmentation [18], and showed the best performance within the HCP-YA
test set (Figure 5). This was likely not due to the age of subjects since few of the HCP-A T1w
were flagged as possible errors, but instead may have been due to T2w scan quality, which was
observed to be poor in some subjects, causing poor definition of the outer hippocampal
boundaries. We recommend that future users carefully inspect results from any flagged
subjects, and cases with errors can be either discarded or manually corrected. Some work has
already demonstrated it is possible to synthesize or convert between MRI modalities [37], which
could be used to alleviate the dependency on any single MR contrast. We cannot determine
whether HippUnfold will work as intended on all new datasets, but within the generalization
datasets examined here, results were excellent.

A B
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Figure 7. Automated error flagging via overlap with coarse, registration-based segmentation. A) Subjects
flagged for Quality Assurance from each dataset based on Dice overlap with a reference mask
approximated via deformable registration. B) Failed subject example illustrating missed tissue (red
arrows) at the nnUNet stage of the HippUnfold pipeline.

FAIR principles in development

We designed this pipeline to employ FAIR principles (findability, accessibility,
interoperability, reusability). As such, we have made use of several tools, conventions, and data
standards to make HippUnfold extensible and easy to use.

The default file input-output structure of the HippUnfold command line interface was built
in compliance with the Brain Imaging Data Standards (BIDS) [38] Applications (BIDS-Apps)
guidelines [39], and easily findable amongst the list of available BIDS Apps'. This is achieved
via Snakebids, a tool designed to interface between BIDS datasets and Snakemake [40]. All
aspects of HippUnfold use Snakemake [41], a workflow management system based on Python
which is reproducible, scalable, and seamlessly combines shell commands, Python code, and
external dependencies in a human-readable workflow. There is no need to install these
dependencies, which are containerized within the Singularity or Docker versions of HippUnfold.

! https://bids-apps.neuroimaging.io/apps/
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Altogether, this means that in a single line this pipeline can be applied intelligently to any
BIDS-complaint dataset containing a whole-brain T1w image or a T2w image (whole-brain or
limited field of view) without having to specify further details. Typical runtimes on a standard
desktop are 30-60 minutes per subject, but this is further parallelized for faster processing when
multiple subjects and added compute resources (or cloud computing) are available. Additional
flags can be used to extend functionality to many other use-cases, including T1w only, T2w
only, diffusion-weighted imaging, cases where a manual tissue segmentation is already
available, or ex-vivo tissue samples.

Outputs of HippUnfold follow the standards for BIDS derivatives, and include
preprocessed input images, volumetric subfield segmentations, inner, midthickness, and outer
hippocampal surfaces, vertex-wise morphometric measures of thickness, curvature, and
gyrification, and a brief quality control (QC) report. All surface-based outputs are combined into
a Connectome Workbench [42] specification file for straightforward visualization analogous to
HCP neocortical reconstructions. Outputs can be specified to include images in the original T1w
space or in the resampled, cropped space that processing is performed in.

All code, code history, documentation, and support are offered online?.

Discussion

One of the most powerful features of HippUnfold is its ability to provide topological
alignment between subjects despite differences in folding (or digitation) structure. This is a
critical element of mainstream neocortical analysis methods that, until now, has not been carried
out systematically in the archicortex, or hippocampus. The power of this form of topological
alignment is evident when mapping morphological or quantitative features across the
hippocampus in a large population, which we demonstrate in Figure 2.

Segmentation of subfields is a task that is conceptually simplified through unfolding of
the hippocampus to provide intrinsic anatomical axes. The axis we define as proximal-distal
(PD), which follows along the SLM in a coronal slice, is also a landmark relied upon in many
manual segmentation protocols for the hippocampal subfields, including a histologically-
validated protocol that defines subfield boundaries by the proportional distance along the SLM
[43]. The head and tail are areas where these heuristics have conventionally been very difficult
to apply, since the slice angulation optimal for the body is not optimal for the curved head and
tail, and work using multiplanar reformatting provides one alternative for curved regions of the
hippocampus [44]. Our unfolding approach is conceptually analogous to these approaches,
however, the added strength of our approach is that we apply the same conceptual rule
(proportional distance along the SLM) while considering the entire 3D structure of the
hippocampus.

We compare HippUnfold to other commonly used tools for hippocampal analysis,
Freesurfer (FS7) and Automated Segmentation of Hippocampal Subfields (ASHS) (Figure 4).
Both of these methods rely on smooth deformation of single or multi-atlas references, indicating
they do not easily transfer to drastically different hippocampal folding patterns, which are often
seen in the hippocampal head and tail across individuals. Both of these methods showed

2 https://github.com/khanlab/hippunfold
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unfolded subfield patterns that were less consistent with ground truth histological literature than
the output provided by HippUnfold. Common issues in other methods include introducing breaks
in subfield topology, simplifications like the exclusion of the hippocampal tail, or inconsistent
ordering of subfields. This highlights some of the advantages of HippUnfold, which was
designed to overcome these issues explicitly.

Several factors make surface-based methods difficult to implement in the hippocampus,
including its small size, and the difficulty of distinguishing the hippocampal sulcus or SRLM
laminae that separate hippocampal folds. Here we have overcome these issues using a highly
generalizable and sensitive neural network ‘U-Net’ architecture, combined with our previously
developed topological unfolding framework. Together, these methods achieved similar or better
Dice overlap scores than what is typically seen between two manual raters on all subfields. We
tested performance on new datasets (‘generalization’ datasets with different characteristics than
the HCP training set) and saw good performance in nearly all cases. Specifically, we tested
other common imaging protocols including different sample age groups (HCP-A) and thick-slice
7T TSE acquisitions often used in targeted hippocampal subfield imaging [18]. Though error
rates were low, we do show how and why such errors sometimes occur, highlighting the
importance that future users examine the brief quality control reports included for each subject.
Thus, while HippUnfold is shown to work well with all datasets examined here, we expect the
widespread adoption of higher-resolution acquisition techniques will further improve feasibility at
other research institutes.

One important limitation of our method is that HippUnfold did not consistently show clear
digitation in the hippocampal head, body, and tail which was sometimes seen in manual
segmentation in the training set and in other work (see Figure 4 supplement 1). This reflects a
lack of detail compared to histological ground truth materials, and affects downstream
processing. That is, an overly smoothed hippocampal surface will appear thicker and have a
smaller surface area compared to one that captures the full extent of digitations. This smaller
surface area also results in each subfield boundary being proportionally shifted. Future work
could improve this pipeline by training and testing with higher-resolution data where digitations
can more clearly be distinguished both in labelmaps and in the underlying images.

