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Abstract

Infancy is a dynamic and immensely important period in human brain development. Studies of
infant functional development using resting-state fMRI rely on precisely defined cortical
parcellation maps. However, available adult-based functional parcellation maps are not applicable
for infants due to their substantial differences in functional organizations. Fine-grained infant-
dedicated cortical parcellation maps are highly desired but remain scarce, due to difficulties ranging
from acquiring to processing of infant brain MRIs. In this study, leveraging 1,064 high-resolution
longitudinal rs-fMRIs from 197 infants from birth to 24 months and advanced infant-dedicated
processing tools, we create the first set of infant-specific, fine-grained cortical functional
parcellation maps. Besides the conventional folding-based cortical registration, we specifically
establish the functional correspondences across individuals using functional gradient densities and
generate both age-specific and age-common fine-grained parcellation maps. The first set of
comprehensive brain functional developmental maps are accordingly derived, and reveals a
complex, hitherto unseen multi-peak fluctuation development pattern in temporal variations of
gradient density, network sizes, and local efficiency, with more dynamic changes during the first 9
months than other ages. Our proposed method is applicable in generating fine-grained parcellations
for the whole lifespan, and our parcellation maps will be available online to advance the

neuroimaging field.

Keywords: infant brain, functional parcellation, functional connectivity.


https://doi.org/10.1101/2021.11.24.469844
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.24.469844; this version posted November 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1 1. Introduction
2 The dynamic brain functional development during the first two postnatal years is important for
3 establishing cognitive abilities and behaviors that could last a lifetime (/-3). As a prerequisite for
4 understanding how the brain works and develops, cortical parcellation maps provide a repository
5  that helps cortical area localization, network node definition, inter-subject comparison, inter-study
6  communication, and comparison, as well as reducing data complexity while improving statistical
7  sensitivity and power (4). In the functional aspect, researchers used to reveal and understand the
8  cortical network topography by clustering cortical vertices into parcels that are different from each
9 other in functional architecture using adult resting-state fMRI (rs-fMRI) data (5, 6). Although these
10 clustering-based methods can produce convincing results given a limited number of clusters, they
11 are not suitable for fine-grained parcellations (e.g., > 100 parcels), as they usually result in
12 considerable disjointed fragments that are hardly explainable. To this point, recent adult
13 parcellations (7-10) started to use gradient-based methods, i.e., the functional gradient density, to
14 delineate sharp changes of resting-state functional connectivity (RSFC) patterns to promote the
15  meaningfulness and accuracy of parcel boundaries.
16 All the abovementioned studies derived functional parcellation maps using adult data, which
17  are not suitable for infant studies featuring dynamic brain structural and functional development,
18  due to enormous differences in brain functional organization between infants and adults (11, 12).
19  Therefore, infant-specific cortical functional parcellation maps are highly desired, but remain
20  scarce, due to difficulties in both acquiring high-resolution infant brain multi-modal MR images
21  and challenges in processing infant MR images that typically have prominently dynamic imaging
22 appearance and extremely poor tissue contrast (/, 2, 13). Of note, another critical issue of using the
23 abovementioned methods for generating infant functional parcellations is that these methods
24 typically computed the functional gradient density map for a cohort directly based on cortical

25  folding-based registration and extensive spatial smoothing of functional connectivity, which,
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26  however, cannot lead to accurate functional alignment across individuals, due to large variation
27  between folding and functional areas. Thus many vital details of the functional architecture are
28  blurred and inherently missed in the resulting functional parcellation maps.

29 In this paper, we aim to generate the first set of infant-specific, high-resolution, fine-grained
30  functional parcellation maps on the cortical surface to significantly accelerate early brain
31  development studies. To this end, this study leverages a large high-resolution dataset with 1,064 rs-
32 fMRI scans and 394 T1-weighted and T2-weighted structural MRI scans from birth to 2 years of
33 age, as part of the UNC/UMN Baby Connectome Project (/4). To ensure accuracy, all MR images
34 are processed using an extensively validated, advanced infant-dedicated cortical surface-based
35  pipeline (15). To establish accurate cortical functional alignment across individuals, we propose a

36  novel method to first compute the functional gradient density map of each infant scan, rather than

37  for the whole cohort in the traditional way, to capture fine-grained functional patterns, and then co-
38  register all functional gradient density maps across individuals based on both cortical folding and
39  functional gradient information. Following steps detailed in Fig. 1, our derived group-average
40  functional gradient density maps capture much more details of cortical functional architecture than
41 the conventional method, thus enabling us to generate fine-grained age-specific cortical parcellation
42 maps of infants at multiple ages, i.e., 3, 6, 9, 12, 18, and 24 months of age. To facilitate infant
43  studies requiring parcel-to-parcel correspondences across ages, we also generate age-common
44  parcellation maps that are suitable for all ages during the first two years. Our infant functional
45  parcellation maps will soon be released to the public to greatly contribute to the pediatric

46  neuroimaging research community.
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2. Results
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Fig. 1. The procedure of infant parcellation using functional gradient density. Our major steps include
structural and functional MRI processing, computing gradient density map for each scan, function-based

cortical registration, and generating fine-grained functional parcellation.

We unprecedentedly investigated the fine-grained cortical surface-based functional parcellation
maps of the infant cerebral cortex using 1,064 high-resolution (2 X 2 X 2 mm?) resting-state fMRI
scans from 197 healthy infants, with subject demographics shown in Table 1 and Fig. 8. To capture
detailed patterns of sharp transition between cortical areas, after the conventional cortical folding-
based inter-individual cortical registration, the gradient density map of cortical functional

connectivity was computed on each scan of each individual and further used as a reliable functional
5
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55  feature for function-based registration for establishing functionally more meaningful cortical
56  correspondences across individuals. This resulted in considerably detailed visualization of
57  functional boundaries on the cerebral cortex, which was used to create the infant-dedicated fine-
58  grained cortical functional parcellation maps. Detailed steps of the proposed method are illustrated

59 inFig. 1.

