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Abstract

Artificial Intelligence (Al) can extract clinically actionable information from medical image data. In
cancer histopathology, Al can be used to predict the presence of molecular alterations directly from
routine histopathology slides. However, training robust Al systems requires large datasets whose
collection faces practical, ethical and legal obstacles. These obstacles could be overcome with
swarm learning (SL) where partners jointly train Al models, while avoiding data transfer and
monopolistic data governance. Here, for the first time, we demonstrate the successful use of SL in
large, multicentric datasets of gigapixel histopathology images comprising over 5000 patients. We
show that Al models trained using Swarm Learning can predict BRAF mutational status and
microsatellite instability (MSI) directly from hematoxylin and eosin (H&E)-stained pathology slides of
colorectal cancer (CRC). We trained Al models on three patient cohorts from Northern Ireland,
Germany and the United States of America and validated the prediction performance in two
independent datasets from the United Kingdom using SL-based Al models. Our data show that SL
enables us to train Al models which outperform most locally trained models and perform on par with
models which are centrally trained on the merged datasets. In addition, we show that SL-based Al
models are data efficient and maintain a robust performance even if only subsets of local datasets
are used for training. In the future, SL can be used to train distributed Al models for any
histopathology image analysis tasks, overcoming the need for data transfer and without requiring
institutions to give up control of the final Al model.
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Introduction

Artificial intelligence (Al) is expected to have a profound impact on the practice of medicine in the
next ten years.'™ In particular, medical imaging is already in the process of being transformed by the
application of Al solutions.®> Such Al solutions can automate manual tasks in medical image analysis,
but can also be used to extract hidden information beyond what is visible to the human eye.®’ In
particular, digitized histopathology images contain a wealth of clinically relevant information which Al
can extract.® For example, deep convolutional neural networks have been used to predict molecular
alterations of cancer directly from routine pathology slides.®™ In 2018, a landmark study showed a
first proof-of-principle for this technology in lung cancer.® Since then, dozens of studies have
extended and validated these findings to multiple tumor types including colorectal cancer (CRC)****°,
gastric cancer'®, bladder cancer®, breast cancer®®, among other tumor types'®*?'"*®, These methods
expand the utility of hematoxylin and eosin (H&E) stained tissue slides from routine tumor diagnosis
and subtyping to a source for direct prediction of molecular alterations.?

Al models are data hungry. In particular, in histopathology, the performance of Al models in
increases with the size and diversity of the training set.*®**? Training clinically useful Al models
usually requires sharing of patient-related data with a central repository.?*?? In practice, such data
sharing - especially across different countries - faces legal and logistic obstacles. Data sharing
between institutions may require patients to forfeit their rights of data control. This problem has been
tackled by (centralized) federated learning (FL)®?* in which multiple Al models are trained
independently on separate computers (peers). In FL, peers do not share any input data with each
other and only share the learned model weights. However, a central coordinator governs the learning
progress based on all trained models, monopolizing control and commercial exploitation.

In the last two years, this limitation of FL has been addressed by a new group of decentralized
learning technologies, including blockchain FL? and swarm learning (SL).”® In SL, Al models are
trained locally and models are combined centrally without requiring central coordination. By using
blockchain-based coordination between peers, SL removes the centralization in FL and raises all
contributors to the same level. In the context of healthcare data analysis, SL leads to equality in
training multicentric Al models and creates strong incentives to collaborate without concentrating
data or models in one place. This could potentially facilitate collaboration between multiple parties,
hence generating more powerful and more reliable Al systems. Ultimately, SL could improve the
quality, robustness and resilience of Al in healthcare. However, SL has not been systematically
applied to medical image data in oncology. In particular, it has not been applied to histopathology
images, a common data modality with a high information density.?