A single unfolded subfield atlas based on 3D BigBrain ground truth histology [21] was
employed within HippUnfold for all subjects here. As illustrated in Figure 4, alternative unfolded
subfield atlases can be used as well. Though previous work demonstrated reduced inter-
individual variability of subfield boundaries in unfolded space [5], the extent to which subfield
boundaries vary after unfolding is not yet known. In the neocortex, this issue is also present but
partially mitigated with surface-based registration of available features like intracortical myelin,
sulcal patterns, or thickness (e.g. [45]). Such information could also be used in the unfolded
hippocampus to further refine subject-specific subfield delineation, but would require histological
ground truth data from multiple subjects to evaluate, ideally in 3D to avoid common out-of-plane
sampling issues [19]. This level of precision is likely beyond current typical MRI resolution
levels, but should be investigated in future work aiming to combine in-vivo and ex-vivo or other
more specialized imaging.

The current work has applications beyond subfield imaging, enabling new investigations
of the hippocampus on a columnar and laminar scale. For example, rather than employing
subfield ROI-based analyses, statistics can be performed on a per-vertex basis for vertices
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generated at different depths. This is in line with state-of-the-art neocortical analysis methods
[6], and opens up the possibility of more precise localization of hippocampal properties.
Similarly, it is worth noting that the methods used here are not necessarily restricted to MR, as
we have used the same surface-based unfolding in combination with manual segmentation to
characterize the hippocampus in 3D BigBrain histology [21].

Altogether, we show that the BIDS App ‘HippUnfold’ that we have developed in this work
(i) respects the different internal hippocampal folding configurations seen between individuals,
(i) can be applied flexibly to T1w or T2w data, sub-millimetric isotropic or thick-slice anisotropic
data, and (iii) compares favourably to other popular methods including manual segmentation,
ASHS, and FS7. We believe this tool will open up many avenues for future work including
examination of variability in hippocampal morphology which may show developmental
trajectories or be linked to disease, or the examination of hippocampal properties perpendicular
or tangential to its laminar organization with diffusion-weighted imaging. Finally, it is worth
noting that the methods described here stand to improve existing techniques by providing
greater anatomical detail and, critically, greater precision through topological alignment across
individuals who vary in anatomical structure.

Materials and Methods

Data

HippUnfold was designed and trained with the Human Connectome Project (HCP) 1200
young adult subject data release (HCP-YA) [46], and additionally tested on the HCP Aging
dataset (HCP-A) [47], and anisotropic (or thick-slice) 7T data (7T-TSE) from [29] which is
considered optimal by many hippocampal subfield researchers [18]. Informed consent and
consent to publish were obtained by the original authors of the open source data examined
here. Each of the three datasets included research ethics board approvals, as well as informed
consent and, in the HCP-Aging dataset, assessment of the subjects' ability to provide consent.
For the single epilepsy patient case examined here, research ethics board approval and
informed consent were collected at the Western University (HSREB # 108952, Lawson: R-17-
156). These data are summarized briefly in Table 1.

Table 1. MRI datasets used in training, evaluation, and comparison to extant methods. Methods
employed include those proposed here (HippUnfold), the same processing but with manual segmentation
(similar to previous work [21]) (manual unfold), Freesurfer v7.2.0 (FS7) [22], and an atlas of manual
segmentations [29] used in ASHS [13].

Name Modalities Resolution Sample size (L+R) Methods employed

HCP-YA | Tiw, T2w 0.7x0.7x0.7mm | n=590 (training) HippUnfold
Manual unfold

n=148 (testing) HippUnfold
Manual unfold
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FS7
HCP-A Tiw 0.8x0.8x0.8mm | n=1312 for T1w, T2w | HippUnfold
T2w SPACE | 0.8x0.8x0.8mm | SPACE FS7
T2w TSE 0.4x0.4x2.0mm ASHS
n=200 for T2w TSE
(FS7, ASHS)
n=200 for T1w
(HippUnfold)
7T-TSE T2w 0.4x0.4x1.0mm | n=70 HippUnfold
(from Manual subfields
ASHS
atlas)

nnUNet training

U-Nets perform classification of each input image voxel, and it is not constrained by
smooth displacements used in deformable atlas registration. This is important because smooth
deformable registration can be ill-posed for an atlas with a different hippocampal folding
configuration than the target. For example, when trying to register a hippocampus with 2
anterior digitations to one with 4 anterior digitations, topological breaks may be seen which
leads to loss of detail and disproportionate stretching or compression of some subfields, an
issue that is discussed in [48]. Instead, a U-Net classifies voxels individually based on a
combination of local low-level and global high-level image features with no explicit smoothness
constraints.

In the current work, gold standard training and test comparison segmentations were
generated in a semi-automated but heavily supervised manner: a U-Net implementation
(NiftyNet [49], which is no longer maintained) was trained on existing data from [12]. This was
then applied to new HCP-YA data and results were manually inspected. In many cases, results
were poor due to the relatively small training sample size, but good quality segmentations from
roughly 50% of subjects were selected and corrected by a manual rater (JD or MY) before being
added to the initial training set for a new, de-novo application of U-Net training. The process of
inspection and manual correction was always performed according to the protocol outlined in
[12] to avoid systematic drift in rater performance. This process is typically referred to as
incremental learning, and was applied in four iterations until a larger set of high quality,
manually inspected and corrected segmentations (738 samples from 369 subjects) was
achieved.

Once the gold-standard training data was obtained, we applied a U-Net implementation
called nnUNet [11]. nnUNet was built to include many state-of-the art deep learning techniques
including sensible hyperparameter selection, built-in 5-fold cross-validation, and other features
that have been shown to perform well and minimize possible sources of bias in medical
imaging. We thus applied all default parameters in our use of this tool. Training was repeated
using the same labelmaps but different underlying images for T1w, T2w, and DWI images. For
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each of these modalities, training took place on an NVIDIA T4 Turing GPU over 72 hours.
Additional new models (or fine-tuned models) can also be trained and supplied within our code
framework. Training data is available online at [50].

HippUnfold detailed pipeline

The command-line interface and options for HippUnfold are fully described online and in
Supplemental file 1. A brief description of this pipeline is outlined here:

1. Preprocessing and resampling. Data is gathered via snakebids [55], which automatically
and flexibly queries the specified BIDS directory for T1w and T2w images. Data is
loaded and saved using NiBabel [56]. Processing of each image is as follows:

a. T1w: N4 bias correction is performed using the Advanced Normalization Toolkit
(ANTSs) [57] followed by affine registration (NiftyReg [36]) to CITI168 atlas [58].
This transformation is composed (Convert 3D or ¢3d [59]) with a precomputed
transform from CITI168 to oblique to the long-axis of the hippocampus. Images
are resampled to 0.3mm? and cropped to 128x256x128 voxels centered on the
CITI168 left and right hippocampi. Left hippocampi are flipped sagittally to
resemble right hippocampi. We refer to this as cropped coronal oblique space.

b. T2w: N4 bias correction is performed as above, and if multiple T2w images are
present then they are rigidly registered (NiftyReg) and then averaged, a
rudimentary form of super-resolution sampling (e.g. [60]). Rigid registration to the
corresponding T1w image is then performed (NiftyReg), and resampled to
cropped coronal oblique space as above.

