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22 Abstract

23  Modern biological screens yield enormous numbers of measurements, and identifying
24  and interpreting statistically significant associations among features is essential. Here,
25 we present a novel hierarchical framework, HAIIA (Hierarchical All-against-All
26  association testing), for structured association discovery between paired high-
27 dimensional datasets. HAIIA efficiently integrates hierarchical hypothesis testing with
28 false discovery rate correction to reveal significant linear and non-linear block-wise
29 relationships among continuous and/or categorical data. We optimized and evaluated
30 HAIIA using heterogeneous synthetic datasets of known association structure, where
31 HAIIA outperformed all-against-all and other block testing approaches across a range of
32 common similarity measures. We then applied HAIIA to a series of real-world multi-omics
33 datasets, revealing new associations between gene expression and host immune
34  activity, the microbiome and host transcriptome, metabolomic profiling, and human

35 health phenotypes. An open-source implementation of HAIIA is freely available at

36  http:/huttenhower.sph.harvard.edu/halla along with documentation, demo datasets, and
37  auser group.

38 Author Summary

39 Modern scientific datasets increasingly include multiple measurements of many
40 complementary data types. Here, we present HAIIA, a method and implementation that
441 overcomes the statistical challenges presented by data of this type by using feature
42  similarity within each dataset to find statistically significant groups of features between
43 them. We applied HAIIA to simulated and real datasets, showing that HAIIA
44  outperformed existing procedures and identified compelling biological relationships.
45  HAIIA is widely applicable to diverse data structures and presents the user with grouped
46  results that are easier to interpret than traditional methods.
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48 Introduction

49  Pattern discovery in high-dimensional, heterogeneous data is a longstanding problem in
50 applied statistics [1,2]. It is challenging for several reasons, including the inherent
51 tradeoffs between sensitivity and generality - that is, the ability and power to detect
52  associations given varying assumptions about the functional form of the relationship [3].
53 When applied in contexts such as high-throughput biology, these challenges are
54  exacerbated by noisy, diverse, and non-linear data. Examples include biospecimens
55  drawn from large cohorts, in which each sample may be decorated with heterogeneous
56 phenotypic variables (clinical features, diseases status, etc.) and multiple high-
57 dimensional molecular measurements (microbial taxa, epigenetic markers, gene
58 expression, etc.). In the biological sciences specifically, selecting a subset of
59  associations for follow-up validation experiments can be a complex yet important
60 decision point. A gap remains to efficiently identify related features in such data, while

61  both maintaining sensitivity and controlling spurious association reporting.

62  All-against-all (AllA) approaches, which test all pairs of features and then correct for
63 false discovery, scale well only in completely independent tests of moderate size [4].
64  Under other conditions, such feature-wise approaches can have limited statistical power
65 due to testing many correlated hypotheses for individually weak associations [5]. This
66 has led to the development of a variety of (typically parametric) block-testing
67 approaches, such as partial least squares (PLS) [6], canonical correlation analysis
68 (CCA) [7], PLS discriminant analysis (PLS-DA), sparse principal component analysis
69 (SPCA) [8], and SPARSE-CCA [9]. These serve to detect associations between
70  reduced-dimensional representations of large input datasets, but they are typically
71 limited by one or more of 1) applicability only to continuous measurements with no
72  missing values (or only categorical, not mixed; PLS, CCA, SPCA); 2) a focus on the
73  single, strongest axis of covariation between the datasets (CCA); 3) an assumption of
74  linear covariation (CCA, SPCA, PLS); 4) identifying complex combinations of feature
75 loadings implicated in associations, rather than specific features (particularly in kernel
76  methods such as Kernel PCA [10]); and 5) a lack of explicit control of the false discovery
77  rate (FDR).
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78  Recent advances have focused on nonparametric methods for identifying highly general
79  (i.e., linear and non-linear) associations between individual pairs of features, sometimes
80 relying on computational or permutation-based methods not readily accessible to early
81 applied statisticians. These include, for example, distance correlation (dCor) [11], which
82 measures (not necessarily linear) dependency of two random variables with possibly
83 different dimensions. The Chatterjee rank correlation (XICOR) [12] is another recently-
84  introduced similarity measure that uses rank differences to assess the degree to which
85 one variable is a measurable function of another. While dCor and XICOR provide
86 comparatively general methods to discover complex associations between individual
87  pairs of features, when applied to many combinations of linear feature pairs with varying
88  degrees of dependence, the resulting statistical power can fall below simpler traditional

89  approaches after controlling FDR for multiple hypothesis tests [13].