60 2.1 Advantage of the Proposed Method

Comparison of group gradient density maps obtained by different methods

Y

Fig. 2. Comparison of the group-average functional gradient density maps on the 3-month age group
generated by different methods. (a) The gradient density map computed directly on the population-average
connectivity matrix. (b) The gradient density map computed on each individual and then averaged across
individuals. (c) The gradient density map generated by our method, which computes the average of
individual gradient density maps after co-registration of them based on both cortical folding and functional
gradient density. White arrows point out consistent gradient density patterns using different methods, and
white dashed circles show some more detailed and fine-grained patterns revealed by our method. (d)

Example gradient density maps of three random subjects. This figure demonstrates that some detailed
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gradient patterns in the individual cortex are usually missed by other methods, and can be well captured

by our method.

61

62  The functional gradient density maps of 3-month infant scans generated by different methods are
63  compared in Fig. 2, which demonstrates the advantage of our proposed method. Specifically, Fig.
64 2 (a) shows the group-average gradient density map directly computed using the group-average
65 RSFC-2"asin (7, 9). Fig. 2 (b) shows the group-average gradient density map based on individual
66  gradient density maps, in which we first computed a gradient density map on the RSFC-2" of each
67  individual and then averaged them across individuals. Fig. 2 (c) shows the group-average gradient
68  density map generated by the proposed method, where all individual gradient density maps are co-
69  registered using the gradient density as a functional feature and then further averaged across
70  individuals. It can be observed that major patterns of the functional gradient density in Fig. 2 (a)
71 are well preserved in Fig. 2 (c) (with some examples pointed out with white arrows), which implies
72  the meaningfulness of the functional gradient density patterns in Fig. 2 (c). Most importantly, Fig.
73 2 (c) exhibits much more detailed and clear patterns of the functional gradient density, compared
74  to Fig. 2 (a) and (b), especially in the temporo-occipital, parietal, and lateral prefrontal areas,
75  indicating the advantage of performing the 2™ round of co-registration based on functional gradient
76  density. Consequently, the functional gradient density maps generated by the proposed method are
77  able to capture fine-scaled architectures of infant functional connectivity while maintaining the
78  major functional patterns, thus leading to more meaningful fine-grained functional parcellation
79  maps. We also show the gradient density maps of three random subjects in Fig. 2 (d), which further
80  demonstrates that our method can well capture these important and detailed functional gradient
81  patterns, which are usually missed by the compared methods.

82 To test whether the gradient density maps are reproducible, we randomly divided subjects into

83  two non-overlapping parts and computed the dice ratio between two gradient maps after
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84  thresholding. A higher dice ratio indicates higher reproducibility. By repeating this experiment
85 1,000 times, the overall dice ratio reaches 0.9295 + 0.0021, indicating the high reproducibility of

86 our results.

87 2.2 Age-specific Functional Gradient Density and Parcellation Maps

88  The age-specific functional gradient density maps are computed by averaging gradient density
89  maps of subjects in corresponding age groups and results at 3, 6,9, 12, 18, and 24 months are shown
90 in Fig. 3 (a). As can be observed, the major gradient patterns are distributed bilaterally
91 symmetrically on the cortex, like the central sulcus, superior temporal gyrus, middle temporal gyrus,
92  parieto-occipital fissure, and calcarine fissure. Nevertheless, certain gradient patterns exhibit
93  hemispheric differences. For example, the precentral gyrus in the right hemisphere has a higher
94  gradient density than that in the left hemisphere. All these spatial distributions of functional
95  gradient density remain largely consistent across ages.
96 Age-specific cortical parcellation maps derived from these functional gradient density maps are
97  presented in Fig. 3 (b). These maps were obtained using a watershed algorithm without thresholding
98  or any manual editing. It can be observed that major gradient density patterns are well reflected as
99  parcellation boundaries. Due to some slight differences in age-specific gradient density maps, the
100  resulting age-specific parcellation maps show different parcel numbers. However, all parcel
101  numbers fall between 461 to 493 parcels per hemisphere, and parcel numbers show slight changes

102 that follow a multi-peak fluctuation, with inflection ages of 9 and 18 months of age.
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(a) Age-specific functional gradient density maps

Fig. 3. (a) Age-specific functional gradient density maps. (b) Age-specific fine-grained functional

parcellation maps, with parcel numbers noted for each age.

103

104 To evaluate the consistency of gradient density across different age groups, we thresholded and
105  binarized the age-specific functional gradient density maps to their top 50% and 25% gradient
106  density. These binary maps were summed up, resulting in a gradient density overlap map indicating
107  its age consistency shown in Fig. 4 (b). In these maps, “one” stands for high gradient densities that

108  appeared in only one age group, and “six” represents high gradient densities that appeared in all six
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109  age groups. It is worth noting that most high gradient densities are repeatedly detected in all six age

110  groups, suggesting the high consistency of majorities of high gradient densities in all age groups.

(a) Temporal variability of functional gradient density maps
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Fig. 4. (a) Temporal variabilities of functional gradient density maps between every two consecutive ages.
(b) Consistency of high gradient density across ages. (c) Variabilities between each age-specific functional

gradient density map and that of the age-common map.

111 Further, to better illustrate the functional architecture development, we computed the temporal
112 variability of gradient density maps between neighboring age groups, as shown in Fig. 4 (a). In
113 general, the temporal variabilities of functional gradient density are at a relatively low level (<=0.05)

114 at all age intervals. Across all ages, high temporal variabilities are mainly presented in high-order
10
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115  association areas, including the left middle and inferior frontal, middle temporal, right superior
116  frontal, precuneus medial prefrontal, and bilateral supramarginal, posterior superior temporal, and
117  medial frontal areas. Other regions mostly exhibit low temporal variabilities, especially in the
118  sensorimotor and medial occipital regions. Keeping this spatial distribution, the temporal variability
119  shows a multi-peak fluctuation, where the gradient density decreases from 3-6 to 6-9 months,
120  followed by an increase during 9-12 and 12-18 months, and drops again during 18-24 months.