To address this, we performed a retrospective multicentric study of SL for Al-based prediction of
molecular alterations directly from conventional histology images. As pathology services are currently
undergoing a digital transformation, embedding these Al methods into routine diagnostic workflows
could ultimately enable pre-screening of patients, thereby reducing the number of costly genetic tests
and increasing the speed by which results are available to clinicians.?” The prediction performance of
such systems increases markedly by training on thousands rather than just hundreds of patients.'*?
We hypothesized that SL could be a substitute for centralized collection of large patient cohorts in
histopathology, improving prediction performance® and generalizability?> without centralizing data
collection or control over the final model.
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Materials and Methods

Ethics statement

This study was carried out in accordance with the Declaration of Helsinki. This study is a
retrospective analysis of digital images of anonymized archival tissue samples from five cohorts of
CRC patients. Collection and anonymization of patients in all cohorts took place in each contributing
center. Ethical approval for research use of all cohorts was obtained from each contributing center.

Patient cohorts

We collected digital whole slide images (WSI) of H&E-stained slides of archival tissue sections of
human colorectal cancer (CRC) from five patient cohorts (clinico-pathological characteristics in Table
1). First, the Northern Ireland Epi700 (n=661, Suppl. Figure S1) cohort study on colon cancer of only
patients with stage II-lll cancer, provided by the Northern Ireland Biobank?®*?° (application NIB20-
0346). Second, the “Darmkrebs: Chancen der Verhitung durch Screening” study (DACHS, n=2448,
Suppl. Figure S2), a large population-based case-control study, including samples of CRC patients
at different disease stages recruited at >20 hospitals in Germany, which is coordinated by the
German Cancer Research Center (DKFZ, Heidelberg, Germany)®*2. Third, “The Cancer Genome
Atlas” (TCGA) CRC cohort (n=632, Suppl. Figure S3), a large collection of tissue specimens from
multiple study centers across different countries, but largely from the United States of America
(USA).* Fourth, the “Quick and Simple and Reliable” (QUASAR) trial (n=2206, Suppl. Figure S4),
which originally aimed to determine survival benefit from adjuvant chemotherapy in CRC patients
from the United Kingdom (UK)**. Fifth, the Yorkshire Cancer Research Bowel Cancer Improvement
Programme® (YCR-BCIP) cohort (n=889 surgical resection slides, Suppl. Figure S5), collected in
the Yorkshire Region in the UK. For all cohorts, BRAF mutational status and microsatellite instability
(MSI) / mismatch repair deficiency (dAMMR)* data were acquired. In YCR-BCIP, analysis of BRAF
was only undertaken for dMMR tumors and BRAF mutational status was therefore not assessed in
this cohort in the current study.

Deep learning and swarm learning method

For prediction of molecular features from image data, we adapted our weakly-supervised prediction
pipeline “Histology Image Analysis (HIA)* which was demonstrated to outperform similar approaches
for mutation prediction in a recent benchmark study.®” Briefly, the workflow entails the following steps:
As preprocessing step, high resolution WSIs were tessellated into patches of size (512 x 512 x
3) pixels and color-normalized.®® During this process, blurry patches and patches with no tissue are
removed from the data set using canny edge detection in OpenCV.*’ Subsequently, we used
ResNet18 to extract a (512 x 1) feature vector from 150 randomly selected patches for each patient,
as previous work showed that 150 patches are sufficient to obtain robust predictions.’ Feature
vectors and patient-wise target labels (BRAF or MSI status) served as input to a fully connected
classification network (FCN). The FCN comprised four layers with (512x256), (256x256), (256x128)
and (128x2) connections with a ReLU activation function (hyperparameters in Suppl. Table S1). The
swarm learning architecture had four components, running as separate processes (hodes) on
separate bare-metal servers (peers) in a Docker container. The key component is the Swarm
Learning (SL) process, containing HIA (Suppl. Figure S6A). During training in the SL process on
three devices, the network weights are sent to a Swarm Network (SN) process, which coordinates
peer crosstalk and sends back averaged weights to the SL process. Peer crosstalk happens once
every synchronization interval (“sync interval”). Averaging and exchange of weights is coordinated by
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an Ethereum blockchain.®® For identity management, a Secure Production Identity Framework for
Everyone (SPIFFE) running on its own virtual environment (SPIFFE Runtime Environment, SPIRE)
serves as the third process, generating a secured gateway between peers. Formal hyperparameter
optimization was performed for the sync interval for the task of MSI status prediction (Suppl. Figure
S6D-E). Technical details are available in Suppl. Methods.