90 In this work, we develop a hierarchical all-against-all association testing framework
91  (HAIIA) that identifies highly general association types in paired, high-dimensional, and
92 potentially heterogeneous datasets. HAIIA preserves statistical power in the presence of
93 collinearity by testing coherent clusters of variables in a hierarchical manner, while
94  controlling overall FDR with hierarchical multiple hypothesis testing. HAIIA discovers
95 associations between blocks of features among paired datasets in a way that increases
96 interpretability by grouping features according to their relatedness.

97 Methods

98 In this section, we provide an overview of the HAIIA algorithm and its component steps.
99  Additional methods details, including pseudocode, are provided in S1 Appendix.

100 The HAIIA Algorithm.

101 Hierarchical All-against-All Association testing (HAIIA) identifies block associations

102  between two potentially heterogeneous datasets co-indexed along one axis (Fig 1A).

103  This co-indexing is referred to as the "samples" axis (columns), and the measurement

104  axis as "features" (rows). For a pair of datasets containing measurements that describe

105 the same set of samples and a specified pairwise similarity measure, the HAIIA algorithm
4
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106  proceeds by 1) optionally discretizing features to a uniform representation (if required by
107  the similarity measure), 2) finding the Benjamini-Hochberg (BH) FDR threshold, 3)
108 hierarchically clustering each dataset separately to generate two data hierarchies, 4)
109  coupling clusters of equivalent resolution between the two data hierarchies, 5) testing
110  coupled clusters for statistically significant association in block format where the block
111 passes a threshold for false negative tolerance (FNT), and 6) iteratively increasing
112 resolution by descending through the pair of hierarchies according to which split results
113  in a higher Gini score gain. The final pair of hierarchies are those that lead to the largest
114  hypothesis blocks that pass the FNT threshold (Fig 1 and S1 Appendix).
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116  Figure 1. Hierarchical all-against-all (HAIIA) association testing. (A) HAIIA provides
117  a novel method for heterogeneous association discovery in high dimensional data. Input
118  data are represented in matrix form as features (rows) and samples (columns). (B) Data
119  are discretized to provide a unified representation of heterogeneous feature types. This
120  step is skipped for similarity metrics that requires continuous data (e.g. Spearman). (C)
121 Features within each data set are hierarchically clustered using average linkage and
122  Spearman association as default methods. (D) Reject block-wise null hypotheses that
123  pass the false negative tolerance (FNT) threshold using Benjamini-Hochberg FDR
124  threshold for pair-wise associations within the block. (E) Block format hypotheses are
125  built by pairing clusters between two datasets at equivalent relative homogeneity. Each
126  hypothesis node has two data clusters whose descendants are used for the next level of
127  hypothesis testing. In hypothesis testing, the FNT threshold is used to determine which
128 clusters are significantly associated between the two datasets. (F) Significant
129  associations are reported after controlling the FDR for each hypothesis set in the
130  descending approach using hypothesis tree-oriented structure.

131 Optionally discretizing input datasets.

132  This step permits direct comparison of continuous and categorical features (Fig 1B) and
133 further enables the application of highly general measures of association from

5
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134  information theory, such as mutual information (MI). This combination allows HAIIA to
135  detect significant 1) non-linear associations between paired continuous features (e.g.,
136 quadratic or sinusoidal relationships), 2) differences in group means for paired
137  continuous and categorical features, and 3) non-random associations between paired
138 categorical features. HAIIA’s default discretization scheme divides continuous features
139 into bins of equal size once at the start of processing. By default, the number of bins is
140 the cube root of the sample size, which provides reasonable power at a variety of
141 sample sizes and correlation levels (Fig 1 in S1 Appendix). HAIIA also removes features
142  with low variance by applying a configurable frequency threshold (defaulting to 100%,
143  meaning only features with no variability are removed) in order to reduce the number of

144 unnecessary tests.

