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Abstract

Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the
COVID-19 pandemic, is capable of infecting a variety of wildlife species. Wildlife living in close
contact with humans are at an increased risk of SARS-CoV-2 exposure and if infected have the
potential to become a reservoir for the pathogen, making control and management more

difficult.
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Objective

To conduct SARS-CoV-2 surveillance in urban wildlife from Ontario and Québec, Canada,
increasing our knowledge of the epidemiology of the virus and our chances of detecting

spillover from humans into wildlife.

Methods

Using a One Health approach, we leveraged activities of existing research, surveillance, and
rehabilitation programs among multiple agencies to collect samples from 776 animals from 17
different wildlife species between June 2020 and May 2021. Samples from all animals were
tested for the presence of SARS-CoV-2 viral RNA, and a subset of samples from 219 animals
across 3 species (raccoons, Procyon lotor; striped skunks, Mephitis mephitis; and mink,

Neovison vison) were also tested for the presence of neutralizing antibodies.

Results

No evidence of SARS-CoV-2 viral RNA or neutralizing antibodies was detected in any of the

tested samples.

Conclusion

Although we were unable to identify positive SARS-CoV-2 cases in wildlife, continued research
and surveillance activities are critical to better understand the rapidly changing landscape of
susceptible animal species. Collaboration between academic, public and animal health sectors
should include experts from relevant fields to build coordinated surveillance and response

capacity.
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Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the global
COVID-19 pandemic and has been maintained through human-to-human transmission.
However, humans are not the only species susceptible to infection. Over the course of the
current pandemic, a range of domestic and wild animal species have been reported to either be
naturally infected with SARS-CoV-2 or susceptible to the virus in experimental infections (1, 2,
3). Others have been identified as potential hosts based on sequence analysis of the host cell
receptor of SARS-CoV-2, angiotensin 1 converting enzyme 2 (ACE2), and predicted binding

affinity (4, 5).

Many wild animal species thrive in the ecological overlap with humans and are thus at an
increased risk of being exposed to SARS-CoV-2 (6). Several of these peri-domestic species have
been experimentally shown to become infected with and shed SARS-CoV-2 (7, 8). SARS-CoV-2
infection has also been reported in wild or free-ranging animals that have been naturally
exposed, including American mink (Neovison vison; 9) and, more recently, white-tailed deer

(Odocoileus virginianus; 10, 11).

The concept of One Health recognizes that human health and animal health are interdependent
(12). The spillover of virus from humans or domestic animals into wildlife is concerning not only
due to the possible deleterious effects on wildlife, but because these wild populations have the
potential to act as reservoirs for SARS-CoV-2. Diseases that have an animal reservoir are
inherently much more difficult to control and the spread of SARS-CoV-2 through animal

populations could further contribute to the development of variants of concern (VoCs),
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potentially undermining the efficacy of medical countermeasures such as antivirals and
vaccines (13, 14). Additionally, people who have close contact with wildlife, such as biologists,
wildlife rehabilitators, and hunters and trappers, may be at higher risk of being exposed to the
virus and of facilitating its spread among wildlife. The impact of SARS-CoV-2 infection on
wildlife health is not fully understood. Early detection of any spillover is therefore critical to

preventing and addressing these concerns.

Given the risk of reverse-zoonotic SARS-CoV-2 transmission and our lack of knowledge of the
virus in local wildlife, there was an urgent need to elucidate the epidemiology of the virus at the
human-wildlife interface to help wildlife management and public health officials better
communicate risk and plan management strategies. We therefore conducted SARS-CoV-2
surveillance in wildlife across Ontario and Québec, Canada, with a major focus on the southern
regions of both provinces. These areas have high human population densities and include
major urban centres such as Toronto and Montréal. Incidences of COVID-19 peaked in
Montréal and the surrounding regions in early January 2021, with rates exceeding 400 cases per
100,000 population in Montréal and Laval (15). Incidences in Toronto and the surrounding
regions peaked in April 2021, with case rates in the City of Toronto and Peel also exceeding 400

per 100,000 population (15).

