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Abstract 

Artificial Intelligence (AI) can extract clinically actionable information from medical image data. In 
cancer histopathology, AI can be used to predict the presence of molecular alterations directly from 
routine histopathology slides. However, training robust AI systems requires large datasets whose 
collection faces practical, ethical and legal obstacles. These obstacles could be overcome with 
swarm learning (SL) where partners jointly train AI models, while avoiding data transfer and 
monopolistic data governance. Here, for the first time, we demonstrate the successful use of SL in 
large, multicentric datasets of gigapixel histopathology images comprising over 5000 patients. We 
show that AI models trained using Swarm Learning can predict BRAF mutational status and 
microsatellite instability (MSI) directly from hematoxylin and eosin (H&E)-stained pathology slides of 
colorectal cancer (CRC). We trained AI models on three patient cohorts from Northern Ireland, 
Germany and the United States of America and validated the prediction performance in two 
independent datasets from the United Kingdom using SL-based AI models. Our data show that SL 
enables us to train AI models which outperform most locally trained models and perform on par with 
models which are centrally trained on the merged datasets. In addition, we show that SL-based AI 
models are data efficient and maintain a robust performance even if only subsets of local datasets 
are used for training. In the future, SL can be used to train distributed AI models for any 
histopathology image analysis tasks, overcoming the need for data transfer and without requiring 
institutions to give up control of the final AI model. 
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Introduction 

Artificial intelligence (AI) is expected to have a profound impact on the practice of medicine in the 
next ten years.1–4 In particular, medical imaging is already in the process of being transformed by the 
application of AI solutions.5 Such AI solutions can automate manual tasks in medical image analysis, 
but can also be used to extract hidden information beyond what is visible to the human eye.6,7 In 
particular, digitized histopathology images contain a wealth of clinically relevant information which AI 
can extract.3 For example, deep convolutional neural networks have been used to predict molecular 
alterations of cancer directly from routine pathology slides.8–13 In 2018, a landmark study showed a 
first proof-of-principle for this technology in lung cancer.8 Since then, dozens of studies have 
extended and validated these findings to multiple tumor types including colorectal cancer (CRC)9,14,15, 
gastric cancer16, bladder cancer10, breast cancer13, among other tumor types10–12,17,18. These methods 
expand the utility of hematoxylin and eosin (H&E) stained tissue slides from routine tumor diagnosis 
and subtyping to a source for direct prediction of molecular alterations.3  
 
AI models are data hungry. In particular, in histopathology, the performance of AI models in 
increases with the size and diversity of the training set.16,19,20 Training clinically useful AI models 
usually requires sharing of patient-related data with a central repository.21,22 In practice, such data 
sharing - especially across different countries - faces legal and logistic obstacles. Data sharing 
between institutions may require patients to forfeit their rights of data control. This problem has been 
tackled by (centralized) federated learning (FL)23,24, in which multiple AI models are trained 
independently on separate computers (peers). In FL, peers do not share any input data with each 
other and only share the learned model weights. However, a central coordinator governs the learning 
progress based on all trained models, monopolizing control and commercial exploitation.  
 
In the last two years, this limitation of FL has been addressed by a new group of decentralized 
learning technologies, including blockchain FL25 and swarm learning (SL).26 In SL, AI models are 
trained locally and models are combined centrally without requiring central coordination. By using 
blockchain-based coordination between peers, SL removes the centralization in FL and raises all 
contributors to the same level. In the context of healthcare data analysis, SL leads to equality in 
training multicentric AI models and creates strong incentives to collaborate without concentrating 
data or models in one place. This could potentially facilitate collaboration between multiple parties, 
hence generating more powerful and more reliable AI systems. Ultimately, SL could improve the 
quality, robustness and resilience of AI in healthcare. However, SL has not been systematically 
applied to medical image data in oncology. In particular, it has not been applied to histopathology 
images, a common data modality with a high information density.3 
 
