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Abstract 

Infancy is a dynamic and immensely important period in human brain development. Studies of 

infant functional development using resting-state fMRI rely on precisely defined cortical 

parcellation maps. However, available adult-based functional parcellation maps are not applicable 

for infants due to their substantial differences in functional organizations. Fine-grained infant-

dedicated cortical parcellation maps are highly desired but remain scarce, due to difficulties ranging 

from acquiring to processing of infant brain MRIs. In this study, leveraging 1,064 high-resolution 

longitudinal rs-fMRIs from 197 infants from birth to 24 months and advanced infant-dedicated 

processing tools, we create the first set of infant-specific, fine-grained cortical functional 

parcellation maps. Besides the conventional folding-based cortical registration, we specifically 

establish the functional correspondences across individuals using functional gradient densities and 

generate both age-specific and age-common fine-grained parcellation maps. The first set of 

comprehensive brain functional developmental maps are accordingly derived, and reveals a 

complex, hitherto unseen multi-peak fluctuation development pattern in temporal variations of 

gradient density, network sizes, and local efficiency, with more dynamic changes during the first 9 

months than other ages. Our proposed method is applicable in generating fine-grained parcellations 

for the whole lifespan, and our parcellation maps will be available online to advance the 

neuroimaging field. 

 

Keywords: infant brain, functional parcellation, functional connectivity.  
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1. Introduction 1 

The dynamic brain functional development during the first two postnatal years is important for 2 

establishing cognitive abilities and behaviors that could last a lifetime (1-3). As a prerequisite for 3 

understanding how the brain works and develops, cortical parcellation maps provide a repository 4 

that helps cortical area localization, network node definition, inter-subject comparison, inter-study 5 

communication, and comparison, as well as reducing data complexity while improving statistical 6 

sensitivity and power (4). In the functional aspect, researchers used to reveal and understand the 7 

cortical network topography by clustering cortical vertices into parcels that are different from each 8 

other in functional architecture using adult resting-state fMRI (rs-fMRI) data (5, 6). Although these 9 

clustering-based methods can produce convincing results given a limited number of clusters, they 10 

are not suitable for fine-grained parcellations (e.g., ≫  100 parcels), as they usually result in 11 

considerable disjointed fragments that are hardly explainable. To this point, recent adult 12 

parcellations (7-10) started to use gradient-based methods, i.e., the functional gradient density, to 13 

delineate sharp changes of resting-state functional connectivity (RSFC) patterns to promote the 14 

meaningfulness and accuracy of parcel boundaries. 15 

All the abovementioned studies derived functional parcellation maps using adult data, which 16 

are not suitable for infant studies featuring dynamic brain structural and functional development, 17 

due to enormous differences in brain functional organization between infants and adults (11, 12). 18 

Therefore, infant-specific cortical functional parcellation maps are highly desired, but remain 19 

scarce, due to difficulties in both acquiring high-resolution infant brain multi-modal MR images 20 

and challenges in processing infant MR images that typically have prominently dynamic imaging 21 

appearance and extremely poor tissue contrast (1, 2, 13). Of note, another critical issue of using the 22 

abovementioned methods for generating infant functional parcellations is that these methods 23 

typically computed the functional gradient density map for a cohort directly based on cortical 24 

folding-based registration and extensive spatial smoothing of functional connectivity, which, 25 
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however, cannot lead to accurate functional alignment across individuals, due to large variation 26 

between folding and functional areas. Thus many vital details of the functional architecture are 27 

blurred and inherently missed in the resulting functional parcellation maps.  28 

In this paper, we aim to generate the first set of infant-specific, high-resolution, fine-grained 29 

functional parcellation maps on the cortical surface to significantly accelerate early brain 30 

development studies. To this end, this study leverages a large high-resolution dataset with 1,064 rs-31 

fMRI scans and 394 T1-weighted and T2-weighted structural MRI scans from birth to 2 years of 32 

age, as part of the UNC/UMN Baby Connectome Project (14). To ensure accuracy, all MR images 33 

are processed using an extensively validated, advanced infant-dedicated cortical surface-based 34 

pipeline (15). To establish accurate cortical functional alignment across individuals, we propose a 35 

novel method to first compute the functional gradient density map of each infant scan, rather than 36 

for the whole cohort in the traditional way, to capture fine-grained functional patterns, and then co-37 

register all functional gradient density maps across individuals based on both cortical folding and 38 

functional gradient information. Following steps detailed in Fig. 1, our derived group-average 39 

functional gradient density maps capture much more details of cortical functional architecture than 40 

the conventional method, thus enabling us to generate fine-grained age-specific cortical parcellation 41 

maps of infants at multiple ages, i.e., 3, 6, 9, 12, 18, and 24 months of age. To facilitate infant 42 

studies requiring parcel-to-parcel correspondences across ages, we also generate age-common 43 

parcellation maps that are suitable for all ages during the first two years. Our infant functional 44 

parcellation maps will soon be released to the public to greatly contribute to the pediatric 45 

neuroimaging research community.  46 
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2. Results 47 

Fig. 1. The procedure of infant parcellation using functional gradient density. Our major steps include 

structural and functional MRI processing, computing gradient density map for each scan, function-based 

cortical registration, and generating fine-grained functional parcellation.  

 48 

We unprecedentedly investigated the fine-grained cortical surface-based functional parcellation 49 

maps of the infant cerebral cortex using 1,064 high-resolution (2 × 2 × 2 mm3) resting-state fMRI 50 

scans from 197 healthy infants, with subject demographics shown in Table 1 and Fig. 8. To capture 51 

detailed patterns of sharp transition between cortical areas, after the conventional cortical folding-52 

based inter-individual cortical registration, the gradient density map of cortical functional 53 

connectivity was computed on each scan of each individual and further used as a reliable functional 54 
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feature for function-based registration for establishing functionally more meaningful cortical 55 

correspondences across individuals. This resulted in considerably detailed visualization of 56 

functional boundaries on the cerebral cortex, which was used to create the infant-dedicated fine-57 

grained cortical functional parcellation maps. Detailed steps of the proposed method are illustrated 58 

in Fig. 1.  59 

2.1 Advantage of the Proposed Method 60 

 

Fig. 2. Comparison of the group-average functional gradient density maps on the 3-month age group 

generated by different methods. (a) The gradient density map computed directly on the population-average 

connectivity matrix. (b) The gradient density map computed on each individual and then averaged across 

individuals. (c) The gradient density map generated by our method, which computes the average of 

individual gradient density maps after co-registration of them based on both cortical folding and functional 

gradient density. White arrows point out consistent gradient density patterns using different methods, and 

white dashed circles show some more detailed and fine-grained patterns revealed by our method. (d)  

Example gradient density maps of three random subjects. This figure demonstrates that some detailed 
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gradient patterns in the individual cortex are usually missed by other methods, and can be well captured 

by our method. 

