
 

 

1 
 
 

Inferring kinetic rate constants from single-molecule FRET trajectories –  
a blind benchmark of kinetic analysis tools 

 

Markus Götz1,*, Anders Barth2,3, Søren S.-R. Bohr4, Richard Börner5,6, Jixin Chen7, Thorben Cordes8, 
Dorothy A. Erie10, Christian Gebhardt8, Mélodie C.A.S. Hadzic5, George L. Hamilton11, Nikos S. 
Hatzakis4, Thorsten Hugel12,13, Lydia Kisley14,15, Don C. Lamb9, Carlos de Lannoy16, Chelsea Mahn17, 
Dushani Dunukara14, Dick de Ridder16, Hugo Sanabria11, Julia Schimpf12,18, Claus A.M. Seidel2, 
Roland K.O. Sigel5, Magnus Berg Sletfjerding4, Johannes Thomsen4, Leonie Vollmar12,18, Simon 
Wanninger9, Keith R. Weninger17, Pengning Xu17, Sonja Schmid19,* 

 

1) Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Univ Montpellier, 60 rue de Navacelles, 34090 
Montpellier, France. Current address: PicoQuant GmbH, Rudower Chaussee 29, 12489 Berlin, Germany 

2) Institut fu�r Physikalische Chemie, Lehrstuhl fu�r Molekulare Physikalische Chemie, Heinrich-Heine-Universita�t, 
Universitätsstr. 1, 40225 Du�sseldorf, Germany 

3) present address: Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van 
der Maasweg 9, 2629 HZ Delft, The Netherlands 

4) Department of Chemistry & Nano-science Center, University of Copenhagen, 2100 Copenhagen, Denmark & Novo Nordisk 
Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 
Copenhagen, Denmark 

5) Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland 

6) present address: Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, 09648 Mittweida, Germany 

7) Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, United States  

8) Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 
Planegg-Martinsried, Germany 

9) Department of Chemistry and Center for Nano Science (CeNS), Ludwig Maximilians-Universität München, Butenandtstraße 
5-13, 81377 München, Germany 

10) Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, United States; and Lineberger 
Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, United States 

11) Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634, United States 

12) Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany 

13) Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany 

14) Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States 

15) Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, United States 

16) Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands 

17) Department of Physics, North Carolina State University, Raleigh, NC, 27695, United States 

18) Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg 

19) NanoDynamicsLab, Laboratory of Biophysics, Wageningen University, Stippeneng 4, 6708WE Wageningen, The 
Netherlands 

 

* Correspondence should be addressed to: Markus Götz goetz@picoquant.com and  
Sonja Schmid schmid@nanodynlab.org 
 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2021.11.23.469671doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.23.469671
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

2 
 
 

ABSTRACT 

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics and function of 

biomolecules since it makes nanoscale movements detectable as fluorescence signals. The powerful 

ability to infer quantitative kinetic information from smFRET data is, however, complicated by 

experimental limitations. Diverse analysis tools have been developed to overcome these hurdles but a 

systematic comparison is lacking. Here, we report the results of a blind benchmark study assessing 

eleven analysis tools used to infer kinetic rate constants from smFRET trajectories. We tested them 

against simulated and experimental data containing the most prominent difficulties encountered in 

analyzing smFRET experiments: different noise levels, varied model complexity, non-equilibrium 

dynamics, and kinetic heterogeneity. Our results highlight the current strengths and limitations in 

inferring kinetic information from smFRET trajectories. In addition, we formulate concrete 

recommendations and identify key targets for future developments, aimed to advance our 

understanding of biomolecular dynamics through quantitative experiment-derived models. 
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How does biomolecular function arise from structural dynamics? This largely unsolved question is 

central for the understanding of life at the molecular scale. However, the transitions between various 

conformational states have remained challenging to detect, quantify, and interpret. Over the past two 

decades, single-molecule Förster resonance energy transfer (smFRET) detection has emerged as a 

powerful technique to study the dynamics of single biomolecules under physiological conditions using 

fluorescence as a readout1. A unique aspect of smFRET is its ability to link space and time, i.e., to 

connect structural with kinetic information under both equilibrium and non-equilibrium conditions, 

which is often unachievable using ensemble methods. By measuring the distance-dependent energy 

transfer from a donor to an acceptor fluorophore, distances in the range of 4 to 12 nm can be 

measured with sub-nanometer precision and accuracy2. Various experimental implementations exist 

that allow one to measure smFRET on diverse timescales from picoseconds to hours. All of this 

makes smFRET an ideal tool in the growing field of dynamic structural biology3. 

 

To study conformational dynamics of one single molecule for an extended time (seconds to minutes), 

dye-labeled biomolecules are most commonly immobilized on passivated glass slides and imaged 

using camera-based brightfield detection, or confocal detection using avalanche photodiodes2. The 

resulting fluorescence time traces have a typical time resolution of about 10 ms - 100 ms, and the 

observation time per single molecule is limited by photobleaching, leading to an average bandwidth of 

less than three orders of magnitude in time4–6. Conformational transitions of the biomolecule change 

the inter-dye distance leading to discrete steps in the fluorescence signal and the FRET efficiency 

(Fig. 1). This desired time-resolved distance information is convoluted with largely Gaussian noise in 

the experiment (from autofluorescence background, detector noise, laser fluctuations, etc.). Moreover, 

noise and photobleaching are intrinsically coupled: increasing the laser power for a better signal-to-

noise ratio causes faster photobleaching, which reduces the temporal bandwidth of the experiment. 