Methods

Many experts have recommended a One Health approach for animal SARS-CoV-2 testing, which
balances concerns for both human and animal health and is based on knowledge of experts in

both fields (16, 17). As such, our work was conducted through consultation and cooperation
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89 among a wide variety of agencies: the Public Health Agency of Canada (PHAC), the Ontario

90  Ministry of Northern Development, Mines, Natural Resources and Forestry (NDMNRF), le

91 Ministere des Foréts, de la Faune et des Parcs du Québec (MFFP), the Canadian Wildlife Health
92  Cooperative (CWHC), the Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA), the
93 Canadian Food Inspection Agency (CFIA), the Western College of Veterinary Medicine, the

94  Granby Zoo, the National Microbiology Laboratory (NML) of PHAC, and Sunnybrook Research
95 Institute (SRI). We focussed our surveillance primarily on animals from urban areas or those

96  with a case history of close contact with people since these animals would be at the highest risk
97  of exposure to people infected with SARS-CoV-2. All samples for testing were collected

98  between June 2020 and May 2021 through pre-existing partnerships or over the course of

99 otherresearch, surveillance, or rehabilitation work (Table 1).

100 Raccoons and skunks

101 Raccoons (Procyon lotor) and striped skunks (Mephitis mephitis) are peri-domestic species that
102 are good candidates for reverse-zoonotic disease surveillance due to their high density in urban
103 areas and their frequent close contact with people, pets, and refuse. They are also subject to
104  ongoing rabies surveillance operations in both Ontario and Québec, making them easy to

105 sample. In Ontario, wildlife rabies surveillance and testing are conducted by the NDMNRF on
106  roadkill, animals found dead for other reasons, and deceased sick or strangely acting wildlife.
107  Submissions are received mainly from southwestern Ontario, and most animals received by the
108 program and subsequently sampled and tested for SARS-CoV-2 came from urban centres within

109  this region (Figure 1). In Québec, a similar wildlife rabies surveillance program is coordinated
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110 by the MFFP and testing and other post-mortem examinations are performed by the Québec
111 CWHC. As was the case in Ontario, animals sampled by the Québec CWHC for SARS-CoV-2

112  testing came mainly from urban areas (Figure 1). The Ontario CWHC laboratory also

113  contributed a small number of raccoon and skunk samples from animals submitted to them for
114  post-mortem examination. Carcasses were sampled using a combination of oral, nasal, and
115  rectal swabs, respiratory tissue, and intestinal tissue (Table 1). Swabs were stored in individual
116 2 mL tubes with ~1 mL of universal transport medium (UTM; Sunnybrook Research Institute)

117  and 30-60 mg tissue samples were stored dry in tubes.

118  Additionally, samples were collected from live raccoons and skunks during an annual

119  seroprevalence study conducted by the NDMNRF in Oakville, Ontario to assess the

120 effectiveness of rabies vaccine baiting (NDMNRF Wildlife Animal Care Committee Protocol
121  #358). Animals were captured in live traps and transported to a central processing station
122  where they were anaesthetized. Oral and rectal swabs were collected for PCR testing. Blood
123  was drawn from the brachiocephalic vein and 0.2-1.0 mL of sera was collected for antibody
124  testing. Following reversal and successful recovery, animals were returned to their point of

125  capture and released.

126  Mink

127  Instances of SARS-CoV-2 infection in mink have already been identified in multiple countries,
128 including Canada, and infected farmed mink have proven capable of passing the virus to naive
129  conspecifics, humans, and domestic and feral companion animals (18, 19, 20, 21, 22). At the

130 time of writing no mink farm outbreaks have been reported in Ontario or Québec, but mink
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131 farms in Ontario have previously been shown to act as points of infection for other viruses (e.g.

132  Aleutian Mink Disease), which can spread to wild mink populations (23).

133  The majority of mink carcasses we sampled for SARS-CoV-2 were submitted to the NDMNRF by
134  licensed fur harvesters through a collaboration with the Ontario Fur Managers Federation. The
135  NDMNREF staff collected oral and rectal swabs, lung tissue, and intestinal tissue from the

136  carcasses, as well as cardiac blood samples via cardiac puncture for antibody testing. If blood
137  could not be obtained from the heart, fluid was collected from the chest cavity on a Nobuto
138 filter strip (Advantec MFS, Inc, Dublin, CA, USA). Nobuto strips were allowed to air dry, then

139  placed in individual coin envelopes.

