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Abstract

Cryo-soft-X-ray tomography is being increasingly used in biological research to study the
morphology of cellular compartments and how they change in response to different stimuli,
such as viral infections. Segmentation of these compartments is limited by time-consuming
manual tools or machine learning algorithms that require extensive time and effort to train.
Here we describe Contour, a new, easy-to-use, highly automated segmentation tool that
enables accelerated segmentation of tomograms to delineate distinct cellular compartments.
Using Contour, cellular structures can be segmented based on their projection intensity and
geometrical width by applying a threshold range to the image and excluding noise smaller in
width than the cellular compartments of interest. This method is less laborious and less prone
to errors from human judgement than current tools that require features to be manually

traced, and does not require training datasets as would machine-learning driven
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segmentation. We show that high-contrast compartments such as mitochondria, lipid
droplets, and features at the cell surface can be easily segmented with this technique in the
context of investigating herpes simplex virus 1 infection. Contour can extract geometric
measurements from 3D segmented volumes, providing a new method to quantitate cryo-soft-
X-ray tomography data. Contour can be freely downloaded at

github.com/kamallouisnahas/Contour.

Impact Statement

More research groups are using cryo-soft-X-ray tomography as a correlative imaging tool to
study the ultrastructure of cells and tissues but very few tomograms are segmented with
existing segmentation programs. Segmentation is usually a prerequisite for measuring the
geometry of features in tomograms but the time- and labour-intensive nature of current
segmentation techniques means that such measurements are rarely across a large number of
tomograms, as is required for robust statistical analysis. Contour has been designed to
facilitate the automation of segmentation and, as a result, reduce manual effort and increase
the number of tomograms that can be segmented. Because it requires minimal manual
intervention, Contour is not as prone to human error as programs that require the users to
trace the edges of cellular features. Geometry measurements of the segmented volumes can
be calculated using this program, providing a new platform to quantitate cryoSXT data.
Contour also supports quantitation of volumes imported from other segmentation programs.
The generation of a large sample of segmented volumes with Contour that can be used as a
representative training dataset for machine learning applications is a long-term aspiration of

this technique.

Introduction

The biology of cellular compartments has been extensively studied using high-resolution
microscopy techniques. Transmission electron microscopy of thin sections of cells stained
with heavy metals has been used for decades to produce images of intracellular ultrastructure

and can resolve structures at the nanometer level. For precise quantitation, cellular
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compartments of interest need to be delineated from the other ultrastructural features by
segmentation. These features can be segmented manually by tracing the edges of features
with Segmentation Editor in Fiji?), or with tools such as Amira (Thermo Scientific) that have
‘intelligent scissors’ that predict the boundaries of the object being traced by the user®).
However, these manual processes are time-consuming and the boundaries of the segmented
volumes are prone to human interpretation!®). Automatic tools exist, but these also have
limitations. For example, Bayesian matting, wherein a Bayesain framework is used to
delineate foreground objects from the background based on pixel range, is less likely to
successfully segment features with textured or thin edges®. Similarly, ‘magic wand’
segmentation, in which pixels of a given range of intensities are segmented if they are all
connected, is less applicable to features with a broad range of intensities and where there is
high noise in the background®”). Watershed segmentation is often used to separate objects
by estimating the boundaries between them based on the distances between their highest
intensity maxima. However, the specificity of this technique is low in noisy datasets and can
lead to over-segmentation, whereby many small segments are created within a single
feature®®. As a result, segmentation tools that use machine learning and deep neural
networks to distinguish features of interest from the rest of the ultrastructure have been
developed for electron microscopy (e.g. Unet, llastik)® 1>, However, these tools require

either a large representative training dataset or modified training for each micrograph.

