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ABSTRACT

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of
biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful
ability to infer quantitative kinetic information from smFRET data is, however, complicated by
experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a
systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing
eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We tested them
against simulated and experimental data containing the most prominent difficulties encountered in
analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium
dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in
inferring kinetic information from smFRET trajectories. In addition, we formulate concrete
recommendations and identify key targets for future developments, aimed to advance our

understanding of biomolecular dynamics through quantitative experiment-derived models.
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How does biomolecular function arise from structural dynamics? This largely unsolved question is
central for the understanding of life at the molecular scale. However, the transitions between various
conformational states have remained challenging to detect, quantify, and interpret. Over the past two
decades, single-molecule Forster resonance energy transfer (SmFRET) detection has emerged as a
powerful technique to study the dynamics of single biomolecules under physiological conditions using
fluorescence as a readout. A unique aspect of SmFRET s its ability to link space and time, i.e., to
connect structural with kinetic information under both equilibrium and non-equilibrium conditions,
which is often unachievable using ensemble methods. By measuring the distance-dependent energy
transfer from a donor to an acceptor fluorophore, distances in the range of 4 to 12 nm can be
measured with sub-nanometer precision and accuracy’. Various experimental implementations exist
that allow one to measure smFRET on diverse timescales from picoseconds to hours. All of this
makes smFRET an ideal tool in the growing field of dynamic structural biology®.

To study conformational dynamics of one single molecule for an extended time (seconds to minutes),
dye-labeled biomolecules are most commonly immobilized on passivated glass slides and imaged
using camera-based brightfield detection, or confocal detection using avalanche photodiodes®. The
resulting fluorescence time traces have a typical time resolution of about 10 ms - 100 ms, and the
observation time per single molecule is limited by photobleaching, leading to an average bandwidth of
less than three orders of magnitude in time*®. Conformational transitions of the biomolecule change
the inter-dye distance leading to discrete steps in the fluorescence signal and the FRET efficiency
(Fig. 1). This desired time-resolved distance information is convoluted with largely Gaussian noise in
the experiment (from autofluorescence background, detector noise, laser fluctuations, etc.). Moreover,
noise and photobleaching are intrinsically coupled: increasing the laser power for a better signal-to-
noise ratio causes faster photobleaching, which reduces the temporal bandwidth of the experiment.
As a result, signal interpretation in terms of biomolecular states and specific transitions between them

is not trivial.

A multitude of analytical approaches have been developed to infer the number of functional states
and quantify kinetic rate constants from noisy experimental data. Frequently, hidden Markov models
(HMMs)’ are used to infer an idealized state sequence from which dwell-time distributions are
compiled, which are then fit (with exponentials) to obtain kinetic rate constants®®. Alternatively, the
transition matrix that is part of every HMM can directly be converted to kinetic rate constants. The
HMM formalism is based on a discrete memoryless Markov process that infers a set of parameters

(probabilities of states, transitions, and observations) to describe the observed sequence of FRET

10-15
d

efficiencies. Many extensions of the HMM formalism have been develope including Bayesian

16-19

approaches , and very fast kinetics (low energy barrier crossings) can be inferred from single-

photon arrival times®*?%%°,

Often, multiple input models are compared based on a scarcity criterion to avoid bias in the selection

of the optimal model size (i.e., the number of states and rate constants), and hence the number of
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free parameters . Other analysis approaches, such as correlation analysis and discretization
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232 may treat the raw data in a model-free way while the

methods based on cluster analysis
extraction of individual rate constants (rather than residence times only) still relies on an initial guess
of a model. The growing number of analytical methods renders it increasingly difficult to decide on the
optimal tool for a specific application and to judge whether the described improvements justify the
time cost of implementation. Hence, it was identified during a round table discussion of the smFRET
community (Fluorescence subgroup, Biophysical Society Meeting 2019, Baltimore, US) that a critical

assessment of the available tools is needed.

Here, we present the results of the first comparative multi-laboratory study that provides a systematic
evaluation of eleven analysis tools (summarized in Box 1) using simulated as well as experimental
data of varied complexity. Three of the analysis tools were utilized under different conditions, leading
to a comparison of 14 different analyses. While clearly not all existing analysis tools could be covered
(new tools are released continuously and not all authors decided to participate), this blind study
(illustrated in Fig. 1) allows us for the first time to directly assess the performance of the different
analysis approaches for the inference of kinetic information from single-molecule FRET trajectories
and to identify their strengths and weaknesses. Specifically, we assess the accuracy of the inferred
kinetic model (i.e., the kinetic rate constants and their connectivity) plus the associated uncertainties,
and this for kinetic models of varied size, from the simple case of a two-state system (Figure 2) to the
more complex case of a non-equilibrium three-state system (Figure 3), and finally to degenerate
multi-state systems (Figures 4, 5). All analyses were performed by the expert labs of each tool to