To address this, we performed a retrospective multicentric study of SL for AI-based prediction of 
molecular alterations directly from conventional histology images. As pathology services are currently 
undergoing a digital transformation, embedding these AI methods into routine diagnostic workflows 
could ultimately enable pre-screening of patients, thereby reducing the number of costly genetic tests 
and increasing the speed by which results are available to clinicians.27 The prediction performance of 
such systems increases markedly by training on thousands rather than just hundreds of patients.19,20 
We hypothesized that SL could be a substitute for centralized collection of large patient cohorts in 
histopathology, improving prediction performance20 and generalizability22 without centralizing data 
collection or control over the final model.  
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Materials and Methods 

Ethics statement 

This study was carried out in accordance with the Declaration of Helsinki. This study is a 
retrospective analysis of digital images of anonymized archival tissue samples from five cohorts of 
CRC patients. Collection and anonymization of patients in all cohorts took place in each contributing 
center. Ethical approval for research use of all cohorts was obtained from each contributing center. 
 
Patient cohorts 

We collected digital whole slide images (WSI) of H&E-stained slides of archival tissue sections of 
human colorectal cancer (CRC) from five patient cohorts (clinico-pathological characteristics in Table 
1). First, the Northern Ireland Epi700 (n=661, Suppl. Figure S1) cohort study on colon cancer of only 
patients with stage II-III cancer, provided by the Northern Ireland Biobank28,29 (application NIB20-
0346). Second, the “Darmkrebs: Chancen der Verhütung durch Screening” study (DACHS, n=2448, 
Suppl. Figure S2), a large population-based case-control study, including samples of CRC patients 
at different disease stages recruited at >20 hospitals in Germany, which is coordinated by the 
German Cancer Research Center (DKFZ, Heidelberg, Germany)30–32. Third, “The Cancer Genome 
Atlas” (TCGA) CRC cohort (n=632, Suppl. Figure S3), a large collection of tissue specimens from 
multiple study centers across different countries, but largely from the United States of America 
(USA).33 Fourth, the “Quick and Simple and Reliable” (QUASAR) trial (n=2206, Suppl. Figure S4), 
which originally aimed to determine survival benefit from adjuvant chemotherapy in CRC patients 
from the United Kingdom (UK)34. Fifth, the Yorkshire Cancer Research Bowel Cancer Improvement 
Programme35 (YCR-BCIP) cohort (n=889 surgical resection slides, Suppl. Figure S5), collected in 
the Yorkshire Region in the UK. For all cohorts, BRAF mutational status and microsatellite instability 
(MSI) / mismatch repair deficiency (dMMR)36 data were acquired. In YCR-BCIP, analysis of BRAF 
was only undertaken for dMMR tumors and BRAF mutational status was therefore not assessed in 
this cohort in the current study. 
 
Deep learning and swarm learning method  

For prediction of molecular features from image data, we adapted our weakly-supervised prediction 
pipeline “Histology Image Analysis (HIA)”9 which was demonstrated to outperform similar approaches 
for mutation prediction in a recent benchmark study.37 Briefly, the workflow entails the following steps: 
As preprocessing step, high resolution WSIs were tessellated into patches of size �512 � 512 �

3� pixels and color-normalized.38 During this process, blurry patches and patches with no tissue are 
removed from the data set using canny edge detection in OpenCV.37 Subsequently, we used 
ResNet18 to extract a �512 � 1� feature vector from 150 randomly selected patches for each patient, 
as previous work showed that 150 patches are sufficient to obtain robust predictions.9 Feature 
vectors and patient-wise target labels (BRAF or MSI status) served as input to a fully connected 
classification network (FCN). The FCN comprised four layers with (512×256), (256×256), (256×128) 
and (128×2) connections with a ReLU activation function (hyperparameters in Suppl. Table S1). The 
swarm learning architecture had four components, running as separate processes (nodes) on 
separate bare-metal servers (peers) in a Docker container. The key component is the Swarm 
Learning (SL) process, containing HIA (Suppl. Figure S6A). During training in the SL process on 
three devices, the network weights are sent to a Swarm Network (SN) process, which coordinates 
peer crosstalk and sends back averaged weights to the SL process. Peer crosstalk happens once 
every synchronization interval (“sync interval”). Averaging and exchange of weights is coordinated by 
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an Ethereum blockchain.39 For identity management, a Secure Production Identity Framework for 
Everyone (SPIFFE) running on its own virtual environment (SPIFFE Runtime Environment, SPIRE) 
serves as the third process, generating a secured gateway between peers. Formal hyperparameter 
optimization was performed for the sync interval for the task of MSI status prediction (Suppl. Figure 
S6D-E). Technical details are available in Suppl. Methods.  
 