 61 

The functional gradient density maps of 3-month infant scans generated by different methods are 62 

compared in Fig. 2, which demonstrates the advantage of our proposed method. Specifically, Fig. 63 

2 (a) shows the group-average gradient density map directly computed using the group-average 64 

RSFC-2nd as in (7, 9). Fig. 2 (b) shows the group-average gradient density map based on individual 65 

gradient density maps, in which we first computed a gradient density map on the RSFC-2nd of each 66 

individual and then averaged them across individuals. Fig. 2 (c) shows the group-average gradient 67 

density map generated by the proposed method, where all individual gradient density maps are co-68 

registered using the gradient density as a functional feature and then further averaged across 69 

individuals. It can be observed that major patterns of the functional gradient density in Fig. 2 (a) 70 

are well preserved in Fig. 2 (c) (with some examples pointed out with white arrows), which implies 71 

the meaningfulness of the functional gradient density patterns in Fig. 2 (c). Most importantly, Fig. 72 

2 (c) exhibits much more detailed and clear patterns of the functional gradient density, compared 73 

to Fig. 2 (a) and (b), especially in the temporo-occipital, parietal, and lateral prefrontal areas, 74 

indicating the advantage of performing the 2nd round of co-registration based on functional gradient 75 

density. Consequently, the functional gradient density maps generated by the proposed method are 76 

able to capture fine-scaled architectures of infant functional connectivity while maintaining the 77 

major functional patterns, thus leading to more meaningful fine-grained functional parcellation 78 

maps. We also show the gradient density maps of three random subjects in Fig. 2 (d), which further 79 

demonstrates that our method can well capture these important and detailed functional gradient 80 

patterns, which are usually missed by the compared methods. 81 

To test whether the gradient density maps are reproducible, we randomly divided subjects into 82 

two non-overlapping parts and computed the dice ratio between two gradient maps after 83 
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thresholding. A higher dice ratio indicates higher reproducibility. By repeating this experiment 84 

1,000 times, the overall dice ratio reaches 0.9295 ± 0.0021, indicating the high reproducibility of 85 

our results. 86 

2.2 Age-specific Functional Gradient Density and Parcellation Maps 87 

The age-specific functional gradient density maps are computed by averaging gradient density 88 

maps of subjects in corresponding age groups and results at 3, 6, 9, 12, 18, and 24 months are shown 89 

in Fig. 3 (a). As can be observed, the major gradient patterns are distributed bilaterally 90 

symmetrically on the cortex, like the central sulcus, superior temporal gyrus, middle temporal gyrus, 91 

parieto-occipital fissure, and calcarine fissure. Nevertheless, certain gradient patterns exhibit 92 

hemispheric differences. For example, the precentral gyrus in the right hemisphere has a higher 93 

gradient density than that in the left hemisphere. All these spatial distributions of functional 94 

gradient density remain largely consistent across ages. 95 

Age-specific cortical parcellation maps derived from these functional gradient density maps are 96 

presented in Fig. 3 (b). These maps were obtained using a watershed algorithm without thresholding 97 

or any manual editing. It can be observed that major gradient density patterns are well reflected as 98 

parcellation boundaries. Due to some slight differences in age-specific gradient density maps, the 99 

resulting age-specific parcellation maps show different parcel numbers. However, all parcel 100 

numbers fall between 461 to 493 parcels per hemisphere, and parcel numbers show slight changes 101 

that follow a multi-peak fluctuation, with inflection ages of 9 and 18 months of age. 102 
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Fig. 3. (a) Age-specific functional gradient density maps. (b) Age-specific fine-grained functional 

parcellation maps, with parcel numbers noted for each age.  

 103 

To evaluate the consistency of gradient density across different age groups, we thresholded and 104 

binarized the age-specific functional gradient density maps to their top 50% and 25% gradient 105 

density. These binary maps were summed up, resulting in a gradient density overlap map indicating 106 

its age consistency shown in Fig. 4 (b). In these maps, “one” stands for high gradient densities that 107 

appeared in only one age group, and “six” represents high gradient densities that appeared in all six 108 
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age groups. It is worth noting that most high gradient densities are repeatedly detected in all six age 109 

groups, suggesting the high consistency of majorities of high gradient densities in all age groups.  110 

 Further, to better illustrate the functional architecture development, we computed the temporal 111 

variability of gradient density maps between neighboring age groups, as shown in Fig. 4 (a). In 112 

general, the temporal variabilities of functional gradient density are at a relatively low level (<=0.05) 113 

at all age intervals. Across all ages, high temporal variabilities are mainly presented in high-order 114 

 

Fig. 4. (a) Temporal variabilities of functional gradient density maps between every two consecutive ages. 