As a result, signal interpretation in terms of biomolecular states and specific transitions between them 

is not trivial.  

 

A multitude of analytical approaches have been developed to infer the number of functional states 

and quantify kinetic rate constants from noisy experimental data. Frequently, hidden Markov models 

(HMMs)7 are used to infer an idealized state sequence from which dwell-time distributions are 

compiled, which are then fit (with exponentials) to obtain kinetic rate constants8,9. Alternatively, the 

transition matrix that is part of every HMM can directly be converted to kinetic rate constants. The 

HMM formalism is based on a discrete memoryless Markov process that infers a set of parameters 

(probabilities of states, transitions, and observations) to describe the observed sequence of FRET 

efficiencies. Many extensions of the HMM formalism have been developed10–15 including Bayesian 

approaches16–19, and very fast kinetics (low energy barrier crossings) can be inferred from single-

photon arrival times54,20,55. 

Often, multiple input models are compared based on a scarcity criterion to avoid bias in the selection 

of the optimal model size (i.e., the number of states and rate constants), and hence the number of 

free parameters8,21–23. Other analysis approaches, such as correlation analysis24–28 and discretization 
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methods based on cluster analysis29–32, may treat the raw data in a model-free way while the 

extraction of individual rate constants (rather than residence times only) still relies on an initial guess 

of a model. The growing number of analytical methods renders it increasingly difficult to decide on the 

optimal tool for a specific application and to judge whether the described improvements justify the 

time cost of implementation. Hence, it was identified during a round table discussion of the smFRET 

community (Fluorescence subgroup, Biophysical Society Meeting 2019, Baltimore, US) that a critical 

assessment of the available tools is needed.  

 

Here, we present the results of the first comparative multi-laboratory study that provides a systematic 

evaluation of eleven analysis tools (summarized in Box 1) using simulated as well as experimental 

data of varied complexity. Three of the analysis tools were utilized under different conditions, leading 

to a comparison of 14 different analyses. While clearly not all existing analysis tools could be covered 

(new tools are released continuously and not all authors decided to participate), this blind study 

(illustrated in Fig. 1) allows us for the first time to directly assess the performance of the different 

analysis approaches for the inference of kinetic information from single-molecule FRET trajectories 

and to identify their strengths and weaknesses. Specifically, we assess the accuracy of the inferred 

kinetic model (i.e., the kinetic rate constants and their connectivity) plus the associated uncertainties, 

and this for kinetic models of varied size, from the simple case of a two-state system (Figure 2) to the 

more complex case of a non-equilibrium three-state system (Figure 3), and finally to degenerate 

multi-state systems (Figures 4, 5). All analyses were performed by the expert labs of each tool to 

ensure optimal implementation (see Methods for details).  

 

 
Figure 1 | This blind study reports on the performance of diverse analysis tools to describe 

single-molecule dynamics with quantitative kinetic rate constants. Biomolecular dynamics of 

proteins and nucleic acids can be detected by smFRET and other single-molecule techniques. 

Extracting testable kinetic rate models from the experimental time traces is complicated by 

experimental shortcomings. Multiple labs joined forces to directly test the performance of diverse 

analytical approaches to infer kinetic rate constants in a blind study. 
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Box 1: Overview of the kinetic analysis approaches and software tools considered herein, 
grouped based on similarity. All tools are detailed in the Supplementary Methods. 

# 
Tool 
name 

Key- 
words Description 

Model 
selection 

Uncer- 
tainty 

1 Pome-
granate 

HMM The python package Pomegranate is used for efficient and iterative 
modeling, fitting and evaluation of state numbers using the BIC. Dwell 
time analysis is subsequently performed after defining all transitions 
using a multivariate Gaussian fitting scheme and unbinned maximum 
likelihood fitting. (CI: confidence interval) 

BIC 95 % CI 

2 Tracy HMM Global HMM analysis was performed while setting the FRET efficiency 
and sigma as parameters to be learned. The state transitions and the 
state dwell times are selected by the user in a transition density plot and 
fitted with an exponential to obtain the rate constants. 

Manual 
inspection 

95% CI 

3 FRETboard33 Semi-
supervision, 

remotely 
served 

A semi-supervised classification tool served remotely through a browser 
window. Users supervise the training of a classification model of choice, 
by manually correcting classification of example traces until the quality of 
automated classification is satisfactory. 

Path 
probability 

95% CI 

4 Hidden-
Markury 

  

1D/2D- 
HMM 

Hidden-Markury is a trace analysis software based on an interactive 
Jupyter notebook script, supporting global 1D FRET efficiency traces or 
2D donor & acceptor photon streams, optionally treating degenerate 
states, forbidden transitions, fixed model parameters. 

BIC Sub-
sampling 

5 SMACKS13 1-3D- 
HMM 

Semi-ensemble HMM is used to extract one kinetic model from many 
smFRET fluorescence traces without prior discretization in two steps: (1) 
per trace HMM optimization (2) global per dataset optimization of the 
kinetic model, with pre-trained intensity parameters. 

BIC 95% CI 
  

6 SMACKS 
(SS) 

1-3D- 
HMM 

Test for user bias in semi-supervised inference: independent second 
analysis using SMACKS by S. Schmid. 