Experimental Design and Statistics 

Throughout the study, TCGA, Epi700, DACHS were used as training cohorts and QUASAR and 
YCR-BCIP were used as external test cohorts (Table 1). First, we trained MSI and BRAF classifiers 
on each of the training cohorts individually. Second, all training cohorts were merged and new 
classifiers were trained on the merged cohort. Third, classifiers were trained by SL, with the SL 
training process being initiated on three separate bare metal servers containing one training cohort 
each. Finally, all models were externally validated on the validation cohorts. Two variants of SL were 
explored: baseline SL and weighted SL. For baseline SL, each cohort was trained for a fixed number 
of epochs and two resulting models were saved at two checkpoints, b-chkpt1 and b-chkpt2. B-chkpt 1 
was reached when the smallest cohort concluded the final epoch. B-chkpt2 was reached when the 
second-smallest cohort concluded the final epoch. In baseline SL, all cohorts were assigned an equal 
weight. This is motivated by the fact that at the start of training, partners might not know the total 
amount of data they contribute because more data can be dynamically added during training. On the 
other hand, if partners know exactly how much data they will contribute, differences in cohort sizes 
can be compensated by applying proportional weights. Hence, in weighted SL, smaller cohorts are 
trained for more epochs than larger cohorts, but contribute proportionally less to the final model. In 
weighted SL, only one model checkpoint is generated, w-chkpt. Finally, to investigate data efficiency, 
we repeated all experiments for subsets of 25, 50, 100, 200, 300 and 400 patients per cohort, 
randomly selected in a stratified way (preserving class proportions). All experiments were repeated 
five times with different random seeds. The primary endpoint for this study was the area under the 
receiver operator characteristic curve (AUROC) for detection of binary categorical outputs. The 
AUROCs of five training runs of a given model were compared. A two-tailed unpaired t-test with p<= 
0.05 was considered statistically significant. In the manuscript, AUROCs are given as mean +/- 
standard deviation. All raw results of all experimental repetitions are available in Suppl. Table S2. 
 
Code availability 

All source codes for the baseline histology image analysis (HIA) workflow are available at 
https://github.com/KatherLab/HIA. Source codes for Swarm-HIA are available at 
https://github.com/KatherLab/SWARM. We built our codes on top of the “SL community edition” by 
Hewlett Packard Enterprise (HPE, Spring, Texas, United States), which is publicly available under an 
Apache 2.0 license at https://github.com/HewlettPackard/swarm-learning.  
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Results 

Histology image analysis workflows can be coupled with swarm learning 

In this study, we aimed to develop a swarm-learning-capable histopathology AI model for molecular 
classification of solid tumors based on histopathology images (Figure 1A, Suppl. Figure S6A). We 
collected three large datasets (Figure 1B, Figure 2A) in three physically separate computing servers 
(Suppl. Figure S6B), integrated an end-to-end histopathology AI pipeline with a swarm callback and 
optimized the synchronization (sync) interval between peers, i.e. different physical computers (Suppl. 
Figure S6C). We found that synchronizing learning progress between peers once every four 
iterations (Figure 2B-C) yielded the highest performance in a benchmark task (MSI prediction, 
Suppl. Figure S6D) while retaining a low overall training time (Suppl. Figure S6E). Total training 
time was inversely proportional to the sync interval and was 01:17:41(hours:minutes:seconds) for a 
sync interval of 1, compared to 00:18:40 and 00:09:26 for sync intervals of 4 and 8 iterations, 
respectively, indicating that the swarm learning time was dominated by network communication 
overhead (Suppl. Figure S6E).  
 
