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Abstract: Epistasis affects genome evolution together with our ability to predict individual
mutation effects. The mechanistic basis of epistasis remains, however, largely unknown. To
quantify and better understand interactions between fitness-affecting mutations, we focus on a
11 amino-acid a-helix of the protein B-lactamase TEM-1, and build a comprehensive library
of more than 15,000 double mutants. Analysis of the growth rates of these mutants shows
pervasive epistasis, which can be largely explained by a non-linear two-state model, where
inactivating, destabilizing, neutral, or stabilizing mutations additively contribute to the
phenotype. Hence, most epistatic interactions can be predicted by a non-linear model
informed by single-point mutational measurements only. Deviations from the two-state model
are consistently found for few pairs of residues, in particular when they are in contact. This
result, as well as single-point mutation parameters, can be quantitatively found back through
direct-coupling-analysis-based statistical models inferred from homologous sequence data.
Our results thus shed light on the existence and the origins of the multiple determinants of the
epistatic landscape, even at the level of small structural components of a protein, and suggest

that the corresponding constraints shape the entire B-lactamase family.
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Introduction

Sequences of the first proteins triggered the emergence of molecular evolution and
bioinformatics in the 1960s (Hagen, 2000). Yet, more than 50 years later, despite a massive
number of available protein sequences and a pressing demand from human genetic disease
and synthetic biology, the prediction of nonsynonymous mutation effects remains a
challenging task.

Nonetheless, over the last decade, two independent approaches have offered new
perspectives on the study of nonsynonymous mutation effects. Experimentally, protein deep
mutational scans, in which the impacts of all possible single amino acid changes in a protein
are investigated, have gained momentum allowing to study not only single mutants but also
multiple mutants (Fowler and Fields, 2014). At the bioinformatics level, massive protein
databases have allowed using multiple sequence alignment to infer the amino acids that are
tolerated or not at a site. Interestingly, experimental and data-driven approaches revealed
immediately that mutation impact could vary with genetic background (Jacquier et al., 2013;
Bank et al., 2015, 2016). It was for instance shown that as little as a single mutation could
change quite drastically the impact of many other mutations throughout a protein (Bloom et
al., 2005; Jacquier et al., 2013). These observations called for a more comprehensive
understanding of mutations’ effects and especially of their interactions.

Epistasis refers to the context-dependency of mutation effects. In population genetics,
pairwise epistasis refers more precisely to mutation interactions that translate in non-
additivity of log-fitness effects. Epistasis between mutation A and B can be quantitatively
estimated as the deviation between the observed log-fitness of the double mutants, AB, and
the sum of the log-fitness of both individual mutations (A and B) (Figure 1 (a)). Under this
strict definition, epistasis has been predicted to impact significantly many facets of evolution,

from the evolution of mutation rate and recombination (de Visser and Elena, 2007), to the
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diversity of adaptive path and the repeatability of adaptation (de Visser and Krug, 2014).
These undoubtful significant consequences of epistasis now call for an integrated and
mechanistic understanding of epistasis causes.

An integrated vision of epistasis may be obtained from a top-down perspective, with
phenomenological models that capture its global properties. These models have shown that all
forms of epistasis mentioned in Figure 1(a) can emerge from a simple nonlinear mapping of
phenotype to fitness even if the phenotype is additive. For instance, all possible forms of
pairwise epistasis are observed in the Fisher Geometric Model (Martin, Elena and
Lenormand, 2007; Gros, Le Nagard and Tenaillon, 2009; Blanquart et al., 2014; Tenaillon,
2014), a smooth singled peaked phenotypic landscape in which fitness is a Gaussian function
of the distance to an optimum phenotype. These observations motivated the research of an
underlying simple phenotype that could explain globally the pattern of epistasis observed.
Accordingly, statistical analysis of large datasets of multiple mutants have revealed epistasis
to be largely described by an underlying additive phenotype (Otwinowski, McCandlish and
Plotkin, 2018).

As proteins generally operate in a folded state, mutations’ impacts on protein have
mainly been investigated through their effects on that fold or its affinity with a substrate. For
epistatic interactions, two mutually non-exclusive mechanistic visions have emerged. With
compensatory mutations, characterized by two independently deleterious mutations that, when
combined, outcompete at least a single mutant, the idea of key-lock local interactions
emerged. Alternatively, the existence of mutations with a global impact on protein stability
(Bloom et al., 2005) hinted that the cooperative nature of protein stability could also result in
epistatic effects, this time at a more global level (Wylie and Shakhnovich, 2011). The extent
of both types of interactions and the overall prevalence of epistatic interactions remain
however unclear.

To investigate the molecular determinant of epistatic interactions and our ability to
predict it from a limited number of measures in a mutational scan, we generated a
comprehensive library of more than 15,000 single and double mutants within an a-helix of
B-lactamase TEM-1. TEM-1 is a highly successful antibiotic resistance gene present in about
35% of Escherichia coli natural isolates (EARS-Net France). We focused on an 11 amino acid
a-helix, from residue 119 to 129 (Figure 1(b)), as a-helices are the most characterized and

frequent secondary structure in protein folds. For the sake of generality, this a-helix is not
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involved in the active site; it is just a structural component of the enzyme. The mutants, which
cover more than 76% of all possible double mutants, were analyzed for their impact on
protein activity, measured through the minimum inhibitory concentration (MIC), and more
importantly, through their effects on fitness, allowing a proper estimation of epistasis
(Method). We then investigated how a simple biophysical two state model linking the
sequence dependent phenotype to the fitness accounted or not for the observed epistasis.
Finally, to validate the relevance of our measurement of epistasis and its mechanistic
interpretation, we used the protein sequence of numerous distant homologues of TEM-1 to

predict mutation effect and epistasis through Direct Couplings Analysis (DCA).