(b) Consistency of high gradient density across ages. (c) Variabilities between each age-specific functional 

gradient density map and that of the age-common map. 
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association areas, including the left middle and inferior frontal, middle temporal, right superior 115 

frontal, precuneus medial prefrontal, and bilateral supramarginal, posterior superior temporal, and 116 

medial frontal areas. Other regions mostly exhibit low temporal variabilities, especially in the 117 

sensorimotor and medial occipital regions. Keeping this spatial distribution, the temporal variability 118 

shows a multi-peak fluctuation, where the gradient density decreases from 3-6 to 6-9 months, 119 

followed by an increase during 9-12 and 12-18 months, and drops again during 18-24 months. 120 

 121 

2.3 Age-common Functional Gradient Density and Parcellation Maps 122 

Since infant functional MRI studies typically involve multiple age groups, it is highly desired to 123 

have an age-common functional parcellation map that features parcel-to-parcel correspondences 124 

across ages, so that it can be conveniently employed for all ages during infancy. Therefore, we also 125 

computed the age-common gradient density map (Fig. 5 (a)) as the average of the functional 126 

gradient density maps of all six age groups. The variabilities between the age-common gradient 127 

density map and each age-specific gradient density map are illustrated in Fig. 4 (c). Compared to 128 

the temporal variability between neighboring age groups (Fig. 4 (a)), the age-common gradient 129 

density map shows small variability to all age-specific maps. The spatial distributions of high and 130 

low variabilities remain mostly similar to that of the temporal variabilities between neighboring 131 

age groups, with high variability presented in some high-order association cortices and low 132 

variability in unimodal cortices. Consequently, it can be speculated that the age-common gradient 133 

density map can be used to generate an age-common parcellation map that is suitable for all subjects 134 

from birth to 2 years of age.  135 

 136 
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The resulted age-common functional parcellation map based on the age-common gradient 137 

density map is shown in Fig. 5 (b), which has 864 parcels in total (L: 432, R: 432) excluding the 138 

medial wall. It should be noted that we manually removed some apparently over-segmented regions 139 

 

Fig. 5. (a) Age-common gradient density map. (b) Age-common parcellation map (864 parcels, 

L: 432, R: 432). (c) Our age-common parcellation shows significantly lower variance compared 

to the null parcellations. (d) Our age-common parcellation shows significantly higher 

homogeneity compared to null parcellations. (e) The histogram of parcel size, where parcel sizes 

are counted in vertices. (f) Some parcels correspond to known cortical areas defined by multi-

modal features in adults (4).  
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after using the watershed algorithm, and prior to that, we had 903 parcels in total (L: 448, R: 455). 140 

The parcel boundaries of the age-common parcellation map are well aligned with high gradient 141 

density regions and show largely bilaterally symmetric patterns of the areal organization. In the 142 

following development-related analyses in this study, we mainly employed the age-common 143 

parcellation map to facilitate comparisons of infants across ages. 144 

Compared to existing fine-grained parcellation maps, such as the multi-modal adult parcellation 145 

(4), the age-common infant parcellation map has comparatively smaller and more evenly 146 

distributed parcel sizes and shapes. Also, as shown in Fig. 5 (f), some areas of our parcels show 147 

substantial overlap with the known cortical areas of adults, such as the visual areas V1, MT, MST, 148 

sensorimotor areas 2, 3, 4, auditory areas A1, LBelt, and language areas 44, 45. To further examine 149 

the validity of our parcellation map, we compared it with 1,000 null parcellation maps in terms of 150 

variance and homogeneity, with the results shown in Fig. 5 (c) and (d). It can be observed that our 151 

parcellation map shows significantly higher homogeneity (p=2e-10) and lower variance (p=4e-05), 152 

indicating the meaningfulness of the resulting parcellation map.  153 

2.4 Network Organization and Development 154 

We performed network clustering of the generated parcels in each age group to reveal the early 155 

development of functional network organization. The number of networks for each age group is 156 

determined separately according to the random split-half stability analysis. Empirically, the 157 

network number is set as 2 to 30, and the stability plots are shown in Fig. 6 (a). Higher stability 158 

suggests a better clustering result, hence a more meaningful network organization. Overall, when 159 

the network number surpasses 15, the stability does not show a substantial raise or decrease, 160 

indicating the network numbers likely hold less than 15. Hence, we look for the cluster number on 161 

a ‘peak’ or prior to a ‘descending cliff’, which guarantees high stability or more significant network 162 

numbers. As a result, we find that the most suitable cluster numbers for different age groups are 7 163 

networks for 3 months, 9 networks for 6 months, 10 networks for 9, 12, 18, and 24 months. Of note, 164 
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we choose10 networks for 18 months so as to be consistent during development, even though it is 165 

neither a peak nor a cliff. 166 

 

Fig. 6. (a) Stabilities of different network numbers of different age groups computed by repeating 200 

times random split-half test. The selected numbers are highlighted in solid red dots. (b) Discovered 

functional network organization of parcels during infantile brain development, color-coded by 

corresponding networks denoted below. 

The spatiotemporal patterns of the discovered functional network organization are shown in Fig. 167 

6 (b). Overall, changes in network structure from 3 to 9 months are more extensive than those from 168 

9 to 24 months. Specifically, the sensorimotor network splits into two subnetworks from 3 to 6 169 

months, and the boundary between them moved toward the ventral direction from 6 to 9 months. 170 

The hand sensorimotor expands, while the mouth sensorimotor shrinks and both stabilize after 9 171 

months. The auditory network is distinguished at 3 months and merges into the hand sensorimotor 172 

at 6 months. The visual network splits into peripheral and central visual subnetworks from 6 to 9 173 

months and remains stable until a slight shrinkage at 24 months.  174 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.11.24.469844doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.24.469844
http://creativecommons.org/licenses/by/4.0/


15 

 

Other networks exhibit more complex development with multi-peak fluctuation of the size in 175 

certain networks. Specifically, the anterior default mode network expands from 3 to 6 months, and 176 

shrinks from 6 to 9 months and from 12 to 18 months, and expands thereafter. The lateral posterior 177 

default mode network that emerged at 6 months shrinks from 6 to 9 months and then expands from 178 

9 to 18 months; while the medial posterior default mode network emerged at 9 months only lightly 179 

shrinks thereafter. The anterior and posterior default mode networks develop to the adult-like 180 

pattern at 18 months, while till 24 months, they are still detected as two separate networks. The 181 

superior temporal network shrinks from 3 to 6 months, expands from 6 to 9 months, and then 182 

shrinks again from 9 to 24 months. The anterior frontoparietal network gradually shrinks from 3 to 183 

24 months, except for an expansion from 12 to 18 months. On the medial surface, the posterior 184 

frontoparietal network expands to include the parahippocampal gyrus from 3 to 6 months and then 185 

disappears by 9 months. On the lateral surface,  the posterior frontoparietal network expands from 186 

3 to 9 months to include the inferior temporal part and becomes stable thereafter. The dorsal 187 

attention network is seen at 6 months and evolves to the adult-like pattern at 9 months and keeps 188 

stable thereafter. 189 

2.5 Parcel-wise Development 190 

Homogeneity of functional connectivity can be used as a criterion for characterizing functional 191 

development. Fig. 7 (a) shows the parcel-wise homogeneity development during infancy. Our 192 

results suggest that the overall parcel-wise homogeneity shows a monotonic decrease trend during 193 

the first two years by maintaining similar relative spatial distribution. Higher homogeneities are 194 

located in the sensorimotor, paracentral, posterior insula, inferior parietal, posterior superior 195 

temporal, lateral occipital, and occipital pole. Low homogeneities are presented in lateral prefrontal, 196 

medial frontal, anterior insula, inferior temporal, and temporal pole. 197 
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Fig. 7. Development of parcel homogeneity and local efficiency during infancy. 