A ‘modality’ flag is used to determine which image modalities should be used if multiple
are present in the input BIDS directory. Within the HippUnfold code, optional flags can
be used to skip preprocessing and registration. Manually segmented hippocampal
tissues can also be specified, which can be useful in ex-vivo MRI or other modalities on
which the current nnUNet-based segmentation is not expected to work. In all cases, data
are resampled to cropped coronal oblique space to match the nnUNet training setup. It is
possible to skip this step only if a manually segmented hippocampal tissue class image
is also provided (in which case nnUNet is not applied).

2. Tissue class segmentation. If a manually segmented hippocampal tissue image is not
supplied, then the input image will be run through nnUNet [11], a state-of-the-art
implementation of a deep convolutional neural network (U-Net) designed for image
segmentation [61,62]. The output of nnUNet is a segmentation of tissue classes:
hippocampal grey matter (GM) and the surrounding tissues which are used in defining
unfolded coordinate boundaries: SRLM, medial temporal lobe cortex (MTLc), pial
surface, hippocampal-amygdalar transition area (HATA), indusium griseum (IndGris),
cysts, and the dentate gyrus granule cell layer (DG) (which also makes up part of
hippocampal grey matter but which marks an endpoint of the unfolding coordinate
framework and so it was given a distinct label).
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3. Post-processing. Here we employed template shape injection [63] to correct possible
segmentation errors, making labelmaps more amenable to the previously developed
hippocampal unfolding methods. The basic principle of template shape injection is to
perform highly fluid deformable registration of a template segmentation labelmap to a
given subject’s segmentation labelmap. This differs from typical registration-based
segmentation methods in that the registration is optimizing labels rather than image
feature similarity (i.e. registration is performed with binarized and smoothed labels as
multiple contrasts, rather than on MRI intensities). Specifically, we used mean squared
error between labels as the cost function, which is minimized when identical labels are
overlapping. In our implementation, we apply multi-contrast deformable registration
using Greedy [59]. It should be noted that in principle this step is not necessary for our
pipeline, but in practice it helps avoid possible errors due to nnUNet segmentation faults
(see main text Figure 5).

The reference template that we applied was created using manual segmentations from
an open source ex-vivo dataset [64] that was manually segmented according to our
previous manual hippocampal unfolding protocol [12]. Labelmaps from 22 samples were
combined using a standard template building ANTs script ‘buildtemplateparallel.sh’ [65].
This template generation entails averaging all images and then registering each sample
to the average, iteratively refining and sharpening the average image. This ex-vivo
dataset was selected for template building because we had high confidence in the
quality of these segmentation since they contained higher resolution and contrast than
other datasets while still including multiple samples.

4. Unfolding. This code is described in [12] and was modified in [21], but we will provide a
short summary here. A Laplace field varying from 0 to 1 is generated across
hippocampal grey matter, with 0 being at its anterior boundary with the HATA and 1
being at its posterior boundary with the IndGris (anterior-posterior or AP). This provides
a scaled, smooth, geodesic way to index points along this axis. Another Laplace field is
generated across the proximal-distal (or PD) axis of the hippocampus (MTLc to DG), and
together these two fields provide a coordinate system spanning hippocampus grey
matter along two dimensions, which we plot as a flat rectangle (with a 2:1 aspect ratio to
reflect the fact that the hippocampus is longer than it is wide). A third field is generated
across the thickness of hippocampal grey matter (SRLM to outer boundary, or inner to
outer, or |0). By default, the IO Laplace field is replaced by an equivolumetric model
[7,66], which helps account for the effects of curvature on laminar features (though this
replacement can optionally be disabled). We then compute displacement fields for
transforming each voxel from native space to the ‘unfolded’ space spanned by these
three (AP, PD, and I0) fields, and vice-versa.

Specifically, transformations for going between this unfolded space and native space are
defined from Cartesian coordinates (x,y,z) to each Laplace field (AP, PD, and IO) for all
hippocampal grey matter voxels. We performed piecewise linear interpolation (griddata
from SciPy [67]) to go from each unfolded coordinate (AP, PD, 10) to back to Cartesian
coordinates (x,y,z). Rather than map Cartesian coordinates to Laplace coordinates
ranging from 0-1 (as in previous work [12]), we scale these gradients to make up a
standard rectangular prism with a size of 256x128x16 voxels (dimensions corresponding
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to AP, PD, and IO, respectively), at a voxel size of 0.15625mm? isotropic. This reference
space is easily changed in the config file if a different unfolded resolution, size, or aspect
ratio is desired. Each of these displacement fields is saved as a standard ITK 3D warp
file in NIfT1 format that can subsequently be applied to NIfTI or GIfTI files.

Unfolding of the dentate gyrus (DG) is introduced in the current work. This is performed
with the same methods described above but over the domain of the dentate gyrus rather
than all hippocampal grey matter. IO and PD fields are swapped with respect to the rest
of the hippocampus reflecting the fact that during its development, the DG breaks from
the rest of the cortical mantle and wraps around its terminus (CA4), making it
topologically perpendicular to the rest of the hippocampus [68]. Endpoints for the DG are
defined within the template shape used in step 3. Due to the thinness of the DG, it is
often thinner than one voxel and so Laplace fields cannot easily be generated with the
methods used in previous work. Thus, template shape injection is used to define the AP,
PD, and IO fields within the DG, which were precomputed in the reference template with
an idealized DG shape for unfolding). Thus, topological alignment between individuals
does not perfectly follow the same Laplacian coordinate framework used in the rest of
the hippocampus. Rather, this represents a more traditional volumetric approach to
alignment via a template. The unfolded DG was defined by a rectangular prism with a
size of 256x32x16, reflecting the fact that it is smaller than the rest of the hippocampus
(PD) but still spans the same long (AP) axis.