BIC 95% CI 
  

7 Correlation Discretized 
correlation 

An unbiased, model-independent approach to obtain quantitative 
relaxation times from the negative amplitude of the cross-correlation 
function24,25. To enable a quantitative analysis of multi-state systems, a 
filtered correlation analysis34 is performed based on the state sequence 
obtained with a step-finding algorithm35. 

BIC 95% 

8 Edge finding 
(CK) 

CK 
filter 

The Chung Kennedy non-linear filter is applied to the time records of 
donor, acceptor and/or FRET efficiency to identify state transition points 
as sudden increases in the standard deviation of points in 
forward/backward predictor windows. Transition edges are confirmed by 
a two-sample student’s t-test on the forward/backward windows. 

Manual 
inspection 

Not 
assessed 

9 Edge finding 
(k-means) 

k-means 
clusters 

All data points in either the donor and acceptor or the FRET efficiency 
time traces are assigned to distinct clusters. The mean value of each 
cluster is calculated and the points are reassigned to clusters to 
iteratively minimize the differences between the point values. Transition 
edges are identified as cluster assignment changes. 

Manual 
inspection 

Not 
assessed 

10 Step finding Line fitting The entire dataset is iteratively fit with an increasing number of line 
segments. The addition of line segments is accepted if the overall fit 
quality is improved significantly. Rate constants are derived from dwell 
time analysis of line segments, which are assigned to a FRET state 
based on their mean FRET efficiencies. (SEM: standard error of the 
mean.) 

Manual 
inspection 

SEM / 
68% CI 

11 STaSI Student’s 
t-test 

Detects step transition using the Student’s t-test. Segments are grouped 
into states by hierarchical clustering. The optimum number of states is 
established using a minimum description length equation that sums the 
goodness of fit measured using the L1 norm to consider the sparseness 
of the states and transitions. (MDL: minimum description length.) 

MDL 95% CI 

12 MASH-FRET 
(bootstrap)36 

STaSI, 
vbFRET, 
bootstrap 

A MATLAB-based GUI for the simulation and analysis of smFRET videos 
and fluorescence time traces52. Initial FRET states are obtained using 
STaSI and a BIC selection on 2D-Gaussian mixtures that model the 
global transition density plot. Refined FRET states, transition rate 
constants and uncertainties are then obtained using vbFRET and single 
exponential fit on bootstrapped dwell time histograms. 

BIC 95% 

13 MASH-FRET 
(prob.)53 

STaSI 
vbFRET 

DPH 
HMM 

The degeneracies of FRET states are estimated from ensemble dwell 
time histograms by performing a BIC selection on phase-type 
distributions. The fix-sized transition rate matrix is finally optimized using 
the Baum-Welch algorithm on hard-assigned FRET state trajectories. 

BIC 95% 
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14 postFRET Monte 
Carlo 

Simple thresholding is used for an initial assessment of the rate 
constants. A computationally-intensive Monte Carlo simulation is then 
used to find simulated trajectories that contain the same rate and error 
pattern as the experimental ones to guess a possible truth. Compare the 
two and adjust the guess for the next iteration. Noisy data is binned for 
the initial thresholding. (LAD: least absolute deviations.) 

LAD 68% CI 
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RESULTS 

The archetypal 2-state system  

We first consider the simplest case of a kinetic 2-state system, which could represent alternation 

between two conformations of a biomolecule in dynamic equilibrium, or transient biomolecular 

interactions. The kinetics of this system are described by two rate constants (Figure 2a). In a blind 

study, we analysed simulated and experimental smFRET data using the diverse set of analysis tools 

summarized in Box 1 and detailed in the Supplementary Methods. Simulated test data (described in 

Supplementary Note 1) has the advantage that the underlying ground truth (GT, i.e., the simulation 

input) is known, which facilitates the evaluation of the inferred results, while, for experimental data, 

the GT is naturally not known. Figure 2b depicts an example of the simulated traces. We note that it 

closely resembles the experimental trace in Figure 2e. Based on a dataset of such simulated traces 

(n=75), all laboratories inferred FRET efficiencies (Fig. 2c) and rate constants (Fig. 2d), which agree 

very well: the FRET efficiencies deviate by less than 17 % from the GT, and the inferred rate 

constants deviate with a maximum of 12 % from the GT (5 % average deviation), with a slight 

systematic underestimation in most cases, i.e., the determined rate constants were slower. 

Pomegranate, FRETboard, and Step finding infer the most accurate rate constants under the tested 

conditions (Table 1). The equilibrium constants K=k21/k12 vary generally less since systematic 

deviations balance each other in this case (Supplementary Fig. 1a). In contrast, the reported 

uncertainty measures vary greatly, independent of the analysis type (0.4 % to 21 % relative to the 

inferred rate constant). For comparison, we estimated the minimal uncertainty given the finite size of 

the dataset, by quantifying the standard deviation of the rate constants obtained from one million 

simulated samples (Supplementary Note 2). This standard deviation is ≥3 % of the rate constants for 

the provided dataset (gray and light gray bars in Fig. 2b shown for 1σ and 2σ, respectively). Thus, 

most analysis tools reported reasonable uncertainty estimates, while some tools reported 

uncertainties that are smaller than this lower limit (Tracy, Correlation, STaSI) or provided no 

uncertainty measures (Edge finding). FRETboard reported consistently very large uncertainties, which 

was solved in their latest software version 0.0.3 (Ref33). Step finding initially found erroneously large 

uncertainties that have been corrected in the latest software version. We note that various methods 

are currently in use for estimating uncertainties which complicates the direct comparison.  

