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Neurotransmitter receptors modulate the signaling between neurons. Thus, neurotransmitter recep-
tors and transporters play a key role in shaping brain function. Due to the lack of comprehensive
neurotransmitter receptor/transporter density datasets, microarray gene expression is often used as
a proxy for receptor densities. In the present report, we comprehensively test the expression-density
association for a total of 27 neurotransmitter receptors, receptor binding-sites, and transporters across
9 different neurotransmitter systems, using both PET and autoradiography imaging modalities. We
find poor spatial correspondences between gene expression and density for all neurotransmitter recep-
tors and transporters except four single-protein metabotropic receptors (5-HT1A, D2, CB1, and MOR).
These expression-density associations are related to population variance and change across different
classes of laminar differentiation. Altogether, we recommend using direct measures of receptor and
transporter density when relating neurotransmitter systems to brain structure and function.

INTRODUCTION

Neurotransmitter receptors and transporters support
synaptic communication, regulating signal transmission
from neuron to neuron. As such, regional variation of
receptor and transporter distributions shapes the func-
tional specialization of the brain [27, 34, 60, 79, 84,
91]. Recent studies have used receptor densities to
tune computational models and have related specific re-
ceptors, as well as excitatory-inhibitory ratios, to neu-
rodevelopment, cognition, neural dynamics, and dis-
ease [20, 39, 44, 64, 80]. However, due to the lack
of comprehensive neurotransmitter receptor and trans-
porter density datasets (open-source or otherwise), re-
ceptor/transporter densities are often substituted with
microarray gene expression from the Allen Human Brain
Atlas [37], under the assumption that levels of gene ex-
pression are correlated with cell surface protein abun-
dance [6, 14–16, 20, 30, 33, 39, 44, 64, 65, 80].

Despite the frequent replacement of recep-
tor/transporter densities with gene expression, the
assumed correlation between gene expression and re-
ceptor/transporter density has yet to be comprehensively
and formally tested across multiple neurotransmitter
systems. Indeed, there are several reasons gene expres-
sion may not be correlated with receptor density. First,
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microarray gene expression measures the outcome of
gene transcription and the abundance of mRNA, not lev-
els of protein. Importantly, levels of mRNA and protein
are often not correlated within the same tissue [52, 76].
Second, several steps are involved between protein
translation and expression of the receptor/transporter
on the cell surface, including post-translational modifica-
tions, protein folding, and reaching a designated cellular
target. Variations in the activity of these processes will
affect receptor/transporter density. Third, multiple
genes in the Allen Human Brain Atlas show high inter-
subject variability, indicating the possible unreliability
of such group-averaged expression levels. Altogether,
a comprehensive study mapping receptor/transporter
densities and gene expression levels is necessary to
determine whether neurotransmitter receptors and
transporters show density-expression associations in the
human cortex.

Here we investigate whether microarray gene ex-
pression can be used to estimate neurotransmitter re-
ceptor/transporter densities in the cortex. To mea-
sure gene expression levels, we use the Allen Hu-
man Brain Atlas that code for specific neurotransmit-
ter receptors or transporters [37, 47]. Additionally,
we use both positron emission tomography (PET)- and
autoradiography-derived measures of neurotransmitter
receptor densities for a total of 27 neurotransmitter re-
ceptors and transporters across 9 different neurotrans-
mitter systems [1, 8, 10, 22–24, 31, 38, 41, 42, 56, 58,
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59, 62, 71, 74, 82, 91]. To ensure results are not biased
by methodological choices, we repeat our analyses in a
separate parcellation resolution and use a conservative
spatial autocorrelation-preserving null model [2, 49].
We find that measures of gene expression can generally
not be used as a proxy for receptor nor transporter den-
sity except for a select few neurotransmitter receptors:
5-HT1A (serotonin), D2 (dopamine), CB1 (cannabinoid),
and MOR (opioid). Finally, we provide evidence that the
link between receptor/transporter density and gene ex-
pression is related to inter-subject genetic variability.