5. Subfield definition. In previous work [21] we performed a highly detailed 3D ground truth
segmentation of hippocampal subfields using 3D BigBrain histology [21]. We mapped
subfields using our Laplace coordinate framework, which provides implicit, topologically
constrained registration between hippocampi. Thus, HippUnfold applies the same
subfield boundary definitions to new samples in unfolded space, which are then
propagated back to native space. Specifically, reference subfield labels already in
unfolded space are warped to each subjects’ native space using the warp files
generated in step 4. Other unfolded subfield atlases can also be used, but BigBrain is
the default since it is the most complete and detailed model of the hippocampal subfields
to date.

6. GIfTI formatted outputs. In order to facilitate integration with other popular neuroimaging
analysis tools, we have provided outputs in commonly used gifti surface formats in
addition to volumetric nifti formats. Standardized unfolded surfaces corresponding to the
inner, midthickness and outer surface were generated for one standard unfolded
template and propagated to each subjects’ native, folded space using the warp files
generated in step 4. Note that unfolded space is mapped to a rectangle rather than a
sphere as is typically used in the neocortex, and so surfaces are not fully enclosed.
Tessellation of vertices are available in a variety of densities categorized by their
average vertex spacing in the native space: 0.5mm (7262 vertices), 1Tmm (2004
vertices), 2mm (419 vertices), or the legacy unfoldiso (32,004, ~32K, corresponding to
the number of unfolded coordinates used in previous work, or 254x126).

Standardized unfolded tessellations were generated by starting with a 512x256 grid with
each point connected to its neighbours, making a uniform mesh in unfolded space. Mesh
vertices were iteratively removed until vertex distances after transforming to an averaged
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native space were achieved with the above spacings. In the case of the 32K surfaces,
meshes were generated with 254x126 points with no vertices being removed, meaning
that vertex distances are uniformly-spaced in unfolded space but distorted in native
space. In addition to hippocampal surfaces, dentate gyrus surfaces are also generated,
with the following unfolded meshes: 0.5mm (1788 vertices), 1mm (449 vertices), 2mm
(64 vertices), and unfoldiso (7620 vertices, 254x30).

7. Morphometry. Connectome Workbench commands [23,69] are used to extract measures
of thickness between inner and outer surfaces, as well as curvature and gyrification
along midthickness surfaces. The curvature metric is calculated using the mean
curvature, calculated on a midthickness surface smoothed with the mean curvature
midthickness surfaces, first smoothed by neighbourhood averaging (strength=0.6,
iterations=100). The gyrification metric is defined as the ratio of native-space surface
area over unfolded-space surface area, where the surface area is calculated at each
vertex as the average of areas of connected triangles. Additional data (for example,
fMRI, DWI, or others) can be sampled at each vertex with the code provided in
HippUnfold (the volume to surface mapping command in Connectome Workbench). With
the implicit registration provided by unfolded space and the tessellation of these
surfaces, such data can readily be compared across hippocampal samples without the
need for further registration. These data can be subgrouped according to subfield labels,
as in ROI analysis styles, or each vertex can be examined separately as in searchlight or
data-driven analysis styles. Alternatively, gradient-based analyses can be applied based
on Laplace coordinates and their corresponding surface mesh tessellations (see [70] for
example).

Supplemental file 1. HippUnfold Documentation. This document fully describes the HippUnfold
installation, command-line interface, options, outputs, and provides several useful pieces of
information including worked examples and useful tips on viewing data in other common
platforms.

Supplemental file 2. Side-by-side snapshot comparison of HCP-A segmentations results from
HippUnfold, FS7, and ASHS from the left hemisphere. Snapshots were taken at the conronal
centroid, centroid +15 slices, centroid+30 slices, and the sagittal centroid.

Supplemental file 3. Side-by-side snapshot comparison of HCP-A segmentations results from
HippUnfold, FS7, and ASHS from the right hemisphere. Snapshots were taken at the conronal
centroid, centroid +15 slices, centroid+30 slices, and the sagittal centroid.

Acknowledgements

This work was supported by a Canadian Institutes for Health Research Project Grant (CIHR
Grant # 366062) to A.K. and S.K. AK was supported by the Canada Research Chairs program
#950-231964, NSERC Discovery Grant #6639, and Canada Foundation for Innovation
(CFI)John R. Evans Leaders Fund project #37427, the Canada First Research Excellence
Fund, and Brain Canada. J.D. was funded through a Natural Sciences and Engineering

22


https://paperpile.com/c/TpKlj8/SwMwb+UcOhH
https://paperpile.com/c/TpKlj8/3WExA
https://doi.org/10.1101/2021.12.03.471134
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.03.471134; this version posted September 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Research Council doctoral Canadian Graduate Scholarship (NSERC CGS-D). R.A.M.H was
supported by a BrainsCAN postdoctoral fellowship for this work.

Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal
Investigators: David Van Essen and Kamil Ugurbil; 1TU54MH091657) funded by the 16 NIH
Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the
McDonnell Center for Systems Neuroscience at Washington University.

Data and/or research tools used in the preparation of this manuscript were obtained from the
National Institute of Mental Health (NIMH) Data Archive (NDA). NDA is a collaborative
informatics system created by the National Institutes of Health to provide a national resource to
support and accelerate research in mental health. Dataset identifier:
dx.doi.org/10.15154/1520707. This manuscript reflects the views of the authors and may not
reflect the opinions or views of the NIH or of the Submitters submitting original data to NDA.
Data was also provided in part by Berron et al., 2017, in their published work “A protocol for
manual segmentation of medial temporal lobe subregions in 7 Tesla MRI” [29] which includes
MRI images and subfield segmentations.

23


https://paperpile.com/c/TpKlj8/BWBob
https://doi.org/10.1101/2021.12.03.471134
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.03.471134; this version posted September 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

References

1.

10.

11.

12.

13.

14.

15.

Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol
Appl Neurobiol. 2014;40: 520-543.

O’Keefe J, Nadel L, Regents Professor of Psychology Lynn Nadel. The Hippocampus as a
Cognitive Map. Oxford University Press, USA; 1978.

Dill V, Franco AR, Pinho MS. Automated Methods for Hippocampus Segmentation: the
Evolution and a Review of the State of the Art. Neuroinformatics. 2015. pp. 133-150.
doi:10.1007/s12021-014-9243-4

Duvernoy HM. The Human Hippocampus. 1998. doi:10.1007/978-3-662-03628-0

DeKraker J, Ferko KM, Lau JC, Kéhler S, Khan AR. Unfolding the hippocampus: An
intrinsic coordinate system for subfield segmentations and quantitative mapping.
Neurolmage. 2018. pp. 408—418. doi:10.1016/j.neuroimage.2017.11.054

Van Essen DC, Drury HA, Joshi S, Miller MI. Functional and structural mapping of human
cerebral cortex: solutions are in the surfaces. Adv Neurol. 2000;84: 23—-34.