Results

Wide spread epistasis in a alpha helix

The distribution of log-fitness effects of single mutants had a bimodal structure with
close to 50% lethal mutants (log-fitness < -0.6) (Figure 1(d)). This suggested an overall
important role of that a-helix. The different residues had very different patterns, with four
sites permissive to mutations, while the others were much more sensitive (Figure 1(c)). As
expected, proline, which is known to be incompatible with a-helix structure (von Heijne,
1991), was lethal for the enzyme function or close to at all sites (log-fitness < -0.55) (Figure
1(c)). The distribution of double mutant effects appeared to be tri-modal with an even more
significant fraction of loss of function genotypes (78%) (Figure 1(e)). A dominance effect
emerged: mutant combinations including a lethal mutation were lethal. Out of the 10.887
double mutants involving at least a lethal mutant, only 105 (1.0%) had a log-fitness higher
than -0.5 (Figure 2(a)). Only 2 (0.02% of total) resulted from the combination of two
deleterious mutations, an instance of sign epistasis in which one of the mutations is
deleterious in one background and beneficial in another. This general dominance effect
clarifies the partial success of methods based on residue conservation (Ng and Henikoff,
2003; Adzhubei, Jordan and Sunyaev, 2013) to predict mutation effect: significant effects
such as inserting a proline within an a-helix are effectively context-independent. This
suggests that the key-lock epistatic compensations, characterized by two independently
deleterious mutations that when combined outcompete at least a single mutant, are rare in the

a-helix under study. We then focused on quantifying epistasis (Figure 2(a) and (b)) and
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noticed that double mutants’ log-fitness deviated substantially from the one expected, i.e. the

sum of log-fitness of the two single mutants.

Epistasis could be estimated with high resolution only for non-lethal double mutants with
non-lethal single mutants. Restricting the dataset to these mutants, we could compute a
distribution of epistasis that was both broadly distributed around zero and biased towards
negative values (Figure 2(b)), as observed on other experiments based on proxies of protein
function rather than on true fitness, i.e. binding (Olson, Wu, Sun, 2014 ), or fluorescent
(Sarkisyan et al., 2016). Yet, some instances of large positive epistasis were also found,
especially among pairs including a beneficial mutation and a deleterious one (Figure 2(c)). We
then looked at the log-fitness effect of individual mutations across all different backgrounds.
For a given single mutant A, we plotted the log-fitness of the double mutants AB minus the
log-fitness of the single mutant B (called focal mutation relative log-fitness) versus the
log-fitness of single mutants B (called background log-fitness), see Figure 2(d). In this figure,
the white area corresponds to mutants with high resolution on log-fitness for double mutants
AB and single mutant B (log-fitness > -0.6). The blue region corresponds to lethal double
mutants. And finally, the orange area corresponds to lethal single mutant B but where the
double mutants AB have log-fitness greater than -0.6. Due to the high resolution of log-fitness
in the white area, we are mainly interested in the patterns that exhibit the mutations in this
area. These plots exhibit mutations with very contrasted and structured patterns that we

grouped in four distinct categories (Figure 2 (e)).

Among the 209 possible single mutants, 98 (47%) are lethal across all backgrounds (the single
mutants and al the double mutants including these single mutants having a log-fitness lower
than -0.6). Due to the resolution of our experiments, we can not say so much about these loss
of function mutations. Eighty three (40%) single mutants having log-fitness higher than -0.6
have negative epistasis, see for example blue points (Figure 2(d)). 19 (9%) mutations showed
an overall context-independent mutation effect, i.e. have no epistasis, which correspond to a
straight line with null slope in Figure 2(d), see for example green points (Figure 2 (d)). These
mutants had a minor impact on log-fitness (less than a 1% effect on log-fitness). Finally, 9
(4%) mutations with marginally increased log-fitness effects in the ancestral background, i.e.

have positive epistasis, see for example red points (Figure 2(d)).
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Strikingly, excluding the 98 mutations that were lethal in all backgrounds, 83% of the
mutations exhibited some strong form context dependencies that were structured by
background log-fitness. A majority of double mutants AB associated with a given single
mutant A exhibit either positive epistasis or null epistasis or negative epistasis, but not all

three at once. This consistency suggests a macroscopic force at play, such as protein stability.

A two-state model linking genotype to fitness is predictive of epistasis

One paradigm in protein analysis is that most residues in protein maintain the functional fold,
and therefore mutations at these sites mainly alter its stability but not the activity (DePristo,
Weinreich and Hartl, 2005). Protein stability has been described by a two-state model,
corresponding to a functional folded state and to several nonfunctional unfolded states
(Privalov, 1979; Wylie and Shakhnovich, 2011) (Figure 3(a) and (b)). The probability Pnat

that a sequence correctly folds in its functional structure is

p . 1
- AGO+AAG

nat
1+e

RT

(1)

Upon change of the protein sequence, Pnat change according to the energetic impact of the

mutations (AAG) on the free energy of the wild-type (AGO) stability.