METHODS

All code and data used to perform the analyses can
be found at https://github.com/netneurolab/hansen_
gene-receptor.

PET data acquisition

Volumetric PET images were collected for 18 differ-
ent neurotransmitter receptors and transporters across
9 different neurotransmitter systems [1, 8, 10, 22–
24, 31, 38, 41, 42, 56, 58, 59, 62, 71, 74, 82, 91].
To protect patient confidentiality, individual participant
maps were averaged within studies before being shared.
Each study, the associated receptor/transporter, tracer,
number of healthy participants, age, and reference with
full methodological details can be found in Table S1. In
all cases, only scans from healthy participants were in-
cluded. Images were acquired using best practice imag-
ing protocols recommended for each radioligand. Alto-
gether, the images are an estimate of receptor densities
and we therefore refer to the measured value (i.e. bind-
ing potential, tracer distribution volume) simply as den-
sity. PET images were all registered to the MNI-ICBM 152
nonlinear 2009 (version c, asymmetric) template, then
parcellated to a parcellation with 68 and 219 cortical re-
gions, as well as 15 subcortical regions, according to the
Lausanne atlas [17, 21]. Receptors and transporters with
more than one mean image of the same tracer (i.e. 5-
HT1B, D2, mGluR5, and VAChT) were combined using a
weighted average. Finally, each tracer map correspond-
ing to each receptor/transporter was z-scored across re-
gions and concatenated into a final region×receptor ma-
trix of relative densities. This data was presented and
used originally in [35].

Autoradiography data acquisition

In vitro receptor autoradiography data were originally
collected and processed as described in [91]. Fifteen
neurotransmitter receptor densities across 44 cytoarchi-
tectonically identified areas in three post-mortem brains
were acquired from Supplementary Table 2 of [91] (see

Table S2 for a complete list of receptors included in
the autoradiography dataset). Note that GABAA and
GABAA/BZ refer to the same receptor, but that GABAA/BZ

refers specifically to GABAA receptors containing the al-
losteric benzodiazepine binding site, as opposed to re-
ceptors containing only the GABA neurotransmitter bind-
ing site. To best compare PET data analyses with the au-
toradiography dataset, a region-to-region mapping was
manually created between the 44 available cortical re-
gions in the autoradiography dataset and the 34 left
hemisphere cortical Desikan Killiany regions. In only one
case (the insula) was there no suitable mapping between
the autoradiography data and the Desikan Killiany atlas.
As such, the 44-region autoradiography atlas was con-
verted to 33 Desikan Killiany left hemisphere regions.
Finally, receptor densities were z-scored and averaged
across laminar layers, to create a single map of receptor
densities across the cortex.

Microarray gene expression

Regional microarray expression data were obtained
from six post-mortem brains provided by the Allen Hu-
man Brain Atlas (http://human.brain-map.org/) [37].
Since only two of the six brains included samples from
the right hemisphere, main analyses were conducted
on the left hemisphere only. All processing was per-
formed using the abagen toolbox (https://github.com/
netneurolab/abagen [47]). These data were processed
and mapped to parcellated brain regions at 34 and 111
left hemisphere cortical grey matter nodes according to
the Lausanne anatomical atlas [17, 21]. For complete-
ness, data were also parcellated to 15 bilateral subcorti-
cal regions. Due to the coarse subcortical parcellation,
sufficient probes were available for both hemispheres.
We therefore show expression-density associations across
15 bilateral subcortical regions in Fig. S1 but due to the
low number of observations (brain regions), we do not
report nor interpret corrrelation coefficients or p-values.