121

122 2.3 Age-common Functional Gradient Density and Parcellation Maps

123 Since infant functional MRI studies typically involve multiple age groups, it is highly desired to
124 have an age-common functional parcellation map that features parcel-to-parcel correspondences
125  across ages, so that it can be conveniently employed for all ages during infancy. Therefore, we also
126 computed the age-common gradient density map (Fig. 5 (a)) as the average of the functional
127  gradient density maps of all six age groups. The variabilities between the age-common gradient
128  density map and each age-specific gradient density map are illustrated in Fig. 4 (c). Compared to
129  the temporal variability between neighboring age groups (Fig. 4 (a)), the age-common gradient
130  density map shows small variability to all age-specific maps. The spatial distributions of high and
131  low variabilities remain mostly similar to that of the temporal variabilities between neighboring
132 age groups, with high variability presented in some high-order association cortices and low
133 variability in unimodal cortices. Consequently, it can be speculated that the age-common gradient
134 density map can be used to generate an age-common parcellation map that is suitable for all subjects
135  from birth to 2 years of age.

136

11
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137 The resulted age-common functional parcellation map based on the age-common gradient
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Fig. 5. (a) Age-common gradient density map. (b) Age-common parcellation map (864 parcels,
L: 432, R: 432). (c) Our age-common parcellation shows significantly lower variance compared
to the null parcellations. (d) Our age-common parcellation shows significantly higher
homogeneity compared to null parcellations. (e) The histogram of parcel size, where parcel sizes
are counted in vertices. (f) Some parcels correspond to known cortical areas defined by multi-
modal features in adults (4).

138 density map is shown in Fig. 5 (b), which has 864 parcels in total (L: 432, R: 432) excluding the

139  medial wall. It should be noted that we manually removed some apparently over-segmented regions

12
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140  after using the watershed algorithm, and prior to that, we had 903 parcels in total (L: 448, R: 455).
141  The parcel boundaries of the age-common parcellation map are well aligned with high gradient
142 density regions and show largely bilaterally symmetric patterns of the areal organization. In the
143 following development-related analyses in this study, we mainly employed the age-common
144 parcellation map to facilitate comparisons of infants across ages.

145 Compared to existing fine-grained parcellation maps, such as the multi-modal adult parcellation
146 (4), the age-common infant parcellation map has comparatively smaller and more evenly
147  distributed parcel sizes and shapes. Also, as shown in Fig. 5 (f), some areas of our parcels show
148 substantial overlap with the known cortical areas of adults, such as the visual areas V1, MT, MST,
149 sensorimotor areas 2, 3, 4, auditory areas A1, LBelt, and language areas 44, 45. To further examine
150  the validity of our parcellation map, we compared it with 1,000 null parcellation maps in terms of
151 variance and homogeneity, with the results shown in Fig. 5 (¢) and (d). It can be observed that our
152 parcellation map shows significantly higher homogeneity (p=2e-10) and lower variance (p=4e-05),

153  indicating the meaningfulness of the resulting parcellation map.

154 2.4 Network Organization and Development

155  We performed network clustering of the generated parcels in each age group to reveal the early
156  development of functional network organization. The number of networks for each age group is
157  determined separately according to the random split-half stability analysis. Empirically, the
158  network number is set as 2 to 30, and the stability plots are shown in Fig. 6 (a). Higher stability
159  suggests a better clustering result, hence a more meaningful network organization. Overall, when
160  the network number surpasses 15, the stability does not show a substantial raise or decrease,
161  indicating the network numbers likely hold less than 15. Hence, we look for the cluster number on
162  a ‘peak’ or prior to a ‘descending cliff’, which guarantees high stability or more significant network
163  numbers. As a result, we find that the most suitable cluster numbers for different age groups are 7

164 networks for 3 months, 9 networks for 6 months, 10 networks for 9, 12, 18, and 24 months. Of note,

13
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we choosel( networks for 18 months so as to be consistent during development, even though it is

neither a peak nor a cliff.

*10 Networks

10 Networks

10 Networks
M Hand sensory motor [l Central Visual M Anterior Default mode M Anterior frontoparietal  lDorsal attention
M Mouth sensory motor M Peripheral Visual ~ EPosterior Default mode Posterior frontoparietal Superior temporal

Fig. 6. (a) Stabilities of different network numbers of different age groups computed by repeating 200
times random split-half test. The selected numbers are highlighted in solid red dots. (b) Discovered
functional network organization of parcels during infantile brain development, color-coded by

corresponding networks denoted below.

The spatiotemporal patterns of the discovered functional network organization are shown in Fig.
6 (b). Overall, changes in network structure from 3 to 9 months are more extensive than those from
9 to 24 months. Specifically, the sensorimotor network splits into two subnetworks from 3 to 6
months, and the boundary between them moved toward the ventral direction from 6 to 9 months.
The hand sensorimotor expands, while the mouth sensorimotor shrinks and both stabilize after 9
months. The auditory network is distinguished at 3 months and merges into the hand sensorimotor
at 6 months. The visual network splits into peripheral and central visual subnetworks from 6 to 9

months and remains stable until a slight shrinkage at 24 months.
14
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175 Other networks exhibit more complex development with multi-peak fluctuation of the size in
176  certain networks. Specifically, the anterior default mode network expands from 3 to 6 months, and
177  shrinks from 6 to 9 months and from 12 to 18 months, and expands thereafter. The lateral posterior
178  default mode network that emerged at 6 months shrinks from 6 to 9 months and then expands from
179 9 to 18 months; while the medial posterior default mode network emerged at 9 months only lightly
180  shrinks thereafter. The anterior and posterior default mode networks develop to the adult-like
181 pattern at 18 months, while till 24 months, they are still detected as two separate networks. The
182  superior temporal network shrinks from 3 to 6 months, expands from 6 to 9 months, and then
183  shrinks again from 9 to 24 months. The anterior frontoparietal network gradually shrinks from 3 to
184 24 months, except for an expansion from 12 to 18 months. On the medial surface, the posterior
185  frontoparietal network expands to include the parahippocampal gyrus from 3 to 6 months and then
186  disappears by 9 months. On the lateral surface, the posterior frontoparietal network expands from
187 3 to 9 months to include the inferior temporal part and becomes stable thereafter. The dorsal
188  attention network is seen at 6 months and evolves to the adult-like pattern at 9 months and keeps

189 stable thereafter.