 

Next, we consider experimental data (see Methods), which naturally contains all typical noise sources 

and experimental artefacts (Fig. 2e-g). As there is no GT for experimental data, we assessed the 

consistency of the inferred FRET efficiencies and rate constants using the coefficient of variation (CV, 

i.e., the standard deviation divided by the mean). We found excellent agreement for all inferred FRET 

efficiencies (CV ≤ 2 %). The rate constants vary by 12 % and 16 % (CV for k12 and k21, respectively), 

consistent with the variation found for simulated data (Fig. 2d). Again, no correlation of the rate 

constants with respect to the analysis approach is evident, but the tendency of a given tool for large or 

small uncertainties is conserved (Fig. 2d and 2g), with FRETboard and Step finding reporting the 

largest uncertainties, and STaSI, MASH-FRET (prob.), postFRET, and Correlation the smallest 

uncertainties. In most cases, the equilibrium constants (Supplementary Fig. 1b) agree well with each 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2021.11.23.469671doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.23.469671
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

8 
 
 

other and with the equilibrium populations of the FRET histogram, while some results are inconsistent 

with the latter (Hidden-Markury, Correlation, STaSI, and postFRET).  

Figure 2 | Quantification of simulated and experimental kinetics between two states. a 

Illustration of the kinetic model with two states (circles) connected by forward and backward rate 

constants: k12 and k21. b A simulated FRET trace showing the donor and acceptor fluorescence 

intensity (green, red) and the FRET efficiency (FRET, black), representative for the dataset used in c, 

d: n(traces)=75, n(datapoints)=59,486, sampling rate=5 Hz. c FRET efficiency histogram (gray) with 

assigned states on top and inferred FRET efficiencies in red and blue. Numbers on the right axis refer 

to the analysis tools specified in d. Vertical lines indicate the mean over all tools. d Rate constants 

and uncertainties inferred from the dataset in c by different labs using the respective analysis tools. 

The ground truth (GT) is indicated by horizontal red and blue lines, the intrinsic uncertainty of the 

dataset (see text) is represented by dark gray (1σ) and light gray (2σ) intervals. e An experimental 

time trace with colors as in b, representative for the dataset used in f, g with n(traces)=19, 

n(datapoints)=226,100, using 10 ms time bins resulting in 100 Hz sampling, kindly provided by B. 

Schuler. f FRET histogram with color code and axis labels as in c. No uncertainties were submitted 

for tool #5. g Inferred rate constants from the experimental dataset in f. Color code as in d. Horizontal 

red and blue lines indicate the mean of the inferred rate constants. Supplementary Fig. 2 shows the 

experimental data and analysis with ten times higher time resolution. ‡ denotes results that were 

submitted after the GT was known. The model size was restricted to two states. FRETboard and Step 

finding found erroneously large uncertainty intervals, which has been corrected in their latest software 

versions.  
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Table 1: Summary of the test conditions for the individual datasets, including the prior 

information on ground truth (GT) and number (N) states, as well as three data characteristics: kinetic 

heterogeneity, photo-physics, and signal-to-noise ratio (SNR). [a] Exceptions are labelled with a 

dagger in all figures. [b] See simulation parameters in Supplementary Table N1. [c] The SNR was 

obtained from the FRET efficiency histogram using Gaussian fits and SNR = 

|�� � ��| ���� � ���⁄ . 

  
GT  

known? [a] 
N states 

predefined? 
Kinetic 

heterogeneity 
Photo- 

physics [b] SNR [c]
 

Figure 2 (sim.) No Yes, 2. No Clean 4 

Figure 2 (exp.) No Yes, 2. Not observed Mainly clean 4 

Figure 3 (sim.) No No No Intensity 
variation 3 

Figure 4 (sim.) No No Yes 
Intensity 

variation & 
blinking 

4 

Figure 5 (exp.) No No Yes observed 
Intensity 

variation & 
blinking 

3 

 

 

One important factor in dynamic smFRET data is the signal-to-noise ratio (SNR), which depends on 

the acquired signal per data point and can be controlled by the integration time (also known as 

exposure time). We explicitly tested the effect of a ten-fold shorter integration time. On the one hand, 

this offers better sampling of fast kinetics due to the increased time resolution (1 kHz instead of 

0.1 kHz sampling), but, on the other hand, it results in a lower signal-to-noise ratio which is more 

challenging for state identification. In addition, at 1 kHz sampling, the data shows single-photon 

discretization and non-Gaussian noise (Supplementary Fig. 2a,b), thus deviating from the basic 

assumptions underlying most of the considered analysis tools. Indeed, the overall agreement of the 

rate constants at this lower SNR was reduced: CV= 33 % and 45 % for k12 and k21, respectively 

(Supplementary Fig. 2c), indicating that the benefit of the increased time resolution is minor in this 

case. Nevertheless, the equilibrium constants agree very well again (CV= 2 %, when excluding the 

two clear outliers in Supplementary Fig. 2d) due to the cancelation of systematic shifts for both rate 

constants (Supplementary Fig. 2e). Comparing the rate constants inferred at 1 kHz and 0.1 kHz 

sampling, pomegranate, Tracy, Correlation, MASH-FRET, and Step finding reported similar values 