ensure optimal implementation (see Methods for details).
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Figure 1 | This blind study reports on the performance of diverse analysis tools to describe
single-molecule dynamics with quantitative kinetic rate constants. Biomolecular dynamics of
proteins and nucleic acids can be detected by smFRET and other single-molecule techniques.
Extracting testable kinetic rate models from the experimental time traces is complicated by
experimental shortcomings. Multiple labs joined forces to directly test the performance of diverse

analytical approaches to infer  kinetic rate  constants in a blind study.
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Box 1: Overview of the kinetic analysis approaches and software tools considered herein,
grouped based on similarity. All tools are detailed in the Supplementary Methods.
Tool Key- Model |Uncer-
#| name words Description selection | tainty
1 Pome- HMM The python package Pomegranate is used for efficient and iterative BIC 95 % ClI
granate modeling, fitting and evaluation of state numbers using the BIC. Dwell
time analysis is subsequently performed after defining all transitions
using a multivariate Gaussian fitting scheme and unbinned maximum
likelihood fitting. (Cl: confidence interval)
2 Tracy HMM Global HMM analysis was performed while setting the FRET efficiency| Manual 95% ClI
and sigma as parameters to be learned. The state transitions and the| inspection
state dwell times are selected by the user in a transition density plot and
fitted with an exponential to obtain the rate constants.
3|FRETboard* Semi- A semi-supervised classification tool served remotely through a browser Path 95% ClI
supervision, |window. Users supervise the training of a classification model of choice,| probability
remotely |by manually correcting classification of example traces until the quality of
served |automated classification is satisfactory.
4| Hidden- 1D/2D- |Hidden-Markury is a trace analysis software based on an interactive BIC Sub-
Markury HMM Jupyter notebook script, supporting global 1D FRET efficiency traces or sampling
2D donor & acceptor photon streams, optionally treating degenerate
states, forbidden transitions, fixed model parameters.
5| SMACKS™ 1-3D-  |Semi-ensemble HMM is used to extract one kinetic model from many BIC 95% ClI
HMM smFRET fluorescence traces without prior discretization in two steps: (1)
per trace HMM optimization (2) global per dataset optimization of the
kinetic model, with pre-trained intensity parameters.
6| SMACKS 1-3D- Test for user bias in semi-supervised inference: independent second BIC 95% ClI
(SS) HMM analysis using SMACKS by S. Schmid.
7| Correlation | Discretized |An unbiased, model-independent approach to obtain quantitative BIC 95%
correlation [relaxation times from the negative amplitude of the cross-correlation
function®*®. To enable a quantitative analysis of multi-state systems, a
filtered correlation analysis® is performed based on the state sequence
obtained with a step-finding algorithm®.
8| Edge finding CK The Chung Kennedy non-linear filter is applied to the time records of| Manual Not
(CK) filter donor, acceptor and/or FRET efficiency to identify state transition points| inspection |assessed
as sudden increases in the standard deviation of points in
forward/backward predictor windows. Transition edges are confirmed by
a two-sample student’s t-test on the forward/backward windows.
9| Edge finding | k-means |All data points in either the donor and acceptor or the FRET efficiency Manual Not
(k-means) clusters [time traces are assigned to distinct clusters. The mean value of each| inspection |assessed
cluster is calculated and the points are reassigned to clusters to
iteratively minimize the differences between the point values. Transition
edges are identified as cluster assignment changes.
10| Step finding | Line fitting |The entire dataset is iteratively fit with an increasing number of line Manual SEM/
segments. The addition of line segments is accepted if the overall fit| inspection | 68% CI
quality is improved significantly. Rate constants are derived from dwell
time analysis of line segments, which are assigned to a FRET state
based on their mean FRET efficiencies. (SEM: standard error of the
mean.)
11 STaSI Student’s |Detects step transition using the Student’s t-test. Segments are grouped MDL 95% ClI
t-test into states by hierarchical clustering. The optimum number of states is
established using a minimum description length equation that sums the
goodness of fit measured using the L1 norm to consider the sparseness
of the states and transitions. (MDL: minimum description length.)
12| MASH-FRET STasSl, A MATLAB-based GUI for the simulation and analysis of sSmFRET videos BIC 95%
(bootstrap)® | VbFRET, |and fluorescence time traces™. Initial FRET states are obtained using
bootstrap |STaSI| and a BIC selection on 2D-Gaussian mixtures that model the
global transition density plot. Refined FRET states, transition rate
constants and uncertainties are then obtained using vbFRET and single
exponential fit on bootstrapped dwell time histograms.
13| MASH-FRET STaSI The degeneracies of FRET states are estimated from ensemble dwell BIC 95%
(prob.)*® VbFRET [|time histograms by performing a BIC selection on phase-type
DPH distributions. The fix-sized transition rate matrix is finally optimized using
HMM the Baum-Welch algorithm on hard-assigned FRET state trajectories.
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14| postFRET Monte |Simple thresholding is used for an initial assessment of the rate LAD 68% CI
Carlo constants. A computationally-intensive Monte Carlo simulation is then
used to find simulated trajectories that contain the same rate and error
pattern as the experimental ones to guess a possible truth. Compare the
two and adjust the guess for the next iteration. Noisy data is binned for
the initial thresholding. (LAD: least absolute deviations.)
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RESULTS