190 2.5 Parcel-wise Development

191  Homogeneity of functional connectivity can be used as a criterion for characterizing functional
192  development. Fig. 7 (a) shows the parcel-wise homogeneity development during infancy. Our
193 results suggest that the overall parcel-wise homogeneity shows a monotonic decrease trend during
194 the first two years by maintaining similar relative spatial distribution. Higher homogeneities are
195  located in the sensorimotor, paracentral, posterior insula, inferior parietal, posterior superior
196  temporal, lateral occipital, and occipital pole. Low homogeneities are presented in lateral prefrontal,

197  medial frontal, anterior insula, inferior temporal, and temporal pole.

15
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(a) Parcel homogeneity

reel local efficiency

Fig. 7. Development of parcel homogeneity and local efficiency during infancy.

198 Fig. 7 (b) shows the development of the local efficiency of each parcel. Overall, the local
199  efficiency also exhibits a strong multi-peak fluctuation, with inflection ages observed at 9 and 15
200  months. Parcels with low efficiency are located in the lateral superior frontal, medial superior
201  frontal, orbitofrontal, ventral insula, and anterior inferior temporal cortices. Parcels with high local

202  efficiency are mainly observed in sensorimotor, paracentral, parietal, and precuneus regions.

203 3. Discussion

204  In this study, we created the first set of both age-specific and age-common, infant-dedicated, fine-
205  grained, and cortical surface-based functional parcellation maps using functional gradient density
206  maps. We analyzed the spatiotemporal patterns of age-specific functional gradient density maps
207  and found that age-common functional gradient density maps are suitable for creating fine-grained
208  functional parcellation maps for all ages in the infant cohort. We validated the meaningfulness of
209  the parcellation and showed that its boundaries substantially reproduced known areal boundaries,
210  and its parcels featured high homogeneity and low variance. Finally, we illustrated the infantile
211  development in network structure, parcel homogeneity, and parcel local efficiency.

212 This study used the functional gradient density as a feature for improving functional alignment
213 across individuals, in addition to the conventional cortical folding features used by previous adult

214  functional parcellations (7, 9). As a result, our method not only captured important coarse gradient
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215  patterns discovered by previous methods, but also revealed much more detailed areal boundaries at
216  a remarkable resolution, as compared in Fig. 2. The main reason is that previous studies solely
217  relied on cortical folding-based registration, thus inevitably suffered from significant inter-subject
218  variability in the relation between cortical folding and functional areas, leading to less accurate
219  inter-subject functional correspondences. For infant-dedicated functional parcellations, the only
220  one available is the volumetric-based parcellation based on image registration and clustering
221 generated by Shi et al. (/6), without any advanced surface-based processing and registration. In
222 contrast, our parcellation maps are generated based on the cortical surface, which well respects the
223 topology of the convoluted cerebral cortex, and avoids mixing signals from opposite sulcal banks
224 and different tissues, leading to more accurate functional signals resampling, smoothing,
225  computation and registration. Moreover, our parcellations leveraged high-quality 2 mm isotropic
226  fMRI data that densely covers the first two years, instead of data with a coarse resolution of 4 mm
227  isotropic centering at birth, 1 and 2 years of age (/6).

228 Standing upon the detailed gradient density patterns by the proposed method, we generated age-
229  specific fine-grained parcellation maps for 3, 6, 9, 12, 18, and 24 months of age. We found that the
230  temporal variability (temporal changes) of the functional gradient density generally decreases
231  during most age intervals, except for a slight increase from 9 to 12 months. This may suggest that
232 the development of functional architecture gradually slows down during the first two years. We
233 also found that high temporal variabilities mostly presented in high-order association cortices,
234  implying that they are developing at a more considerable pace compared to unimodal cortices.
235  Besides the age-specific parcellations, we also generated an age-common parcellation that suites
236  infants at all ages to help brain development-related studies under two considerations. First, infant
237  studies typically involve subjects of different ages, and it is not convenient to use different
238  parcellations for comparison between different ages. Second, our age-common gradient density

239  map shows low variability to all age-specific gradient density maps and therefore can generate the
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240  representative fine-grained functional parcellation map that is suitable for all ages during infancy.
241  However, we will make both the age-specific and age-common functional parcellation maps
242 accessible to the public in the case that some researchers may still prefer age-specific parcellation
243 maps.

244 This study successfully augmented the resolution of the existing cortical parcellations from ~300
245  to ~900 areas, which represents a finer architecture of brain functional organizations compared to
246  previous ones. This fine-grained cortical organization is also in line with Eickhoff et al. (/7), where
247  they believe that 200-300 areas are not the ultimate resolution for cortical parcellations due to the
248  multi-hierarchical formation of the brain. Glasser et al. (4) also consider 360 as a lower bound for
249  cortical parcellations since each parcel can be represented as a combination of several smaller
250  regions. Consequently, our fine-grained infant cortical parcellation maps provide a great platform
251 for analyzing pediatric neuroimaging data with a greatly boosted resolution, thus leading to more
252  meaningful discoveries on the fine-scaled functional architecture of infant brains.

253 Besides, it is worth noting that our parcellation increased the resolution in a meaningful way.
254 First, our functional gradient density maps are highly reproducible. By separating subjects into non-
255  overlapping parts, their gradient density patterns are repeated with a dice ratio of ~0.93. Second,
256  our age-common infant parcellation shows high accordance in some specific cortical areas defined
257 by Glasser et al. (4), which is recognized as the state-of-the-art adult parcellation map. As illustrated
258  in Fig. 5 (d), our gradient density map-derived parcellation contains parcels that have substantial
259  overlap with the known adult area V1 defined by Glasser et al. (4). Other known cortical areas of
260 adults, such as sensorimotor areas 2, 3, and 4, were also overlapped with a combination of several
261  parcels in our parcellation. These observations that parcel borders conform to some adult cortical
262  areas lend substantial visual validity to the parcellation.