(Supplementary Fig. 2e), while STaSI inferred slower rate constants for faster sampling. Conversely, 

FRETboard, and SMACKS inferred faster rate constants for faster sampling, either due to fitting noise 

or due to short events that are missed at lower time resolution. The latter is less plausible, given that 

the inferred rate constants are 20-fold smaller than the 0.1 kHz sampling rate. Thus, a comparison 

between 0.1 kHz and 1 kHz sampling can serve to estimate the robustness of the analysis tools 

towards non-Gaussian noise. Taken together, fundamentally different analysis approaches inferred 

consistent rate constants and FRET efficiencies from a simple, two-state system both for simulated 

data and experimental data with varied SNR. 
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Directional sequences in a non-equilibrium steady-state system 

Many biomolecular systems involve more than just two functionally relevant states, leading to more 

intricate kinetic models with more rate constants and, hence, more degrees of freedom. Such systems 

with three or more states can show a conceptually unique thermodynamic phenomenon: the non-

equilibrium steady-state, in which a biomolecule, such as a motor protein or a molecular machine 

such as F0F1-ATP synthase, is driven by continuous external energy input, e.g. in the form of a 

chemical gradient37, light38,39, or ATP. As a result, conformational states may appear in a preferred 

sequence order, causing a non-zero net flow, e.g. for the 3-state system depicted in Fig. 3a: 

�	������� 
–��� 
 �� ����·���·���
���·���·���

� � 0    (1) 

The unique ability to directly observe the non-equilibrium steady-state is a prime example of the 

merits of single-molecule studies. Hence, we investigated it explicitly, using smFRET data simulated 

with a kinetic 3-state model and a non-zero counter-clockwise flow: �	������� � 0 (Fig. 3a,b). As 

an additional challenge, this data contained fluorescence intensity variation between individual dye 

molecules, as observed in experimental data due to varied local dye environment and orientation, 

inhomogeneities in excitation intensity and polarisation, and also variations in detection efficiency40. 

 

All analysis tools found the three clearly separated FRET efficiency populations (Fig. 3c), while the 

inferred rate constants varied more than for the 2-state systems above (Fig. 3d). Most tools 

systematically underestimated k13 and k31 and overestimated all other rate constants. This may be 

attributed to the inevitable effect of time discretization and related intensity averaging: when a 

transition between the high- and low-FRET states happens during a time bin, time-weighted 

averaging (camera blurring) of the FRET efficiencies occurs, leading, in some cases, to mid-FRET 

observations that are indistinguishable from those caused by a bona fide biomolecular conformation. 

While, at the single datapoint level this discretization artefact cannot be prevented, the inference 

accuracy may be improved by treating discretization-induced averaging explicitly in the analysis31,41; 

or using pulsed illumination to reduce blurring42,43. Overall, postFRET and Tracy inferred the most 

accurate rate constants with average GT deviations of 9 % and 14 %, respectively. As shown in Fig. 

3e, qualitatively, the net flow was correctly resolved (most accurately by postFRET, Tracy, and 

FRETboard), while quantitatively it was mostly underestimated, which we attribute to the 

aforementioned systematic misallocation of transitions between states 1 and 3. For this simulated 

dataset, the theoretical lower limit of the uncertainty (as introduced above for the 2-state system) is 

smaller because the dataset is larger. About half of the tools reported uncertainties that are in line 

with this lower limit (grey intervals), while the other half reported none or too small uncertainties. 

Altogether, the rate constants of the non-equilibrium 3-state system with intensity variation were less 

accurate than those of the 2-state system, and also the uncertainty estimation was challenging in this 

case. Nevertheless, the steady-state flow was qualitatively well resolved by most tools. 
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Figure 3 | Quantitative analysis of a non-equilibrium steady-state system. a An illustration of the 

simulated three-state model with a counter-clockwise net flow. States (circles) are connected by 

forward and reverse rate constants as specified. b A simulated smFRET trace with donor and 

acceptor fluorescence intensity (green, red) and FRET efficiency (FRET, black), representative for the 

dataset used in c, d, e: n(traces)=150, n(datapoints)=82,594, sampling rate=10 Hz. c SmFRET 

histogram overlaid with the inferred FRET efficiencies (right axis, numbers as in e) and assigned 

states on top. d Inferred rate constants are shown in red and blue as specified. Vertical lines indicate 

the GT. The intrinsic uncertainty of the dataset is represented by dark gray (1σ) and light gray (2σ) 

intervals. Analysis tools are numbered as in e. e The inferred cyclic flow in the counter-clockwise 

direction determined by calculating ∆G from Equation (1) and compared with the GT value (solid 

vertical line). The uncertainty intervals (dark and light gray) are plotted as in d. Additional simulations 

to validate the dataset are shown in Supplementary Fig. 3. ‡ denotes results that were submitted after 

the GT was known. Edge finding did not report uncertainties. § denotes that the misassignment of 

start and end states was corrected after the GT was known. 
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States with overlapping FRET efficiencies 

Many biological systems show multi-exponential dwell-time distributions with long and short dwell 

times for the same apparent FRET state44–46,6. This can, for example, arise when the one-dimensional 

reaction coordinate spanned by the FRET pair is not sufficient to uniquely identify structural states in 