The archetypal 2-state system

We first consider the simplest case of a kinetic 2-state system, which could represent alternation
between two conformations of a biomolecule in dynamic equilibrium, or transient biomolecular
interactions. The kinetics of this system are described by two rate constants (Figure 2a). In a blind
study, we analysed simulated and experimental SmFRET data using the diverse set of analysis tools
summarized in Box 1 and detailed in the Supplementary Methods. Simulated test data (described in
Supplementary Note 1) has the advantage that the underlying ground truth (GT, i.e., the simulation
input) is known, which facilitates the evaluation of the inferred results, while, for experimental data,
the GT is naturally not known. Figure 2b depicts an example of the simulated traces. We note that it
closely resembles the experimental trace in Figure 2e. Based on a dataset of such simulated traces
(n=75), all laboratories inferred FRET efficiencies (Fig. 2c) and rate constants (Fig. 2d), which agree
very well: the FRET efficiencies deviate by less than 17 % from the GT, and the inferred rate
constants deviate with a maximum of 12 % from the GT (5% average deviation), with a slight
systematic underestimation in most cases, i.e., the determined rate constants were slower.
Pomegranate, FRETboard, and Step finding infer the most accurate rate constants under the tested
conditions (Table 1). The equilibrium constants K=k,,/k;, vary generally less since systematic
deviations balance each other in this case (Supplementary Fig. 1a). In contrast, the reported
uncertainty measures vary greatly, independent of the analysis type (0.4 % to 21 % relative to the
inferred rate constant). For comparison, we estimated the minimal uncertainty given the finite size of
the dataset, by quantifying the standard deviation of the rate constants obtained from one million
simulated samples (Supplementary Note 2). This standard deviation is =23 % of the rate constants for
the provided dataset (gray and light gray bars in Fig. 2b shown for 10 and 20, respectively). Thus,
most analysis tools reported reasonable uncertainty estimates, while some tools reported
uncertainties that are smaller than this lower limit (Tracy, Correlation, STaSl) or provided no
uncertainty measures (Edge finding). FRETboard reported consistently very large uncertainties, which

was solved in their latest software version 0.0.3 (Ref*®

). Step finding initially found erroneously large
uncertainties that have been corrected in the latest software version. We note that various methods

are currently in use for estimating uncertainties which complicates the direct comparison.

Next, we consider experimental data (see Methods), which naturally contains all typical noise sources
and experimental artefacts (Fig. 2e-g). As there is no GT for experimental data, we assessed the
consistency of the inferred FRET efficiencies and rate constants using the coefficient of variation (CV,
i.e., the standard deviation divided by the mean). We found excellent agreement for all inferred FRET
efficiencies (CV = 2 %). The rate constants vary by 12 % and 16 % (CV for k;, and k;;, respectively),
consistent with the variation found for simulated data (Fig. 2d). Again, no correlation of the rate
constants with respect to the analysis approach is evident, but the tendency of a given tool for large or
small uncertainties is conserved (Fig. 2d and 2g), with FRETboard and Step finding reporting the
largest uncertainties, and STaSI, MASH-FRET (prob.), postFRET, and Correlation the smallest
uncertainties. In most cases, the equilibrium constants (Supplementary Fig. 1b) agree well with each
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other and with the equilibrium populations of the FRET histogram, while some results are inconsistent
with the latter (Hidden-Markury, Correlation, STaSl, and postFRET).
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Figure 2 | Quantification of simulated and experimental kinetics between two states. a
lllustration of the kinetic model with two states (circles) connected by forward and backward rate
constants: ki, and kp;. b A simulated FRET trace showing the donor and acceptor fluorescence
intensity (green, red) and the FRET efficiency (FRET, black), representative for the dataset used in c,
d: n(traces)=75, n(datapoints)=59,486, sampling rate=5 Hz. ¢ FRET efficiency histogram (gray) with
assigned states on top and inferred FRET efficiencies in red and blue. Numbers on the right axis refer
to the analysis tools specified in d. Vertical lines indicate the mean over all tools. d Rate constants
and uncertainties inferred from the dataset in ¢ by different labs using the respective analysis tools.
The ground truth (GT) is indicated by horizontal red and blue lines, the intrinsic uncertainty of the
dataset (see text) is represented by dark gray (10) and light gray (20) intervals. e An experimental
time trace with colors as in b, representative for the dataset used in f, g with n(traces)=19,
n(datapoints)=226,100, using 10 ms time bins resulting in 100 Hz sampling, kindly provided by B.
Schuler. f FRET histogram with color code and axis labels as in c. No uncertainties were submitted
for tool #5. g Inferred rate constants from the experimental dataset in f. Color code as in d. Horizontal
red and blue lines indicate the mean of the inferred rate constants. Supplementary Fig. 2 shows the
experimental data and analysis with ten times higher time resolution. ¥ denotes results that were
submitted after the GT was known. The model size was restricted to two states. FRETboard and Step
finding found erroneously large uncertainty intervals, which has been corrected in their latest software