The ultrastructural imaging technique known as cryo-soft-X-ray tomography (cryoSXT) has
recently become accessible as a tool to cell biologists and pathologists to image the cellular
compartments of unfixed whole cells in 3D%17), Moreover, cryoSXT is being used as a
correlative imaging technique with cryo-structured illumination microscopy (cryoSIM) to
identify features in cellular ultrastructure!*®®), X rays with a relatively low energy (~0.5
keV)®), compared with those used for crystallography and medical imaging (~5-30 keV)2%21),
are used to illuminate the sample and transmission is reduced by absorption through carbon-
rich structures, such as membranous cellular compartments. As a result, the signal in cryoSXT
data appears dark due to X-ray absorption and the background appears light due to X-ray
transmission. This technique is used to resolve cellular compartments to a theoretical
resolution limit of 25 nm and produce 3D tomograms of whole-cell ultrastructure*”). CryoSXT

imaging of cells and tissues takes 5-20 minutes and thus a large set of tomograms—each


https://doi.org/10.1101/2021.12.03.470962
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.03.470962; this version posted December 4, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

99 containing cellular compartments that need to be delineated by segmentation—can be
100  collected in a relatively short interval*®). However, segmentation tools to mine information
101  out of X-ray tomograms still need to be developed. One reason for this may be that X-ray
102  tomograms are more difficult to segment than electron micrographs because the use of soft
103  Xrays toimage the cell volume in 3D under near-native conditions produces higher noise and
104  lower contrast than the heavy metal labelling used in electron microscopy??.

105 Although manual segmentation can be used to isolate features of interest, this is more time-
106  consuming for 3D datasets that span the entire depth of the field of view within the cell®).
107  The development of machine learning tools for cryoSXT data could increase the rate and
108 efficiency of segmentation. However, the resolution, density and morphology of features can
109 vary widely between cryoSXT datasets (e.g. depending on collection date, passage number of
110  cultured cells, sample preparation strategy, etc.?3)), and this lack of consistency may
111 complicate the use of machine learning tools to segment tomograms. Currently, there is a
112 lack of training datasets for machine learning in the form of segmented volumes from multiple
113 tomograms. SURVoS has been developed to circumvent the need for training datasets in this
114  form. Instead, individual frames are segmented and used to train segmentation of the whole
115  tomogram'. However, this strategy involves training for each tomogram, which is time-
116  consuming and does not keep pace with the high rate of cryoSXT tomogram acquisition.

117

118 Here we developed Contour, a semi-automated segmentation tool for cryoSXT. This tool can
119  beused to segment high contrast features in cryoSXT tomograms, such as mitochondria, lipid
120  droplets, and membranous features. This is achieved by a combination of thresholding based
121  on the projection intensity (i.e. darkness) of the features and applying a width restriction
122  based on the size of the features. This automated procedure can be performed globally (i.e.
123  on the entire tomogram). Some features of interest may be excluded due to the strict width
124  restriction, but segmentation of these features can be refined locally in smaller regions of
125 interest. Contour was developed using Python 3.7 and is available for download on Github
126  with example datasets included (github.com/kamallouisnahas/Contour). The segmentation
127  approach used in Contour is faster than manual segmentation tools as it does not require
128 laborious freehand drawing and interpolation like the Segmentation Editor available in Fiji®®.

129
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130  Extracting quantitative data from cryoSXT datasets is a current challenge and Contour can be
131  used to measure the volume of segmented elements as well as their width along their longest
132 axis. Contour was designed to be used alongside existing segmentation tools: for features that
133 are difficult to segment based on projection intensity and width in Contour (e.g. cytoplasmic
134  vesicles) other segmentation tools can be used to generate segmented volumes that can be
135  imported into Contour for quantitation. We have used Contour in a recent preprint to study
136  how the morphology of mitochondria and cytoplasmic vesicles change during infection with
137  herpes simplex virus-1 (HSV-1)?%. We generated multiple segmented volumes with Contour
138 and found that mitochondria became more elongated and vesicles reduced in width as the
139 infection progressed?®. In this paper we discuss the algorithm and applications of this
140 segmentation tool to cryoSXT data.