Experimental Design and Statistics

Throughout the study, TCGA, Epi700, DACHS were used as training cohorts and QUASAR and
YCR-BCIP were used as external test cohorts (Table 1). First, we trained MSI and BRAF classifiers
on each of the training cohorts individually. Second, all training cohorts were merged and new
classifiers were trained on the merged cohort. Third, classifiers were trained by SL, with the SL
training process being initiated on three separate bare metal servers containing one training cohort
each. Finally, all models were externally validated on the validation cohorts. Two variants of SL were
explored: baseline SL and weighted SL. For baseline SL, each cohort was trained for a fixed number
of epochs and two resulting models were saved at two checkpoints, b-chkptl and b-chkpt2. B-chkpt 1
was reached when the smallest cohort concluded the final epoch. B-chkpt2 was reached when the
second-smallest cohort concluded the final epoch. In baseline SL, all cohorts were assigned an equal
weight. This is motivated by the fact that at the start of training, partners might not know the total
amount of data they contribute because more data can be dynamically added during training. On the
other hand, if partners know exactly how much data they will contribute, differences in cohort sizes
can be compensated by applying proportional weights. Hence, in weighted SL, smaller cohorts are
trained for more epochs than larger cohorts, but contribute proportionally less to the final model. In
weighted SL, only one model checkpoint is generated, w-chkpt. Finally, to investigate data efficiency,
we repeated all experiments for subsets of 25, 50, 100, 200, 300 and 400 patients per cohort,
randomly selected in a stratified way (preserving class proportions). All experiments were repeated
five times with different random seeds. The primary endpoint for this study was the area under the
receiver operator characteristic curve (AUROC) for detection of binary categorical outputs. The
AUROCs of five training runs of a given model were compared. A two-tailed unpaired t-test with p<=
0.05 was considered statistically significant. In the manuscript, AUROCs are given as mean +/-
standard deviation. All raw results of all experimental repetitions are available in Suppl. Table S2.

Code availability

All source codes for the baseline histology image analysis (HIA) workflow are available at
https://github.com/KatherLab/HIA.  Source codes for Swarm-HIA are available at
https://github.com/KatherLab/SWARM. We built our codes on top of the “SL community edition” by
Hewlett Packard Enterprise (HPE, Spring, Texas, United States), which is publicly available under an
Apache 2.0 license at https://github.com/HewlettPackard/swarm-learning.
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Results

Histology image analysis workflows can be coupled with swarm learning

In this study, we aimed to develop a swarm-learning-capable histopathology Al model for molecular
classification of solid tumors based on histopathology images (Figure 1A, Suppl. Figure S6A). We
collected three large datasets (Figure 1B, Figure 2A) in three physically separate computing servers
(Suppl. Figure S6B), integrated an end-to-end histopathology Al pipeline with a swarm callback and
optimized the synchronization (sync) interval between peers, i.e. different physical computers (Suppl.
Figure S6C). We found that synchronizing learning progress between peers once every four
iterations (Figure 2B-C) yielded the highest performance in a benchmark task (MSI prediction,
Suppl. Figure S6D) while retaining a low overall training time (Suppl. Figure S6E). Total training
time was inversely proportional to the sync interval and was 01:17:41(hours:minutes:seconds) for a
sync interval of 1, compared to 00:18:40 and 00:09:26 for sync intervals of 4 and 8 iterations,
respectively, indicating that the swarm learning time was dominated by network communication
overhead (Suppl. Figure S6E).