versions.
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Table 1: Summary of the test conditions for the individual datasets, including the prior
information on ground truth (GT) and number (N) states, as well as three data characteristics: kinetic
heterogeneity, photo-physics, and signal-to-noise ratio (SNR). @ Exceptions are labelled with a
dagger in all figures. ™ See simulation parameters in Supplementary Table N1. ) The SNR was

obtained from the FRET efficiency histogram using Gaussian fits and SNR =

|y — Ii2|/v 01% + 0%

GT N states Kinetic Photo-
known? ™ | predefined? | heterogeneity physics [ SNR [
Figure 2 (sim.) No Yes, 2. No Clean 4
Figure 2 (exp.) No Yes, 2. Not observed Mainly clean 4
Figure 3 (sim.) No No No Inte_ns_lty 3
variation
Intensity
Figure 4 (sim.) No No Yes variation & 4
blinking
Intensity
Figure 5 (exp.) No No Yes observed variation & 3
blinking

One important factor in dynamic smFRET data is the signal-to-noise ratio (SNR), which depends on
the acquired signal per data point and can be controlled by the integration time (also known as
exposure time). We explicitly tested the effect of a ten-fold shorter integration time. On the one hand,
this offers better sampling of fast kinetics due to the increased time resolution (1 kHz instead of
0.1 kHz sampling), but, on the other hand, it results in a lower signal-to-noise ratio which is more
challenging for state identification. In addition, at 1 kHz sampling, the data shows single-photon
discretization and non-Gaussian noise (Supplementary Fig. 2a,b), thus deviating from the basic
assumptions underlying most of the considered analysis tools. Indeed, the overall agreement of the
rate constants at this lower SNR was reduced: CV= 33 % and 45 % for ki, and k»;, respectively
(Supplementary Fig. 2c), indicating that the benefit of the increased time resolution is minor in this
case. Nevertheless, the equilibrium constants agree very well again (CV= 2 %, when excluding the
two clear outliers in Supplementary Fig. 2d) due to the cancelation of systematic shifts for both rate
constants (Supplementary Fig. 2e). Comparing the rate constants inferred at 1 kHz and 0.1 kHz
sampling, pomegranate, Tracy, Correlation, MASH-FRET, and Step finding reported similar values
(Supplementary Fig. 2e), while STaSlI inferred slower rate constants for faster sampling. Conversely,
FRETboard, and SMACKS inferred faster rate constants for faster sampling, either due to fitting noise
or due to short events that are missed at lower time resolution. The latter is less plausible, given that
the inferred rate constants are 20-fold smaller than the 0.1 kHz sampling rate. Thus, a comparison
between 0.1 kHz and 1 kHz sampling can serve to estimate the robustness of the analysis tools
towards non-Gaussian noise. Taken together, fundamentally different analysis approaches inferred
consistent rate constants and FRET efficiencies from a simple, two-state system both for simulated
data and experimental data with varied SNR.
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Directional sequences in a non-equilibrium steady-state system

Many biomolecular systems involve more than just two functionally relevant states, leading to more
intricate kinetic models with more rate constants and, hence, more degrees of freedom. Such systems
with three or more states can show a conceptually unique thermodynamic phenomenon: the non-
equilibrium steady-state, in which a biomolecule, such as a motor protein or a molecular machine
such as FoF;-ATP synthase, is driven by continuous external energy input, e.g. in the form of a
chemical gradient”, light®®*, or ATP. As a result, conformational states may appear in a preferred
sequence order, causing a non-zero net flow, e.g. for the 3-state system depicted in Fig. 3a:

AGl—>2—>3—>1 =_kBT * ln’ (M) #0 (1)

S
The unique ability to directly observe the non-equilibrium steady-state is a prime example of the
merits of single-molecule studies. Hence, we investigated it explicitly, using smFRET data simulated
with a kinetic 3-state model and a non-zero counter-clockwise flow: AG1_,5_,31 < 0 (Fig. 3a,b). As
an additional challenge, this data contained fluorescence intensity variation between individual dye

molecules, as observed in experimental data due to varied local dye environment and orientation,

inhomogeneities in excitation intensity and polarisation, and also variations in detection efficiency™.