One of the main hypotheses in this model is the additivity of the AAG upon multiple loci

mutations:
AAG?}b = MG + AAG}I,’
(2)

where AAG?], is associated with the double mutations at sites i and j with amino acids a and b,

. . . . . o : . b.
AAG? is associated with the single mutation at sites i with amino acids a, and AAG], is

associated with the single mutation at sites j with amino acids b.
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We use the two-state model (1) here to more generally describe the sequence effect on the
measured fitness, as previously done in (Wylie and Shakhnovich, 2011, Jacquier et al 2013,
Otwinowski, McCandlish and Plotkin (2018)).
Therefore, the resulting log-fitness of a mutant can be computed as

AG AG,+AAG

0

)=log(1+e™) — logll +e ™ )

w
log ( W

(3)

Depending on the mutant AAG, this model produces patterns of log-fitness effects according
to background log-fitness similar to the one observed in the data (Figure 4 (a)). To have the

best possible estimate of the parameters, we decided to estimate the AAG and AG 0 from the

log-fitness of single and double mutants (Method). As we accurately measure the log-fitness
only above a threshold of -0.6, we keep only the 111 single mutants (53% of the total) with a
log-fitness greater than -0.6. For each pair of previously chosen single mutants, the associated
double mutant is kept if it has been measured experimentally: however its log-fitness is
thresholded at -0.6. The stability model is itself thresholded at -0.6 during the inference.
Keeping the thresholded lethal double mutants allows a better estimation of the AAG. We

found AG 0" -4.55 kcal.mol ™. To control experimental reproducibility, experiments have been

carried out on two biological semi-replicates. For both biological semi-replicates, inferred

AAG are highly correlated (r* = 0.99, Supplementary Figure B(c)).

As shown in Supplementary Figure C(a), the stability model well reproduces the experimental
log-fitness of all the selected single (p = 0.99, r* = 1.0) and double mutants (p = 0.92, r* =
0.85). The above correlation is an improvement with respect to the one (p = 0.87, r* = 0.65,
Supplementary Figure C(b)) obtained by neglecting epistasis, i.e. assuming that the fitness of
double mutations is the product of the ones of simple mutations. Moreover, as shown in
Figure 4(a) the stability model captures the overall dependency of the fitness of a double
mutant from the fitness of the background simple mutant. Finally, Figure 4 (b) shows that it
reproduces the shape and breadth of the distribution of epistasis, with correlation p = 0.81, 1*

= 0.55 between observed and predicted epistasis. Our results are also consistent with previous
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experiments: R120G is known to have a stabilizing effect (Bershtein, Goldin and Tawfik,
2008; Salverda, De Visser and Barlow, 2010) and this effect is indeed captured by the model,

with AAG = -1.85 kcal.mol ' (negative AAG corresponds to stabilizing mutation).

Supported by the ability of the two-state model to correctly capture the overall background
dependency of the mutants and the epistasis, we then investigated its performance in

predicting double mutation effects and epistasis when estimating its AGOand AAG parameters

on single mutations only. This amounts to reducing the number of mutational datapoints on
which the model is built from 4493 to 111. As shown in Figure 5b, we find a remarkable
Spearman correlation in epistatic predictions ranging from 0.6 to 0.7. Such dispersion of

Spearman values comes from the lack of a precise determination on the estimation of AGO

arising from flat directions in the log-likelihood of the two-state model inferred only from
single mutations (Supplementary). In particular as appears clearly when comparing Fig. 5b to
Fig. 5a, the predictions related to positive epistasis are less accurate when estimating the
parameters only from single mutations. The log-fitness of single mutants with stabilizing
effect (AAG < 0) are close to 0 and inferring AAG only with single mutants lead to AAG = 0,

while their stabilizing effect only appears when double mutants are taken into account.

Deviation from the two-state model are more frequent between physically close
residues

While the two-state model is overall able to reproduce our data, we then investigated on
which pairs of sites its predictions mostly deviated from them. First, when keeping only the
residues at less than 6A the correlation between experimental and predicted log-fitness with
the two-state model decreased to p = 0.88, 1> = 0.80, while when only distant pairs (>6A) were
considered the correlation improved to p = 0.95, r>= 0.89 (Supplementary Figure C (c) and
(d)). Accordingly, a maximum likelihood approach (Supplementary) estimated that the
deviations to the two-state model were 1.28 times greater for close pairs of sites (<6A)
compared to distant ones (>6A). This implies that our model explained less well the
interactions between nearby sites than distant sites, suggesting that for local interactions,

alternative forces could be at play.
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To further characterize deviations from two-state model predictions, we computed, for each

. . .. : b
pair of residues 1,j, the mean square error between the experimental log-fitness log(wjj )and

the log-fitness predicted with the stability model log(v”v?}b) (Equation ( 3)),

D = A% Uogw™) — log(w™y)
i N, gWw,; 9w,

(4)

where N i is the total number of double mutants for which we can calculate the log-fitness

according to the stability model for the pair 1,j (Supplementary Figure D for the distribution of

Dij). Large deviations Dij imply that the assumption of linearity of the AAG embedded in the

two-state model (Equation 2) is no longer valid for the corresponding pair. We refer to such
pairwise interactions, not captured by the stability model, as idiosyncratic epistasis. For
instance, mutation R120D and M129W showed signs of both positive and negative epistasis,
the positive epistasis being restricted to residues in direct contact (Figure 4(c) and (e)). R120D
mutation leads indeed to a change in charge, deleterious for distant interactions, which
becomes beneficial when associated with departure from E121 charged amino acid, the
neighboring amino acid (Figure 4(d)). The five pairs of sites with the largest idiosyncratic
epistasis are: 128-129, 124-128, 123-127, 127-128 and 120-123. Among these five pairs, four
correspond to the residues at less than 6A, comforting that local interactions involve the

largest deviation from the two-state model.