Microarray probes were reannotated using data pro-
vided by Arnatkevičiūtė et al. [3]. A single microarray
probe with the highest differential stability, ∆S(p), was
selected to represent each gene [36], where differential
stability was calculated as:

∆S(p) =
1

(

N
2

)

N−1
∑

i=1

N
∑

j=i+1

r[Bi(p), Bj(p)] (1)

Here, r is Spearman’s rank correlation of the expression
of a single probe p across regions in two donor brains, Bi

and Bj , and N is the total number of donor brains. Dif-
ferential stability is the average correlation across every
pair of donor brains of a probe’s expression. This proce-
dure retained 20 232 probes, each representing a unique
gene.
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Next, samples were assigned to brain regions us-
ing MNI coordinates generated via non-linear registra-
tions (https://github.com/chrisfilo/alleninf) by finding
the nearest region, up to 2 mm away. To reduce the
potential for misassignment, sample-to-region matching
was constrained by hemisphere and cortical/subcortical
divisions [3]. If a brain region was not assigned any sam-
ple based on the above procedure, the sample closest to
the centroid of that region was selected in order to en-
sure that all brain regions were assigned a value.

Inter-subject variation was addressed by normalizing
tissue sample expression values for each donor across
genes using a scaled robust sigmoid function [29]:

xnorm =
1

1 + exp(−
(xg−〈xg〉)

IQR
x

)
(2)

where 〈xg〉 is the median and IQR is the normalized in-
terquartile range of the expression value of a single gene
across regions. Normalized gene expression values were
then rescaled to a unit interval:

xscaled =
xnorm −min(xnorm)

max(xnorm)−min(xnorm)
(3)

Gene expression values were normalized across tissue
samples using the same procedure. Samples assigned to
the same brain region were then averaged separately for
each donor. Scaled regional expression profiles were fi-
nally averaged across donors.

Gene-receptor pairs

With the notable exception of the GABAB receptor,
metabotropic neurotransmitter receptors are monomeric
structures, and thus a single gene codes for the entire re-
ceptor. Therefore, the expression of the receptor-coding
gene was correlated with the density of the receptor it-
self. The GABAB and ionotropic receptors are charac-
terized by being multimeric protein complexes, so each
receptor was correlated with microarray expression of all
possible receptor subunits. Below, we outline each mul-
timeric case.

• GABAA is a pentamer typically composed of three
primary subunits (α1, β2, and γ2) but can be built
out of a total of nineteen different subunits. For
simplicity, we show results for the three primary
subunits in the main text, but results for the re-
maining sixteen subunits can be found in Fig. S2.

• GABAB, a multimeric metabotropic receptor, is
composed of two subunits. We show both in the
main analyses.

• AMPA is a heterotetramer that typically consists of
two pairs of duplicate subunits. These two pairs

can be formed from any combination of four sub-
units. We show results for the gene whose expres-
sion is most highly correlated with AMPA density
in the main text (GRIA1).

• NMDA is also a heterotetramer, typically composed
of two N1 and two N2 subunits, although there
are four different N2-encoding genes, as well as a
third subunit (N3) for which there are two subunit-
encoding genes. The main analyses use the expres-
sion of the N1-encoding gene (GRIN1).

• Kainate exists as both a homotetramer and het-
erotetramer, built from any of five subunits. We
show results for the gene whose expression is most
highly correlated with kainate density in the main
text (GRIK2).

• α4β2 is a pentamer typically composed of two α4

subunits and three β2 subunits [19]. However,
the ligand used for the autoradiograph, epibatidin,
binds to any heteromeric nicotinic receptors that
contain both an alpha subunit (α2–α7, α9, α10) and
a beta subunit (β2–β4). The most abundant such
receptor in the brain is the α4β2 receptor, so we fo-
cus on gene expression of the α4 and β2 subunits
(CHRNA4 and CHRNB2, respectively) in the main
text.

Correlations between neurotransmitter receptor density
and multiple subunit expression were corrected for mul-
tiple comparisons using the Benjamini-Hochberg FDR
correction [11]. Correlation coefficients and corrected
p-values (see Null model) for all subunits can be found in
Supplementary Table 3 (PET) and Supplementary Table
4 (autoradiography).