Fig. 7 (b) shows the development of the local efficiency of each parcel. Overall, the local 198 

efficiency also exhibits a strong multi-peak fluctuation, with inflection ages observed at 9 and 15 199 

months. Parcels with low efficiency are located in the lateral superior frontal, medial superior 200 

frontal, orbitofrontal, ventral insula, and anterior inferior temporal cortices. Parcels with high local 201 

efficiency are mainly observed in sensorimotor, paracentral, parietal, and precuneus regions. 202 

3. Discussion 203 

In this study, we created the first set of both age-specific and age-common, infant-dedicated, fine-204 

grained, and cortical surface-based functional parcellation maps using functional gradient density 205 

maps. We analyzed the spatiotemporal patterns of age-specific functional gradient density maps 206 

and found that age-common functional gradient density maps are suitable for creating fine-grained 207 

functional parcellation maps for all ages in the infant cohort. We validated the meaningfulness of 208 

the parcellation and showed that its boundaries substantially reproduced known areal boundaries, 209 

and its parcels featured high homogeneity and low variance. Finally, we illustrated the infantile 210 

development in network structure, parcel homogeneity, and parcel local efficiency. 211 

This study used the functional gradient density as a feature for improving functional alignment 212 

across individuals, in addition to the conventional cortical folding features used by previous adult 213 

functional parcellations (7, 9). As a result, our method not only captured important coarse gradient 214 
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patterns discovered by previous methods, but also revealed much more detailed areal boundaries at 215 

a remarkable resolution, as compared in Fig. 2. The main reason is that previous studies solely 216 

relied on cortical folding-based registration, thus inevitably suffered from significant inter-subject 217 

variability in the relation between cortical folding and functional areas, leading to less accurate 218 

inter-subject functional correspondences. For infant-dedicated functional parcellations, the only 219 

one available is the volumetric-based parcellation based on image registration and clustering 220 

generated by Shi et al. (16), without any advanced surface-based processing and registration. In 221 

contrast, our parcellation maps are generated based on the cortical surface, which well respects the 222 

topology of the convoluted cerebral cortex, and avoids mixing signals from opposite sulcal banks 223 

and different tissues, leading to more accurate functional signals resampling, smoothing, 224 

computation and registration. Moreover, our parcellations leveraged high-quality 2 mm isotropic 225 

fMRI data that densely covers the first two years, instead of data with a coarse resolution of  4 mm 226 

isotropic centering at birth, 1 and 2 years of age (16). 227 

Standing upon the detailed gradient density patterns by the proposed method, we generated age-228 

specific fine-grained parcellation maps for 3, 6, 9, 12, 18, and 24 months of age. We found that the 229 

temporal variability (temporal changes) of the functional gradient density generally decreases 230 

during most age intervals, except for a slight increase from 9 to 12 months. This may suggest that 231 

the development of functional architecture gradually slows down during the first two years. We 232 

also found that high temporal variabilities mostly presented in high-order association cortices, 233 

implying that they are developing at a more considerable pace compared to unimodal cortices. 234 

Besides the age-specific parcellations, we also generated an age-common parcellation that suites 235 

infants at all ages to help brain development-related studies under two considerations. First, infant 236 

studies typically involve subjects of different ages, and it is not convenient to use different 237 

parcellations for comparison between different ages. Second, our age-common gradient density 238 

map shows low variability to all age-specific gradient density maps and therefore can generate the 239 
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representative fine-grained functional parcellation map that is suitable for all ages during infancy. 240 

However, we will make both the age-specific and age-common functional parcellation maps 241 

accessible to the public in the case that some researchers may still prefer age-specific parcellation 242 

maps. 243 

     This study successfully augmented the resolution of the existing cortical parcellations from ~300 244 

to ~900 areas, which represents a finer architecture of brain functional organizations compared to 245 

previous ones. This fine-grained cortical organization is also in line with Eickhoff et al. (17), where 246 

they believe that 200-300 areas are not the ultimate resolution for cortical parcellations due to the 247 

multi-hierarchical formation of the brain. Glasser et al. (4) also consider 360 as a lower bound for 248 

cortical parcellations since each parcel can be represented as a combination of several smaller 249 

regions. Consequently, our fine-grained infant cortical parcellation maps provide a great platform 250 

for analyzing pediatric neuroimaging data with a greatly boosted resolution, thus leading to more 251 

meaningful discoveries on the fine-scaled functional architecture of infant brains.  252 

Besides, it is worth noting that our parcellation increased the resolution in a meaningful way. 253 

First, our functional gradient density maps are highly reproducible. By separating subjects into non-254 

overlapping parts, their gradient density patterns are repeated with a dice ratio of ~0.93. Second, 255 

our age-common infant parcellation shows high accordance in some specific cortical areas defined 256 

by Glasser et al. (4), which is recognized as the state-of-the-art adult parcellation map. As illustrated 257 

in Fig. 5 (d), our gradient density map-derived parcellation contains parcels that have substantial 258 

overlap with the known adult area V1 defined by Glasser et al. (4). Other known cortical areas of 259 

adults, such as sensorimotor areas 2, 3, and 4, were also overlapped with a combination of several 260 

parcels in our parcellation. These observations that parcel borders conform to some adult cortical 261 

areas lend substantial visual validity to the parcellation.  262 

When applying parcellation as a tool to explore infant brain functional development, our results 263 

reveal complex multi-peak fluctuations in several aspects, including parcel number, temporal 264 
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variation of gradient density, network organization, and local efficiency. To the best of our 265 