Waehnert MD, Dinse J, Weiss M, Streicher MN, Waehnert P, Geyer S, et al. Anatomically
motivated modeling of cortical laminae. Neuroimage. 2014;93 Pt 2: 210-220.

Chang C, Huang C, Zhou N, Li SX, Ver Hoef L, Gao Y. The bumps under the hippocampus.
Hum Brain Mapp. 2018;39: 472-490.

Ding S-L, Van Hoesen GW. Organization and Detailed Parcellation of Human Hippocampal
Head and Body Regions Based on a Combined Analysis of Cyto- and Chemoarchitecture. J
Comp Neurol. 2015;523: 2233-2253.

Cai S, Yu X, Zhang Q, Huang C, Gao Y. Is hippocampus getting bumpier with age: a
quantitative analysis of fine-scale dentational feature under the hippocampus on 552
healthy subjects. Medical Imaging 2019: Image Processing. 2019. doi:10.1117/12.2512701

Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring
method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18:
203-211.

DeKraker J, Ferko KM, Lau JC, Kéhler S, Khan AR. Unfolding the hippocampus: An
intrinsic coordinate system for subfield segmentations and quantitative mapping.
Neuroimage. 2018;167: 408—418.

Yushkevich PA, Pluta JB, Wang H, Xie L, Ding S-L, Gertje EC, et al. Automated volumetry
and regional thickness analysis of hippocampal subfields and medial temporal cortical
structures in mild cognitive impairment. Hum Brain Mapp. 2015;36: 258-287.

Chakravarty MM, Steadman P, van Eede MC, Calcott RD, Gu V, Shaw P, et al. Performing
label-fusion-based segmentation using multiple automatically generated templates. Hum
Brain Mapp. 2013;34: 2635-2654.

Pipitone J, Park MTM, Winterburn J, Lett TA, Lerch JP, Pruessner JC, et al. Multi-atlas

24


http://paperpile.com/b/TpKlj8/t9xgK
http://paperpile.com/b/TpKlj8/t9xgK
http://paperpile.com/b/TpKlj8/Qm4wg
http://paperpile.com/b/TpKlj8/Qm4wg
http://paperpile.com/b/TpKlj8/rpHXa
http://paperpile.com/b/TpKlj8/rpHXa
http://paperpile.com/b/TpKlj8/rpHXa
http://dx.doi.org/10.1007/s12021-014-9243-4
http://paperpile.com/b/TpKlj8/HfLJD
http://dx.doi.org/10.1007/978-3-662-03628-0
http://paperpile.com/b/TpKlj8/7i39
http://paperpile.com/b/TpKlj8/7i39
http://paperpile.com/b/TpKlj8/7i39
http://dx.doi.org/10.1016/j.neuroimage.2017.11.054
http://paperpile.com/b/TpKlj8/kHeBl
http://paperpile.com/b/TpKlj8/kHeBl
http://paperpile.com/b/TpKlj8/XQc55
http://paperpile.com/b/TpKlj8/XQc55
http://paperpile.com/b/TpKlj8/p2YCK
http://paperpile.com/b/TpKlj8/p2YCK
http://paperpile.com/b/TpKlj8/1Jfcv
http://paperpile.com/b/TpKlj8/1Jfcv
http://paperpile.com/b/TpKlj8/1Jfcv
http://paperpile.com/b/TpKlj8/dnsQc
http://paperpile.com/b/TpKlj8/dnsQc
http://paperpile.com/b/TpKlj8/dnsQc
http://dx.doi.org/10.1117/12.2512701
http://paperpile.com/b/TpKlj8/fLQH0
http://paperpile.com/b/TpKlj8/fLQH0
http://paperpile.com/b/TpKlj8/fLQH0
http://paperpile.com/b/TpKlj8/EHfco
http://paperpile.com/b/TpKlj8/EHfco
http://paperpile.com/b/TpKlj8/EHfco
http://paperpile.com/b/TpKlj8/RdgjT
http://paperpile.com/b/TpKlj8/RdgjT
http://paperpile.com/b/TpKlj8/RdgjT
http://paperpile.com/b/TpKlj8/9gYFk
http://paperpile.com/b/TpKlj8/9gYFk
http://paperpile.com/b/TpKlj8/9gYFk
http://paperpile.com/b/TpKlj8/qbh5l
https://doi.org/10.1101/2021.12.03.471134
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.03.471134; this version posted September 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

segmentation of the whole hippocampus and subfields using multiple automatically
generated templates. Neuroimage. 2014;101: 494-512.

16. Du G, Cao X, Liang J, Chen X, Zhan Y. Medical Image Segmentation based on U-Net: A
Review. Journal of Imaging Science and Technology. 2020. pp. 20508-20501.
doi:10.2352/j.imagingsci.technol.2020.64.2.020508

17. Wisse LEM, Daugherty AM, Olsen RK, Berron D, Carr VA, Stark CEL, et al. A harmonized
segmentation protocol for hippocampal and parahippocampal subregions: Why do we need
one and what are the key goals? Hippocampus. 2017;27: 3—11.

18. Yushkevich PA, Amaral RSC, Augustinack JC, Bender AR, Bernstein JD, Boccardi M, et al.
Quantitative comparison of 21 protocols for labeling hippocampal subfields and
parahippocampal subregions in in vivo MRI: towards a harmonized segmentation protocol.
Neuroimage. 2015;111: 526-541.

19. DeKraker J, Kéhler S, Khan AR. Surface-based hippocampal subfield segmentation.
Trends in Neurosciences. 2021. doi:10.1016/j.tins.2021.06.005

20. Amunts K, Lepage C, Borgeat L, Mohlberg H, Dickscheid T, Rousseau M-E, et al. BigBrain:
an ultrahigh-resolution 3D human brain model. Science. 2013;340: 1472-1475.

21. DeKraker J, Lau JC, Ferko KM, Khan AR, Kéhler S. Hippocampal subfields revealed
through unfolding and unsupervised clustering of laminar and morphological features in 3D
BigBrain. Neuroimage. 2020;206: 116328.

22. lglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, et al. A
computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI:
Application to adaptive segmentation of in vivo MRI. Neuroimage. 2015;115: 117-137.

23. Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. The
minimal preprocessing pipelines for the Human Connectome Project. Neuroimage.
2013;80: 105-124.

24. Ganzetti M, Wenderoth N, Mantini D. Whole brain myelin mapping using T1- and T2-
weighted MR imaging data. Front Hum Neurosci. 2014;8: 671.

25. Hernandez M, Guerrero GD, Cecilia JM, Garcia JM, Inuggi A, Jbabdi S, et al. Accelerating
fibre orientation estimation from diffusion weighted magnetic resonance imaging using
GPUs. PLoS One. 2013;8: e61892.