All analysis tools found the three clearly separated FRET efficiency populations (Fig. 3c), while the
inferred rate constants varied more than for the 2-state systems above (Fig. 3d). Most tools
systematically underestimated ki3 and ks; and overestimated all other rate constants. This may be
attributed to the inevitable effect of time discretization and related intensity averaging: when a
transition between the high- and low-FRET states happens during a time bin, time-weighted
averaging (camera blurring) of the FRET efficiencies occurs, leading, in some cases, to mid-FRET
observations that are indistinguishable from those caused by a bona fide biomolecular conformation.
While, at the single datapoint level this discretization artefact cannot be prevented, the inference
accuracy may be improved by treating discretization-induced averaging explicitly in the analysis®**;
or using pulsed illumination to reduce blurring***®. Overall, postFRET and Tracy inferred the most
accurate rate constants with average GT deviations of 9 % and 14 %, respectively. As shown in Fig.
3e, qualitatively, the net flow was correctly resolved (most accurately by postFRET, Tracy, and
FRETboard), while quantitatively it was mostly underestimated, which we attribute to the
aforementioned systematic misallocation of transitions between states 1 and 3. For this simulated
dataset, the theoretical lower limit of the uncertainty (as introduced above for the 2-state system) is
smaller because the dataset is larger. About half of the tools reported uncertainties that are in line
with this lower limit (grey intervals), while the other half reported none or too small uncertainties.
Altogether, the rate constants of the non-equilibrium 3-state system with intensity variation were less
accurate than those of the 2-state system, and also the uncertainty estimation was challenging in this

case. Nevertheless, the steady-state flow was qualitatively well resolved by most tools.
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Figure 3 | Quantitative analysis of a non-equilibrium steady-state system. a An illustration of the
simulated three-state model with a counter-clockwise net flow. States (circles) are connected by
forward and reverse rate constants as specified. b A simulated smFRET trace with donor and
acceptor fluorescence intensity (green, red) and FRET efficiency (FRET, black), representative for the
dataset used in c, d, e: n(traces)=150, n(datapoints)=82,594, sampling rate=10 Hz. ¢ SmFRET
histogram overlaid with the inferred FRET efficiencies (right axis, numbers as in e) and assigned
states on top. d Inferred rate constants are shown in red and blue as specified. Vertical lines indicate
the GT. The intrinsic uncertainty of the dataset is represented by dark gray (10) and light gray (20)
intervals. Analysis tools are numbered as in e. e The inferred cyclic flow in the counter-clockwise
direction determined by calculating AG from Equation (1) and compared with the GT value (solid
vertical line). The uncertainty intervals (dark and light gray) are plotted as in d. Additional simulations
to validate the dataset are shown in Supplementary Fig. 3. ¥ denotes results that were submitted after
the GT was known. Edge finding did not report uncertainties. § denotes that the misassignment of

start and end states was corrected after the GT was known.
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States with overlapping FRET efficiencies
Many biological systems show multi-exponential dwell-time distributions with long and short dwell