140  Big brown bats

141 Bats are known carriers of coronaviruses (24, 25, 26). As such, concerns have been raised over
142  the possible susceptibility of North American bats to SARS-CoV-2 (27). Species such as the big
143  brown bat (Eptesicus fuscus) frequently roost in buildings, which brings them into close contact
144  with people and increases the likelihood of SARS-CoV-2 exposure. Big brown bat oral swabs
145  and guano samples for SARS-CoV-2 PCR testing were collected by staff at the Granby Zoo, which
146  runs a rehabilitation program over the winter to care for bats that have been disturbed during

147  their hibernation. Guano samples were stored dry in 2 mL tubes.

148  Other species

149  Other samples for SARS-CoV-2 PCR testing were obtained opportunistically through the Ontario

150 and Québec regional CWHC laboratories, which receive a wide variety of wildlife species for
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151 post-mortem examination (Table 1). Animals were selected for sampling based on potential for
152  SARS-CoV-2 infection. This could be due to urban habitat, human contact, or to predicted
158  species susceptibility based on prior research. The number and type of samples collected

154  varied by carcass and depended on carcass condition (Table 1).

155  RNA Extraction

156  RNA extraction and PCR testing were performed at the SRI in Toronto, Ontario. All swab, tissue,
157  and guano samples were stored at -80 °C prior to testing. For oral, rectal, or nasal swab

158  samples, RNA extractions were performed using 140 uL of sample via the QIAmp viral RNA mini
159 kit (Qiagen, Mississauga, ON, Canada) or the Nuclisens EasyMag using Generic Protocol 2.0.1
160  (bioMérieux Canada Inc., St-Laurent, QC, Canada) according to manufacturer’s instructions;
161 RNA was eluted in 50 pL. RNA from 80 mg of guano samples were extracted via the QIAmp viral
162  RNA mini kit and eluted in 40 pL. Tissue samples were thawed, weighed, minced with a scalpel,
163  and homogenized in 600 uL of lysis buffer using the Next Advance Bullet Blender (Next

164  Advance, Troy, NY, USA) and a 5 mm stainless steel bead at 5 m/s for 3 minutes. RNA from 30
165  mgtissue samples was extracted via the the RNeasy Plus Mini kit (Qiagen, Mississauga, ON,
166  Canada) or the Nuclisens EasyMag using Specific Protocol B 2.0.1; RNA was eluted in 50 pL. All

167  extractions were performed with a negative control.

168  SARS-CoV-2 PCR analysis

169  Reverse-transcription polymerase chain reaction (RT-PCR) was performed using the Luna
170  Universal Probe One-Step RT-qPCR kit (NEB). Two gene targets were used for SARS-CoV-2 RNA

171  detection: the 5’ untranslated region (UTR) and the envelope (E) gene. The cycling conditions

8
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172  were: 1 cycle of denaturation at 60 °C for 10 minutes then 95 °C for 2 minutes followed by 44
173  amplification cycles of 95°C for 10 seconds and 60°C for 15 seconds. Quantstudio 3 software
174  (Thermo Fisher Scientific Inc., Waltham, MA, USA) was used to determine cycle thresholds (Ct).
175  All samples were run in duplicate and samples with Cts <40 for both gene targets in at least one

176  replicate were considered positive.

177  Antibody testing

178  Antibody testing was performed on cardiac blood, chest cavity fluid and serum samples at the
179  NMLin Winnipeg, Manitoba. All samples were stored at -20 °C prior to testing. Cardiac blood
180 samples were collected onto Nobuto filter strips (Advantec MFS, Inc, Dublin, CA, USA; Fisher
181 Scientific, Waltham, MA, USA) by saturating the length of the strip with 100 pl of blood. To
182  obtain the 1:9 dilution required for testing, saturated Nobuto strips were cut into 4-5 pieces
183  and placed into a 2 mL tube containing 360 ul phosphate buffered saline (PBS) pH 7.4

184  containing 0.05% Tween 20 and eluted overnight at 4 °C. Nobuto strips collected from chest
185  cavity fluid were processed in the same way, whereas serum samples were diluted 1:9 with
186  Sample Dilution Buffer. Samples were mixed by vortexing and tested using the GenScript
187  cPass™ SARS-CoV-2 Neutralization Antibody Detection Kit (GenScript USA, Inc. Piscataway, NJ,