Swarm learning performance is on par with models trained on the merged dataset

We then used our swarm-capable histology image analysis model in a retrospective multicenter study
for prediction of BRAF mutational status from colorectal cancer (CRC) histopathology WSIs. First, we
trained local Al models on each of three training cohorts separately: Epi700 (N=594 patients from
Northern Ireland), DACHS (N=2039 patients from southwest Germany) and TCGA (N=426, Figure
1B). Evaluating the patient-level prediction performance of these local models on the QUASAR
cohort (N=1774 patients from the UK), we found that these models achieved AUROCSs of 0.7358 (+/-
0.0162), 0.7339 (+/- 0.0107) and 0.7071 (+/- 0.0243) when trained on Epi700, DACHS and TCGA
alone, respectively (Figure 2D). Merging the three training cohorts on a central server (centralized
model) significantly improved prediction AUROC to 0.7567 (+/- 0.0139, p=0.0727 vs. Epi700,
p=0.0198 vs. DACHS, p=0.0043 vs. TCGA, Suppl. Table S3). This was compared to the
performance of SL-Al models: B-chkptl was obtained when the partner with the smallest training
cohort (TCGA) reached the last epoch (Figure 2B). This model achieved a prediction AUROC on the
test set of 0.7634 (+/- 0.0047), which was significantly better than each local model (p=0.0082 vs.
Epi700, p=0.0005 vs. DACHS, p=0.0009 vs. TCGA), but not significantly different from the merged
model (p=0.3433, Figure 2D). B-chkpt2, which was obtained when the partner with the second-
smallest training cohort reached the last epoch, achieved a similar performance: This model
achieved an AUROC of 0.7621 (+/- 0.0045), which was significantly better than each local model
(p=0.0105 vs. Epi700, p=0.0006 vs. DACHS, p=0.0011 vs. TCGA), and on par with the merged
model (p=0.4393, Figure 2D). We validated these findings in a different task, prediction of
MSI/dMMR status in the QUASAR (Figure 2E) and YCR-BCIP (Figure 2F) cohort. In QUASAR, b-
chkptl and b-chkpt2 achieved prediction AUROCs of 0.8001 (+/- 0.0073) and 0.8151 (+/- 0.0071),
respectively and thereby significantly outperformed single-cohort models trained on Epi700 with an
AUROC of 0.7884 (+/-0.0043 (p=0.0154 and p=8.79E-05 for B-chkptl and -2, respectively, Suppl.
Table S4). Similarly, SL outperformed MSI prediction models trained on TCGA with an AUROC of
0.7639 (+/-0.0162) (p=1.09E-05 and p=6.14E-07 for b-chkptl and2, respectively). However, there
was no significant difference between the model trained on the largest data set DACHS compared to
b-chkptl or -2 in QUASAR (Figure 2E) and YCR-BCIP (Figure 2F). As another variation of SL, we
added adjustable cohort weights proportional to the cohort size and obtained the weighted SL-Al
model w-chkpt. For prediction of BRAF mutational status, w-chkpt achieved an AUROC of 0.7736 (+/-

6


https://doi.org/10.1101/2021.11.19.469139
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.19.469139; this version posted November 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

0.0057). This represented a significant improvement compared to all other models, including the local
models of Epi700 (p=0.0015), DACHS (p=8.65E-05), TCGA (p=0.0004), but also the merged model
(p=0.0374) and b-chkptl (p=0.0154) and b-chkpt2 (p=0.0081, Figure 2D, Suppl. Table S3). For MSI
prediction in QUASAR, w-chkpt significantly outperformed the local Epi700 model (p=8.93E-06) and
the local TCGA model (p=2.83E-07) while the performance differences compared to the DACHS
model were not statistically significant (DACHS AUROC 0.8326 [+/- 0.0090] vs. w-chkpt AUROC
0.7403 [+/- 0.0878], p=0.05705, Figure 2E, Suppl. Table S4). Similar results were obtained for the
second MSI validation dataset (Figure 2F, Suppl. Table S5). Compared to the merged model, w-
chkpt was not significantly different for MSI prediction in QUASAR (merged AUROC 0.8308 [+/-
0.0190] vs. w-chkpt AUROC 0.8326 [+/- 0.0089], p=0.8650) or MSI prediction in YCR-BCIP (merged
AUROC 0.8943 [+/- 0.0161] vs. w-chkpt AUROC 0.8882 [+/- 0.0084], p=0.4647), i.e. the merged
model and w-chkpt performed on par (Figure 2E-F). Together, these data show that swarm-trained
models consistently outperform local models and perform on par with centralized models in pathology
image analysis.