141

142

143 Results

144

145  The width of cellular compartments and the projection intensity of their voxels can be

146  exploited for semi-automated segmentation

147

148  High-contrast cellular compartments in tomograms can be segmented by applying a threshold
149  on voxel intensity. CryoSXT Z stacks were generated for segmentation using IMOD version
150  5.1.23 with a back projection strategy, radial filtering in the form of a simultaneous iterations
151  reconstruction technique (SIRT)-like filter being subsequently applied to reduce noise. Twenty
152  iterations of the SIRT-like filter were applied to limit blurring and signal loss?®). Mitochondria
153  have a low voxel intensity (high X ray absorbance) compared with the cytosol and an arbitrary
154  threshold range determined by trial and error was used to segment them in a U20S cell from
155 an 8-bit reconstructed tomogram (Fig. 1A)*8). However, segmentation based solely on
156  projection intensity was observed to be highly sensitive to voxel noise and non-specific
157  features, such as the outline of the lipid droplets. In order to increase specificity, an additional
158 segmentation parameter in Contour was used based on the width of the cellular

159 compartments of interest (Fig. 1B). Segmentation was first performed on a complete
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160 reconstructed cryoSXT Z stack using the global segmentation algorithm in Contour. The
161 segmentation was later refined in smaller regions using the local segmentation algorithm.
162

163  During global segmentation, the same threshold range applied in Figure 1A was applied to the
164  tomogram in Figure 1B to isolate voxels of the desired intensity and to produce binary masks
165 for each Z image (0 for background voxels and 1 for segmented voxels). A width restriction
166  was determined by manually inspecting the width of the mitochondria and was applied in the
167 second step to exclude noise and non-specific elements smaller in width than the
168 mitochondria, such as the outline of lipid droplets. In order to apply this restriction without
169 the slow process of iterating through each voxel, the binary masks were compressed in a
170  lossless manner by run-length encoding!?”). Using this compression method, the run of voxel
171  values (e.g.000110000) in the binary mask were compressed into a sequence where the voxel
172  value was coupled to the number of times it appeared consecutively (e.g. (0,3),(1,2),(0,4)).
173  The width restriction was applied to the compressed sequence by converting voxels with a
174  value of 1to Oif the number of consecutive voxels was lower than the desired width. The data
175  compression and width restriction were applied twice independently along rows and columns
176 in the horizontal and vertical directions, respectively, and the modified sequences were
177  decompressed into two full binary masks. Voxels segmented within the threshold range were
178 converted into background if their width was less than the width restriction. As a result, the
179  segmented voxels that remained appeared as stripes with a width greater than or equal to
180 the width restriction. The stripes were horizontal or vertical depending on the direction in
181  which the width restriction was applied (Fig. 1B). The arrays of voxels that made up the
182  horizontal and vertical binary masks were multiplied together such that only coordinates that
183  contained a voxel of 1 in both masks (i.e. 1x1) were included in the product segmented
184  volume and all other combinations were converted to background (i.e. 1x0, 0x1, and 0x0).
185  This multiplication step eliminated most noise by ensuring that only rectangular matrices of
186 dimensions widthxwidth or larger remained. In some cases, horizontal and vertical stripes
187  were produced from noise or non-specific features, such as the outline of lipid droplets.
188  Voxels at the intersection between these stripes (i.e. 1x1) were also included after the
189  multiplication step. The run-length encoding, width restriction, and data decompression were
190 reapplied to the product segmented array to filter out these artefacts. The combined

191  application of thresholding and a width restriction results in a better-defined segmentation
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192  with less noise and fewer non-specific elements. However, the increase in specificity afforded
193 by width analysis can lead to some desired elements becoming excluded from the segmented
194  volume. In the presented example, the global segmentation step excluded several areas
195 based on the minimum width restriction (Fig. 1C). These areas could be filled by using the
196 local segmentation algorithm in Contour, whereby thresholding and width restriction were
197 applied locally in a smaller 3D region of interest containing these excluded areas (Fig. 1D)
198 using a lower minimal width value (4 voxels). Given that local segmentation is performed on
199  a smaller 3D region of interest, there is no requirement for data compression by run-length
200 encoding before applying width restriction to improve analysis efficiency!?”).

201

202 ltis likely that local segmentation will be required following global segmentation. However,
203  global segmentation of the complete Z stack is not required before performing local
204  segmentations. If it is determined that the cytoplasm is too dense with high-contrast
205 compartments to perform a global segmentation, this step can be skipped and local
206  segmentations can be performed on the entire tomogram instead (Fig. 2A and Table 1). In
207  addition to the global and local segmentation algorithms, manual ‘fill’ and ‘erase’ options are
208  available for manual adjustment of the segmented volumes (Fig. 1 C and D). The segmented
209  volume can be rendered using 3D Viewer in Fiji?) or other appropriate visualisation software
210 (e.g. Amira (Thermo Scientific) or Chimera/ChimeraX (UCSF)?®) (Fig. 1E).