times for the same apparent FRET state**®

. This can, for example, arise when the one-dimensional
reaction coordinate spanned by the FRET pair is not sufficient to uniquely identify structural states in
3D space. Such kinetic heterogeneity is difficult to interpret because transitions between states with
identical or overlapping FRET efficiencies cannot be directly observed in the recorded time traces,
while they can often be inferred kinetically. To investigate this case, we simulated kinetic
heterogeneity based on a four-state model (Fig. 4a) where states 1 and 2 have the same low-FRET
efficiencies, and states 3 and 4 have the same high-FRET efficiencies. Again, the fluorescence traces
included intensity variations between FRET pairs as observed in the experiment (introduced in the
previous section), and also donor and acceptor blinking was included, as an additional imperfection of
the data. Fig. 4b shows example traces from the simulation and Fig. 4c shows the FRET efficiency
histogram with two peaks. Without a priori knowledge of the model size, most tools identified the
correct number of two apparent FRET states, while FRETboard used three FRET states to describe
the data. Edge finding was not developed to deal with such kinetic heterogeneity, and Pomegranate,
Correlation, STaSI and MASH-FRET (bootstrap) reported FRET efficiencies but no kinetic models. In
the following, we use cumulative dwell-time distributions derived from each inferred model (Fig. 4d,
detailed in Supplementary Note 3) to compare models with the correct number of FRET states but
differences in the kinetic model, such as the connectivity of states or the number of hidden states
(rate constants of all inferred models are reported in the Supplementary Table 1, and in the
Supplementary Datafiles). Out of the seven independently inferred kinetic models, the two models
without kinetic heterogeneity (by Step finding and postFRET) show the largest deviations from the
GT, as these models cannot reproduce the multi-exponential nature of the dwell-time distribution. On
the other hand, the four models inferred by the HMM-based Hidden-Markury, SMACKS,
SMACKS(SS), as well as MASH-FRET (prob.) show good agreement with the GT and overlay the GT
in the low- and high-FRET case (compare Fig. 4d). A quantitative comparison of these four models
and their uncertainties is provided in Supplementary Figure 4. While model selection remains a main
challenge in inferring kinetic information from smFRET trajectories, it is encouraging that several
analysis tools can deduce kinetic models that closely reproduce the GT even under difficult conditions
involving kinetic heterogeneity.
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Figure 4 | Resolving kinetic heterogeneity: states with indistinguishable FRET efficiencies but
different kinetics. a An illustration of the simulated GT model with states (circles) connected by
forward and reverse rate constants. States 1 and 4 as well as states 2 and 3 have indistinguishable
FRET efficiencies, causing kinetic heterogeneity. b Two simulated FRET traces offset in time with
donor and acceptor fluorescence intensity (green, red) and FRET efficiency (FRET, black) are shown,
representative for the dataset used in c, d: n(traces)=250, n(datapoints)=56,794, sampling rate=5 Hz.
¢ FRET histogram with inferred FRET efficiencies overlaid (right axis: legend as in Box 1 and in all
Figures). d Comparison of cumulative dwell time distributions derived from the kinetic models with two
FRET states (detailed in Supplementary Note 3). The GT histogram is shown as a bold black line.
Insets show zoomed-in views of the data indicated by the squares. The rate constants of the four
models that most closely reproduce the GT are guantitatively compared in the Supplementary Figure
4. All inferred values of all models are reported in the Supplementary Tables 1 and in the
Supplementary Datafiles.  denotes results that were submitted after the GT was known. No results
were reported by Edge finding. Participants were informed that kinetic heterogeneity may be involved,
but not in which configuration.
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Full complexity of a black-box experiment

Encouraged by the previous results, we tested all tools vis-a-vis the full experimental complexity to
see if they perform similarly as in the simulated case (Fig. 4). Three experimental datasets of the
same biological system (protein binding to a fluorescently labelled DNA, see Methods), under different
experimental conditions and thus different kinetic behaviour, served as a test case. However, the
analysts had no prior information on the molecular system causing the dynamics. This means that all
the effects discussed so far could potentially be present in these experimental datasets: multiple
FRET states, diverse noise sources, fluorophore blinking, directional steady-state flow and kinetic
heterogeneity. In addition, the fluorescence intensity variation between single molecules was
particularly high in these datasets (see Figure 5a,d,g), which complicated the inference of the
number of states and rates involved (subsequently referred to as model selection). Under these
complex conditions, the inferred number of FRET states (Fig. 5b,e,h) varied more than in the
simulated case (discussed in Fig. 4). Most tools found two FRET states (Fig. 5b,e,h, some of them
including Kinetic heterogeneity), but also three, four, or more different FRET states were reported
(Supplementary Figure 5), and the kinetic rate constants varied accordingly. Given the inherent lack
of GT information in experimental data, we cannot quantitatively assess the accuracy in this
comparison. To balance this fact, we qualitatively compare the inferred results for all three datasets.
The 6-7 models with two FRET states are compared in (Fig. 5c,f,i). Other models with three, four, or
more FRET states are compared in Supplementary Figures 5-7. (All inferred rate constants are given
in Supplementary Tables 2-4 and Supplementary Datafiles). Again, we use cumulative dwell-time
distributions (cf. last section) derived from each inferred model (Fig. 5c,f,i) to compare models with
the same number of FRET states but possibly different state connectivity. The distributions are thus
single- or double-exponential depending on the reported kinetic model. The five tools that inferred two
FRET states and qualitatively similar kinetic models under all three conditions despite different
analysis approaches, are the HMM-based Hidden-Markury and SMACKS, as well as Step finding,
postFRET and MASH-FRET (prob.). While postFRET consistently inferred slower rate constants, the
gualitative agreement among the other five tools is surprisingly good (CV < 25 % for the average
residence time) despite the complexity of the input data, the missing prior knowledge about the
system, and the different analysis approaches used.