Swarm learning models are data-efficient

Learning from small datasets is a challenge in medical Al because prediction performance generally
increases with increasing size of the training dataset.'®® Therefore, we investigated whether SL
could compensate for the performance loss which occurs when only a small subset of patients from
each institution is used for training. We found that restricting the patient number in each training set
to 400, 300, 200 and 100 markedly reduced prediction performance for single-dataset models. For
example, for prediction of BRAF mutational status in QUASAR, training on only a subset of patients
in Epi700, DACHS or TCGA markedly reduced prediction performance and increased the model
instability as measured by interquartile range (IQR) of predictions in experimental repetitions (Figure
3A, Suppl. Table S6). In particular, for training BRAF prediction models on the largest cohort
DACHS there was a pronounced performance drop in AUROC from training on all patients (AUROC
0.7339 [+/- 0.0108]) to an AUROC of 0.6626 [+/- 0.0162] when restricting the number of patients in
the training set to 200 patients. Performance losses for the model which trained on the centrally
merged data were less pronounced down to a number of 50 patients per cohort (Figure 3A).
Strikingly, swarm learning was also able to rescue the performance: down to 100 patients per cohort,
weighted swarm learning (w-chkpt) maintained a high performance of 0.7000 (+/- 0.0260) for 100,
0.7139 (+/- 0.0149) for 200 and 0.7438 (+/- 0.0093) for 300 patients. These models were not
statistically significantly different from the merged model (p=0.7726, p=0.7780, p=0.2719, p=0.7130
for 100, 200, 300, 400 patients, respectively, Figure 3A). Similarly, b-chkptl and b-chkpt2
maintained a high performance (comparable to the merged model) down to 100 patients per cohort.
For MSI prediction in QUASAR, w-chkpt was comparable to the merged model down to 300 patients
per cohort (p=0.4342 and p=0.7847 for 300 and 400 patients, respectively). For 200 patients or less,
the merged model outperformed local models and swarm models (Figure 3B, Suppl. Table S7).
Similarly, for MSI prediction in YCR-BCIP, single-cohort performance dropped as patients were
dropped from the training set but the merged models and swarm models could partially rescue this
performance loss, although the merged model outperformed the swarm in this experiment(Figure
3C, Suppl. Table S8). All raw data are available in Suppl. Table S2. Together, these data show that
swarm learning models are highly resilient to small training datasets for prediction of BRAF
mutational status and partially resilient to small training datasets for prediction of MSI status.
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Swarm learning models are interpretable and learn plausible patterns

Medical Al models should not just give a high performance but should also be interpretable.”® We
investigated explainability by extracting the highest-scoring image patches for models trained on all
individual training cohorts (Figure 4A-C), the merged cohort (Figure 4D) and the swarm models b-
chkptl and b-chkpt2 (Figure 4E-F). In most cases there was a histological phenotype known to be
associated with BRAF mutational status such as mucinous histology and/or poor differentiation.**
However, we also observed that the highly scoring patches identified by the TCGA model failed to
represent classical histopathological features of BRAF mutation and indeed 7 out of 9 highly scoring
tiles in this group showed no tumor tissue or abundant artifacts (Figure 4C). The observation that
such low-information patches were flagged by the model as being highly relevant shows that a model
trained on TCGA only does not adequately learn to detect relevant patterns. Conversely, both swarm
learning models identified plausible histopathological patches (i.e. patches with an expected
phenotype) in 9 out of 9 highly scoring patches for BRAF mutation. Together, these data show that
swarm learning-based Al models can generate predictions which are explainable and plausible to
human experts even if not all of the single-cohort models trained on the same patient cohorts exhibit
this behavior.
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Discussion