Swarm learning performance is on par with models trained on the merged dataset 

We then used our swarm-capable histology image analysis model in a retrospective multicenter study 
for prediction of BRAF mutational status from colorectal cancer (CRC) histopathology WSIs. First, we 
trained local AI models on each of three training cohorts separately: Epi700 (N=594 patients from 
Northern Ireland), DACHS (N=2039 patients from southwest Germany) and TCGA (N=426, Figure 
1B). Evaluating the patient-level prediction performance of these local models on the QUASAR 
cohort (N=1774 patients from the UK), we found that these models achieved AUROCs of 0.7358 (+/- 
0.0162), 0.7339 (+/- 0.0107) and 0.7071 (+/- 0.0243) when trained on Epi700, DACHS and TCGA 
alone, respectively (Figure 2D). Merging the three training cohorts on a central server (centralized 
model) significantly improved prediction AUROC to 0.7567 (+/- 0.0139, p=0.0727 vs. Epi700, 
p=0.0198 vs. DACHS, p=0.0043 vs. TCGA, Suppl. Table S3). This was compared to the 
performance of SL-AI models: B-chkpt1 was obtained when the partner with the smallest training 
cohort (TCGA) reached the last epoch (Figure 2B). This model achieved a prediction AUROC on the 
test set of 0.7634 (+/- 0.0047), which was significantly better than each local model (p=0.0082 vs. 
Epi700, p=0.0005 vs. DACHS, p=0.0009 vs. TCGA), but not significantly different from the merged 
model (p=0.3433, Figure 2D). B-chkpt2, which was obtained when the partner with the second-
smallest training cohort reached the last epoch, achieved a similar performance: This model 
achieved an AUROC of 0.7621 (+/- 0.0045), which was significantly better than each local model 
(p=0.0105 vs. Epi700, p=0.0006 vs. DACHS, p=0.0011 vs. TCGA), and on par with the merged 
model (p=0.4393, Figure 2D). We validated these findings in a different task, prediction of 
MSI/dMMR status in the QUASAR (Figure 2E) and YCR-BCIP (Figure 2F) cohort. In QUASAR, b-
chkpt1 and b-chkpt2 achieved prediction AUROCs of 0.8001 (+/- 0.0073) and 0.8151 (+/- 0.0071), 
respectively and thereby significantly outperformed single-cohort models trained on Epi700 with an 
AUROC of 0.7884 (+/-0.0043 (p=0.0154 and p=8.79E-05 for B-chkpt1 and -2, respectively, Suppl. 
Table S4). Similarly, SL outperformed MSI prediction models trained on TCGA with an AUROC of 
0.7639 (+/-0.0162) (p=1.09E-05 and p=6.14E-07 for b-chkpt1 and2, respectively). However, there 
was no significant difference between the model trained on the largest data set DACHS compared to 
b-chkpt1 or -2 in QUASAR (Figure 2E) and YCR-BCIP (Figure 2F). As another variation of SL, we 
added adjustable cohort weights proportional to the cohort size and obtained the weighted SL-AI 
model w-chkpt. For prediction of BRAF mutational status, w-chkpt achieved an AUROC of 0.7736 (+/- 
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0.0057). This represented a significant improvement compared to all other models, including the local 
models of Epi700 (p=0.0015), DACHS (p=8.65E-05), TCGA (p=0.0004), but also the merged model 
(p=0.0374) and b-chkpt1 (p=0.0154) and b-chkpt2 (p=0.0081, Figure 2D, Suppl. Table S3). For MSI 
prediction in QUASAR, w-chkpt significantly outperformed the local Epi700 model (p=8.93E-06) and 
the local TCGA model (p=2.83E-07) while the performance differences compared to the DACHS 
model were not statistically significant (DACHS AUROC 0.8326 [+/- 0.0090] vs. w-chkpt AUROC 
0.7403 [+/- 0.0878], p=0.05705, Figure 2E, Suppl. Table S4). Similar results were obtained for the 
second MSI validation dataset (Figure 2F, Suppl. Table S5). Compared to the merged model, w-
chkpt was not significantly different for MSI prediction in QUASAR (merged AUROC 0.8308 [+/- 
0.0190] vs. w-chkpt AUROC 0.8326 [+/- 0.0089], p=0.8650) or MSI prediction in YCR-BCIP (merged 
AUROC 0.8943 [+/- 0.0161] vs. w-chkpt AUROC 0.8882 [+/- 0.0084], p=0.4647), i.e. the merged 
model and w-chkpt performed on par (Figure 2E-F). Together, these data show that swarm-trained 
models consistently outperform local models and perform on par with centralized models in pathology 
image analysis. 
 