263 When applying parcellation as a tool to explore infant brain functional development, our results

264  reveal complex multi-peak fluctuations in several aspects, including parcel number, temporal
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265  variation of gradient density, network organization, and local efficiency. To the best of our
266  knowledge, this complex fluctuation development trend is not reported in previous literature and
267  should fill an important knowledge gap for infantile brain functional development. These functional
268  developmental patterns are very different from early brain structure development, where the
269  cortical thickness follows an inverted-“U” shaped trajectory, while the surface area and cortical
270  volume monotonically increase following a logistic curve. The multi-peak fluctuations potentially
271 mirror different milestones of behavioral/cognitive abilities, which likely emerge at different ages
272 during infancy (30). However, the underlying mechanisms of such developmental patterns remain
273  to be further investigated.

274 For network organization (Fig. 6 (b)), at 3 months, networks likely groups vertices with close
275  spatial locations, resulting in networks being more dependent on the local anatomy. After 9 months,
276  the primary functional systems reach steady and present adult-like patterns, while high-order
277  functional networks still show substantial differences compared to the adult-like pattern. Our results
278  suggest that a primitive form of brain functional networks is present at 3 months, which is largely
279  consistent with recent studies suggesting that most resting-state networks are already in place at
280  term birth (/8-20). Besides, our results also suggest that, compared to high-order functional
281  networks, the primary functional system is more developed in infants. This confirms previous
282  findings in infant cortical thickness development (27), suggesting that the primary functional
283  systems develop earlier than high-order systems.

284 At the network level, the sensorimotor system splits into two sub-networks, i.e., the mouth- and
285  hand-sensorimotor at 6 months, which were also observed in infants and toddlers (22). The visual
286  network is split into central (primary) visual and peripheral (high-order) visual cortices at 9 months
287  and well maintains this pattern until 24 months. This subdivision of mouth- and hand-sensorimotor
288  networks is also found in adults (5). The high-order functional systems, including the default mode,

289 frontoparietal, and dorsal attention network, exhibit considerable development during 3 to 9 months,
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290  followed by some minor adjustments from 12 to 24 months. A previous infant study (/9) also
291  demonstrated that functional network development shows more considerable change in the first
292 year compared to the second year. At 24 months, both default mode and frontoparietal networks
293  show alack of strong cross-lobe connections. Though several studies identified some prototypes of
294  cross-lobe connection (/9, 23), their links seem not as strong as to be stably distinguished (24-26).
295  Our results suggest that the high-order functional networks are far more from established at 24
296  months of age. It is worth noting that, the size changes of networks can be quite subtle between a
297  short time interval, which emphasizes the importance of using a fine-grained parcellation map.
298 The parcel homogeneity measures the development within parcels. Our result shows (Fig. 7 (a))
299 that unimodal cortices, including the sensorimotor, auditory, and visual areas, show high
300  homogeneity, which is largely consistent with adults (7). However, the inferior parietal and
301  posterior superior temporal cortices, which show high homogeneity in infants, are observed low
302  homogeneity in adults (7). Besides, the prefrontal area, which shows relatively low homogeneity
303  in infants, seems to develop to a medium-to-high homogeneity in adults. Almost all parcels are
304  observed decreased homogeneity with age. This is likely related to the development of brain
305  function, especially in high-order cortices, which show increased heterogeneity, and consequently
306  decreased homogeneity. Among the high-order association cortices, the prefrontal area has the
307  lowest homogeneity, followed by temporal and then parietal regions, suggesting different levels of
308  functional development.

309 Local efficiency measures a different developmental aspect — it represents the connection of
310  parcels to neighbors. Higher local efficiency is usually related to higher functional segregation (/7).
311  Our results (Fig. 7 (b)) suggest that local efficiency shares certain similar spatial distribution with
312  homogeneity — they both increase in anterior to posterior and ventral to dorsal directions. During
313  development, the local efficiency shows a complex developmental trend: although 24 months

314  shows a strong increase compared to 1 month, there is a dip from 12 to 21 months that should be
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315  noted. The age-related increase of local efficiency was previously found from 18 months to 18
316  years (27), 5 to 18 years (28), and 12 to 30 years (29), and is likely explained by progressive white
317  matter maturation (27). This trajectory of local efficiency is not contradictory to the previous
318  studies (31, 32), since they only measured the averaged local efficiency of all nodes to reflect
319  network characterization, thus missing important characteristics of parcel-level local efficiency.
320  This further stresses the importance of performing parcel-wise analyses and the significance of

321  fine-grained infant cortical parcellations.

322 4. Conclusion

323  In summary, for the first time, this study constructed a comprehensive set of cortical surface-based
324 infant-dedicated fine-grained functional parcellation maps. To this end, we developed a novel
325  method for establishing functionally more accurate inter-subject cortical correspondences. We
326  delineated age-specific parcellation maps at 3, 6, 9, 12, 18, and 24 months of age as well as an age-
327  common parcellation map to facilitate studies involving infants at different ages. Our parcellation
328  maps were demonstrated meaningful by comparing with known areal boundaries and through
329  quantitative evaluation of homogeneity and variance of functional connectivity. Leveraging our
330 infant parcellation, we provide the first comprehensive visualizations of the infant brain functional
331  developmental maps on the cortex and reveal a complex multi-peak fluctuation functional
332  development trend, which will serves as valuable references for future early brain developmental
333 studies. Our generated fine-grained infant cortical functional parcellation maps will be released to

334 the public soon to greatly advance pediatric neuroimaging studies.

335 5. Methods

336 5.1 Subjects and Image Acquisition
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Fig. 8. Longitudinal distribution of scans. Each point represents a scan with its scanned age (in months)
shown in the x-axis, with males in blue and females in red, and each horizontal line represents one subject,

with males in blue and females in red.