Currently, the total amount of healthcare data is increasing at an exponential pace. In particular in
histopathology, institutions across the world are digitizing their workflows, generating an abundance
of data.® These image data can be used in new ways, for example to make prognostic and predictive
forecasts, aiming to improve patient outcomes.?® However, Al requires large and diverse datasets and
its performance scales with the amount of training data.’®? To train useful and generalizable Al
models, institutions should be able to collaborate without jeopardizing patient privacy and information
governance. In 2016, federated learning (FL) was proposed as a technical solution for such privacy-
preserving distributed Al.*? FL enables joint training of Al models by multiple partners who cannot
share their data with each other. However, FL relies on a central coordinator who monopolizes the
resulting Al model, concentrating the power of exploitation in the hands of a single monopolistic
entity. Thus, FL removes the need for data sharing but does not solve the problem of information
governance. Swarm learning (SL), however, offers a solution to the governance problem, providing a
true collaborative and democratic approach in which partners communicate and work on the same
level, jointly and equally training models and sharing the benefits.?>?*** Most recently, SL has been
tested to detect COVID-19, tuberculosis, leukaemia and lung pathologies from transcriptome analysis
or x-ray images, respectively?®. In the present study, we demonstrate for the first time that the use of
SL can enable Al-based detection of clinical biomarkers in solid tumors and yields high-performing
models for pathology-based prediction of BRAF and MSI status, two important prognostic and
predictive biomarkers in CRC.39%*

A possible technical limitation of our study is that we did not explicitly investigate differential privacy,
although this could be incorporated in future work. Although histological images without their
associated metadata are not considered protected health information (PHI) even under the Health
Insurance Portability and Accountability Act (HIPAA) in the United States®, any membership
inference attack or reconstruction of original data from shared model weight updates can be
precluded by implementing additional differential privacy measures.*® Another limitation of this work is
that the model performance needs to be further improved before clinical implementation. Previous
work has shown that by increasing the sample size to ~10000 patients, classifier performance will
increase.’®? Our study shows that SL enables multiple partners to jointly train models without
sharing data, thereby potentially facilitating the collection of such large training cohorts. Finally,
previous proof-of-concept studies on SL in medical Al relied on virtual machines on a single bare-
metal device. In the present study, we improved this by using three physically separate devices and
implementing our code largely with open source software. While this indicates that SL is feasible
between physically distinct locations, embedding SL servers in existing healthcare infrastructure in
different institutions in multiple countries would probably require substantial practical efforts which
should ideally be addressed in research consortia. To assess interchangeability of model data
generated by swarm learning projects, validation of this technology in large-scale international
collaborative efforts is needed. Our study provides a benchmark and a clear guideline for such future
efforts, ultimately paving the way to establish SL in routine workflows.
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Figure 1: Schematic of the swarm learning workflow and experimental layout. (A) Histology
image analysis (HIA) workflow, (B) swarm learning workflow and cohorts included in this study. On
three physically separate bare-metal servers (dashed line), three different sets of clinical data reside.
Each server runs an Al process (a program that trains a model on the data) and a network process (a
program that handles communication with peers via blockchain). Icon sources: openmoji, Twitter