211
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Figure 1. Semi-automated segmentation by analysing the intensity and width of cellular
features. (A) The mitochondria in a tomogram of a U20S cell were segmented by applying a
voxel intensity threshold (blue arrows) LD, lipid droplet; Mito, mitochondrion. This technique
was highly sensitive as most of the mitochondria were included and only a few areas were
missing (white arrows). However, intensity thresholding alone led to noise and non-specific
features such as the outline of lipid droplets being included in the segmented volume (orange
arrows). (B) In Contour, a width restriction was applied in addition to an intensity threshold
to segment the mitochondria. Any voxels included in the threshold range would only be
included in the product segmented volume if they formed part of a 10x10 voxel area or larger
(I-IV). The segmented product was specific to mitochondria, with less noise and fewer
unwanted elements. However, there were more falsely-excluded areas due to the higher
specificity (white arrows). (C) Remaining non-specific elements were manually erased (red
box) and local regions of interest containing the excluded areas were identified (white boxes)
and (D) the analysis was reattempted with a smaller width restriction of 4 voxels (green fill).
(E) The final segmented volume was rendered in 3D using 3D Viewer in Fiji(2).
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Cellular compartments are crowded?

Excess of noise or non-specific elements included?
Parts of, or whole, features of interest excluded?

| Excess of noise or non-specific elements included?
Parts of, or whole, features of interest excluded?

‘

| Small noise (e.g. <1000 voxels) present? I

-

C I Segmented elements have blocky edges? I

}
| Layering artefacts visible in 3D rendering? |

Yesy/ l No

}

229

230 Figure 2. Segmentation pipeline and decision tree in Contour. (A) Global and local
231  segmentation algorithms can be applied to delineate cellular compartments from a cryoSXT
232 Z stack or from smaller 3D regions of interest. Global segmentation is recommended if the
233 cellular compartments are dispersed throughout the tomogram. For smaller regions of
234  interest, the local algorithm can be used to discriminate features in crowded areas or features
235 excluded from the global segmentation. The threshold range and width restriction
236 parameters can be modified to optimise the specificity and sensitivity of the global
237  segmentation. (B) Discrete segmented elements can be differentiated and their volumes and
238  widths can be calculated. Any elements smaller in volume than a specified number of voxels
239  can be filtered out and this can be used to eliminate small segments of noise in one step. (C)
240  Final touches can be applied to improve the appearance of the segmented volumes. A
241  smoothing function can be used to smoothen blocky edges in 2D slices and a Gaussian blur
242  can be applied to reduce the appearance of layering in between slices of the segmented
243 volume (Fig. 4).

Yesy/ l No
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Table 1. Troubleshooting segmentation in Contour.

Problem

\ Possible cause

\ Possible solution

Feature detection

Global segmentation failed
to produce a segmented
volume

Thresholding and width
restriction parameters were
too stringent

Increase the threshold
range and/or reduce the
width restriction

Global segmentation
produced a lot of noise

Thresholding and width
restriction parameters were
too permissive

Reduce the threshold range
and/or increase the width
restriction

Cellular compartments in
the field of view were too
crowded

Skip global segmentation
and perform local
segmentations instead

Multiple features of interest
were excluded after the
global segmentation

Thresholding and width
restriction parameters were
too stringent

Fill in the excluded regions

Cellular compartments of
interest have uneven
projection intensity

using local segmentations

The edge or terminus of a
feature or a constricted
region within the feature
was excluded from a global
or local segmentation

The width restriction was
too stringent at this region

Apply a local segmentation
to this region with a
reduced width restriction

Noise elimination

Too many small regions of
noise (e.g. <1000 voxels) are
present in the segmented
volume.

Width restriction
parameters were too
permissive

Noise can be eliminated
altogether in one step using
the filter function that
eliminates segmented
elements below a certain
volume of voxels. The
elements need to be
differentiated as a
prerequisite.