3D space. Such kinetic heterogeneity is difficult to interpret because transitions between states with 

identical or overlapping FRET efficiencies cannot be directly observed in the recorded time traces, 

while they can often be inferred kinetically. To investigate this case, we simulated kinetic 

heterogeneity based on a four-state model (Fig. 4a) where states 1 and 2 have the same low-FRET 

efficiencies, and states 3 and 4 have the same high-FRET efficiencies. Again, the fluorescence traces 

included intensity variations between FRET pairs as observed in the experiment (introduced in the 

previous section), and also donor and acceptor blinking was included, as an additional imperfection of 

the data. Fig. 4b shows example traces from the simulation and Fig. 4c shows the FRET efficiency 

histogram with two peaks. Without a priori knowledge of the model size, most tools identified the 

correct number of two apparent FRET states, while FRETboard used three FRET states to describe 

the data. Edge finding was not developed to deal with such kinetic heterogeneity, and Pomegranate, 

Correlation, STaSI and MASH-FRET (bootstrap) reported FRET efficiencies but no kinetic models. In 

the following, we use cumulative dwell-time distributions derived from each inferred model (Fig. 4d, 

detailed in Supplementary Note 3) to compare models with the correct number of FRET states but 

differences in the kinetic model, such as the connectivity of states or the number of hidden states 

(rate constants of all inferred models are reported in the Supplementary Table 1, and in the 

Supplementary Datafiles). Out of the seven independently inferred kinetic models, the two models 

without kinetic heterogeneity (by Step finding and postFRET) show the largest deviations from the 

GT, as these models cannot reproduce the multi-exponential nature of the dwell-time distribution. On 

the other hand, the four models inferred by the HMM-based Hidden-Markury, SMACKS, 

SMACKS(SS), as well as MASH-FRET (prob.) show good agreement with the GT and overlay the GT 

in the low- and high-FRET case (compare Fig. 4d). A quantitative comparison of these four models 

and their uncertainties is provided in Supplementary Figure 4. While model selection remains a main 

challenge in inferring kinetic information from smFRET trajectories, it is encouraging that several 

analysis tools can deduce kinetic models that closely reproduce the GT even under difficult conditions 

involving kinetic heterogeneity. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2021.11.23.469671doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.23.469671
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

13 
 
 

 
 

Figure 4 | Resolving kinetic heterogeneity: states with indistinguishable FRET efficiencies but 

different kinetics. a An illustration of the simulated GT model with states (circles) connected by 

forward and reverse rate constants. States 1 and 4 as well as states 2 and 3 have indistinguishable 

FRET efficiencies, causing kinetic heterogeneity. b Two simulated FRET traces offset in time with 

donor and acceptor fluorescence intensity (green, red) and FRET efficiency (FRET, black) are shown, 

representative for the dataset used in c, d: n(traces)=250, n(datapoints)=56,794, sampling rate=5 Hz. 

c FRET histogram with inferred FRET efficiencies overlaid (right axis: legend as in Box 1 and in all 

Figures). d Comparison of cumulative dwell time distributions derived from the kinetic models with two 

FRET states (detailed in Supplementary Note 3). The GT histogram is shown as a bold black line. 

Insets show zoomed-in views of the data indicated by the squares. The rate constants of the four 

models that most closely reproduce the GT are quantitatively compared in the Supplementary Figure 

4. All inferred values of all models are reported in the Supplementary Tables 1 and in the 

Supplementary Datafiles. ‡ denotes results that were submitted after the GT was known. No results 

were reported by Edge finding. Participants were informed that kinetic heterogeneity may be involved, 

but not in which configuration. 
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Full complexity of a black-box experiment 

Encouraged by the previous results, we tested all tools vis-à-vis the full experimental complexity to 

see if they perform similarly as in the simulated case (Fig. 4). Three experimental datasets of the 

same biological system (protein binding to a fluorescently labelled DNA, see Methods), under different 

experimental conditions and thus different kinetic behaviour, served as a test case. However, the 

analysts had no prior information on the molecular system causing the dynamics. This means that all 

the effects discussed so far could potentially be present in these experimental datasets: multiple 

FRET states, diverse noise sources, fluorophore blinking, directional steady-state flow and kinetic 

heterogeneity. In addition, the fluorescence intensity variation between single molecules was 

particularly high in these datasets (see Figure 5a,d,g), which complicated the inference of the 

number of states and rates involved (subsequently referred to as model selection). Under these 

complex conditions, the inferred number of FRET states (Fig. 5b,e,h) varied more than in the 

simulated case (discussed in Fig. 4). Most tools found two FRET states (Fig. 5b,e,h, some of them 

including kinetic heterogeneity), but also three, four, or more different FRET states were reported 

(Supplementary Figure 5), and the kinetic rate constants varied accordingly. Given the inherent lack 

of GT information in experimental data, we cannot quantitatively assess the accuracy in this 

comparison. To balance this fact, we qualitatively compare the inferred results for all three datasets. 