Twemoji (CC-BY).
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Figure 2: Model performance for local models vs. swarm models for BRAF prediction. (B)
Schematic of the basic swarm learning (SL) experiment and the (C) weighted SL experiment. (D)
Classification performance (area under the receiver operating curve, AUROC) for prediction of BRAF
mutational status on a patient level in the QUASAR data set, displayed as box plot (box shows the
median and quartiles as the whiskers expand to the rest of the distribution, with the exception of
points identified as outliers) as well as all original data points. (E) AUROC for prediction of MSI status
in QUASAR and (F) prediction of MSI status in the YCR-BCIP dataset. Abbreviations: chkpt =
checkpoint, chkpt 1, 2 = swarm checkpoint 1 and 2, respectively. W-chkpt = Total cohort sizes (N
patients) were: 642 for Epi700, 2075 for DACHS, 500 for TCGA (BRAF) and 0.0014 for Epi700,
8.65E-05 for DACHS and 0.0003 for TCGA (MS]). *: p<0.05, **: p<0.01, ***: p<0.001, ns: p>0.05.
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Figure 3: Model performance for local models vs. swarm models for microsatellite instability
(MSI) / mismatch repair deficiency (dMMR) prediction. (A) Classification performance (area under
the receiver operating curve, AUROC) for prediction of MSI mutational status on a patient level in the
QUASAR cohort. (B) Classification performance (area under the receiver operating curve, AUROC)
for prediction of dAMMR mutational status on a patient level in the YCR-BCIP cohort. N patients per
cohort (shown as “All” on the horizontal axis): 604 for Epi700, 2039 for DACHS, 426 for TCGA.
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Figure 4: Highly predictive image patches for BRAF prediction. All patches were derived from
QUASAR and were selected by the median model of five models which were trained on N=300
randomly selected patients per training cohort. (A) Model trained on Epi700, (B) trained on DACHS,
(C) trained on TCGA, (D) trained on all three datasets, (E) swarm chkpt 1, (F) swarm chkpt 2). Red
borders highlight tiles with artifacts or more than 50% non-tumor tissue.
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Tables

TCGA DACHS Epi700 YCR-BCIP QUASAR
N Patients 632 2448 661 889 2190
Age (median) | 68 69 72.7 71 63
Age (IQR) 18 14 145 15 12

Gender: Male

322 (50.9%)

1436 (58.7%)

358 (54.2%)

494 (55.6%)

1334 (60.9%)

Gender: 292 (46.2%) 1012 (41.3%) | 303 (45.8%) 395 (44.4%) 848 (38.7%)
Female

Gender: 18 (2.85%) 0 0 0 8 (0.4%)
Unknown

MSS/pMMR 392 (62%) 1836 (75%) 471 (71.3%) 760 (85.5%) 1529 (69.8%)
MSI/dMMR 65 (10.3%) 210 (8.6%) 136 (20.6%) 129 (14.5%) 246 (11.2%)
unknown 175 (27.7%) 402 (16.4%) 54 (8.1%) 0 415 (19%)
MS/MMR

status

MSI/MMR PCR 5-plex PCR 3-plex PCR IHC IHC

method

BRAF status: | 471 (74.5%) 1930 (78.8%) | 553 (83.7%) 32 1358 (62%)
wt (3.6%,%)

BRAF status: | 63 (10%) 151 (6.2%) 92 (13.9%) 75 (8.4%,%) 129

mut (5.9%)

BRAF status: | 98 (15.5%) 367 (15%) 16 (2.4%) 782 (88%) 916 (41.8%)
unknown

Stage 1 76 (12%) 485 (19.8%) 0 169 (19%) 5 (0.2%)
Stage 2 166 (26.3%) 801 (32.7%) 394 (59.6%) 317 (35.7%) 53 (2.4%)
Stage 3 140 (22.2%) 822 (33.6%) 267 (40.4%) 370 (41.6%) 1653 (75.5%)
Stage 4 63 (10%) 337 (13.8%) 0 (0%) 33 (3.7%) 268 (12.2%)
Stage 187 (29.5) 3 (0.1%) 0 0 211 (9.7%)
unknown

Left-sided 248 (39.2%) 1607 (65.6%) | 280 (42.3%) 487 (54.8%) 1158 (52.9%)
CRC

Right-sided 176 (27.8%) 819 (33.5%) 375 (56.7%) 332 (37.3%) 754 (34.4%)
CRC

Unknown side

209 (33%)

22 (0.9%)

6 (1%)

70 (7.9%)

278 (12.7%)
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Table 1: Clinico-pathological features of all cohorts. Number of patients (N Patients), Interquartile
range (IQR), microsatellite instability (MSI), microsatellite stability (MSS), b-Raf kinase mutational
status (BRAF), wild type (wt), mutated (mut), not available (N/A). Right-sided CRC from cecum to
transverse colon. * BRAF testing in YCR-BCIP was only performed in MSI/dMMR cases and was
therefore not used as a prediction target in this study.
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