Null model

Spatial autocorrelation-preserving permutation tests
were used to assess statistical significance of associa-
tions across brain regions, termed “spin tests” [2, 48].
Parametric p-values were not used because spatially em-
bedded systems such as the brain violate the assump-
tion that observations (brain regions) are independent
from one another. We created a surface-based repre-
sentation of the parcellation on the FreeSurfer fsaverage
surface, via files from the Connectome Mapper toolkit
(https://github.com/LTS5/cmp). We used the spherical
projection of the fsaverage surface to define spatial co-
ordinates for each parcel by selecting the coordinates of
the vertex closest to the center of the mass of each par-
cel [85]. These parcel coordinates were then randomly
rotated, and original parcels were reassigned the value
of the closest rotated parcel (10 000 repetitions). Parcels
for which the medial wall was closest were assigned the
value of the next most proximal parcel instead. The
procedure was performed at the parcel resolution rather
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Figure 1. PET-derived receptor/transporter densities versus gene expression | PET tracer maps for 18 different neurotrans-
mitter receptors and transports reveal that the density of only five neurotransmitter receptors correlates significantly with the
expression of their corresponding gene, across 34 Desikan Killiany regions in the left cortex. Yellow scatter plots indicate signifi-
cant density-expression correspondence, against an autocorrelation-preserving null model. All receptor densities are z-scored.

than the vertex resolution to avoid upsampling the data,
and only to the left hemisphere. In the autoradiography
dataset, null correlations were computed ignoring the in-
sula and regions resampled to the insula, for a maximum
of three ignored brain regions.

RESULTS

Using the group-averaged healthy control PET-derived
neurotransmitter receptor and transporter densities, we

find that in almost all cases, there is no significant cor-
relation between receptor density and receptor gene ex-
pression (Fig. 1; for results in the subcortex see Fig. S1).
Indeed, only five single-protein inhibitory metabotropic
receptors (5-HT1A, D2, CB1, M1 and MOR) show sig-
nificant relationships (pspin < 0.05) with the expres-
sion of their corresponding genes (HTR1A, DRD2, CRN1,
CHRM1, and OPRM1, respectively). Notably, consistent
with previous reports, the GABAA receptor is positively
correlated (r > 0.6) with the expression of its β2 sub-
unit, and negatively correlated (r < −0.6) with the ex-
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Figure 2. Autoradiography-derived receptor densities versus gene expression | Autoradiographs for 15 different neurotrans-
mitter receptors reveal that only 5-HT1A and α2 correlate significantly with the expression of their corresponding genes (HTR1A
and ADRA2A, respectively), across 33 Desikan Killiany regions in the left cortex. Yellow scatter plots indicate significant density-
expression correspondence, against an autocorrelation-preserving null model. All receptor densities are z-scored.

pression of its α3, α5, β1, and γ1 [53, 58], although these
relationships are not significant after correcting for mul-
tiple comparisons (see Fig. S2 for scatter plots with re-
maining GABAA subunits and Supplementary Table 3 for
reported Pearson’s r and corrected p-values; [11]). Sim-
ilarly, using the autoradiography dataset, we find that in

almost all cases, gene expression is a poor approximator
of neurotransmitter receptor density (Fig. 2). We again
find a close correspondence between 5-HT1A and the ex-
pression of HTR1A (r = 0.82, pspin = 0.002). However,
unlike what was observed with the PET dataset, M1 does
not show significant correlations with CHRM1. We addi-
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Figure 3. Differentially stable genes are more correlated with neurotransmitter receptor density | We find that differential
stability, a measure of the variability of a gene’s expression across donors, is significantly correlated with gene-receptor correlations
when using (a) PET-derived receptor/transporter densities (r = 0.82, p = 5 × 10

−6) and (b) autoradiography-derived receptor
densities (r = 0.74, p = 0.0001). Labels are neurotransmitter receptors/transporters, and suffixes in parentheses are relevant
subunits.

tionally find a significant correlation between α2 recep-
tor density and ADRA2A gene expression, although the
effect is less apparent. No other neurotransmitter recep-
tor besides 5-HT1A in the autoradiography dataset has a
close correspondence between receptor density and gene
expression.