The 6-7 models with two FRET states are compared in (Fig. 5c,f,i). Other models with three, four, or 

more FRET states are compared in Supplementary Figures 5-7. (All inferred rate constants are given 

in Supplementary Tables 2-4 and Supplementary Datafiles). Again, we use cumulative dwell-time 

distributions (cf. last section) derived from each inferred model (Fig. 5c,f,i) to compare models with 

the same number of FRET states but possibly different state connectivity. The distributions are thus 

single- or double-exponential depending on the reported kinetic model. The five tools that inferred two 

FRET states and qualitatively similar kinetic models under all three conditions despite different 

analysis approaches, are the HMM-based Hidden-Markury and SMACKS, as well as Step finding, 

postFRET and MASH-FRET (prob.). While postFRET consistently inferred slower rate constants, the 

qualitative agreement among the other five tools is surprisingly good (CV ≤ 25 % for the average 

residence time) despite the complexity of the input data, the missing prior knowledge about the 

system, and the different analysis approaches used.  

Altogether, we conclude that model selection and state allocation are currently the key challenges in 

the analysis of kinetic data. In this study, we focused only on the analysis of fluorescence intensity 

and FRET efficiency data. The addition of complementary information from simulations or 

experiments (e.g., static molecular structures and other observables, such as fluorescence lifetimes, 

anisotropy, and more) may help to elucidate complicated or otherwise underdetermined 

systems28,47,48. 
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Figure 5 | Increased experimental complexity. Results inferred from three experimental datasets 

where naturally no GT exists. a,d,g Experimental traces, offset in time and separated by dashed 

vertical lines, with donor and acceptor fluorescence intensity (green, red) and FRET efficiency (FRET, 

black), representative for the datasets used in (b,c), (e,f), (h,i), respectively, with n(traces): 134, 163, 

118; and n(datapoints): 36,604, 37,067, 43,512; sampling rate=33 Hz. All three datasets were kindly 

provided by M. Schlierf. b,e,h FRET efficiency histograms and FRET efficiencies inferred by the 

analysis tools numbered as in j. For clarity, only the smallest reported model is shown for each 

analysis tool, up to a maximum of four FRET states. All inferred FRET efficiencies are shown in 

Supplementary Figure 5, and all inferred results are provided in the Supplementary Tables 2-4 and in 

the Supplementary Datafiles. Purple arrow in (e): the error bar extends to 1.61. Teal arrow in (h): the 

error bar extends to -0.53. c,f,i Cumulative distribution functions (CDF) of the dwell-times simulated 

using the inferred kinetic models with two FRET states, obtained with the tools numbered as in j. j 

Legend with all analysis tools. No results were reported by Edge finding. ‡ denotes results that were 

submitted after all other results were known. 
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DISCUSSION 

In this blind study, we compared eleven kinetic analysis tools for the inference of quantitative kinetic 

rate constants based on single-molecule FRET trajectories. We explicitly considered the major 

(kinetic) challenges that the single-molecule experimentalists are typically confronted with: 

determining the best model to describe the data, especially with multiple FRET states, a varying 

signal-to-noise ratio, directional non-equilibrium steady-state flow, and kinetic heterogeneity (i.e., 

states with indistinguishable FRET efficiency but distinct kinetics). We assessed the inferred FRET 

efficiencies, rate constants, and the reported uncertainties, based on three simulated datasets and 

four experimental datasets from two biological systems measured using two different setups in 

different laboratories. The simulated data allowed us to directly assess the accuracy of the inferred 

rate constants using the known ground truth model and to judge the plausibility of the reported 

uncertainty measures, while the experimental data shows the relevance and validity of this study.  

 

We found that the number of states was correctly inferred by all tools, as long as their FRET 

efficiencies were clearly separated (Figs. 2 and 3). In the presence of kinetic heterogeneity with 

overlapping FRET states, model selection was more challenging (Fig. 4). In this case, three tools 

successfully inferred models that accurately reproduce the dwell-time distribution of the GT despite 

overlapping FRET states (Hidden-Markury, MASH-FRET, SMACKS). In general, the accuracy of the 

rate constants inferred by all tools decreased with increasing model size and complexity, where time 

discretization artefacts and inter-trace intensity variation become increasingly challenging. The 

equilibrium constants and steady-state flow were more accurately inferred than individual rate 

constants due to the cancellation of systematic errors (Supplementary Figs. 1 and 2d,e, Fig. 3). 

Caution is advised with the uncertainties of rate constants since different uncertainty measures are 

reported by different approaches. Even for small models (Figs. 2 and 3), we found that some 

uncertainty estimates were smaller than the uncertainties caused by the finite dataset size, while 

interestingly, more plausible uncertainties were reported for the more complex model in Fig. 4 

(Supplementary Fig. 4). In general, the comparison of uncertainties is complicated by the fact that no 

common standard exists and the mathematical interpretation of the reported uncertainty intervals 

differs from tool to tool.  

 

When comparing various analysis frameworks, model-free approaches are generally considered 

advantageous for an unbiased data analysis. However, HMM-based tools (that compare several input 

models based on scarcity criteria) were found to be more robust towards data heterogeneity (Figs. 4 

and 5, Supplementary Fig. 2). Nevertheless, we did not observe a clear overall clustering of the 

inferred rate constants with the underlying analysis framework, likely due to differences in the data 

handling beyond the used algorithms (e.g. supervised, semi-supervised, or unsupervised inference). 