Sequence of TEM-1 homologs can be used to predict mutation effects in TEM-1

At this stage the analysis of our experimental data suggests that epistasis results largely from
a non-linear relationship between the sequence of a protein and its macroscopic fitness, well

captured by a two-state model. Moreover, the deviations to the model are not random and
occur preferentially for residues in contact, revealing this time some idiosyncratic epistasis.
We next wanted to validate that these observations on epistasis, made by measuring fitness in
the laboratory at a given antibiotic concentration, could be representative of generic properties
of epistasis in the TEM-1 protein family, class A B-lactamases that evolved for millions of

years.
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To this aim we trained a model on Multiple Sequence Alignment (MSA) built on high-quality
homologs of class A B-lactamases cleaned by hand (Philippon ef al., 2016, 2019) and
enriched on SwissProt and TTEMBL (The UniProt Consortium, 2021) (Method). The main
idea is to learn a probability distribution over all the sequences a of length L from the MSA:
sequences with high probability should correspond to putative B-lactamase. Each sequence a

e—E(a)

7

is supposed to be drawn from a Boltzmann distribution P(a) = Once trained, we score

all the single and double mutants according to their energies E(a). For such model, known as

Potts models, E(a) reads

L
E(a) =- El hi(ai) - X ]ij(ai' aj)

1<i<j<L

(6)

with fields hi(ai) and pairwise interactions J ij(ai, aj). Potts model, used in Direct-Couplings

Analysis (DCA) (Weigt et al. 2009; Morcos et al. 2011) can disentangle direct coevolutionary
couplings from indirect ones. DCA is widely used to predict tertiary contacts in proteins. This
family of models was successfully used to design functional proteins with limited homology
to existing sequences (Russ ef al. 2020), and for TEM-1, they have been used for predicting

fitness effects of single mutations (Figliuzzi et al. 2016).

To compare the predictions E(a) and the results of the experiments, we need a proxy to link
the two quantities. The most common proxy is the difference of log-likelihood between the

mutanta and the wild-type aWT(Figliuzzi etal.,2016; Hopf et al., 2017; Zhao et al., 2021)

log P(amut) — logP (aWT) =—E (amut) +E (aWT)
(7)

With that proxy Potts energies were found to be correlated to MIC (Figliuzzi et al., 2016),
specificity constant kcat(Zhao et al.,2021), log-fitness (Hopf et al., 2017) or binding energies

(Salinas and Ranganathan, 2018). Accordingly, we found a Spearman correlation p = 0.86 for

10
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the 209 single mutants and p = 0.64 for the 15.279 double mutants. This has to be compared
with the comparable, but slightly worse results: p =0.81 and p = 0.59, obtained with the
independent model that only considers conservation of amino acids and not coevolution

between sites (same Hamiltonian as Potts model but without couplings / ij(ai, aj)). The Potts
model, allows to better estimate the effects of the mutations, thanks to the couplings J l_j(ai, aj)

which takes into account the background of TEM-1, instead of having an average global

effect consistent across all the class A B-lactamases, as in the case of the independent model.

As shown in Figure 6(a) and (b)) the relation between the log-fitness and our Potts energy is
highly nonlinear with a characteristic S-shape displaying saturation of the log-fitness both at
large and small Potts energy values. As it is shown in Supplementary Figure F, the S-shape
depends, as expected, on the experimental proxy to measure the fitness and changes when
using the MIC instead of the relative enrichment at a fixed concentration, accordingly to the
non-linear relation between MIC and relative enrichment (Supplementary Figure A(b)) . For
the independent model, the relationship is even more bimodal (Supplementary Figure E(a)
and (b)). Due to the above nonlinear relation between the Potts model energy and the
experimentally measured epistasis, the Potts model failed to predict epistasis (p = —0.06)
when using directly the energy differences as epistasis proxy:

- B, ) = E@,) + E@, )+ E@ ).

i J

Yet, the typical “S” shape between the log-fitness and the Potts model energies is reminiscent
of the relationship described by the two-state model. By directly comparing the Potts energies
to the two-state model AAG parameters, related to the free energy changes due to the single

mutations, in, we observed a much more linear relationship as shown in Figure 6(c) and 6(d) :

+ E(aWT))

a Potts

AAG = y(— E(a “
L muti

(8)

for single mutants and for double mutants we replace AAG? + AAGJI,’ by:

11


https://doi.org/10.1101/2021.11.29.470435
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470435; this version posted November 29, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

ab Potts
AAG = y(- E(amuta,,) + E(aWT))

ij
(9)
By restricting only to mutations that are present in the MSA and for which AAG are estimated
and by fitting as only parameter the slope y =-0.71 , we obtain a squared correlation
coefficient r* = 0.67 / 0.64 for single/double mutations respectively, between the Potts
energies and the free energy parameters directly fitted from the mutational scan.
The relation between AAG and the energy of the independent model is less linear (r* = 0.37
for the single mutants and > = 0.38 for the double mutants, Supplementary Figure E(c) and

(d)), showing that the couplings J l,j(ai, a]_),which takes into account the TEM-1 background,

are paramount to have an accurate estimation of the mutational effects from distant

homologous sequences.