To ensure results are not influenced by the choice
of brain parcellation, we repeated the PET analyses in
a finer parcellation of 111 left hemisphere cortical re-
gions (Fig. S3; [17]). At this higher resolution, we
find that 5-HT1A, D2, CB1, and MOR still show close
correspondences with their associated genes, although
CB1’s correlation has dropped to r = 0.66. M1 is still
significantly correlated to CHRM1 although to a lesser
degree (r = 0.35, pspin = 0.017). Furthermore, we
find an additional significantly-correlated gene-receptor
pair (GRM5–mGluR5: r = 0.44, pspin = 0.008). Al-
together, 5-HT1A, D2, CB1, and MOR show stable and
high expression-density correspondence across both spa-
tial scales and imaging modalities.

We next sought to understand why certain neurotrans-
mitter receptors demonstrate expression-density corre-
spondence, whereas other receptors, and all trans-
porters, show no expression-density correspondence.
Since group-averaged measures of gene expression and
receptor/transporter density come from disjoint samples
of participants, we hypothesized that genes with greater
variability between participants would show weaker cor-
relations with group-averaged neurotransmitter receptor
and transporter densities. To test this, we used each
gene’s differential stability, a measure of gene expres-
sion variability across the six donors (see Methods for de-

tails [36]). Fig. 3a reveals that genes with greater differ-
ential stability, and therefore less inter-subject variance,
are generally more correlated with PET-derived receptor
density (r = 0.82, p = 4 × 10−6). When we repeated
the analyses in the autoradiography dataset, we find a
similar trend (r = 0.74, p = 0.0001; Fig. 3b).

The previous analyses were conducted across the
full left hemisphere, but it is possible that gene-
receptor/transporter coupling is variable across cortex.
Since receptor distributions covary with cognitive func-
tional activations along a sensory-fugal gradient [27, 34,
35], we tested whether gene expression is correlated
with receptor densities across the four Mesulam classes
of laminar differentiation (Fig. 4; [51, 61]). This analysis
was done using the 111-region left hemisphere parcella-
tion to ensure sufficient data observations in each lam-
inar class. Interestingly, we find that receptors whose
density is highly correlated with gene expression may
show poor association in specific classes. Indeed, 5-
HT1A and D2 receptor density is highly correlated with
expression in all laminar classes except idiotypic, which
includes primary sensory-motor regions. The remaining
receptors and transporters show large expression-density
correlation variability across laminar classes. For exam-
ple, 5-HT6 is consistently poorly correlated with HTR6
gene expression no matter the laminar class (|r| < 0.13),
whereas the GABAA receptor is highly correlated with
GABRB2 expression in idiotypic areas (r = 0.62) but
weakly correlated in heteromodal and paralimbic areas
(rplmb = −0.10, rhet = 0.02). Meanwhile, dopamine re-
ceptor D1 is positively correlated with DRD1 expression
in paralimbic areas (r = 0.30), negatively correlated in
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Figure 4. Gene-receptor/transporter correspondence varies across Mesulam classes of laminar differentiation | PET-derived
receptor/transporter densities were correlated to gene expression within four classes of laminar differentiation [51, 61]. For each
receptor and transporter, the density-expression correlation within each laminar class is plotted. Gene names are coloured by
neurotransmitter system.

idiotypic areas (r = −0.45), and not correlated in in-
termediate areas (|r| < 0.15). Altogether, we find that
the correspondence between gene expression and recep-
tor density is itself variable across the cortex and differs
between laminar classes and cognitive systems [60, 90].

DISCUSSION

Understanding how the chemoarchitecture of the
brain modulates the link between structure and func-
tion requires accurate and comprehensive regional neu-
rotransmitter receptor and transporter profiles. Here we
formally test whether there is a correlation between gene
expression and neurotransmitter receptor/transporter
density, for a total of 27 unique neurotransmitter recep-
tors, receptor binding sites, and transporters, from both
PET images and autoradiographs. We find that only four
receptors (5-HT1A, D2, CB1, and MOR) display a close
spatial correspondence between gene expression levels
and receptor densities. We therefore conclude that re-
searchers should exercise caution when using gene ex-
pression as a proxy for receptor and transporter densi-
ties.