337

338  Subjects in this study are from the UNC/UMN Baby Connectome Project (BCP) data90set (/4).
339  The BCP focuses on normal early brain development, where all infants were born at the gestational
340  age of 37-42 weeks and free of any major pregnancy and delivery complications. In this study, 394
341  high-resolution longitudinal structural MRI scans were acquired from 197 (90 males and 107
342  females) typically developing infants, as demonstrated in Fig. 8. Images were acquired on 3T
343 Siemens Prisma MRI scanners using a 32-channel head coil during natural sleeping. T1-weighted
344 images (208 sagittal slices) were obtained by using the three-dimensional magnetization-prepared
345  rapid gradient echo (MPRAGE) sequence: TR (repetition time)/TE (echo time)/T1 (inversion time)

346 = 2,400/2.24/1,600 ms, FA (flip angle) = 8°, and resolution = 0.8x0.8x0.8 mm?3. T2-weighted
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347  images (208 sagittal slices) were acquired with turbo spin-echo sequences (turbo factor = 314, echo
348 train length = 1,166 ms): TR/TE = 3,200/564 ms, and resolution = 0.8x0.8x0.8 mm? with a variable
349  flip angle. All structural MRI data were assessed visually for excessive motion, insufficient
350  coverage, and/or ghosting to ensure sufficient image quality for processing.

351 For the same cohort, 1,064 high-resolution resting-state fMRI (rs-fMRI) scans were also
352  acquired using a blood oxygenation level-dependent (BOLD) contrast sensitive gradient echo echo-
353  planar sequence: TR = 800 ms, TE = 37 ms, flip angle = 80°, field of view (FOV) = 208x208 mm,
354 72 axial slices per volume, resolution = 2x2x2 mm?3, total volumes = 420 (5 min 47 s). The rs-
355  fMRI scans include 524 anterior to posterior (AP) scans and 540 posterior to anterior (PA) scans,

356  which are two opposite phase-encoding directions for better correction of geometric distortions.
357 5.2 Structural MRI Processing

358  All T1-weighted and T2-weighted MR images were processed using an infant-specific pipeline
359  detailed in (/5, 33), which have been extensively validated in many infant studies (21, 34-41). The
360  processing procedure includes the following main steps: 1) Rigid alignment of each T2-weighted
361  image onto its corresponding T1-weighted image using FLIRT in FSL (Smith et al., 2004); 2) Skull
362  stripping by a deep learning-based method (42), followed by manual editing to ensure the clean
363  skull and dura removal; 3) Removal of both cerebellum and brain stem by registration with an atlas;
364  4) Correction of intensity inhomogeneity using the N3 method (43); 5) Longitudinally-consistent
365  segmentation of brain images as white matter (WM), gray matter (GM), and cerebrospinal fluid
366  (CSF) using an infant-dedicated deep learning-based method (44); and 6) Separation of each brain

367  into left and right hemispheres and filling non-cortical structures.
368 5.3 Resting-State fMRI Processing

369  Infant rs-fMRI processing was conducted according to an infant-specific functional pipeline (31,

370 45, 46). The head motion was corrected using FSL, as well as the spatial distortions due to gradient
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371  non-linearity. The rs-fMRI scans were then registered to the T1-weighted structural MRI of the
372  same subject using a boundary-based registration approach (47). All of the transformations and
373  deformation fields were combined and used to resample the rs-fMRI data in the native space
374  through a one-time resampling strategy. After conservative high-pass filtering with a sigma of
375 1,000 s to remove linear trends in the data, individual independent component analysis was
376  conducted to decompose each of the preprocessed rs-fMRI data into 150 components using
377  MELODIC in FSL. An automatic deep learning-based noise-related component identification

378  algorithm was used to identify and remove non-signal components to clean the rs-fMRI data (45).

379 5.4 Cortical Surface Reconstruction and Mapping

380 Based on the tissue segmentation results, inner, middle and outer cortical surfaces of each
381  hemisphere of each MRI scan were reconstructed and represented by triangular meshes with correct
382  topology and accurate geometry, by using a topology-preserving deformable surface method (33,
383  49). Before cortical surface reconstruction, topology correction on the whiter matter surface was
384  performed to ensure the spherical topology of each surface (50). After surface reconstruction, the
385 inner cortical surface, which has vertex-to-vertex correspondences with the middle and outer
386  cortical surfaces, was further smoothed, inflated, and mapped onto a standard sphere (51).

387 To ensure the accuracy in longitudinal analysis during infancy, it is necessary to perform
388  longitudinally-consistent cortical surface registration (/5). Specifically, 1) for each subject, we first
389  co-registered the longitudinal cortical surfaces using Spherical Demons (52) based on cortical
390 folding-based features, i.e., average convexity and mean curvature. 2) Longitudinal cortical
391  attribute maps were then averaged to obtain the intra-subject mean surface maps. 3) For each
392  hemisphere, all intra-subject mean surface maps were then co-registered and averaged to get the
393  population-mean surface maps. 4) The population-mean surface maps were aligned to the HCP
394 32k_LR space through registration to the “fsaverage” space as in (53). By concatenating the three

395  deformation fields of steps 1, 3 and 4, we directly warped all cortical surfaces from individual scan
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396  spaces to the HCP 32k_LR space. These surfaces were further resampled as surface meshes with
397 32,492 vertices, thus establishing vertex-to-vertex correspondences across individuals and ages.
398  All results were visually inspected to ensure sufficient quality for subsequent analysis. The inner
399  and outer cortical surfaces were used as a constraint to resample the rs-fMRI time courses onto the
400 middle cortical surface with 32,492 vertices using the HCP workbench (54), and the time courses
401  were further spatially smoothed on the middle cortical surface with a small Gaussian kernel (o =

402  2.55mm).