We have then used the two state model, Equation ( 3 ) with the previously fitted AGO =-4.55

a Potts a Potts

kcal.mol ™' and Potts free energy parameter AAGi , AAGU from Eq. (8,9)

to predict the log-fitness of single and double mutants, and the epistasis. In contrast to direct
predictions above, now the predicted epistasis and the experimental one are correlated (p =
0.44), as shown in Figure 6(e). Figure 6(e) shows that the model principally captures the sign

of the epistasis, as quantified by the AUC-ROC curve shown in Figure 6(f).

Sequence of TEM-1 homologues predicts pairs of sites with idiosyncratic
epistasis

As mentioned before, without encompassing the non-linearity of the two-state model, the
Potts model fails to capture the epistatic effects (p = 0.06 between experimental values and
predictions). Nevertheless, since Potts models are powerful tools to determine contacts
between residues in protein structures, we investigated if these models could be predictive of
the identified idiosyncratic epistatic interactions we detected. For Potts model, the canonical

proxy to measure the interactions between two specific sites is the Frobenius norm of the

couplings matrices F = / > l,j(a, b)z, with the average product correction (Dunn, Wahl
- a,b
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and Gloor, 2008). The top couplings of this metric are traditionally used to predict the tertiary
contacts (Morcos et al., 2011).

We found that among the five pairs of sites with the largest Frobenius norm, there are three
pairs with significant idiosyncratic epistasis: 124-128, 127-128, 128-129. Under the
assumption that there is no link between these two quantities, it leads to a p-value equal to
0.0036 (Material and method). Therefore, it seems that the most interacting pairs of sites
predicted by the Potts model within the a-helix correspond to the pairs of sites where local
idiosyncratic interactions seem to result in the long term in some specific coevolution patterns
between pairs of sites, which are captured by Potts model. However, these effects are not
captured at the scale of the interactions between two specific sites and two specific amino

acids, but at the scale of the sites.

Discussion

The deep mutational scan we have performed here to study mutation effects in a local
alpha-helix of the beta-lactamase TEM-1 reveals that epistasis is pervasive. We found that
once we exclude mutations carrying irrevocable loss of function, 83% of mutations showed
some strong signature of epistasis. Interestingly, though we work on a small fraction of the
protein, most epistasis do not result from idiosyncratic interactions between sites, but are
mostly captured by a global model of epistasis. In that model, the phenotypic impact of
mutant adds up in double mutants but the non-linear translation of phenotype to fitness results
in epistasis [ Wylie and Shakhnovich, 2011, Otwinowski, McCandlish and Plotkin, 2018]. The
functional form of the non-linear mapping between the fitness and the phenotype may reflect
the global impact of the mutations on the protein stability, in particular for the secondary
structure component under investigation, and on its functionality. The phenotype to fitness
mapping therefore reflects the environmental pressure on the activity of the protein, tuned by
the experimental conditions, here determined by the antibiotic concentration [Otwinowski,
McCandlish and Plotkin, 2018, Stiffler, Hekstra and Ranganathan 2015, Roussel et a/ 2021].

Using the two-state model and the single and double mutations scan, we could estimate for
each single mutant a phenotypic effect in the form of an energy change, AAG. Within this
model, we could explain both qualitatively and quantitatively a large fraction of the observed

epistasis (tho=0.81).
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Moreover, as, according to the two-state model, the mutational effects on the phenotype are
additive, we could fit the AAG parameters only from the single mutational data, to predict
epistasis with a good accuracy as estimated with a Spearman correlation ranging from 0.6 to
0.7.

The large contribution of this global epistasis we observed despite our focus on a local
structure of the protein is remarkable and further emphasizes the importance of this form of
epistasis, whose overall relative contribution should only increase as we consider larger
fractions of the protein. The importance of these macroscopic form of epistasis at the protein
level is reminiscent of the negative epistasis found genome-wide in experimental evolution
(Chou ef al., 2011; Khan et al., 2011; Wiser, Ribeck and Lenski, 2013; Kryazhimskiy et al.,
2014).

Our precise estimates of log-fitness allowed us to identify some deviations to the two-state
model. Interestingly, there was also some consistency in these deviations that were more
likely to occur between residues in direct contacts in the protein structure. We found for
instance some examples of local interactions linked to charge conservation. Deviation from
the additivity at the phenotypic level may generate these deviations from macroscopic
epistasis. We would like to point out that our alpha helix is not included in the active site of
the protein. We believe that our two-state model would be less predictive for sites included in
the active site, where activity would predominate over global epistasis (Rodrigues et al.,

2016). However, we estimate that for a majority of sites, this global epistasis dominates.

Both global epistasis and deviation from it seem to be connected to the 3D structure of the
alpha-helix under investigation either through the impact of mutations on protein stability or
through contacts between the residues. Because such structure is highly conserved, we then
questioned whether the determinants of epistasis were conserved enough to be detected from
the analysis of Multiple Sequence Alignments (MSA) of distant homologues that share the
same fold. Interestingly, both the signature of the macroscopic model and the patterns of
deviations were recovered through the integration of MSA in the Potts model. First, the
estimated AAG correlated linearly with the Potts model mutation energy predictions.