26. Sotiropoulos SN, Hernandez-Fernandez M, Vu AT, Andersson JL, Moeller S, Yacoub E, et
al. Fusion in diffusion MRI for improved fibre orientation estimation: An application to the 3T
and 7T data of the Human Connectome Project. Neuroimage. 2016;134: 396-409.

27. Wael RV de, de Wael RV, Lariviere S, Caldairou B, Hong S-J, Margulies DS, et al.
Anatomical and microstructural determinants of hippocampal subfield functional
connectome embedding. Proceedings of the National Academy of Sciences. 2018. pp.
10154-10159. doi:10.1073/pnas.1803667115

28. Crombe A, Planche V, Raffard G, Bourel J, Dubourdieu N, Panatier A, et al. Deciphering
the microstructure of hippocampal subfields with in vivo DTl and NODDI: Applications to

25


http://paperpile.com/b/TpKlj8/qbh5l
http://paperpile.com/b/TpKlj8/qbh5l
http://paperpile.com/b/TpKlj8/zMwLd
http://paperpile.com/b/TpKlj8/zMwLd
http://paperpile.com/b/TpKlj8/zMwLd
http://dx.doi.org/10.2352/j.imagingsci.technol.2020.64.2.020508
http://paperpile.com/b/TpKlj8/8CdcK
http://paperpile.com/b/TpKlj8/8CdcK
http://paperpile.com/b/TpKlj8/8CdcK
http://paperpile.com/b/TpKlj8/T9FSR
http://paperpile.com/b/TpKlj8/T9FSR
http://paperpile.com/b/TpKlj8/T9FSR
http://paperpile.com/b/TpKlj8/T9FSR
http://paperpile.com/b/TpKlj8/hPviR
http://paperpile.com/b/TpKlj8/hPviR
http://dx.doi.org/10.1016/j.tins.2021.06.005
http://paperpile.com/b/TpKlj8/nT3W2
http://paperpile.com/b/TpKlj8/nT3W2
http://paperpile.com/b/TpKlj8/D1Ggy
http://paperpile.com/b/TpKlj8/D1Ggy
http://paperpile.com/b/TpKlj8/D1Ggy
http://paperpile.com/b/TpKlj8/ryw70
http://paperpile.com/b/TpKlj8/ryw70
http://paperpile.com/b/TpKlj8/ryw70
http://paperpile.com/b/TpKlj8/UcOhH
http://paperpile.com/b/TpKlj8/UcOhH
http://paperpile.com/b/TpKlj8/UcOhH
http://paperpile.com/b/TpKlj8/EqFC7
http://paperpile.com/b/TpKlj8/EqFC7
http://paperpile.com/b/TpKlj8/tmsko
http://paperpile.com/b/TpKlj8/tmsko
http://paperpile.com/b/TpKlj8/tmsko
http://paperpile.com/b/TpKlj8/qayDF
http://paperpile.com/b/TpKlj8/qayDF
http://paperpile.com/b/TpKlj8/qayDF
http://paperpile.com/b/TpKlj8/lTHZL
http://paperpile.com/b/TpKlj8/lTHZL
http://paperpile.com/b/TpKlj8/lTHZL
http://paperpile.com/b/TpKlj8/lTHZL
http://dx.doi.org/10.1073/pnas.1803667115
http://paperpile.com/b/TpKlj8/lKEYG
http://paperpile.com/b/TpKlj8/lKEYG
https://doi.org/10.1101/2021.12.03.471134
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.03.471134; this version posted September 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

experimental multiple sclerosis. Neuroimage. 2018;172: 357-368.

29. Berron D, Vieweg P, Hochkeppler A, Pluta JB, Ding S-L, Maass A, et al. A protocol for
manual segmentation of medial temporal lobe subregions in 7 Tesla MRI. Neuroimage Clin.
2017;15: 466-482.

30. Wisse LEM, Biessels GJ, Geerlings MI. A Critical Appraisal of the Hippocampal Subfield
Segmentation Package in FreeSurfer. Front Aging Neurosci. 2014;6: 261.

31. Haast RAM, Lau JC, Ivanov D, Menon RS, Uludag K, Khan AR. Effects of MP2RAGE B
sensitivity on inter-site T reproducibility and hippocampal morphometry at 7T. Neuroimage.
2021;224:117373.

32. Haukvik UK, Tamnes CK, Séderman E, Agartz |. Neuroimaging hippocampal subfields in
schizophrenia and bipolar disorder: A systematic review and meta-analysis. J Psychiatr
Res. 2018;104: 217-226.

33. Steve TA, Jirsch JD, Gross DW. Quantification of subfield pathology in hippocampal
sclerosis: a systematic review and meta-analysis. Epilepsy Res. 2014;108: 1279-1285.

34. Carr VA, Bernstein JD, Favila SE, Rutt BK, Kerchner GA, Wagner AD. Individual
differences in associative memory among older adults explained by hippocampal subfield
structure and function. Proc Natl Acad Sci U S A. 2017;114: 12075-12080.

35. Blumcke |, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, et al.
International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a
Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia. 2013;54:
1315-1329.

36. Modat M, Ridgway GR, Taylor ZA, Lehmann M, Barnes J, Hawkes DJ, et al. Fast free-form
deformation using graphics processing units. Comput Methods Programs Biomed. 2010;98:
278-284.

37. lIglesias JE, Billot B, Balbastre Y, Tabari A, Conklin J, Gilberto Gonzélez R, et al. Joint
super-resolution and synthesis of 1 mm isotropic MP-RAGE volumes from clinical MRI
exams with scans of different orientation, resolution and contrast. Neurolmage. 2021. p.
118206. doi:10.1016/j.neuroimage.2021.118206

38. Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, et al. The brain
imaging data structure, a format for organizing and describing outputs of neuroimaging
experiments. Sci Data. 2016;3: 160044.

39. Gorgolewski KJ, Alfaro-Almagro F, Auer T, Bellec P, Capota M, Chakravarty MM, et al.
BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data
analysis methods. PLoS Comput Biol. 2017;13: e1005209.

40. Khan A, Haast R. Snakebids - BIDS integration into snakemake workflows. Zenodo; 2021.
doi:10.5281/ZENODO.4488249

41. Molder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, et al.
Sustainable data analysis with Snakemake. F1000Res. 2021;10: 33.