403 5.5 Generation of Fine-grained Cortical Functional Parcellation Maps

404  In this section, we describe detailed steps for generating fine-scaled infant cortical functional
405  parcellation maps (see Fig. 1). Specifically, we first describe the computation of the gradient
406  density map of functional connectivity for each scan, followed by a function-based registration step
407  based on gradient density maps. Then, we detail the computation of both “age-specific” and “age-
408  common” parcellation maps based on the functional registration results and our evaluation scheme.
409 At last, we introduce how we use the parcellation maps to discover the functional network

410  organization development, as well as parcel homogeneity and local efficiency during infancy.

411  Computation of Individual Functional Gradient Density Map

412  The gradient density of functional connectivity (7) identifies sharp changes of RSFC, thus
413  intrinsically representing the transition from one functional parcel to another, and is widely used in
414  generating meaningful fMRI-based cortical parcellations in adult studies (7-9). For each fMRI scan
415  of each infant subject, the computation of the gradient density of functional connectivity on the
416  cortical surface is summarized in the following steps. 1) For each fMRI scan, the functional
417  connectivity matrix is built by pair-wise correlating each vertex with all other cortical vertices in
418  the CIFTI file to create a 32kx64k RSFC matrix for each hemisphere. 2) Each RSFC matrix is
419  transformed to z scores using Fisher’s r-to-z transformation. 3) For each fMRI scan, the z-

420  transformed RSFC of each vertex is correlated with all cortical vertices within the same hemisphere,
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421 creating a 2" order correlation matrix (RSFC-2"%) sized 32k x32k for each hemisphere. 4) For some
422 scan visits consisting of both AP and PA scans, all RSFC-2"! matrices of the same visit from the
423  same subject are averaged, so that all subjects contribute equally, even they may have different
424 numbers of scans in one visit. 5) The gradient of functional connectivity is computed on the RSFC-
425 2" as in (4), resulting in a 32kx 32k gradient matrix per hemisphere. 6) By performing the
426  watershed-based boundary detection (7) on the gradient matrix, we obtain 32k binary boundary
427  maps per hemisphere. 7) The functional gradient density map is defined as the average of 32k

428  binary boundary maps.

429  Cortical Surface Registration based on Functional Gradient Density

430  Previous studies mostly computed population-based functional gradient density map, where
431 cortical surfaces were usually co-registered to a common space using only cortical folding-based
432 features. However, due to the highly-variable relationship between cortical folds and functions,
433 especially in high-order association regions, researchers recently are getting more aware of the
434 necessity of functional features-based registration (55, 56). To this end, in addition to cortical
435  folding-based co-registration, we further use the gradient density of functional connectivity as a
436  meaningful functional feature to perform a second-round of co-registration of cortical surfaces for
437  the purpose of more accurate functional alignment.

438 Specifically, based on cortical folding-based surface co-registration, 1) the functional gradient
439  density maps of all scans are averaged to generate the population-mean functional gradient density
440  map. 2) To improve inter-individual cortical functional correspondences, the functional gradient
441  density map of each scan is then aligned onto the current population-mean functional gradient
442 density map using Spherical Demons (52) by incorporating functional gradient density as a feature.
443  3) All warped functional gradient maps are then resampled and averaged to obtain the newly
444  improved population-mean functional gradient density map with sharper and more detailed

445  functional architecture. 4) Steps 2 and 3 are repeated iteratively until no visually observed changes
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446  in the population-mean functional gradient density map (4 iterations in our experiment). After this
447  procedure, all individual functional gradient density maps are co-registrated, thus establishing

448  functionally more accurate cortical correspondences across individuals.

449  Generation of Parcellation Maps based on Functional Gradient Density

450  Age-specific Parcellation Maps: To capture the spatiotemporal changes of fine-grained cortical
451 functional maps during infancy, we group all scans into 6 representative age groups, i.e., 3, 6, 9,
452 12,18, and 24 months of age based on the distribution of scan ages. For each age group, we compute
453  the age-specific group-average functional gradient density maps by averaging the gradient density
454  maps of all scans within the group, without any smoothing. Detailed information of each age group
455  is reported in Table 1. A watershed method is then applied on each age-specific group-average
456  functional gradient density map to generate the corresponding functional parcellation maps (7).
457  This watershed segmentation algorithm starts by detecting local minima in 3-ring neighborhoods,
458  anditeratively grows the region until reaching ambiguous locations, where vertices can be assigned
459  to multiple regions. These locations appear to be borders that separate parcels and reflect putative
460  boundaries of functional connectivity according to the functional gradient density maps.

461  Age-common Parcellation Maps: Ideally, the age-specific parcellation maps are the more
462  appropriate representation of the cortical functional architecture at the concerned age. However,
463  many neuroimaging studies involve infants across multiple ages, thus the age-specific parcellation
464  maps may not be proper choices due to different parcel numbers and variation in parcel boundaries
465  across ages, thus inducing difficulties in across-age comparisons. To facilitate infant studies
466  involving multiple age groups, we also compute an age-common gradient density map, which is
467  the average of all 6 age-specific functional gradient density maps without any smoothing, so that
468  each age group contributes equally to the age-common map. According to the age-common
469  functional gradient density map, we generate the age-common functional parcellation map using

470  the watershed segmentation method as well. The subsequent parcellation evaluation, functional
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471  network architecture and longitudinal development analyses are performed using the age-common

472  parcellation maps.

473 Table 1. Demographic information of each age group from the longitudinal dataset under study.
Age Group Ag(fi;{;r;ge g:;l;z S?ais Sf&ﬁls I\S/ltlrll;cstgsls
(males/females)

M (9712;_1?;1) 109 55 54 52 (27725)
6M (1§§.533ﬁ22;.3) 172 85 87 56 (24/32)
M (272822;3214?.1) 139 67 72 54 (27/27)
12M (3géi~£‘213 PR e 76 75 57 (24/33)
18M (4341.19;55911.8) 244 119 125 91 (40/51)
24M (753?26;_?67; 5) 249 122 127 84 (42/42)

Total (415'%’?27;‘9.1) 1064 524 540 394 (184/210)

474
475 5.6 Evaluation of Parcellation Maps

476  Reproducibility: Ideally, a functional gradient density-based parcellation map should extract
477  robust common gradient information that shows the transition between parcels. We thus test if the
478  gradient density map is reproducible on different subjects. Therefore, randomly divided “generating”
479  and “repeating” groups (7, 9) are used to calculate mean gradient density map, separately. These
480  two maps are then binarized by keeping only 25% highest gradient density as in (7, 8), and the dice
481  ratio overlapping index between the two binarized maps is calculated to evaluate the reproducibility
482  of the functional gradient map. This process is repeated multiple times (1,000 times in this study)
483  to get a reliable estimation.