However, because macroscopic epistasis results from a precise non-linear mapping of
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phenotype to fitness, the Potts model estimates of AAG had to be inserted in the two-state
model to have some predictive power on the observed epistasis (mostly on the sign of
epistasis). Second, pairs of sites that showed the strongest signal of coevolution through
evolutionary times (as measured through the Frobenius norm of the couplings of Potts model)
were the ones that deviated the most from the macroscopic model. These idiosyncratic
epistatic interactions seem therefore to generate in the long-term some co-evolution patterns

between pairs of sites that can be captured by models trained on MSA.

The fact that the experimental epistasis we characterized as either global or idiosyncratic can
both be recovered to some extent from the analysis of distant homologes is telling that the
molecular determinants of epistasis are long-lasting. It suggests that the persistence of the
underlying mechanistic selective pressures has been long and strong enough to shape the
long-term evolution of the protein family. Despite the wide-spread level of epistasis we
recovered in our data, these observations reject a model in which epistatic interactions are
fully volatile and change quickly with protein sequence as suggested for instance in the NK
model(Kauffman and Weinberger, 1989). Our data suggest a rather smooth and consistent
protein mutational landscape. This offers the hope that its property could be tractable and
extrapolated from one homologue to another using combinations of mutational scans and

in-depth multiple sequence alignment analysis (Cocco, Posani and Monasson 2021) .
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Material and Methods

Construction of a library of barcoded mutants

The sequence of TEM-1 was mutagenized using a previously published phagemid (Firnberg
and Ostermeier, 2012) that was slightly modified. This phagemid allows high throughput
mutagenesis to be performed, from a phage mediated single stranded amplification, and the
synthesis of the other strand using a pool of mutated oligonucleotides. For our purposes, these
oligonucleotides each carry two degenerate NNS codons (N is either A, T, G or C; S is either
G or C) in the alpha helix of interest. A collection of 150 000 mutants was made with this
protocol. The mutants were then combined through Gibson assembly to a genetic barcode of
sequence NNNNNATNNNNNATNNNNNATNNNNN flanking a gene providing resistance to
the antibiotic chloramphenicol. Two million barcoded mutants were recovered (see

supplement for more details).

Coupling barcode sequences to mutant sequence.

To find for each barcode the mutations in the alpha helix it is linked to, two independent PCR
(including one in emulsion) were done with one end of the product corresponding to the
barcode and the other end to the alpha helix sequence. Using paired end sequencing with
Miseq technology, both barcode sequence and alpha helix sequence of the mutants could be
recovered. Each barcode was associated with an alpha helix sequence. To prevent wrong
association of some barcodes to diverse alpha helix sequences due to recombination that may
occur during the PCR, we excluded from the analysis barcodes for which the second most
frequent alpha helix sequence had a frequency higher than 20% (see supplement for more

details).

Selection experiment

To infer fitness of these mutants, a competition experiment was performed. The collection
was grown in 100ml of MH broth in flasks to an Optical Density (OD) of 0.4 in the absence
of amoxicillin, and subsequently diluted 32-fold in 100ml of MH broth this time
supplemented with 8 g/l amoxicillin. The optical density was followed through time and as

soon as OD reached 0.2, a 32-fold dilution was performed in fresh media with the same
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concentration of antibiotics. Up to 6 cycles were performed, corresponding to about 30
generations. At each dilution, samples were taken to purify the plasmid and sequence the
barcode. Barcodes’ sequences were then clustered and transformed into counts for their
respective alpha helix sequences. For a given alpha helix sequence, multiple barcodes could
be used to estimate fitness through change in frequency through time. A simple scan of the
first cycle of selection was used to eliminate, for each alpha helix mutant sequence, the
barcodes that clearly deviated from the pattern of frequency changes observed for that mutant

(see supplement for more details).

Inference of log-fitness

For a given mutant i, we consider that the total population of plasmids N . carrying this mutant

follows an exponential growth

N(t+1) = WN(b)

where Wl, denotes the absolute fitness of the mutant i. However, we do not have access to the

total population over time but to some measurements of the population {Ni(Th) }r at
different times 7% sampled by a DNA sequencer. Consequently, we construct an inference

procedure to estimate its absolute fitness Wl_ knowing the measurements of the population

{Ni(T%) }k at different times Tk. The probability of {Ni(Tk) }x at different times Tk knowing
Wi can be written (see Supplementary “Inference procedure of the log-fitness™), as a binomial

distribution:

P({N:(T3.) }x|W;) KZH< T )(1_pk>dkw Ni= RT3 Nu(T)
N; k k)

K3

where d denotes a dilution ratio and p kthe sampling rate of the DNA sequencer at time Z%.
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The absolute fitness are estimated by maximizing the following likelihood

Prooacat (Wil {Ni(Ti) }x) o H P({N;(Ty) }[W7)

Inference of AAG on single and double mutants
AAG? and AGOare estimated by minimizing the following cost function, which corresponds

to a robust nonlinear regression

1 2
C(AG {AAGE)) = 53 il ®(%)

where 7i is the residue

_ log(w;) — log(wy;)

i
Olog(w;)

with log(w) the log-fitness of the mutant, log(\hat w) the theoretical log-fitness of the mutant
given by the two-state model (Equation 3) and \sigma log(w) the standard deviation of the

log-fitness inferred with our inference procedure.