188  USA) according to the manufacturer’s protocol.

189  Briefly, 60 pl of a sample was added to 60 ul HRP-conjugated RBD solution and incubated at 37
190  °Cfor 30 minutes. A 100 pl aliquot of the mixture was transferred to the ELISA microwell test
191 plate and incubated at 37 °C for 15 minutes. Microwells were washed 4 times with 260 pl wash

192  buffer then 100 pl TMB substrate was added to each well. Following a 20 minute incubation in
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193  the dark at room temperature, 50 pl of Stop Solution was added to each well. Absorbance was

194  read immediately at 450 nm.

195  Each assay plate included positive and negative controls that met required quality control

196  parameters. Percentage inhibition was calculated for each sample using the following equation:

197  Percent Inhibition = (1- Optical Density Sample/Optical Density Negative Control) x100%

198  Samples with greater than or equal to 30% inhibition were considered positive for SARS-CoV-2

199  neutralizing antibodies.

200 Results

201 We tested 776 individual animals from 17 different wildlife species for SARS-CoV-2. These
202  animals were collected primarily from urban areas in southern Ontario and Québec between
203  June 2020 and May 2021 (Table 1). We found no evidence of SARS-CoV-2 viral RNA in any of
204  the tested samples and no evidence of neutralizing antibodies in a subset of 219 individuals

05 (141 raccoons, 36 striped skunks, 42 mink).

206 Discussion

207  Our study did not detect any spillover of SARS-CoV-2 to wildlife in Ontario and Québec.

208  Raccoons and skunks were the most commonly tested species. Results from experimental

209  studies have suggested these species may be susceptible to SARS-CoV-2, but the lack of and low
210  quantity of infectious virus from raccoons and skunks, respectively, suggest they are an unlikely
211 reservoir for SARS-CoV-2 in the absence of viral adaptations (7, 8). Similarly, a recent challenge

212  study with big brown bats found that they are resistant to SARS-CoV-2 infection and do not

10
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213  shed infectious virus (28). Conversely, mink are susceptible to SARS-CoV-2 infection, but we did
214  not detect evidence of SARS-CoV-2 in any of the mink sampled. While this could be attributed
215  to our low effective sample size, to date SARS-CoV-2 has been infrequently detected in wild
216  mink populations globally. It should be noted, however, that the abovementioned experimental
217  studies on raccoons, skunks, and big brown bats were conducted using parental SARS-CoV-2.
218  The susceptibility of these species to VoCs is presently not known and may differ from

219  susceptibility to the parental strain (29). Additionally, challenge studies assessing susceptibility
220 tend to be conducted on small numbers of young, healthy individuals, so results may not be

221 reflective of the full range of possible responses to infection in the wild.

222  Asthe pandemic progresses, new evidence is emerging on susceptible wildlife that may act as
223 competent reservoirs for the virus. For example, white-tailed deer are now considered a highly
224  relevant species for SARS-CoV-2 surveillance in light of their experimentally determined

225  susceptibility as well as evidence of widespread exposure to the virus via antibody and PCR
226  testing across the northeastern USA (10, 11, 30). Continued surveillance efforts should be
227  adaptive and include targeted testing of highly relevant species as they are identified. In

228  Ontario and Québec, these would include mink, white-tailed deer, and deer mice (Peromyscus
229  maniculatus; 7, 31). Continuing to include less susceptible species remains important given

230  ongoing viral genomic plasticity and changing host range of VoCs.

231 Limitations

232  There are several limitations for this study that need to be acknowledged. First, the majority of

233  our SARS-CoV-2 testing was done by RT-PCR, which is only capable of detecting active infection.