Swarm learning models are data-efficient 

Learning from small datasets is a challenge in medical AI because prediction performance generally 
increases with increasing size of the training dataset.19,20 Therefore, we investigated whether SL 
could compensate for the performance loss which occurs when only a small subset of patients from 
each institution is used for training. We found that restricting the patient number in each training set 
to 400, 300, 200 and 100 markedly reduced prediction performance for single-dataset models. For 
example, for prediction of BRAF mutational status in QUASAR, training on only a subset of patients 
in Epi700, DACHS or TCGA markedly reduced prediction performance and increased the model 
instability as measured by interquartile range (IQR) of predictions in experimental repetitions (Figure 
3A, Suppl. Table S6). In particular, for training BRAF prediction models on the largest cohort 
DACHS there was a pronounced performance drop in AUROC from training on all patients (AUROC 
0.7339 [+/- 0.0108]) to an AUROC of 0.6626 [+/- 0.0162] when restricting the number of patients in 
the training set to 200 patients. Performance losses for the model which trained on the centrally 
merged data were less pronounced down to a number of 50 patients per cohort (Figure 3A). 
Strikingly, swarm learning was also able to rescue the performance: down to 100 patients per cohort, 
weighted swarm learning (w-chkpt) maintained a high performance of 0.7000 (+/- 0.0260) for 100, 
0.7139 (+/- 0.0149) for 200 and 0.7438 (+/- 0.0093) for 300 patients. These models were not 
statistically significantly different from the merged model (p=0.7726, p=0.7780, p=0.2719, p=0.7130 
for 100, 200, 300, 400 patients, respectively, Figure 3A). Similarly, b-chkpt1 and b-chkpt2 
maintained a high performance (comparable to the merged model) down to 100 patients per cohort. 
For MSI prediction in QUASAR, w-chkpt was comparable to the merged model down to 300 patients 
per cohort (p=0.4342 and p=0.7847 for 300 and 400 patients, respectively). For 200 patients or less, 
the merged model outperformed local models and swarm models (Figure 3B, Suppl. Table S7). 
Similarly, for MSI prediction in YCR-BCIP, single-cohort performance dropped as patients were 
dropped from the training set but the merged models and swarm models could partially rescue this 
performance loss, although the merged model outperformed the swarm in this experiment(Figure 
3C, Suppl. Table S8). All raw data are available in Suppl. Table S2. Together, these data show that 
swarm learning models are highly resilient to small training datasets for prediction of BRAF 
mutational status and partially resilient to small training datasets for prediction of MSI status.  
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Swarm learning models are interpretable and learn plausible patterns 

Medical AI models should not just give a high performance but should also be interpretable.40 We 
investigated explainability by extracting the highest-scoring image patches for models trained on all 
individual training cohorts (Figure 4A-C), the merged cohort (Figure 4D) and the swarm models b-
chkpt1 and b-chkpt2 (Figure 4E-F). In most cases there was a histological phenotype known to be 
associated with BRAF mutational status such as mucinous histology and/or poor differentiation.41 
However, we also observed that the highly scoring patches identified by the TCGA model failed to 
represent classical histopathological features of BRAF mutation and indeed 7 out of 9 highly scoring 
tiles in this group showed no tumor tissue or abundant artifacts (Figure 4C). The observation that 
such low-information patches were flagged by the model as being highly relevant shows that a model 
trained on TCGA only does not adequately learn to detect relevant patterns. Conversely, both swarm 
learning models identified plausible histopathological patches (i.e. patches with an expected 
phenotype) in 9 out of 9 highly scoring patches for BRAF mutation. Together, these data show that 
swarm learning-based AI models can generate predictions which are explainable and plausible to 
human experts even if not all of the single-cohort models trained on the same patient cohorts exhibit 
this behavior.  
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Discussion 