knowledge, this complex fluctuation development trend is not reported in previous literature and 266 

should fill an important knowledge gap for infantile brain functional development. These functional 267 

developmental patterns are very different from early brain structure development, where the 268 

cortical thickness follows an inverted-“U” shaped trajectory, while the surface area and cortical 269 

volume monotonically increase following a logistic curve. The multi-peak fluctuations potentially 270 

mirror different milestones of behavioral/cognitive abilities, which likely emerge at different ages 271 

during infancy (30). However, the underlying mechanisms of such developmental patterns remain 272 

to be further investigated. 273 

For network organization (Fig. 6 (b)), at 3 months, networks likely groups vertices with close 274 

spatial locations, resulting in networks being more dependent on the local anatomy. After 9 months, 275 

the primary functional systems reach steady and present adult-like patterns, while high-order 276 

functional networks still show substantial differences compared to the adult-like pattern. Our results 277 

suggest that a primitive form of brain functional networks is present at 3 months, which is largely 278 

consistent with recent studies suggesting that most resting-state networks are already in place at 279 

term birth (18-20). Besides, our results also suggest that, compared to high-order functional 280 

networks, the primary functional system is more developed in infants. This confirms previous 281 

findings in infant cortical thickness development (21), suggesting that the primary functional 282 

systems develop earlier than high-order systems.  283 

At the network level, the sensorimotor system splits into two sub-networks, i.e., the mouth- and 284 

hand-sensorimotor at 6 months, which were also observed in infants and toddlers (22). The visual 285 

network is split into central (primary) visual and peripheral (high-order) visual cortices at 9 months 286 

and well maintains this pattern until 24 months. This subdivision of mouth- and hand-sensorimotor 287 

networks is also found in adults (5). The high-order functional systems, including the default mode, 288 

frontoparietal, and dorsal attention network, exhibit considerable development during 3 to 9 months, 289 
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followed by some minor adjustments from 12 to 24 months. A previous infant study (19) also 290 

demonstrated that functional network development shows more considerable change in the first 291 

year compared to the second year. At 24 months, both default mode and frontoparietal networks 292 

show a lack of strong cross-lobe connections. Though several studies identified some prototypes of 293 

cross-lobe connection (19, 23), their links seem not as strong as to be stably distinguished (24-26). 294 

Our results suggest that the high-order functional networks are far more from established at 24 295 

months of age. It is worth noting that, the size changes of networks can be quite subtle between a 296 

short time interval, which emphasizes the importance of using a fine-grained parcellation map.  297 

The parcel homogeneity measures the development within parcels. Our result shows (Fig. 7 (a)) 298 

that unimodal cortices, including the sensorimotor, auditory, and visual areas, show high 299 

homogeneity, which is largely consistent with adults (7). However, the inferior parietal and 300 

posterior superior temporal cortices, which show high homogeneity in infants, are observed low 301 

homogeneity in adults (7). Besides, the prefrontal area, which shows relatively low homogeneity 302 

in infants, seems to develop to a medium-to-high homogeneity in adults. Almost all parcels are 303 

observed decreased homogeneity with age. This is likely related to the development of brain 304 

function, especially in high-order cortices, which show increased heterogeneity, and consequently 305 

decreased homogeneity. Among the high-order association cortices, the prefrontal area has the 306 

lowest homogeneity, followed by temporal and then parietal regions, suggesting different levels of 307 

functional development.  308 

Local efficiency measures a different developmental aspect – it represents the connection of 309 

parcels to neighbors. Higher local efficiency is usually related to higher functional segregation (11). 310 

Our results (Fig. 7 (b)) suggest that local efficiency shares certain similar spatial distribution with 311 

homogeneity – they both increase in anterior to posterior and ventral to dorsal directions. During 312 

development, the local efficiency shows a complex developmental trend: although 24 months 313 

shows a strong increase compared to 1 month, there is a dip from 12 to 21 months that should be 314 
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noted. The age-related increase of local efficiency was previously found from 18 months to 18 315 

years (27), 5 to 18 years (28), and  12 to 30 years (29), and is likely explained by progressive white 316 

matter maturation (27). This trajectory of local efficiency is not contradictory to the previous 317 

studies (31, 32), since they only measured the averaged local efficiency of all nodes to reflect 318 

network characterization, thus missing important characteristics of parcel-level local efficiency. 319 

This further stresses the importance of performing parcel-wise analyses and the significance of 320 

fine-grained infant cortical parcellations.  321 

4. Conclusion 322 

In summary, for the first time, this study constructed a comprehensive set of cortical surface-based 323 

infant-dedicated fine-grained functional parcellation maps. To this end, we developed a novel 324 

method for establishing functionally more accurate inter-subject cortical correspondences. We 325 

delineated age-specific parcellation maps at 3, 6, 9, 12, 18, and 24 months of age as well as an age-326 

common parcellation map to facilitate studies involving infants at different ages. Our parcellation 327 

maps were demonstrated meaningful by comparing with known areal boundaries and through 328 

quantitative evaluation of homogeneity and variance of functional connectivity. Leveraging our 329 

infant parcellation, we provide the first comprehensive visualizations of the infant brain functional 330 

developmental maps on the cortex and reveal a complex multi-peak fluctuation functional 331 

development trend, which will serves as valuable references for future early brain developmental 332 

studies. Our generated fine-grained infant cortical functional parcellation maps will be released to 333 

the public soon to greatly advance pediatric neuroimaging studies.  334 

5. Methods 335 

5.1 Subjects and Image Acquisition 336 
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Fig. 8. Longitudinal distribution of scans. Each point represents a scan with its scanned age (in months) 

shown in the x-axis, with males in blue and females in red, and each horizontal line represents one subject, 

with males in blue and females in red. 