11
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234  Antibody testing, which identifies resolved infection or exposure, is more likely to find evidence
235  of SARS-CoV-2 in surveillance studies since results are less dependent on timing of sample

236  collection. Antibody testing typically requires samples from live animals or fresh carcasses,
237  which limited our ability to use it. However, the testing performed allowed for test validation in
238  raccoons, skunks, and mink which may facilitate more antibody testing in future. Second, the
239  type of samples we collected may also have limited our ability to detect SARS-CoV-2 infection.
240  Viral replication can vary among tissue types and therefore some tissues are more optimal for
241  viral RNA detection than others (1). In the present work, animals were sampled

242  opportunistically as a part of pre-existing surveillance efforts, research, and rehabilitation

243  programs and we were not able to consistently collect the same sample sets from all animals.
244  Additionally, the sample types were from live animals and carcasses and not optimized; certain
245  sample types were sometimes unavailable (e.g. tissue samples from live animals) or were not

246  sufficient for collection.

247  Conclusion

248 A One Health approach is critical to understanding and managing the risks of an emerging

249  zoonotic pathogen such as SARS-CoV-2. We leveraged activities of existing surveillance,

250 research, and rehabilitation programs and expertise from multiple fields to efficiently collect
251 and test 1,690 individual wildlife samples. The absence of SARS-CoV-2-positive wildlife samples
252  does not exclude spillover from humans to Canadian wildlife, given the limitations cited above.
253  Continued research in this area is both important and pressing, particularly as novel VoCs

254  emerge. Public and animal health sectors should continue to work collaboratively with

12
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255  academic and government partners to help prevent the spread of SARS-CoV-2 from people to
256  wildlife, monitor for spillover, and address any issues should they arise. There is an urgent
257  need for a coordinated wildlife surveillance program for SARS-CoV-2 in Canada. This approach

258  will help protect the health of both Canadians and wildlife, now and in the future.
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417

Table 1: Metadata for 776 animals from Ontario and Québec screened for SARS-CoV-2

Species Sampling Sample source Sample Dates of Number of Types of Test Testing
agency location(s) collection individuals samples performed centre
sampled tested
Raccoon CWHC Rabies Southern Aug 2020- 11 Respiratory  PCR SRI
(Procyon surveillance Ontario, Feb 2021 tissue
lotor) (Québec Southern
samples), post- Québec
mortem exam
Southern Nov-Dec 68 Respiratory
Québec 2020 tissue,
rectal swab
Southern Oct 2020- 15 Respiratory
Ontario, June 2021 and
Southern intestinal
Québec tissue
Southwestern  Jan 2021 3 Nasal swab
Québec
Southern Jan-June 54 Nasal and
Québec 2021 rectal
swabs
NDMNRF Rabies Hamilton, Dec 2020 1 Oral and
and CWHC surveillance, Ontario rectal
post-mortem swabs,
exam respiratory
and
intestinal
tissue
NDMNRF Rabies Southwestern  June 2020- 100 Oral and
surveillance Ontario Jan 2021 rectal
swabs
Rabies Oakuville, Sept-Oct 141 Oral and
seroprevalence Ontario 2020 rectal
study swabs
Sera Antibody NML
TOTAL RACCOONS SAMPLED 393
Striped CWHC Rabies Southern Jan-June 66 Nasal swab ~ PCR SRI
Skunk surveillance Québec 2021
(Mephitis (Québec Southern July-Dec 55 Respiratory
mephitis) samples), post-  Ontario, 2020 tissue
mortem exam Southern
Québec
Southern Oct 2020- 9 Respiratory
Ontario, Apr 2021 and
Southwestern intestinal
Québec, tissue
Saint-Félicien,
Québec
NDMNRF Rabies Southwestern  Sept 2020- 104 Oral and
surveillance, Ontario May 2021 rectal
rabies swabs
seroprevalence
study
Rabies Oakville, Sept-Oct 36 Oral and
seroprevalence Ontario 2020 rectal
study swabs
Sera Antibody NML
TOTAL SKUNKS SAMPLED 270
American CWHC Post-mortem Thornhill, July 2020 1 Respiratory  PCR SRI
Mink exam Ontario tissue
(Neovision NDMNRF Registered fur Southern Fall 2020- 422 Oral and
vison) harvesters, Ontario Spring 2021 rectal
roadkill, rabies swabs, lung
surveillance and

19
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TOTAL MINK SAMPLED
Big brown
bat
(Eptesicus
fuscus)

Granby Zoo

available under aCC-BY-NC-ND 4.0 International license.