If o = 1 and ®(x) = x, the cost function corresponds to the canonical least-squares

estimation. However, in our data, we have strong outliers, and as we perform the inference on
single and double mutants, single mutants are underrepresented compared to double mutants,

which are more numerous.
To penalize the strong outliers, we used ®(x) = arctan (as a loss. The parameter T is a

threshold that controls the importance of the regularization of the outliers and is chosen such

that 30% of the mutations are considered as outliers. The results are consistent for a wide
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range of thresholds T (from T = 20 to T = 100), penalizing only the strong outliers. For the

parameters shown in the paper, T=50.

In order to give the same importance to single and double mutants, we used a statistical

weight a. For the double mutants, a = 2. For the single mutants, a is equal to the number of

double mutants with this single mutation.

Selection of mutants for AAG and AGO inference
For the inference of the AAG and AGO from the single mutational scan we kept all single

mutants with a log-fitness greater than -0.6. For the inference of the same parameters from the
single and double mutants, we add to the fit all the double mutations for which the single

mutants are kept; but, if their log-fitness is smaller than -0.6 we threshold it to -0.6.

Selection of mutants for epistasis
To have a high resolution on epistasis, we calculate it only for double mutants that have
log-fitness greater than -0.6 and whose two associated single mutants have log-fitness greater

than -0.6.
Inference of independent model and Potts model.

All models are trained by maximizing the log-likelihood of MSA built on homologs of class
A B-lactamases cleaned by hand (Philippon et al., 2016, 2019) enriched on SwissProt and
TrEMBL (The UniProt Consortium, 2021), with a total of B = 8749 sequences with length L
= 253. Each sequence is reweighted according to the classical reweighting scheme ((Morcos
et al., 2011), with a threshold equals to 0.2, leading to an effective number of sequences B_eff
= 2480. For Potts model, the log-likelihood was maximized with Pseudolikelihood
maximization (Ekeberg et al., 2013; Ekeberg, Hartonen and Aurell, 2014) with L2

regularization (for the couplings, y ;= BL , for the fields, Y, = ;—'1) and color
eff eff

compression (Rizzato et al., 2020), with a threshold f 0= 0.
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Figure 1: Single and double mutants' log-fitness effects. (a) Pairwise epistasis measures the
deviation of the observed log-fitness of a double mutant from the sum of the log-fitness of its
single constituent mutants. It can also be qualitatively categorized as magnitude, sign, and
reciprocal sign as well as positive or negative. The figures illustrate how this categorization
functions in the case of a pair of deleterious mutations on the left and a pair including a
deleterious (b to B) and a beneficial mutation (a to A) on the right (b) 3D structure of
B-lactamase TEM-1. In red the a-helix of interest, and in blue the Serine residue of the active

site. (¢) The effects on the log-fitness of all single mutants per residue. Color scale is given in
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panels (d-e). (d-e) Distribution of log-fitness effects. Below the dotted line, mutants are
considered non-functional. (d) For single mutants. (¢) For double mutants. (f) Log-fitness of
the double mutants with missing data in white. Color scale is given in panels (d-¢). (g) Zoom
on the double mutants log-fitness involving residues 1127 and M129 on top and S124 and

M129 at the bottom.
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Figure 2 : Pairwise epistasis. (a) Log-fitness of effects of double mutants, against the sum of
the single mutants' log-fitness. Grey mutants of observed log-fitness and predicted log-fitness
based on single mutants lower than -0.6 cannot give reliable values for the epistasis. The
colors of the other points represent the form of epistasis detected using the color code defined
in Figure 1 (a). (b) Distribution of epistasis using the same color code, excluding mutants with
non-measurable epistasis. (c) Categorization of epistasis for all mutations, pairs of deleterious
(A-/B-), pairs involving one deleterious and one beneficial (A+/B-), or pairs of beneficial
(A+/B+). (d) Relative log-fitness effect of all mutations against the log-fitness of the different
backgrounds in which they were found. The values for three focal mutations, L122A, R120K,
and S124E, are highlighted in blue, green, and red respectively. Blue shaded area corresponds
to double mutants with fitness effects below the threshold, salmon shaded area corresponds to
double mutant with log-fitness value higher than the threshold despite having a single mutant
below it. (¢) The fraction of mutations falling into unconditionally inactivating, deleterious
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with context-dependency, no context dependency, and beneficial with context-dependency is

presented.

{a) Free energy

‘L‘” n foldded

P‘_I"r;frh'.'f

(©)

Focal mutation relative

1 - '”lrrrf = FoYe)
I 4 BT
P _ 1
nat = FaY e
! 1+e AT
AG = Frotded — Funfolded < 0

(d)

AAGE AAGY AAGT + AAGY

—-0.75  —0.50 —025  0.00
Background log-fitness, log(us))

-

1.0

—fi

—1

-2 0

AG) + AAG
Figure 3 : Stability and context-dependency. (a) Stability model. Pnat is the probability that

the protein folds. (b) Effects of the mutations on the stability. Black dotted line corresponds to
Pnat. Red dot corresponds to the wild-type. Orange dot corresponds to a single mutation on

the a-helix, with AAG?. Yellow dot corresponds to a single mutation on the a-helix, with AAGJI_J