We note that the lack of correlation between protein
levels and the levels of their coding mRNA is not un-
reasonable as there are many mechanisms that may af-
fect the protein-mRNA correlation. First, levels of mRNA
detected on the microarray do not take into account
the transcript isoforms that can be produced from the
same gene, nor the stability of the resulting mRNA,

which are determined by mRNA modifications such as
splicing [46, 86]. Second, the proportion of different
cell types in a microarray sample may distort the gene
expression-protein density correspondence due to differ-
ences in the proteome and transcriptome, including dif-
ferent splice variant expression [78, 89]. Third, stud-
ies in bacteria [45] and mice [40] have demonstrated
that rate of protein synthesis also alters protein levels.
Fourth, protein buffering dampens the effect of varia-
tions in gene expression levels, including an adaptation
of protein turnover through protein degradation, and the
modulated activity of protein transport machinery which
determines the final subcellular localization of the pro-
tein [7, 46, 77, 87]. Altogether, the variation in the activ-
ity of these processes may contribute to the observed dif-
ference in levels of mRNA expression and protein abun-
dance of receptors/transporters in the cortex.

Nonetheless, we do find a small subset of neu-
rotransmitter receptors that demonstrate close gene
transcription-receptor density relationships. One possi-
ble explanation is rooted in population variance of gene
expression and receptor densities. Since both receptor
densities and gene expression are averaged across partic-
ipants, genes and receptors with low inter-subject vari-
ability across the population would be better captured
by the group-averaged map used in the present analy-
ses. This is supported by the fact that neurotransmitter
receptor densities are more correlated with genes that
are more stable across donors (Fig. 3). A second nonex-
clusive explanation is that the steps between gene tran-
scription and membrane insertion are potentially more
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preserved for specific neurotransmitter receptors. In-
deed, the correspondence between gene expression and
receptor density would depend on localization of the
mRNA due to differences in ribosome and tRNA avail-
ability [12], as well as protein turnover rates at the loca-
tion the receptor is expressed [13]. Additionally, recep-
tor systems that are phylogenetically older, involved in
functions that require rigid stimulus-response relation-
ships, or more fundamental to the organizational prin-
ciples of the brain, may demonstrate more robust trans-
lation that manifest as close expression-density associa-
tions. For example, in the mouse cortex, gene expression
for certain interneuron cell types are closely aligned with
gradients of cortical organization [30]. Interestingly, the
gene that most recapitulates this organizational feature
(Pvalb) is highly correlated to its corresponding protein’s
density (parvalbumin; Spearman r = 0.95), whereas
Sst—an interneuron marker that is poorly aligned with
cortical organization—is poorly correlated with somato-
statin density (Spearman r = 0.24 , p = 0.1) [28].

In the present report, we caution against the use of
gene expression as a proxy for receptor densities, and
recommend using techniques that more directly capture
receptor distributions such as PET or autoradiography.
However, we note that both PET and autoradiography
have specific challenges. For example, PET tracers are
generally only sensitive to receptors on the cell surface,
but neurotransmitter receptors are also found within the
cell [75]. Furthermore, PET does not directly mea-
sure density, is sensitive to in-scanner motion, and may
demonstrate non-specific binding [26]. Meanwhile, au-
toradiographs more directly measure receptor densities
but are only acquired post-mortem, are more expensive
and labor intensive, and measure densities in discrete
brain sections [92]. Although it is encouraging that we
find consistent results across PET- and autoradiography-
derived receptor densities, future research is needed to
accurately and comprehensively measure neurotransmit-
ter receptor densities throughout the brain.