Appearance of segmented volume

The segmented elements
have blocky edges

A high minimum width
restriction led to large
widthxwidth areas being
produced in the segmented
volume

Apply the smoothing
function to the segmented
volume

The segmented elements
are too thin in the
smoothened segmented
volume

Too many iterations of the
smoothing function were
applied, resulting in
overtrimming of the edges.

Use fewer iterations (1to 3
are recommended)

Contour lines are visible in a
3D render of the segmented
volume

The segmented volume was
not smoothened or blurred.

Apply the smoothing
function to the segmented
volume and apply a
Gaussian blur.
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245
246  Applications of Contour to analyse geometry of cellular compartments

247

248  We have shown that mitochondria can be segmented using the global and local segmentation
249  parameters based on their intensity and width (Fig. 1, 2, and 3A). We have used Contour to
250 segment mitochondriain a recent preprint where we studied how mitochondrial morphology
251  changes during HSV-1 infection. We found that mitochondria transitioned from a
252  heterogenous morphology in uninfected U20S cells to a more consistently elongated and
253  branched formation as the infection progressed?. Contour can be used to segment other
254  cellular compartments based on intensity and width, such as lipid droplets (Fig. 3B) and
255  features at the cell surface or at cell-cell junctions, such as large internalisations of the plasma
256  membrane that may resemble bulk endosomes arising from clathrin-independent endocytic
257  events (Fig. 3C)??),

258

259  Discrete segmented elements can be differentiated from each other and colour-coded to aid
260 discrimination of the components (Fig.2B and Fig. 4). This is achieved by assigning a common
261  ID number to segmented voxels and their direct-contact neighbours. The inclusion criteria for
262  direct-contact neighbours are any two voxels that are at XY coordinates that differ by one
263  step in any of the eight cardinal (N,S,E, or W) and ordinal (NE, SE, SW, or NW) directions; or
264  any two voxels at the same XY coordinate in tandem Z planes.

265

266  Quantitation of the geometry of cellular features is a current challenge in cryoSXT because
267 segmentation is often a prerequisite and measurements may need to be taken at an angle
268  distinct from the slices of the 3D projection*®). Contour has the capacity to automatically
269 calculate the volumes of cellular features (in units of voxels) along any axis once the user has
270 differentiated these elements. For example, the mean volume of the mitochondria in a single
271  9.46x9.46 um? field of view of a U20S cell, given a voxel size of 10 nm3, was calculated to be
272 0.3 +0.48 um? (mean * SD; Fig. 3D). The width of each segmented element along its longest
273  axis, which may not be parallel with the slices of the tomographic projection, can also be
274  calculated in this program. This is achieved by isolating the voxels at the perimeter of each
275  segmented element in each image plane and calculating all combinations of the distance (i.e.

276  modulus) between any two of these voxels across the complete Z stack. The longest of these
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moduli is presented as the width of the segmented element in units of voxels. The longest
width of each lipid droplet was calculated for a 9.46x9.46 um? field of view and the droplet
width was found to be 1.04 + 0.51 um (mean + SD; Fig. 3E). Segmented volumes generated
with other segmentation tools, such as Segmentation Editor in Fiji?), can be imported into

Contour for quantitation based on the methods described above.
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Figure 3. Segmentation and quantitation of cellular features. Contour can be used to
segment high contrast features in U20S cells such as (A) mitochondria, (B) lipid droplets, and
(C) distinctive membrane topology at cell-cell junctions. Cyto, cytoplasm; Nuc, nucleus.
Quantitative data can be extracted from the segmented volumes. (D) The mitochondria in this
9.46x9.46 um? field of view of a U20S cell had a mean volume of 0.3 + 0.48 um3 SD. (E) The
mean width along the longest axis of each lipid droplet in this 9.46x9.46 um field of view of a
U20S cell was found to be 1.04 £ 0.51 um SD. Scale bar = 1um. Error bars show mean + SD.