Currently, the total amount of healthcare data is increasing at an exponential pace. In particular in 
histopathology, institutions across the world are digitizing their workflows, generating an abundance 
of data.6 These image data can be used in new ways, for example to make prognostic and predictive 
forecasts, aiming to improve patient outcomes.3 However, AI requires large and diverse datasets and 
its performance scales with the amount of training data.19,20 To train useful and generalizable AI 
models, institutions should be able to collaborate without jeopardizing patient privacy and information 
governance. In 2016, federated learning (FL) was proposed as a technical solution for such privacy-
preserving distributed AI.42 FL enables joint training of AI models by multiple partners who cannot 
share their data with each other. However, FL relies on a central coordinator who monopolizes the 
resulting AI model, concentrating the power of exploitation in the hands of a single monopolistic 
entity. Thus, FL removes the need for data sharing but does not solve the problem of information 
governance. Swarm learning (SL), however, offers a solution to the governance problem, providing a 
true collaborative and democratic approach in which partners communicate and work on the same 
level, jointly and equally training models and sharing the benefits.25,26,43 Most recently, SL has been 
tested to detect COVID-19, tuberculosis, leukaemia and lung pathologies from transcriptome analysis 
or x-ray images, respectively26. In the present study, we demonstrate for the first time that the use of 
SL can enable AI-based detection of clinical biomarkers in solid tumors and yields high-performing 
models for pathology-based prediction of BRAF and MSI status, two important prognostic and 
predictive biomarkers in CRC.3,9,44  
 
A possible technical limitation of our study is that we did not explicitly investigate differential privacy, 
although this could be incorporated in future work. Although histological images without their 
associated metadata are not considered protected health information (PHI) even under the Health 
Insurance Portability and Accountability Act (HIPAA) in the United States45, any membership 
inference attack or reconstruction of original data from shared model weight updates can be 
precluded by implementing additional differential privacy measures.46 Another limitation of this work is 
that the model performance needs to be further improved before clinical implementation. Previous 
work has shown that by increasing the sample size to ~10000 patients, classifier performance will 
increase.19,20 Our study shows that SL enables multiple partners to jointly train models without 
sharing data, thereby potentially facilitating the collection of such large training cohorts. Finally, 
previous proof-of-concept studies on SL in medical AI relied on virtual machines on a single bare-
metal device. In the present study, we improved this by using three physically separate devices and 
implementing our code largely with open source software. While this indicates that SL is feasible 
between physically distinct locations, embedding SL servers in existing healthcare infrastructure in 
different institutions in multiple countries would probably require substantial practical efforts which 
should ideally be addressed in research consortia. To assess interchangeability of model data 
generated by swarm learning projects, validation of this technology in large-scale international 
collaborative efforts is needed. Our study provides a benchmark and a clear guideline for such future 
efforts, ultimately paving the way to establish SL in routine workflows.  
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Figures 

 

 
Figure 1: Schematic of the swarm learning workflow and experimental layout. (A) Histology
image analysis (HIA) workflow, (B) swarm learning workflow and cohorts included in this study. O
three physically separate bare-metal servers (dashed line), three different sets of clinical data reside
Each server runs an AI process (a program that trains a model on the data) and a network process (a
program that handles communication with peers via blockchain). Icon sources: openmoji, Twitte
Twemoji (CC-BY). 
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Figure 2: Model performance for local models vs. swarm models for BRAF prediction. (B
Schematic of the basic swarm learning (SL) experiment and the (C) weighted SL experiment. (D
Classification performance (area under the receiver operating curve, AUROC) for prediction of BRAF
mutational status on a patient level in the QUASAR data set, displayed as box plot (box shows the
median and quartiles as the whiskers expand to the rest of the distribution, with the exception o
points identified as outliers) as well as all original data points. (E) AUROC for prediction of MSI status
in QUASAR and (F) prediction of MSI status in the YCR-BCIP dataset. Abbreviations: chkpt =
checkpoint, chkpt 1, 2 = swarm checkpoint 1 and 2, respectively. W-chkpt = Total cohort sizes (N
patients) were: 642 for Epi700, 2075 for DACHS, 500 for TCGA (BRAF) and 0.0014 for Epi700
8.65E-05 for DACHS and 0.0003 for TCGA (MSI). *: p<0.05, **: p<0.01, ***: p<0.001, ns: p>0.05. 
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Figure 3: Model performance for local models vs. swarm models for microsatellite instabilit
(MSI) / mismatch repair deficiency (dMMR) prediction. (A) Classification performance (area unde
the receiver operating curve, AUROC) for prediction of MSI mutational status on a patient level in the
QUASAR cohort. (B) Classification performance (area under the receiver operating curve, AUROC
for prediction of dMMR mutational status on a patient level in the YCR-BCIP cohort. N patients pe
cohort (shown as “All” on the horizontal axis): 604 for Epi700, 2039 for DACHS, 426 for TCGA. 
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Figure 4: Highly predictive image patches for BRAF prediction. All patches were derived from
QUASAR and were selected by the median model of five models which were trained on N=30
randomly selected patients per training cohort. (A) Model trained on Epi700, (B) trained on DACHS
(C) trained on TCGA, (D) trained on all three datasets, (E) swarm chkpt 1, (F) swarm chkpt 2). Re
borders highlight tiles with artifacts or more than 50% non-tumor tissue.  
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Tables 