Rehabilitation
program

TOTAL BIG BROWN BATS SAMPLED

Hoary bat CWHC
(Lasiurus
cinerus)

American CWHC
marten

(Martes

americana)

Fisher CWHC
(Pekania

pennanti)

American CWHC
black bear

(Ursus

americanus)

TOTAL BLACK BEARS SAMPLED

Atlantic CWHC
white-sided

dolphin

(Lagenorhync

hus actus)

Post-mortem
exam

Post-mortem
exam

Post-mortem
exam

Post-mortem
exam

Post-mortem
exam

Southwestern
Québec

Etobicoke,
Ontario

Sainte-Anne-
de-Bellevue,
Québec

Western
Québec

Northern
Ontario
Killaloe,
Ontario

Carleton-sur-
Mer, Québec
Sept-iles,
Québec

TOTAL ATLANTIC WHITE-SIDED DOLPHINS SAMPLED

Harbour CWHC
porpoise

(Phocoena

phocoena)

Harbour seal CWHC
(Phoca

vitulina)

Coyote (Canis CWHC
latrans)

Eastern wolf CWHC
(Canus lupus
lycaon)

Post-mortem
exam

Post-mortem
exam

Post-mortem
exam

Post-mortem
exam

TOTAL EASTERN WOLVES SAMPLED

Grey Fox CWHC
(Urocyon

cinereoargen

teus)

Post-mortem
exam

La Montée,
Québec

Matane,
Québec

Saint-
Alexandre-
d'lberville,
Québec
Algonquin
Provincial
Park, Ontario
Southern and
central
Ontario

Chateauguay,
Québec

Nov 2020-
Mar 2021

Dec 2020

Nov 2020

May 2021

Sept 2020

Oct 2020

June 2021

March
2021

Dec 2020

Dec 2020

April 2021

Oct 2020

Dec 2020

20

43
15

15

32

intestinal
tissue
Cardiac
blood or
Nobuto
strips

Oral swabs
Guano

Oral swabs
and guano

Respiratory
and
intestinal
tissue
Respiratory
and
intestinal
tissue
Respiratory
and
intestinal
tissue
Respiratory
tissue
Respiratory
and
intestinal
tissue

Intestinal
tissue
Respiratory
and
intestinal
tissue

Respiratory
and
intestinal
tissue
Respiratory
and
intestinal
tissue
Respiratory
and
intestinal
tissue
Respiratory
tissue

Respiratory
and
intestinal
tissue

Respiratory
and
intestinal
tissue

Antibody

PCR

PCR

PCR

PCR

PCR

PCR

PCR

PCR

PCR

PCR

PCR
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Red fox CWHC Post-mortem Mercier, Jan 2021 1 Nasal and PCR SRI
(Vulpes exam Québec rectal
vulpes) swabs
Southwestern  Nov-Dec 4 Respiratory
Québec 2020 tissue,
rectal
swabs
Southern, July-Oct 5 Respiratory
Ontario 2020 tissue
Dunham, Dec 2020 1 Respiratory
Québec and
intestinal
tissue
TOTAL RED FOXES SAMPLED 11
Virginia CWHC Post-mortem Bolton-Est, June 2021 1 Nasal and PCR SRI
opossum exam Québec rectal
(Didelphis swabs
virginiana) Southern July-Oct 2 Respiratory
Ontario 2020 tissue
Southwestern ~ Oct 2020, 3 Respiratory
Ontario, March and
Saint-Jean- 2021 intestinal
sur-Richelieu, tissue
Québec
TOTAL VIRGINIA OPOSSUMS SAMPLED 6
White-tailed CWHC Post-mortem London, Oct-Dec 3 Respiratory  PCR SRI
deer exam Ontario, 2020 and
(Odocoileus Southwestern intestinal
virginianus) Québec tissue
418 a) due to the condition of the carcass, we were unable to collect lung tissue or cardiac blood from 1
419 individual, cardiac blood from a further 2 individuals, and rectal swabs from 2 individuals. In cases where
420 we could not collect cardiac blood, we instead submitted a Nobuto strip soaked in fluid from the chest
421 cavity for antibody testing

422
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423  Figure 1: Original locations of animals submitted for SARS-CoV-2 testing (N=776)
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