Altogether, we conclude that model selection and state allocation are currently the key challenges in
the analysis of kinetic data. In this study, we focused only on the analysis of fluorescence intensity
and FRET efficiency data. The addition of complementary information from simulations or
experiments (e.g., static molecular structures and other observables, such as fluorescence lifetimes,
anisotropy, and more) may help to elucidate complicated or otherwise underdetermined

systems?®4748,
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Figure 5 | Increased experimental complexity. Results inferred from three experimental datasets
where naturally no GT exists. a,d,g Experimental traces, offset in time and separated by dashed
vertical lines, with donor and acceptor fluorescence intensity (green, red) and FRET efficiency (FRET,
black), representative for the datasets used in (b,c), (e,f), (h,i), respectively, with n(traces): 134, 163,
118; and n(datapoints): 36,604, 37,067, 43,512; sampling rate=33 Hz. All three datasets were kindly
provided by M. Schlierf. b,e,n FRET efficiency histograms and FRET efficiencies inferred by the
analysis tools numbered as in j. For clarity, only the smallest reported model is shown for each
analysis tool, up to a maximum of four FRET states. All inferred FRET efficiencies are shown in
Supplementary Figure 5, and all inferred results are provided in the Supplementary Tables 2-4 and in
the Supplementary Datafiles. Purple arrow in (e): the error bar extends to 1.61. Teal arrow in (h): the
error bar extends to -0.53. c,f,i Cumulative distribution functions (CDF) of the dwell-times simulated
using the inferred kinetic models with two FRET states, obtained with the tools numbered as in j.
Legend with all analysis tools. No results were reported by Edge finding. ¥ denotes results that were
submitted after all other results were known.
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DISCUSSION

In this blind study, we compared eleven kinetic analysis tools for the inference of quantitative kinetic
rate constants based on single-molecule FRET trajectories. We explicitly considered the major
(kinetic) challenges that the single-molecule experimentalists are typically confronted with:
determining the best model to describe the data, especially with multiple FRET states, a varying
signal-to-noise ratio, directional non-equilibrium steady-state flow, and kinetic heterogeneity (i.e.,
states with indistinguishable FRET efficiency but distinct kinetics). We assessed the inferred FRET
efficiencies, rate constants, and the reported uncertainties, based on three simulated datasets and
four experimental datasets from two biological systems measured using two different setups in
different laboratories. The simulated data allowed us to directly assess the accuracy of the inferred
rate constants using the known ground truth model and to judge the plausibility of the reported
uncertainty measures, while the experimental data shows the relevance and validity of this study.

We found that the number of states was correctly inferred by all tools, as long as their FRET
efficiencies were clearly separated (Figs. 2 and 3). In the presence of kinetic heterogeneity with
overlapping FRET states, model selection was more challenging (Fig. 4). In this case, three tools
successfully inferred models that accurately reproduce the dwell-time distribution of the GT despite
overlapping FRET states (Hidden-Markury, MASH-FRET, SMACKS). In general, the accuracy of the
rate constants inferred by all tools decreased with increasing model size and complexity, where time
discretization artefacts and inter-trace intensity variation become increasingly challenging. The
equilibrium constants and steady-state flow were more accurately inferred than individual rate
constants due to the cancellation of systematic errors (Supplementary Figs. 1 and 2d,e, Fig. 3).
Caution is advised with the uncertainties of rate constants since different uncertainty measures are
reported by different approaches. Even for small models (Figs. 2 and 3), we found that some
uncertainty estimates were smaller than the uncertainties caused by the finite dataset size, while
interestingly, more plausible uncertainties were reported for the more complex model in Fig. 4
(Supplementary Fig. 4). In general, the comparison of uncertainties is complicated by the fact that no
common standard exists and the mathematical interpretation of the reported uncertainty intervals

differs from tool to tool.

When comparing various analysis frameworks, model-free approaches are generally considered
advantageous for an unbiased data analysis. However, HMM-based tools (that compare several input
models based on scarcity criteria) were found to be more robust towards data heterogeneity (Figs. 4
and 5, Supplementary Fig. 2). Nevertheless, we did not observe a clear overall clustering of the
inferred rate constants with the underlying analysis framework, likely due to differences in the data
handling beyond the used algorithms (e.g. supervised, semi-supervised, or unsupervised inference).
The total analysis durations (processing and computation) ranged from a few minutes to several
hours depending on the analysis tool and the model size, with StaSI and StepFinding ranking among
the fastest, and SMACKS among the slower tools. In the course of this study, multiple conceptual

oversights could be found and solved in a number of tools, which is a direct constructive result of this
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collaborative comparison study that led to the general recommendations stated in Box 2. Additionally,
a simple shareable smFRET data format was introduced (Supplementary Note 4) and utilized by all
twelve labs working in diverse software environments. We anticipate that this data format will facilitate
future collaborations and significantly lower the barrier for an experimentalist to adopt a newly

developed analysis tool if it supports the accepted format.