 337 

Subjects in this study are from the UNC/UMN Baby Connectome Project (BCP) data90set (14). 338 

The BCP focuses on normal early brain development, where all infants were born at the gestational 339 

age of 37-42 weeks and free of any major pregnancy and delivery complications. In this study, 394 340 

high-resolution longitudinal structural MRI scans were acquired from 197 (90 males and 107 341 

females) typically developing infants, as demonstrated in Fig. 8. Images were acquired on 3T 342 

Siemens Prisma MRI scanners using a 32-channel head coil during natural sleeping. T1-weighted 343 

images (208 sagittal slices) were obtained by using the three-dimensional magnetization-prepared 344 

rapid gradient echo (MPRAGE) sequence: TR (repetition time)/TE (echo time)/TI (inversion time) 345 

= 2,400/2.24/1,600 ms, FA (flip angle) = 8º, and resolution = 0.8×0.8×0.8 mm3. T2-weighted 346 
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images (208 sagittal slices) were acquired with turbo spin-echo sequences (turbo factor = 314, echo 347 

train length = 1,166 ms): TR/TE = 3,200/564 ms, and resolution = 0.8×0.8×0.8 mm3 with a variable 348 

flip angle. All structural MRI data were assessed visually for excessive motion, insufficient 349 

coverage, and/or ghosting to ensure sufficient image quality for processing. 350 

 For the same cohort, 1,064 high-resolution resting-state fMRI (rs-fMRI) scans were also 351 

acquired using a blood oxygenation level-dependent (BOLD) contrast sensitive gradient echo echo-352 

planar sequence: TR = 800 ms, TE = 37 ms, flip angle = 80°, field of view (FOV) = 208×208 mm, 353 

72 axial slices per volume, resolution = 2×2×2 mm3, total volumes = 420 (5 min 47 s). The rs-354 

fMRI scans include 524 anterior to posterior (AP) scans and 540 posterior to anterior (PA) scans, 355 

which are two opposite phase-encoding directions for better correction of geometric distortions. 356 

5.2 Structural MRI Processing 357 

All T1-weighted and T2-weighted MR images were processed using an infant-specific pipeline 358 

detailed in (15, 33), which have been extensively validated in many infant studies (21, 34-41). The 359 

processing procedure includes the following main steps: 1) Rigid alignment of each T2-weighted 360 

image onto its corresponding T1-weighted image using FLIRT in FSL (Smith et al., 2004); 2) Skull 361 

stripping by a deep learning-based method (42), followed by manual editing to ensure the clean 362 

skull and dura removal; 3) Removal of both cerebellum and brain stem by registration with an atlas; 363 

4) Correction of intensity inhomogeneity using the N3 method (43); 5) Longitudinally-consistent 364 

segmentation of brain images as white matter (WM), gray matter (GM), and cerebrospinal fluid 365 

(CSF) using an infant-dedicated deep learning-based method (44); and 6) Separation of each brain 366 

into left and right hemispheres and filling non-cortical structures. 367 

5.3 Resting-State fMRI Processing 368 

Infant rs-fMRI processing was conducted according to an infant-specific functional pipeline (31, 369 

45, 46). The head motion was corrected using FSL, as well as the spatial distortions due to gradient 370 
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non-linearity. The rs-fMRI scans were then registered to the T1-weighted structural MRI of the 371 

same subject using a boundary-based registration approach (47). All of the transformations and 372 

deformation fields were combined and used to resample the rs-fMRI data in the native space 373 

through a one-time resampling strategy. After conservative high-pass filtering with a sigma of 374 

1,000 s to remove linear trends in the data, individual independent component analysis was 375 

conducted to decompose each of the preprocessed rs-fMRI data into 150 components using 376 

MELODIC in FSL. An automatic deep learning-based noise-related component identification 377 

algorithm was used to identify and remove non-signal components to clean the rs-fMRI data (48).  378 

5.4 Cortical Surface Reconstruction and Mapping 379 

Based on the tissue segmentation results, inner, middle and outer cortical surfaces of each 380 

hemisphere of each MRI scan were reconstructed and represented by triangular meshes with correct 381 

topology and accurate geometry, by using a topology-preserving deformable surface method (33, 382 

49). Before cortical surface reconstruction, topology correction on the whiter matter surface was 383 

performed to ensure the spherical topology of each surface (50). After surface reconstruction, the 384 

inner cortical surface, which has vertex-to-vertex correspondences with the middle and outer 385 

cortical surfaces, was further smoothed, inflated, and mapped onto a standard sphere (51).  386 

To ensure the accuracy in longitudinal analysis during infancy, it is necessary to perform 387 

longitudinally-consistent cortical surface registration (15). Specifically, 1) for each subject, we first 388 

co-registered the longitudinal cortical surfaces using Spherical Demons (52) based on cortical 389 

folding-based features, i.e., average convexity and mean curvature. 2) Longitudinal cortical 390 

attribute maps were then averaged to obtain the intra-subject mean surface maps. 3) For each 391 

hemisphere, all intra-subject mean surface maps were then co-registered and averaged to get the 392 

population-mean surface maps. 4) The population-mean surface maps were aligned to the HCP 393 

32k_LR space through registration to the “fsaverage” space as in (53). By concatenating the three 394 

deformation fields of steps 1, 3 and 4, we directly warped all cortical surfaces from individual scan 395 
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spaces to the HCP 32k_LR space. These surfaces were further resampled as surface meshes with 396 

32,492 vertices, thus establishing vertex-to-vertex correspondences across individuals and ages. 397 

All results were visually inspected to ensure sufficient quality for subsequent analysis. The inner 398 

and outer cortical surfaces were used as a constraint to resample the rs-fMRI time courses onto the 399 

middle cortical surface with 32,492 vertices using the HCP workbench (54), and the time courses 400 

were further spatially smoothed on the middle cortical surface with a small Gaussian kernel (끫欜 =401 

2.55 끫殴끫殴). 402 

5.5 Generation of Fine-grained Cortical Functional Parcellation Maps 403 

In this section, we describe detailed steps for generating fine-scaled infant cortical functional 404 

parcellation maps (see Fig. 1). Specifically, we first describe the computation of the gradient 405 

density map of functional connectivity for each scan, followed by a function-based registration step 406 

based on gradient density maps. Then, we detail the computation of both “age-specific” and “age-407 

common” parcellation maps based on the functional registration results and our evaluation scheme. 408 

At last, we introduce how we use the parcellation maps to discover the functional network 409 

organization development, as well as parcel homogeneity and local efficiency during infancy. 410 