Polishing the segmented volume

After the segmented elements have been differentiated, final touches can be applied to
improve the appearance of the 3D volume (Fig. 4). The width restriction applied during the

segmentation filters out any segmented voxels that do not form part of a widthxwidth area


https://doi.org/10.1101/2021.12.03.470962
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.03.470962; this version posted December 4, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

298  or larger. As a result, segmented elements may appear blocky. A smoothing function is
299  supplied to smoothen the edges of segmented elements (Fig. 4). Each segmented plane in the
300 Zstackis converted into a binary mask (0 for background and 1 for segment) and is translated
301 byonestepinall eight cardinal and ordinal directions and the voxel arrays are added together
302  such that voxels may have a value of 0 to 8. Voxels with less than a median of 5, which occur
303 atthe perimeter of segmented elements, were transformed into background, resulting in the
304 trimming of the edges of the segmented elements. A greater number of iterations of this
305 function increase the extent of smoothing but reduce the width of the segmented elements.
306 A compromise of 1-3 iterations is recommended to avoid overtrimming (Table 1). The
307 smoothing function is only applied within slices of the segmented volume and layering
308 artefacts can be observed in between slices. A two-dimensional Gaussian blur can also be
309 applied per slice to reduce the appearance of layering artefacts and improve the 3D rendering

310 of the volume.

311
Smoothing (iterations)
0 1 3 3
Gaussian blur (standard deviations)
(0]
L
)
[m)
(aV}
Q
£
=]
o
>
[a)
[s]
312

313  Figure 4. Colour-coding of differentiated elements and smoothing of the 3D volume.
314 Segmented voxels are grouped together into separate elements that can be colour-coded to
315 help distinguish them from each other. A smoothing function can be applied to 2D arrays of
316  voxels to smooth the edges of segmented elements. Because the smoothing is applied to the
317 2D slices, layering artefacts can be observed in between the slices. A Gaussian blur can be
318 applied per 2D slice to reduce the appearance of layering artefacts. Scale bars = 1lum.
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321 Discussion

322

323  Here we reported the development of Contour, a segmentation tool for highly contrasting
324  cellular features in cryoSXT tomograms that analyses the projection intensity (i.e. darkness)
325 and width of cellular compartments. This program also calculates 3D geometric
326 measurements from the segmented elements. We demonstrate that mitochondria, lipid
327 droplets, and the topology of the cell surface at cell-cell junctions can be segmented using
328 this technique. Contour was developed to accelerate segmentations of cryoSXT tomograms.
329  Existing segmentation techniques may be time-consuming and laborious to users: manual
330 segmentation tools require the user to trace the edges of features in periodic Z planes and
331 interpolate between them and, although machine-learning tools such as SuRVoS are
332  available, these tools require fresh training for each tomogram®*1¢), The algorithm used by
333  Contour for segmentation is largely automated, allowing users to perform either a global
334  segmentation on a complete cryoSXT Z stack or local segmentations in regions of interest. In
335  either case, training datasets are not required, and the user does not need to trace around
336 features, making the process less laborious and subjective!®.

337

338  We have applied Contour to one study, where we investigated how HSV-1 infection alters the
339  morphology of cellular compartments, and we were able to segment mitochondria in multiple
340 tomograms?¥. The dependency on low projection intensity and width for the segmentation
341  does pose some limitations. For example, some cellular compartments such as mitochondria
342  may have uneven intensities. It is still possible to use Contour for these features, but
343  successful analysis requires a greater number of local segmentations to be carried out with
344  different threshold ranges (Table 1). The use of a width restriction parameter to distinguish
345 features from noise complicates the application of this technique to thin cellular features,
346  such as cytoskeletal filaments that are normally less than five voxels in width®%), Cytoplasmic
347  vesicles often have a highly contrasting membrane but a light lumen, making it difficult to
348 segment such features when applying a minimum width restriction. Although we did not use
349  Contour to segment cytoplasmic vesicles in our recent study!?*, we used Contour to calculate
350 the longest widths of each vesicle that we manually segmented using Segmentation Editor in

351  Fiji®. We therefore show that Contour can be used in conjunction with other segmentation
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352  tools to calculate quantitative data. Our semi-automated segmentation tool could be used to
353 generate sufficient segmented volumes of different cellular compartments to facilitate
354  training of machine learning algorithms in the future. CryoSXT is a growing technique and its
355  applications are becoming more widespread in biomedical imaging, especially as a correlative
356  imaging tool with cryoSIM®7=19), Contour is a largely automated segmentation tool designed
357 to keep up with the pace of tomogram acquisition and to provide a new method for
358 quantifying tomographic data.