Box 2: General recommendations for users and developers of kinetic inference tools.

In the course of this study, several difficulties with the analysis of kinetic data have become
apparent. Out of this experience, we have compiled a list of recommendations for those developing
and using kinetic analysis tools.

(i) As a general consistency test, the inferred kinetic model (connectivity and rate constants) can be
simulated and the output of the simulation compared to the original input data. For example, the
simulator used herein is publicly available as a simple and powerful (Matlab) tool to test whether the
proposed model can generate data analogous to the original input, e.g. regarding FRET histogram,
smFRET traces, etc.

(i) Potential biases in the analysis (e.g. regarding model size, state occupation, etc.) can be
revealed by subjecting the re-simulated data (with known ground truth) to the same analysis
approach as the experimental data.

(iii) Where possible, kinetic models with a specific number and connectivity of states are preferred
over mean residence times, since the latter leave the individual transition rate constants
undetermined for more than 2 states.

(iv) Benchmarking new analysis tools using datasets of varied complexity — including models with
more than 2 states — can reveal systematic errors, e.g. regarding the weighting of multiple rate
constants that depopulate a given state, an issue encountered in this study.

(v) Benchmarking new software with established test data helps the potential users to judge the
added benefits of newly introduced analysis tools. The diverse datasets used herein are publicly
available and can serve to assess a tool's performance under varied experimental conditions.

(vi) Supporting broadly accepted file formats for newly developed analysis tools facilitates fast
dissemination in the field. We offer the simple format described in Supplementary Note 4, which

proved to be very useful for this study.

Looking ahead, a particularly promising outlook is the possibility to characterize individual states with
individual noise patterns more accurately, using machine learning. Recently, deep learning
approaches have been developed for the unbiased selection of single molecule traces for further

49,50

kinetic analysis™". Similar approaches could be envisioned for a model-free kinetic analysis, which

bears the potential to improve model selection significantly®**®

. Demonstrating such new tools using
public training datasets and supporting the simple file format introduced in this study, will accelerate
the dissemination of the newest theoretical developments within the community of single-molecule

experimentalists.
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In conclusion, this first blind study on kinetic inference from smFRET data further validates the use of
smFRET in deciphering biomolecular rates. It unequivocally reveals the current strengths and
weaknesses of the various analysis approaches when tested against frequently encountered
phenomena in smFRET experiments, and provides a reference standard for the continuous
developments in this active field. We anticipate that this study will serve the community as a guide for
data interpretation, spark future developments in kinetic inference, and therefore help to advance our

understanding of biomolecular dynamics leading to function.
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METHODS

Procedure of this benchmark study

The need for a comparison of analysis tools for smFRET trajectories has grown with the increasing
number of smFRET users and published tools. This was addressed at the Biophysical Society
Meeting 2019 (Baltimore, US) by initiating a kinetic software challenge, short kinSoftChallenge. In line
with more efforts to assess, promote, and potentially standardize experimental and analytical
SMFRET procedures (Refs*® and Gebhardt et al., in preparation), the kinSoftChallenge represents an
important step aimed to improve the reliability and accuracy of kinetic inference from smFRET
trajectories. In a first round of the study (July 2019 to November 2019), the participants received three
simulated datasets (shown in Figs. 2, 3, and 4). In the second round (December 2019 to February
2020), the participants analyzed the experimental dataset shown in Fig. 5. Experimental data with
high and low SNR was compared in a third round (November to December 2020, shown in Fig. 2, and
Supplementary Fig. 2). The individual test conditions are described in the text and summarized in
Table 1. All challenge rounds were conducted as blind studies, i.e., the participants did not have

ground truth information during data analysis (exceptions are labeled with a dagger in all Figures).

The simulations are detailed in the Supplementary Note 1. The experimental data shown in Figure 2
and Supplementary Figures 1,2,3 was kindly provided by Benjamin Schuler. It shows the interaction
between the nuclear-coactivator binding domain of CBP/p300 (NCBD) and the intrinsically disordered
activation domain of the steroid receptor coactivator 3 (ACTR), measured using confocal single-
photon detection’. The experimental data shown in Figure 5 and Supplementary Figure 5 was kindly
provided by Michael Schlierf. It shows binding of single-strand binding proteins (SSB) to a
fluorescently labelled DNA hairpin, measured in prism-type total-internal reflection fluorescence
(TIRF) mode using camera-based detection (EMCCD)*. Supplementary Figures and Notes on the
simulations, validations, minimal uncertainty estimation, and the file format used herein are provided
as Supplementary Information, along with detailed descriptions of all analysis tools and additional
data tables. All inferred results as well as simulation scripts and parameters are provided as
Supplementary Datafiles.
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