  TCGA DACHS Epi700 YCR-BCIP QUASAR 

N Patients 632 2448 661 889 2190 

Age (median) 68 69 72.7 71 63 

Age (IQR) 18 14 14.5 15 12 

Gender: Male 322 (50.9%) 1436 (58.7%) 358 (54.2%) 494 (55.6%) 1334 (60.9%) 

Gender: 
Female 

292 (46.2%) 1012 (41.3%) 303 (45.8%) 395 (44.4%) 848 (38.7%) 

Gender: 
Unknown  

18 (2.85%) 0 0 0 8 (0.4%) 

MSS/pMMR 392 (62%) 1836 (75%) 471 (71.3%) 760 (85.5%) 1529 (69.8%) 

MSI/dMMR 65 (10.3%) 210 (8.6%) 136 (20.6%) 129 (14.5%) 246 (11.2%) 

unknown 
MS/MMR 
status 

175 (27.7%) 402 (16.4%) 54 (8.1%) 0 415 (19%) 

MSI/MMR 
method 

PCR 5-plex PCR 3-plex  PCR IHC IHC 

BRAF status: 
wt 

471 (74.5%) 1930 (78.8%) 553 (83.7%) 32  
(3.6%,*) 

1358 (62%) 

BRAF status: 
mut 

63 (10%) 151 (6.2%) 92 (13.9%) 75 (8.4%,*) 129  
(5.9%) 

BRAF status: 
unknown 

98 (15.5%) 367 (15%) 16 (2.4%) 782 (88%) 916 (41.8%) 

Stage 1 76 (12%) 485 (19.8%) 0 169 (19%) 5 (0.2%) 

Stage 2 166 (26.3%) 801 (32.7%) 394 (59.6%) 317 (35.7%) 53 (2.4%) 

Stage 3 140 (22.2%) 822 (33.6%) 267 (40.4%) 370 (41.6%) 1653 (75.5%) 

Stage 4 63 (10%) 337 (13.8%) 0 (0%) 33 (3.7%) 268 (12.2%) 

Stage 
unknown 

187 (29.5) 3 (0.1%) 0 0 211 (9.7%) 

Left-sided 
CRC 

248 (39.2%) 1607 (65.6%) 280 (42.3%) 487 (54.8%) 1158 (52.9%) 

Right-sided 
CRC 

176 (27.8%) 819 (33.5%) 375 (56.7%) 332 (37.3%) 754 (34.4%) 

Unknown side 209 (33%) 22 (0.9%) 6 (1%) 70 (7.9%) 278 (12.7%) 
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Table 1: Clinico-pathological features of all cohorts. Number of patients (N Patients), Interquartile 
range (IQR), microsatellite instability (MSI), microsatellite stability (MSS), b-Raf kinase mutational 
status (BRAF), wild type (wt), mutated (mut), not available (N/A). Right-sided CRC from cecum to 
transverse colon. * BRAF testing in YCR-BCIP was only performed in MSI/dMMR cases and was 
therefore not used as a prediction target in this study.  
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