42. Marcus DS, Harms MP, Snyder AZ, Jenkinson M, Wilson JA, Glasser MF, et al. Human

26


http://paperpile.com/b/TpKlj8/lKEYG
http://paperpile.com/b/TpKlj8/BWBob
http://paperpile.com/b/TpKlj8/BWBob
http://paperpile.com/b/TpKlj8/BWBob
http://paperpile.com/b/TpKlj8/XW6Vq
http://paperpile.com/b/TpKlj8/XW6Vq
http://paperpile.com/b/TpKlj8/JHkCi
http://paperpile.com/b/TpKlj8/JHkCi
http://paperpile.com/b/TpKlj8/JHkCi
http://paperpile.com/b/TpKlj8/wzQln
http://paperpile.com/b/TpKlj8/wzQln
http://paperpile.com/b/TpKlj8/wzQln
http://paperpile.com/b/TpKlj8/FFIGM
http://paperpile.com/b/TpKlj8/FFIGM
http://paperpile.com/b/TpKlj8/iafTW
http://paperpile.com/b/TpKlj8/iafTW
http://paperpile.com/b/TpKlj8/iafTW
http://paperpile.com/b/TpKlj8/3LGP
http://paperpile.com/b/TpKlj8/3LGP
http://paperpile.com/b/TpKlj8/3LGP
http://paperpile.com/b/TpKlj8/3LGP
http://paperpile.com/b/TpKlj8/H7bfF
http://paperpile.com/b/TpKlj8/H7bfF
http://paperpile.com/b/TpKlj8/H7bfF
http://paperpile.com/b/TpKlj8/pZyiH
http://paperpile.com/b/TpKlj8/pZyiH
http://paperpile.com/b/TpKlj8/pZyiH
http://paperpile.com/b/TpKlj8/pZyiH
http://dx.doi.org/10.1016/j.neuroimage.2021.118206
http://paperpile.com/b/TpKlj8/PfVrk
http://paperpile.com/b/TpKlj8/PfVrk
http://paperpile.com/b/TpKlj8/PfVrk
http://paperpile.com/b/TpKlj8/67jDT
http://paperpile.com/b/TpKlj8/67jDT
http://paperpile.com/b/TpKlj8/67jDT
http://paperpile.com/b/TpKlj8/P2rco
http://paperpile.com/b/TpKlj8/P2rco
http://dx.doi.org/10.5281/ZENODO.4488249
http://paperpile.com/b/TpKlj8/n6ksN
http://paperpile.com/b/TpKlj8/n6ksN
http://paperpile.com/b/TpKlj8/F6d4T
https://doi.org/10.1101/2021.12.03.471134
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.03.471134; this version posted September 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

available under aCC-BY 4.0 International license.

Connectome Project informatics: quality control, database services, and data visualization.
Neuroimage. 2013;80: 202—-219.

Steve TA, Yasuda CL, Coras R, Lail M, Blumcke I, Livy DJ, et al. Development of a
histologically validated segmentation protocol for the hippocampal body. Neuroimage.
2017;157: 219-232.

Gross DW, Misaghi E, Steve TA, Wilman AH, Beaulieu C. Curved multiplanar reformatting
provides improved visualization of hippocampal anatomy. Hippocampus. 2020;30: 156—
161.

Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, et al. A multi-
modal parcellation of human cerebral cortex. Nature. 2016;536: 171-178.

Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K, et al. The WU-
Minn Human Connectome Project: an overview. Neuroimage. 2013;80: 62—79.

Bookheimer SY, Salat DH, Terpstra M, Ances BM, Barch DM, Buckner RL, et al. The
Lifespan Human Connectome Project in Aging: An overview. Neuroimage. 2019;185: 335-
348.

DeKraker J, Kéhler S, Khan AR. Surface-based hippocampal subfield segmentation.
Trends Neurosci. 2021. doi:10.1016/j.tins.2021.06.005

Gibson E, Li W, Sudre C, Fidon L, Shakir DI, Wang G, et al. NiftyNet: a deep-learning
platform for medical imaging. Comput Methods Programs Biomed. 2018;158: 113-122.

Dekraker J, Khan A. HippUnfold HCP-YA Training Data. Zenodo; 2022.
doi:10.5281/ZENODQO.7007362

Giuliano A, Donatelli G, Cosottini M, Tosetti M, Retico A, Fantacci ME. Hippocampal
subfields at ultra high field MRI: An overview of segmentation and measurement methods.
Hippocampus. 2017;27: 481-494.

Kerchner GA, Deutsch GK, Zeineh M, Dougherty RF, Saranathan M, Rutt BK. Hippocampal
CA1 apical neuropil atrophy and memory performance in Alzheimer’s disease. Neuroimage.
2012;63: 194-202.

Treit S, Steve T, Gross DW, Beaulieu C. High resolution in-vivo diffusion imaging of the
human hippocampus. Neuroimage. 2018;182: 479-487.

Wisse LEM, Chételat G, Daugherty AM, de Flores R, la Joie R, Mueller SG, et al.
Hippocampal subfield volumetry from structural isotropic 1 mm MRI scans: A note of
caution. Hum Brain Mapp. 2021;42: 539-550.

Khan A, Haast R. Snakebids - BIDS integration into snakemake workflows. 2021 [cited 3
Dec 2021]. doi:10.5281/zenodo.4488249

Brett M, Markiewicz CJ, Hanke M, Cété M-A, Cipollini B, McCarthy P, et al. nipy/nibabel:
3.2.1. 2020 [cited 26 Oct 2021]. doi:10.5281/zenod0.4295521

Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration
with cross-correlation: evaluating automated labeling of elderly and neurodegenerative