The total analysis durations (processing and computation) ranged from a few minutes to several 

hours depending on the analysis tool and the model size, with StaSI and StepFinding ranking among 

the fastest, and SMACKS among the slower tools. In the course of this study, multiple conceptual 

oversights could be found and solved in a number of tools, which is a direct constructive result of this 
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collaborative comparison study that led to the general recommendations stated in Box 2. Additionally, 

a simple shareable smFRET data format was introduced (Supplementary Note 4) and utilized by all 

twelve labs working in diverse software environments. We anticipate that this data format will facilitate 

future collaborations and significantly lower the barrier for an experimentalist to adopt a newly 

developed analysis tool if it supports the accepted format.  

 

Box 2: General recommendations for users and developers of kinetic inference tools. 

In the course of this study, several difficulties with the analysis of kinetic data have become 

apparent. Out of this experience, we have compiled a list of recommendations for those developing 

and using kinetic analysis tools. 

(i) As a general consistency test, the inferred kinetic model (connectivity and rate constants) can be 

simulated and the output of the simulation compared to the original input data. For example, the 

simulator used herein is publicly available as a simple and powerful (Matlab) tool to test whether the 

proposed model can generate data analogous to the original input, e.g. regarding FRET histogram, 

smFRET traces, etc. 

(ii) Potential biases in the analysis (e.g. regarding model size, state occupation, etc.) can be 

revealed by subjecting the re-simulated data (with known ground truth) to the same analysis 

approach as the experimental data. 

(iii) Where possible, kinetic models with a specific number and connectivity of states are preferred 

over mean residence times, since the latter leave the individual transition rate constants 

undetermined for more than 2 states.  

(iv) Benchmarking new analysis tools using datasets of varied complexity – including models with 

more than 2 states – can reveal systematic errors, e.g. regarding the weighting of multiple rate 

constants that depopulate a given state, an issue encountered in this study. 

(v) Benchmarking new software with established test data helps the potential users to judge the 

added benefits of newly introduced analysis tools. The diverse datasets used herein are publicly 

available and can serve to assess a tool’s performance under varied experimental conditions. 

(vi) Supporting broadly accepted file formats for newly developed analysis tools facilitates fast 

dissemination in the field. We offer the simple format described in Supplementary Note 4, which 

proved to be very useful for this study. 

 

Looking ahead, a particularly promising outlook is the possibility to characterize individual states with 

individual noise patterns more accurately, using machine learning. Recently, deep learning 

approaches have been developed for the unbiased selection of single molecule traces for further 

kinetic analysis49,50. Similar approaches could be envisioned for a model-free kinetic analysis, which 

bears the potential to improve model selection significantly51,18. Demonstrating such new tools using 

public training datasets and supporting the simple file format introduced in this study, will accelerate 

the dissemination of the newest theoretical developments within the community of single-molecule 

experimentalists.  
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In conclusion, this first blind study on kinetic inference from smFRET data further validates the use of 

smFRET in deciphering biomolecular rates. It unequivocally reveals the current strengths and 

weaknesses of the various analysis approaches when tested against frequently encountered 

phenomena in smFRET experiments, and provides a reference standard for the continuous 

developments in this active field. We anticipate that this study will serve the community as a guide for 

data interpretation, spark future developments in kinetic inference, and therefore help to advance our 

understanding of biomolecular dynamics leading to function. 
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METHODS 

Procedure of this benchmark study 

The need for a comparison of analysis tools for smFRET trajectories has grown with the increasing 

number of smFRET users and published tools. This was addressed at the Biophysical Society 

Meeting 2019 (Baltimore, US) by initiating a kinetic software challenge, short kinSoftChallenge. In line 

with more efforts to assess, promote, and potentially standardize experimental and analytical 

smFRET procedures (Refs2,3 and Gebhardt et al., in preparation), the kinSoftChallenge represents an 

important step aimed to improve the reliability and accuracy of kinetic inference from smFRET 

trajectories. In a first round of the study (July 2019 to November 2019), the participants received three 

simulated datasets (shown in Figs. 2, 3, and 4). In the second round (December 2019 to February 

2020), the participants analyzed the experimental dataset shown in Fig. 5. Experimental data with 

high and low SNR was compared in a third round (November to December 2020, shown in Fig. 2, and 

Supplementary Fig. 2). The individual test conditions are described in the text and summarized in 

Table 1. All challenge rounds were conducted as blind studies, i.e., the participants did not have 

ground truth information during data analysis (exceptions are labeled with a dagger in all Figures).  

 

The simulations are detailed in the Supplementary Note 1. The experimental data shown in Figure 2 

and Supplementary Figures 1,2,3 was kindly provided by Benjamin Schuler. It shows the interaction 

between the nuclear-coactivator binding domain of CBP/p300 (NCBD) and the intrinsically disordered 

activation domain of the steroid receptor coactivator 3 (ACTR), measured using confocal single-

photon detection5. The experimental data shown in Figure 5 and Supplementary Figure 5 was kindly 

provided by Michael Schlierf. It shows binding of single-strand binding proteins (SSB) to a 

fluorescently labelled DNA hairpin, measured in prism-type total-internal reflection fluorescence 

(TIRF) mode using camera-based detection (EMCCD)4. Supplementary Figures and Notes on the 

simulations, validations, minimal uncertainty estimation, and the file format used herein are provided 

as Supplementary Information, along with detailed descriptions of all analysis tools and additional 

data tables. All inferred results as well as simulation scripts and parameters are provided as 

Supplementary Datafiles.  
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