Computation of Individual Functional Gradient Density Map 411 

The gradient density of functional connectivity (7) identifies sharp changes of RSFC, thus 412 

intrinsically representing the transition from one functional parcel to another, and is widely used in 413 

generating meaningful fMRI-based cortical parcellations in adult studies (7-9). For each fMRI scan 414 

of each infant subject, the computation of the gradient density of functional connectivity on the 415 

cortical surface is summarized in the following steps. 1) For each fMRI scan, the functional 416 

connectivity matrix is built by pair-wise correlating each vertex with all other cortical vertices in 417 

the CIFTI file to create a 32k×64k RSFC matrix for each hemisphere. 2) Each RSFC matrix is 418 

transformed to z scores using Fisher’s r-to-z transformation. 3) For each fMRI scan, the z-419 

transformed RSFC of each vertex is correlated with all cortical vertices within the same hemisphere, 420 
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creating a 2nd order correlation matrix (RSFC-2nd) sized 32k×32k for each hemisphere. 4) For some 421 

scan visits consisting of both AP and PA scans, all RSFC-2nd matrices of the same visit from the 422 

same subject are averaged, so that all subjects contribute equally, even they may have different 423 

numbers of scans in one visit. 5) The gradient of functional connectivity is computed on the RSFC-424 

2nd as in (4), resulting in a 32k×32k gradient matrix per hemisphere. 6) By performing the 425 

watershed-based boundary detection (7) on the gradient matrix, we obtain 32k binary boundary 426 

maps per hemisphere. 7) The functional gradient density map is defined as the average of 32k 427 

binary boundary maps. 428 

Cortical Surface Registration based on Functional Gradient Density  429 

Previous studies mostly computed population-based functional gradient density map, where 430 

cortical surfaces were usually co-registered to a common space using only cortical folding-based 431 

features. However, due to the highly-variable relationship between cortical folds and functions, 432 

especially in high-order association regions, researchers recently are getting more aware of the 433 

necessity of functional features-based registration (55, 56). To this end, in addition to cortical 434 

folding-based co-registration, we further use the gradient density of functional connectivity as a 435 

meaningful functional feature to perform a second-round of co-registration of cortical surfaces for 436 

the purpose of more accurate functional alignment. 437 

Specifically, based on cortical folding-based surface co-registration, 1) the functional gradient 438 

density maps of all scans are averaged to generate the population-mean functional gradient density 439 

map. 2) To improve inter-individual cortical functional correspondences, the functional gradient 440 

density map of each scan is then aligned onto the current population-mean functional gradient 441 

density map using Spherical Demons (52) by incorporating functional gradient density as a feature. 442 

3) All warped functional gradient maps are then resampled and averaged to obtain the newly 443 

improved population-mean functional gradient density map with sharper and more detailed 444 

functional architecture. 4) Steps 2 and 3 are repeated iteratively until no visually observed changes 445 
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in the population-mean functional gradient density map (4 iterations in our experiment). After this 446 

procedure, all individual functional gradient density maps are co-registrated, thus establishing 447 

functionally more accurate cortical correspondences across individuals.  448 

Generation of Parcellation Maps based on Functional Gradient Density 449 

Age-specific Parcellation Maps: To capture the spatiotemporal changes of fine-grained cortical 450 

functional maps during infancy, we group all scans into 6 representative age groups, i.e., 3, 6, 9, 451 

12, 18, and 24 months of age based on the distribution of scan ages. For each age group, we compute 452 

the age-specific group-average functional gradient density maps by averaging the gradient density 453 

maps of all scans within the group, without any smoothing. Detailed information of each age group 454 

is reported in Table 1. A watershed method is then applied on each age-specific group-average 455 

functional gradient density map to generate the corresponding functional parcellation maps (7). 456 

This watershed segmentation algorithm starts by detecting local minima in 3-ring neighborhoods, 457 

and iteratively grows the region until reaching ambiguous locations, where vertices can be assigned 458 

to multiple regions. These locations appear to be borders that separate parcels and reflect putative 459 

boundaries of functional connectivity according to the functional gradient density maps.  460 

Age-common Parcellation Maps: Ideally, the age-specific parcellation maps are the more 461 

appropriate representation of the cortical functional architecture at the concerned age. However, 462 

many neuroimaging studies involve infants across multiple ages, thus the age-specific parcellation 463 

maps may not be proper choices due to different parcel numbers and variation in parcel boundaries 464 

across ages, thus inducing difficulties in across-age comparisons. To facilitate infant studies 465 

involving multiple age groups, we also compute an age-common gradient density map, which is 466 

the average of all 6 age-specific functional gradient density maps without any smoothing, so that 467 

each age group contributes equally to the age-common map. According to the age-common 468 

functional gradient density map, we generate the age-common functional parcellation map using 469 

the watershed segmentation method as well. The subsequent parcellation evaluation, functional 470 
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network architecture and longitudinal development analyses are performed using the age-common 471 

parcellation maps. 472 

Table 1. Demographic information of each age group from the longitudinal dataset under study. 473 

Age Group 
Age Range 

(days) 

fMRI 

Scans 

AP  

Scans 

PA  

Scans 

Structural 

MRI Scans 

(males/females) 

3M 
10~144 

(97.7±35.1) 
109 55 54 52 (27/25) 

6M 
145~223 

(183.3±23.3) 
172 85 87 56 (24/32) 

9M 
224~318 

(278.6±24.1) 
139 67 72 54 (27/27) 

12M 
319~410 

(366.4±21.4) 
151 76 75 57 (24/33) 

18M 
411~591 

(494.9±51.8) 
244 119 125 91 (40/51) 

24M 
592~874 

(723.6±67.5) 
249 122 127 84 (42/42) 

Total 
10~874 

(410.9±219.1) 
1064 524 540 394 (184/210) 