Our results build on previous work that explores the
expression-density relationship of specific neurotrans-
mitter systems or receptors, such as the serotonergic sys-
tem [10, 43], the GABAA receptor [58], and the opi-
oid system [43, 69], using PET and/or autoradiography-
derived density. The present report comprehensively
investigates the expression-density correspondence for
27 unique neurotransmitter receptors, receptor binding
sites, and transporters across 9 different neurotransmit-
ter systems using both PET and autoradiography mea-
surements. Here we note some consistencies and in-
consistencies across findings. Consistencies include: (1)
high correlation between 5-HT1A density and HTR1A ex-
pression [10, 43, 69], (2) weaker associations for other
serotonergic receptors [10], (3) high correlation be-
tween MOR and OPRM1 [43], and (4) positive correla-
tion between GABAA density and β2 subunit expression,
but negative correlation between GABAA density and γ1
subunit expression—although we do not find that these

relationships are significant after correcting for multiple
comparisons [58]. On the other hand, we find no as-
sociation between GABAA density and the expression of
α1 and γ2 main channel subunits, unlike that reported in
[58]. Additionally, [69] find that the PET tracer dipenor-
phine, which binds to all three opioid subtypes (δ, κ,
and µ), is not correlated with the expression of any opi-
oid subtype. Meanwhile, we find a strong correlation
between MOR density and OPRM1 expression, and pre-
sume that expression-density relationships are specific to
single receptors and not generalizable across receptors
in the same neurotransmitter system. We note that these
inconsistencies are likely related to the gene normaliza-
tion method, a key processing step with large effects on
estimated gene expression [47].

We close with some methodological considerations
when working with PET, autoradiography, and gene ex-
pression datasets. First, gene expression estimates are
derived from only six post-mortem human brains. Al-
though the Allen Human Brain Atlas is a state-of-the-
art dataset of microarray gene expression, more com-
prehensive datasets are necessary to confirm gene ex-
pression levels. Second, measures of neurotransmitter
receptor/transporter densities and gene expression are
acquired in different individuals, so we are not able to
make conclusions on the correspondence between gene
expression and receptor/transporter density in the same
cell tissue. Third, due to the relatively coarser resolution
of PET, and the incomplete spatial coverage of autora-
diography, main analyses were conducted in a parcella-
tion of only 33–34 left hemisphere cortical brain regions.
Replication in a finer parcellation for the PET receptor
data do show similar results (Fig. S3), as well as high
receptor density correlation between hemispheres, but
high resolution whole-brain gene-receptor/transporter
analyses should be conducted in future work.

In summary, we find that the expression of specific
receptor/transporter-coding genes can generally not be
used to estimate neurotransmitter receptor and trans-
porter density. We only find a correspondence between
gene expression and receptor density for 5-HT1A, D2,
CB1, and MOR. Future efforts to map neurotransmitter
receptor and transporter profiles to brain structure and
function should verify the expression-density association
when using microarray gene expression in place of re-
ceptor and transporter density.
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Figure S1. Correspondence between gene expression and receptor/transporter density in the subcortex | PET recep-
tor/transporter densities and microarray gene expression was parcellated into 15 subcortical regions and correlated.
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Figure S2. Density-expression association for the remaining sixteen GABAa subunits | Density-expression association for the
remaining sixteen GABAa subunits that do not comprise the main channel show that the expression of four subunits are strongly
negatively correlated (r < −0.6) with receptor density (γ1, β1, α5, α3), although the relationship is not significant after correcting
for multiple comparisons [11]. All receptor densities are z-scored.
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Figure S3. Replication in a 111-node parcellation | PET receptor/transporter densities and gene expression levels were parcel-
lated into a 111-node cortical left hemisphere parcellation. Yellow scatter plots indicate significant density-expression correspon-
dence, against an autocorrelation-preserving null model. All receptor and transporter densities are z-scored.
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Receptor/
transporter

Neurotransmitter Tracer Measure N Age References

D1 dopamine [11C]SCH23390 BPND 13 33± 13 Kaller et al., 2017 [41]

D2 dopamine [11C]FLB-457 BPND 37 48.4± 16.9 Smith et al., 2019 [71, 83]

D2 dopamine [11C]FLB-457 BPND 55 32.5± 9.7
Sandiego et al., 2015
[71, 72, 81, 83, 88]

DAT∗ dopamine [123I]-FP-CIT SUVR 174 61± 11 Dukart et al., 2018 [24]

NET∗ norepinephrine [11C]MRB BPND 77 33.4± 9.2 Ding et al., 2010 [9, 18, 22, 70]