Blue dot corresponds to double mutations on the a-helix, with AAG? + AAG;). Mutations are

considered as additive in AAG. However, this results in non-additive effect in P . (c) The

relationship between background log-fitness and mutant's relative log-fitness predicted by the
model of stability is presented. The protein modeled has a free energy of -4.55 kcal mol™, and
the impact of mutations, AAG, is -2, -0.5, 0, 0.5, 2 and 3 from red to blue. (d) Histogram of the
AAG estimated. Red line corresponds to AG o Black dashed line corresponds to Pnat as a

function of AG 0 + AAG.
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Figure 4: (a) The lines represent the fit of the model for the three mutants from Figure 3(d).
Due to the resolution of our experiments, the lines are valid only in the white area. (b) In blue
is the distribution of epistasis as presented in Figure 3(b), and overlaid on it in orange is the
distribution of epistasis obtained with the fitted stability model. Deviations from the stability
model. Relative log-fitness according to background fitness for three mutants: R120D (c),
MI29W (e), and M129H (f). Red dots represent distant sites and blue dots nearby sites. (d) At
residue 120, the decrease of charge associated with R to D mutation compensates mutations at
residue 121 that increased the charge.
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Figure 5: (a) Epistasis estimated from the two-state model fitted on single and double
mutational data, against experimental epistasis. (b) Epistasis predicted with two-state model
fitted only on single mutational data and fixed AGO =-4.55 kcal.mol™ .(c ) Correlations

between predictions and experimental values for epistasis from two-state model with
parameters AAG fitted only on single mutants by varying AGO from -7 kcal.mol™ to -3

kcal.mol ™' ,range corresponding to equivalent log-likelihood of the inferred model, compared
to the full model where AAG and AG 0 =-4.55 kcal.mol™" are fixed on single and double

mutants.
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Figure 6: DCA Predictions. Energy from Potts model inferred from sequence data, versus
experimental quantities. Blue dots correspond to mutations we used to estimateAAG. Orange
points are the other experimental mutations. For panels (c) and (d), only mutations present in
the MSA are kept (with a different background than TEM-1), decreasing the number of single
mutants from 111 to 101 and the number of double mutants from 4392 to 3689.

(a)Experimental log-fitness against — E (a ) + E (aWT) for single mutants. (b)

a
muti

Experimental log-fitness against — E amuta,,) + E (aWT) for double mutants. (c) AAG? against
ij

b . .
— E(amut?) + E (aWT) (d) AAG? + AAG]_ against — E (a ) + E (aWT). (e) Estimated

ab
mut

Yy
epistasis with Potts energies in the stability model against experimental epistasis. Our
predictions capture the sign of the experimental epistasis. (f) AUC against epistasis’ threshold
for the different models. We used a threshold for the epistasis, keeping only experimental
epistasis above this threshold in absolute value.
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Supplementary Figure A: Comparison between experimental log-fitness and MIC. (a) For
single mutants. (b) For double mutants.

27


https://doi.org/10.1101/2021.11.29.470435
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470435; this version posted November 29, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(b)

‘ L i . il

¥ . ]
[
N

0.25 ;
D2 Single mutant (209), r2 = 1.0 - Double mutant (15215), r2 = 0.95
) S 0.00
S s v
= e,
© o' 025
g _ o
S 02 S oo
Q (=) .
3 3 !
B 04 & o =
2 2 i
g -06 | g Lo
= &
80 80 —1.25
Q (=]
— —08 s
~1.50
075 —050 —02 000 025 —is = —05 00
Log-fitness (first replica) Log-fitness (first replica)
(C) | | (d) i \\“
" Single mutant (110), r2 = 0.99 o - Mutant (3100), 7% = 0.99
=
—~
g 4 = 8 o4
= 3,
B, 3 || 5]
) =02
e
T R i
o | o 0.0 i
S 1 @
[75) g
~ 9 @ —0.2
S I %
) =
g4 -1 B 04
< =
—2
—0.6

) 3 i 050 —025 000 025 050 075
AAG? (first replicat) Epistasis (first replicat)

Supplementary Figure B: Comparison between two biological semi-replicates. (a) Single
mutants' log-fitness. (b) Double mutants' log-fitness. (c) AAG. (d) Epistasis.

-2

28


https://doi.org/10.1101/2021.11.29.470435
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.29.470435; this version posted November 29, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(@) Double mutant, p = 0.92, 7% = 0.85 (b) Double mutant, p = 0.87, r> = 0.65
0.0 0.0
—0.14 7 01
=
. b
é —0.2 ©-02
& =
80 =
203 Z 03
B
=04 ‘F 04
<2} S
o
g
=
—0.5 1 @ —-0.5
~0.6 . ~0.6
06  -05 —04 —03 —02 01 0.0 —06  -05 —04 03 02 —01 0.0
Experimental log-fitness Experimental log-fitness

(¢) Double mutant (< 6A), p =088, 7> = 0.80 (@) _Double mutant (> 6A), p=0.95, 7% = 0.89

0.0

—0.14 —0.1 4

I
=
(3%
5
©

Stability log-fitness
L
w

Stability log-fitness
I
f=1

|
o
~

|
<
~

—0.6 1

—0.61

—0.6 —0.5 —0.4 -0.3 —0.2 —0.1 0.0 —0.6 -0.5 -04 -0.3 —0.2 —0.1 0.0
Experimental log-fitness Experimental log-fitness

Supplementary Figure C: Comparison between experimental log-fitness and stability model.
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log-fitness versus experimental log-fitness. (b) Sum of single mutant log-fitness versus
experimental log-fitness. (c) Stability log-fitness versus experimental log-fitness, close pairs
(>6A). (d) Stability log-fitness versus experimental log-fitness, distant pairs (>6A).
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