27


http://paperpile.com/b/TpKlj8/F6d4T
http://paperpile.com/b/TpKlj8/F6d4T
http://paperpile.com/b/TpKlj8/EybV
http://paperpile.com/b/TpKlj8/EybV
http://paperpile.com/b/TpKlj8/EybV
http://paperpile.com/b/TpKlj8/eQs7
http://paperpile.com/b/TpKlj8/eQs7
http://paperpile.com/b/TpKlj8/eQs7
http://paperpile.com/b/TpKlj8/qkRs
http://paperpile.com/b/TpKlj8/qkRs
http://paperpile.com/b/TpKlj8/DYqhF
http://paperpile.com/b/TpKlj8/DYqhF
http://paperpile.com/b/TpKlj8/mbFI0
http://paperpile.com/b/TpKlj8/mbFI0
http://paperpile.com/b/TpKlj8/mbFI0
http://paperpile.com/b/TpKlj8/LMWO9
http://paperpile.com/b/TpKlj8/LMWO9
http://dx.doi.org/10.1016/j.tins.2021.06.005
http://paperpile.com/b/TpKlj8/rBZi3
http://paperpile.com/b/TpKlj8/rBZi3
http://paperpile.com/b/TpKlj8/GBxf
http://paperpile.com/b/TpKlj8/GBxf
http://dx.doi.org/10.5281/ZENODO.7007362
http://paperpile.com/b/TpKlj8/C98iU
http://paperpile.com/b/TpKlj8/C98iU
http://paperpile.com/b/TpKlj8/C98iU
http://paperpile.com/b/TpKlj8/M32tt
http://paperpile.com/b/TpKlj8/M32tt
http://paperpile.com/b/TpKlj8/M32tt
http://paperpile.com/b/TpKlj8/GXbMA
http://paperpile.com/b/TpKlj8/GXbMA
http://paperpile.com/b/TpKlj8/E6QXv
http://paperpile.com/b/TpKlj8/E6QXv
http://paperpile.com/b/TpKlj8/E6QXv
http://paperpile.com/b/TpKlj8/DDDX0
http://paperpile.com/b/TpKlj8/DDDX0
http://dx.doi.org/10.5281/zenodo.4488249
http://paperpile.com/b/TpKlj8/m04Bx
http://paperpile.com/b/TpKlj8/m04Bx
http://dx.doi.org/10.5281/zenodo.4295521
http://paperpile.com/b/TpKlj8/1hT2l
http://paperpile.com/b/TpKlj8/1hT2l
https://doi.org/10.1101/2021.12.03.471134
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.03.471134; this version posted September 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

available under aCC-BY 4.0 International license.

brain. Med Image Anal. 2008;12: 26—41.

Pauli WM, Nili AN, Michael Tyszka J. A high-resolution probabilistic in vivo atlas of human
subcortical brain nuclei. Scientific Data. 2018. doi:10.1038/sdata.2018.63

Yushkevich PA, Pashchinskiy A, Oguz I, Mohan S, Eric Schmitt J, Stein JM, et al. User-
Guided Segmentation of Multi-modality Medical Imaging Datasets with ITK-SNAP.
Neuroinformatics. 2019. pp. 83-102. doi:10.1007/s12021-018-9385-x

Winterburn JL, Pruessner JC, Chavez S, Schira MM, Lobaugh NJ, Voineskos AN, et al. A
novel in vivo atlas of human hippocampal subfields using high-resolution 3T magnetic
resonance imaging. Neurolmage. 2013. pp. 254-265.
doi:10.1016/j.neuroimage.2013.02.003

Lu L, Zheng Y, Carneiro G, Yang L. Deep Learning and Convolutional Neural Networks for
Medical Image Computing: Precision Medicine, High Performance and Large-Scale
Datasets. Springer; 2017.

Wiestler B, Menze B. Deep learning for medical image analysis: a brief introduction.
Neurooncol Adv. 2020;2: iv35—-iv41.

Qiu A, Miller MI. Multi-structure network shape analysis via normal surface momentum
maps. Neuroimage. 2008;42: 1430-1438.

Wisse LEM, Adler DH, lityerah R, Pluta JB, Robinson JL, Schuck T, et al. Comparison of In
Vivo and Ex Vivo MRI of the Human Hippocampal Formation in the Same Subjects. Cereb
Cortex. 2017;27: 5185-5196.

Avants BB, Yushkevich P, Pluta J, Minkoff D, Korczykowski M, Detre J, et al. The optimal
template effect in hippocampus studies of diseased populations. Neuroimage. 2010;49:
2457-2466.

Huntenburg JM, Steele CJ, Bazin P-L. Nighres: processing tools for high-resolution
neuroimaging. Gigascience. 2018;7. doi:10.1093/gigascience/giy082

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy
1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17: 261—
272.

Duvernoy HM. The Human Hippocampus: Functional Anatomy, Vascularization and Serial
Sections with MRI. Springer Science & Business Media; 2013.

Marcus DS, Harwell J, Olsen T, Hodge M, Glasser MF, Prior F, et al. Informatics and data
mining tools and strategies for the human connectome project. Front Neuroinform. 2011;5:
4.

Vos de Wael R, Lariviére S, Caldairou B, Hong S-J, Margulies DS, Jefferies E, et al.

Anatomical and microstructural determinants of hippocampal subfield functional
connectome embedding. Proc Natl Acad Sci U S A. 2018;115: 10154—-10159.

28


http://paperpile.com/b/TpKlj8/1hT2l
http://paperpile.com/b/TpKlj8/cXqgd
http://paperpile.com/b/TpKlj8/cXqgd
http://dx.doi.org/10.1038/sdata.2018.63
http://paperpile.com/b/TpKlj8/yO49N
http://paperpile.com/b/TpKlj8/yO49N
http://paperpile.com/b/TpKlj8/yO49N
http://dx.doi.org/10.1007/s12021-018-9385-x
http://paperpile.com/b/TpKlj8/GIOG3
http://paperpile.com/b/TpKlj8/GIOG3
http://paperpile.com/b/TpKlj8/GIOG3
http://paperpile.com/b/TpKlj8/GIOG3
http://dx.doi.org/10.1016/j.neuroimage.2013.02.003
http://paperpile.com/b/TpKlj8/UxLP2
http://paperpile.com/b/TpKlj8/UxLP2
http://paperpile.com/b/TpKlj8/UxLP2
http://paperpile.com/b/TpKlj8/Qi2Dk
http://paperpile.com/b/TpKlj8/Qi2Dk
http://paperpile.com/b/TpKlj8/Wgwqn
http://paperpile.com/b/TpKlj8/Wgwqn
http://paperpile.com/b/TpKlj8/2Jn6y
http://paperpile.com/b/TpKlj8/2Jn6y
http://paperpile.com/b/TpKlj8/2Jn6y
http://paperpile.com/b/TpKlj8/zvFQV
http://paperpile.com/b/TpKlj8/zvFQV
http://paperpile.com/b/TpKlj8/zvFQV
http://paperpile.com/b/TpKlj8/A0hkR
http://paperpile.com/b/TpKlj8/A0hkR
http://dx.doi.org/10.1093/gigascience/giy082
http://paperpile.com/b/TpKlj8/GKZMz
http://paperpile.com/b/TpKlj8/GKZMz
http://paperpile.com/b/TpKlj8/GKZMz
http://paperpile.com/b/TpKlj8/M67Yz
http://paperpile.com/b/TpKlj8/M67Yz
http://paperpile.com/b/TpKlj8/SwMwb
http://paperpile.com/b/TpKlj8/SwMwb
http://paperpile.com/b/TpKlj8/SwMwb
http://paperpile.com/b/TpKlj8/3WExA
http://paperpile.com/b/TpKlj8/3WExA
http://paperpile.com/b/TpKlj8/3WExA
https://doi.org/10.1101/2021.12.03.471134
http://creativecommons.org/licenses/by/4.0/