359

360

361 Materials & Methods

362

363 Sample preparation

364

365 3 mm gold EM grids with a holey carbon film (R 2/2, 200 mesh; Quantifoil Cat no. AU G200F1
366 finder, batches Q45352 & Q45353) were glow discharged and treated with filtered poly-L-
367 lysine for 10 minutes (Sigma Aldrich Cat no. P4832). U20S cells (ATCC HTB-96; RRID
368 CVCL_0042) were seeded onto the grids at 3 x 10° cells per well in a 6-well plate. The cells
369  were cultivated overnight in Dulbecco’s Modified Eagle’s Medium (DMEM; Thermo Fisher
370 Scientific, Cat no. 45011590366) supplemented with 10% (v/v) fetal bovine serum (FBS;
371  Capricorn, Cat no. FBS-11A), 4 mM L-glutamine (Thermo Fisher Scientific, Cat# 25030081), and
372  penicillin/streptomycin (10000 U/ml; Thermo Fisher Scientific, Cat# 15070063). 2 uL of gold
373  fiducials (BBI Solutions; EM.GC250, batch 026935) were added to the grids as previously
374  described™® and the grids were blotted with for 0.5-1 s at 30°C and 80% humidity with a Leica
375 EM GP2 plunge freezer. The grids were plunged into liquid ethane and then transferred into
376  liquid nitrogen. The tomograms presented in this paper were collected for a study of the
377  effect of HSV-1 infection on the morphology of cellular compartments in U20S cells®¥. All
378 tomograms shown here were collected from uninfected cells except for Fig. 3B, which was
379  collected from a cell infected with 1 plaque forming unit per cell of HSV-1 as previously
380  described®.

381

382
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383  Cryo-soft-X-ray tomography

384

385  CryoSXT data was collected at beamline B24 at the UK synchrotron Diamond Light Source
386  usinga UltraXRM-S/L220c X-ray microscope (Carl Zeiss X-ray Microscopy). Soft X-rays (500 eV,
387 1A=2.48 nm) were focussed onto the grid sample by diffraction using a diffraction grating
388 known as a zone plate, which can achieve a nominal resolution of 25nm. A 1024B Pixis CCD
389 camera (Princeton instruments) was used to collect tomographic data from U20S cells with a
390 9.46x9.46 um field of view by rotating the grid within the range -60° to +60° at increments of
391 0.5° or 1.0° and X-ray exposure times of 0.5 s or 1.0 s. A single-axis alighment of the
392  tomographic images were generated using IMOD (version 4.9.2)?%). A coarse alignment with
393  a high-frequency cut off radius of 0.1 and a subsequent fine alignment with fiducial tracking
394  were used to align the images. The data was reoriented in 3D using a boundary model. A final
395 alignment was carried out using linear interpolation and tomograms were reconstructed
396 using the back projection strategy with radial filtering to reduce noise in the form of 20
397 iterations of simultaneous iterations reconstruction technique (SIRT)-like filterl?®). The
398 tomograms were converted from a 16-bit signed format to an 8-bit format before
399 segmentation.

400

401 Global segmentation

402

403  Tomographic images are stored as NumPy®®V arrays in Python 3.7 and the images in the Z
404  plane are stored in a list. Datasets with a field of view greater than 512x512 voxels were
405 downscaled by a multiple of two to improve the efficiency of the program and the scaling was
406  accounted for during quantitation. A threshold range with a desired minimum and maximum
407  value was applied to produce binary masks for each image (0 for background and 1 for
408 segmented voxels). The sequence of Os and 1s is compressed losslessly by run-length
409 encoding into a paired sequence where the value is coupled to the number of times it is
410 repeated®”). Values of 1 are converted to 0 if the number of repetitions is lower than the
411  width restriction and the processed sequence is decompressed into a full array. The run-
412  length encoding and width restrictions are applied twice independently—down columns and
413  along rows. Both binary arrays are multiplied together so that only voxels with a value of 1 in