5-HT1A serotonin [11C]WAY-100635 BPND 36 26.3± 5.2 Savli et al., 2012 [74]

5-HT1B serotonin [11C]P943 BPND 65 33.7± 9.7
Gallezot et al., 2010
[5, 31, 50, 54, 55, 63, 73]

5-HT1B serotonin [11C]P943 BPND 23 28.7± 7.0 Savli et al., 2012 [74]

5-HT2A serotonin [11C]Cimbi-36 Bmax 29 22.6± 2.7 Beliveau et al., 2017 [10]

5-HT4 serotonin [11C]SB207145 Bmax 59 25.9± 5.3 Beliveau et al., 2017 [10]

5-HT6 serotonin [11C]GSK215083 BPND 30 36.6± 9.0 Radhakrishnan et al., 2018 [66, 67]

5-HTT∗ serotonin [11C]DASB Bmax 100 25.1± 5.8 Beliveau et al., 2017 [10]

α4β2 acetylcholine [18F]flubatine VT 30 33.5± 10.7 Hillmer et al., 2016 [4, 38]

M1 acetylcholine [11C]LSN3172176 BPND 24 40.5± 11.7 Naganawa et al., 2021 [56]

VAChT∗ acetylcholine [18F]FEOBV SUVR 4 37± 10.2 PI: Lauri Tuominen & Synthia Guimond

VAChT∗ acetylcholine [18F]FEOBV SUVR 18 66.8± 6.8 Aghourian et al., 2017 [1]

VAChT∗ acetylcholine [18F]FEOBV SUVR 5 68.3± 3.1 Bedard et al., 2019 [8]

VAChT∗ acetylcholine [18F]FEOBV SUVR 3 66.6± 0.94 PI: Taylor W. Schmitz & R. Nathan Spreng

mGluR5 glutamate [11C]ABP688 BPND 73 19.9± 3.04 Smart et al., 2019 [82]

mGluR5 glutamate [11C]ABP688 BPND 22 67.9± 9.6 PI: Pedro Rosa-Neto

mGluR5 glutamate [11C]ABP688 BPND 28 33.1± 11.2 DuBois et al., 2016 [23]

GABAA/BZ GABA [11C]flumazenil Bmax 16 26.6± 8 Nørgaard et al., 2021 [58]

H3 histamine [11C]GSK189254 VT 8 31.7± 9.0 Gallezot et al., 2017 [32]

CB1 cannabinoid [11C]OMAR VT 77 30.0± 8.9 Normandin et al., 2015 [25, 57, 59, 68]

MOR opioid [11C]carfentanil BPND 204 32.3± 10.8 Kantonen et al., 2020 [42]

TABLE S1. Neurotransmitter receptors and transporters included in analyses | BPND = non-displaceable binding potential;
VT = tracer distribution volume; Bmax = density (pmol/ml) converted from binding potential (5-HT) or distributional volume
(GABA) using autoradiography-derived densities; SUVR = standard uptake value ratio. Neurotransmitter receptor maps without
citations refer to unpublished data. Refer to [35] for more details. Asterisks indicate transporters.

Receptor Neurotransmitter Excitatory/Inhibitory Ionotropic/Metabotropic

AMPA glutamate excitatory ionotropic

NMDA glutamate excitatory ionotropic

Kainate glutamate excitatory ionotropic

GABAA GABA inhibitory ionotropic

GABAA/BZ GABA inhibitory ionotropic

GABAB GABA inhibitory metabotropic

M1 acetylcholine excitatory metabotropic

M2 acetylcholine inhibitory metabotropic

M3 acetylcholine excitatory metabotropic

α4β2 acetylcholine excitatory ionotropic

α1 norepinephrine excitatory metabotropic

α2 norepinephrine inhibitory metabotropic

5-HT1A serotonin inhibitory metabotropic

5-HT2 serotonin excitatory metabotropic

D1 dopamine excitatory metabotropic

TABLE S2. Neurotransmitter receptors included in the autoradiography dataset
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