  474 

5.6 Evaluation of Parcellation Maps 475 

Reproducibility: Ideally, a functional gradient density-based parcellation map should extract 476 

robust common gradient information that shows the transition between parcels. We thus test if the 477 

gradient density map is reproducible on different subjects. Therefore, randomly divided “generating” 478 

and “repeating” groups (7, 9) are used to calculate mean gradient density map, separately. These 479 

two maps are then binarized by keeping only 25% highest gradient density as in (7, 8), and the dice 480 

ratio overlapping index between the two binarized maps is calculated to evaluate the reproducibility 481 

of the functional gradient map. This process is repeated multiple times (1,000 times in this study) 482 

to get a reliable estimation. 483 

Homogeneity: The functional gradient density-based parcellation identifies large gradients, 484 

representing sharp transition in functional connectivity pattern and avoiding large gradients inside 485 

parcels as much as possible. Meanwhile, a parcel that accurately represents a cortical area should 486 

not only be distinct from its neighbors in functional connectivity pattern, but also has a homogenous 487 
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functional connectivity pattern across all vertices inside. Therefore, we estimate the homogeneity 488 

of each parcel as in (7). Specifically, we first compute the mean correlation profile of each vertex 489 

across all subjects. Next, the correlation patterns of all vertices within one parcel is entered into a 490 

principal component analysis; the percentage of the variance that is explained by the largest 491 

principal component is used to represent the homogeneity of this parcel.  492 

Variance: As the functional connectivity pattern within a parcel should be relatively uniform, we 493 

also measure the variability of the connectivity pattern within each parcel, with smaller variability 494 

indicating greater uniformity and hence higher parcellation quality. Specifically, for each parcel, 495 

we first obtain a matrix with each column representing subject-average z-score of functional 496 

connectivity profile of one vertex in the parcel. Then we compute the sum of standard deviation of 497 

each row to represent the variability of this parcel. The average variability of all parcels is used to 498 

represent the variability of the parcellation map. 499 

As parcellation maps usually have different numbers, sizes and shapes in parcels, to have fair 500 

comparison and be consistent with (7, 8), we compare our parcellation maps with ‘null 501 

parcellations’. The null parcellations are generated by rotating by a random amount along x, y and 502 

z axes on the 32,492 spherical surfaces, which relocate each parcel while keeping the same number 503 

and size of parcels. We compare both variability and homogeneity of our parcellation and that of 504 

the random rotated null parcellations. Notably, in any random rotation, some parcels will inevitably 505 

be rotated into the medial wall, where no functional data exist. The homogeneity/variance of a 506 

parcel rotated into the medial wall is not calculated; instead, we assign this parcel the average 507 

homogeneity/variance of all random versions of the parcel that were rotated into non-medial-wall 508 

cortical regions. 509 

Variability Between Functional Gradient Density Maps: A variability map visualizes the 510 

variability or dissimilarity between two functional gradient density maps, and is estimated as 511 

follows. For a vertex 끫毆, a surface patch centering at 끫毆 is extracted (10-ring neighborhood in this 512 
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study), and two vectors 끫欢1 and 끫欢2 within this patch are then extracted from two functional gradient 513 

density maps. Their variability at 끫毆  is computed as 0.5 × (1− 끫殠끫殠끫殠끫殠(끫欢1,끫欢2)), where 끫殠끫殠끫殠끫殠(⋅,⋅) 514 

stands for Pearson’s correlation. As a result, the variability/dissimilarity is within the range of [0, 515 

1], where high value stands for high variability/dissimilarity and vice versa. In this study, we mainly 516 

measure the variability between functional gradient density maps in two aspects: 1) the temporal 517 

variability, which computes the variability of functional gradient density maps between two 518 

consecutive age groups to reflect the developmental changes of the gradient density maps; 2) the 519 

variability between the age-common functional gradient density map and each age-specific 520 

functional gradient density map, for quantitatively evaluating whether it is appropriate to use the 521 

age-common parcellation maps for all 6 age groups.  522 

5.7 Functional Development Analysis 523 

Functional Network Detection: To discover the developmental evolution of large-scale cortical 524 

functional networks, we employ a network discovery method (5) to each of the 6 age groups. 525 

Specifically, for each subject in each age group, given 끫殶 parcels, we first compute the average time 526 

course of each parcel (excluding the medial wall), and compute the correlation of the average time 527 

courses between any two parcels. This results in a 끫殶 × 끫殶 matrix, which is further binarized by 528 

setting the top 10% of the correlations to one and the rest to zero. For each age group, all 끫殶 × 끫殶 529 

matrices are averaged across individuals independently. A clustering algorithm (57) is then applied 530 

to estimate networks of parcels with similar connectivity profiles. 531 

     To determine the optimal cluster number 끫殰 for each age group, we employ the random split-half 532 

test to compute the stability for each 끫殰, with higher stability corresponding to more meaningful 533 

clustering results. Specifically, for each age group, we randomly split all subjects into two folds 534 

and run the clustering algorithm separately to obtain two independent clustering results 끫殠1 and 끫殠2, 535 

and the similarity between 끫殠1  and 끫殠2  is evaluated using the Amari-type distance (58). This 536 

experiment is repeated 200 times for each age group, and the resulted similarities are averaged to 537 
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represent the stability for 끫殰. During this process, the range of 끫殰 is set to [2, 30] according to the 538 

existing literature of functional network discovery (5, 6).  539 

Parcel-wise Development: We computed the homogeneity and local efficiency of each parcel in 540 

the age-common parcellation to characterize infantile parcel-wise developmental patterns regarding 541 

functional homogeneity and functional segregation, respectively. The homogeneity is computed as 542 

described in Section 3.4 for each subject, where higher parcel homogeneity indicates more unified 543 

connectivity pattern within the parcel. The local efficiency is computed using the GRETNA Toolkit 544 

(59) for each subject. Herein, multiple thresholds are used, keeping 50% to 5% connections with 545 

1% as a step, and the area under curve (AUC) is calculated to represent the local efficiency to avoid 546 

the influence of connectivity densities. The local efficiency corresponds to the mean information 547 

transfer efficiency between a particular parcel and all its connected nodes, which is proportional to 548 

the clustering coefficient. Parcels with higher local efficiency can more effectively share 549 

information to its connected parcels, and thus help build effective segregated networks. To have 550 

intuitive and spatiotemporally detailed views of their development, we use the sliding window 551 

technique to compute homogeneity and local efficiency in each age window by averaging all scans 552 

within the same age window. The windows are centered at each month, with a window width of 90 553 

days (±45 days) at 2 months of age, increasing 4 days in width for each following month and 554 

reaching 182 days (±91 days) at 2 years of age. 555 
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