484  Homogeneity: The functional gradient density-based parcellation identifies large gradients,
485  representing sharp transition in functional connectivity pattern and avoiding large gradients inside
486  parcels as much as possible. Meanwhile, a parcel that accurately represents a cortical area should

487  not only be distinct from its neighbors in functional connectivity pattern, but also has a homogenous
28
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488  functional connectivity pattern across all vertices inside. Therefore, we estimate the homogeneity
489  of each parcel as in (7). Specifically, we first compute the mean correlation profile of each vertex
490  across all subjects. Next, the correlation patterns of all vertices within one parcel is entered into a
491  principal component analysis; the percentage of the variance that is explained by the largest
492  principal component is used to represent the homogeneity of this parcel.

493  Variance: As the functional connectivity pattern within a parcel should be relatively uniform, we
494 also measure the variability of the connectivity pattern within each parcel, with smaller variability
495  indicating greater uniformity and hence higher parcellation quality. Specifically, for each parcel,
496  we first obtain a matrix with each column representing subject-average z-score of functional
497  connectivity profile of one vertex in the parcel. Then we compute the sum of standard deviation of
498  each row to represent the variability of this parcel. The average variability of all parcels is used to
499  represent the variability of the parcellation map.

500 As parcellation maps usually have different numbers, sizes and shapes in parcels, to have fair
501 comparison and be consistent with (7, &), we compare our parcellation maps with ‘null
502  parcellations’. The null parcellations are generated by rotating by a random amount along x, y and
503  zaxes on the 32,492 spherical surfaces, which relocate each parcel while keeping the same number
504  and size of parcels. We compare both variability and homogeneity of our parcellation and that of
505  the random rotated null parcellations. Notably, in any random rotation, some parcels will inevitably
506  be rotated into the medial wall, where no functional data exist. The homogeneity/variance of a
507  parcel rotated into the medial wall is not calculated; instead, we assign this parcel the average
508  homogeneity/variance of all random versions of the parcel that were rotated into non-medial-wall
509  cortical regions.

510  Variability Between Functional Gradient Density Maps: A variability map visualizes the
511  variability or dissimilarity between two functional gradient density maps, and is estimated as

512  follows. For a vertex v, a surface patch centering at v is extracted (10-ring neighborhood in this
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513  study), and two vectors p; and p, within this patch are then extracted from two functional gradient
514  density maps. Their variability at v is computed as 0.5 X (1 — corr(p,,p2)), where corr(-,)
515  stands for Pearson’s correlation. As a result, the variability/dissimilarity is within the range of [0,
516 1], where high value stands for high variability/dissimilarity and vice versa. In this study, we mainly
517  measure the variability between functional gradient density maps in two aspects: 1) the temporal
518  variability, which computes the variability of functional gradient density maps between two
519  consecutive age groups to reflect the developmental changes of the gradient density maps; 2) the
520  variability between the age-common functional gradient density map and each age-specific
521 functional gradient density map, for quantitatively evaluating whether it is appropriate to use the

522 age-common parcellation maps for all 6 age groups.
523 5.7 Functional Development Analysis

524  Functional Network Detection: To discover the developmental evolution of large-scale cortical
525  functional networks, we employ a network discovery method (5) to each of the 6 age groups.
526  Specifically, for each subject in each age group, given n parcels, we first compute the average time
527  course of each parcel (excluding the medial wall), and compute the correlation of the average time
528  courses between any two parcels. This results in a n X n matrix, which is further binarized by
529  setting the top 10% of the correlations to one and the rest to zero. For each age group, alln X n
530  matrices are averaged across individuals independently. A clustering algorithm (57) is then applied
531  to estimate networks of parcels with similar connectivity profiles.

532 To determine the optimal cluster number k for each age group, we employ the random split-half
533  test to compute the stability for each k, with higher stability corresponding to more meaningful
534 clustering results. Specifically, for each age group, we randomly split all subjects into two folds
535  and run the clustering algorithm separately to obtain two independent clustering results ¢; and ¢,
536  and the similarity between ¢; and ¢, is evaluated using the Amari-type distance (58). This

537  experiment is repeated 200 times for each age group, and the resulted similarities are averaged to
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538  represent the stability for k. During this process, the range of k is set to [2, 30] according to the
539  existing literature of functional network discovery (3, 6).

540  Parcel-wise Development: We computed the homogeneity and local efficiency of each parcel in
541  the age-common parcellation to characterize infantile parcel-wise developmental patterns regarding
542  functional homogeneity and functional segregation, respectively. The homogeneity is computed as
543  described in Section 3.4 for each subject, where higher parcel homogeneity indicates more unified
544 connectivity pattern within the parcel. The local efficiency is computed using the GRETNA Toolkit
545  (59) for each subject. Herein, multiple thresholds are used, keeping 50% to 5% connections with
546 1% as a step, and the area under curve (AUC) is calculated to represent the local efficiency to avoid
547  the influence of connectivity densities. The local efficiency corresponds to the mean information
548  transfer efficiency between a particular parcel and all its connected nodes, which is proportional to
549  the clustering coefficient. Parcels with higher local efficiency can more effectively share
550  information to its connected parcels, and thus help build effective segregated networks. To have
551 intuitive and spatiotemporally detailed views of their development, we use the sliding window
552  technique to compute homogeneity and local efficiency in each age window by averaging all scans
553  within the same age window. The windows are centered at each month, with a window width of 90
554  days (£45 days) at 2 months of age, increasing 4 days in width for each following month and
555  reaching 182 days (91 days) at 2 years of age.
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