414  both arrays are included in the product array. This process is repeated to remove artefacts.
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415

416  Local segmentation

417

418 A cuboidal region of interest is selected from the Z stack and a threshold range is applied to
419  produce binary masks for each image. A width restriction is applied by iterating through the
420 voxels in each image plane in the region of interest and counting the number of repeats. If
421  the number of repeats is lower than the width restriction the values are converted from 1 to
422 0. This process is run along rows to produce a new array. This new array is used as the input
423  array to rerun the width restriction down columns. This process is repeated once along rows
424  and columns to remove artefacts.

425

426  Quantitation and filtering

427

428 Segmented voxels were attributed with integer IDs that served to distinguish discrete
429 elements. IDs were shared between neighbouring voxels that were one position away from
430 each other in all cardinal (N,S,E, or W) and ordinal (NE, SE, SW, or NW) directions or voxels
431  with matching XY coordinates in tandem Z planes. Neighbouring voxels were first grouped
432  together in two dimensions in the XY planes. Any two-dimensional groups from tandem Z
433  planes were merged into one 3D group if they contained voxels whose coordinates
434  overlapped in XY. This process was run in ascending and descending order of Z slices to ensure
435  that segment branches, which were separated from the main body of the segment in some
436  slices, were not excluded from the 3D merger owing to the direction of iteration through the
437  Z stack. The volume of each 3D segment was calculated in units of voxels. This was done by
438 isolating all the voxels in the segmented volume with a given ID using the NumPy.argwhere
439  function®Y, which produces an array of XY coordinates corresponding to these voxels per Z
440  slice. The length of the arrays for each slice were calculated and divided by two to retrieve
441  the number of voxels. Small segmented elements of noise were eliminated by replacing any
442  elements with a volume of less than a desired volume threshold (e.g. 1000 voxels) with
443  background voxels of value 0.

444

445  The width of a 3D segmented element was calculated by finding the longest distance between

446  any two voxels in the segment. First, the voxels present at the perimeter of elements were
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447  filtered from all the voxels in the segment by determining if any neighbouring voxels have a
448  value of 0 (background). Second, the modulus between all combinations of two perimeter
449  voxels was calculated (Equation 1). The longest modulus was given as the width of the
450 segment in units of voxels. Stacks of binary masks containing elements with known volumes
451 and widths were generated to verify the quantitation functions and are available at

452  https://github.com/kamallouisnahas/Contour/tree/main/known quantities.

453

454 VG — %)%+ p — Ya)?+(2p — 24)?

455  Equation 1. The modulus of all vectors connecting perimeter voxels a and b was calculated

456  from coordinates x, y, and z.

457

458

459  Smoothing and Gaussian blur

460

461 The edges of segmented elements were smoothed by translating the arrays of voxels for each
462  slice in the tomographic projection by one voxel in each cardinal and ordinal direction. Binary
463  masks were used and each segmented voxel had a value of 1. A sum array was produced by
464  adding together all eight translated arrays, such that voxels ranged from 0 to 8. A median
465  array was calculated from the sum array by transforming voxels < 5 into values of 0 and voxels
466 > 5 into values of 1. Several iterations of this function (up to 3) were applied to increase the
467  extent of smoothing.

468

469  The Gaussian filter function from the SciPy library®*?) was applied with a standard deviation of
470 1 to each of the three colours individually in RGB images of the differentiated segmented
471  elements. Quantitation of volume and width were not affected by the smoothing and
472  Gaussian blur functions.

473

474  Statistics

475

476  SuperPlots was used to generate scatterplots and to calculate the mean and standard

477  deviation for the volume of mitochondria and the width of lipid droplets®3),
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510
511 The raw data tilt series and tomographic reconstructions of the cryoSXT datasets presented
512 here can be accessed from the Apollo repository (University of Cambridge):

513  https://doi.org/10.17863/CAM.78593. The source code is available under a GNU General

514  Public License v3.0 from https://github.com/kamallouisnahas/Contour. The segmented

515 volumes and guantitative data can be accessed from:

516  https://github.com/kamallouisnahas/Contour/tree/main/repository.
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