145  Hierarchical clustering and cluster coupling allow detection of associations
146  between groups of features.

147  Each dataset is subjected to average-linkage hierarchical clustering using the specified
148  similarity measure (Spearman’s rank correlation by default) within each dataset (Fig 1C).
149  Associations between datasets are tested in a top-down manner by pairing nodes of
150 similar resolution between their respective data trees. More specifically, HAIIA
151 recursively builds a tree of hypotheses to test (the “hypothesis tree”), beginning at the
152  top of each dataset’s tree, descending to a set of nodes within each data tree, and then
153  pairing each selected node from the first tree with each selected node of the second
154  tree. At each step in the descent process, the choice of whether to descend within the X
155  or Y hypothesis tree is made by comparing which split leads to a higher Gini score gain.
156 In the case of ties, both descent steps are made. This procedure is repeated until
157  termination, i.e. when the hypothesis block passes the FNT threshold or when the
158  selected nodes represent single features in their respective data trees (Fig 1E). Another
159  way to visualize this process is by focusing on the all-by-all hypothesis matrix (Fig 1F,
160 left). The process begins by checking if the entire matrix passes the FNT threshold. If
161  not, the matrix is recursively cut horizontally or vertically into smaller hypothesis blocks,
162  with the position of each cut decided by each dataset’s similarity tree and Gini score
163 gain. The cutting process stops when the smaller hypothesis blocks pass the FNT
164  threshold or have been reduced to one-by-one blocks.

6
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165  The notion of identifying and testing hypotheses in a hierarchical manner was previously
166  proposed by Yekutieli [14]. HAIIA’s hypothesis tree similarly groups more specific child
167  hypotheses below a more general parent hypothesis. However, HAIIA’s approach differs
168 fundamentally from the Yekutieli approach in that HAIIA tests hierarchical hypotheses
169  until a null hypothesis can be rejected; Yekutieli's method tests until the first failure to
170  reject a null hypothesis. This results in HAIIA maintaining greater power, while Yekutieli’s

171 method instead maintains greater specificity.
172  Determining the statistical significance of block associations.

173  The method proceeds by testing the nodes in the hypothesis tree (each representing a
174  pair of feature clusters, one from each dataset) for significant between-cluster
175  associations. Each node in the hypothesis tree is evaluated using the following
176  procedure: let H denote the null hypothesis that the two clusters of features are not
177  related, and H; be the null hypothesis of no association between two individual features
178  within those clusters. Define R! as the p-value of the association between an individual
179  pair of features considered by #;. We then count all rejected H; (i.e. R* < kgy), and all
180  H; that failed to reject, i.e. Rt > kgy Where kpy is the global BH FDR threshold. The
181 blockwise FNT is provided by the user (default FNT = 0.2) and acts as the allowed
182  fraction of paired associations which are expected to fail to reject despite being true
183  associations. If the fraction of paired associations in a block with R? > kg, is greater than

184  or equal to FNT, we reject the entire block hypothesis H.

185 If any hypothesis involved clusters rather than feature tips, and failed to reject, the
186  procedure is repeated with new null hypotheses for associations between sub-clusters
187  (Fig 1E), as described in section “Descending in sub-hypotheses of block hypotheses” in
188  S1 Appendix. HAIIA reports all significant associations between clusters of any size that
189  pass the FNT threshold (Fig 1F).

190 Visualizing outputs

191 Once the analysis is complete, the results are visualized in a “HAllIAgram” (Fig 4). This

192  comprises a heatmap visualizing the relatedness and strength of association between

7
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193  pairs of features in the two datasets. Features are ordered along each axis according to
194  their position in the hierarchical tree so that clusters of significant features can be boxed
195 into contiguous units. Marginally associated pairs are dotted, and each hypothesis block
196 s labelled with the rank of its association strength. Features not associated with any
197  Dblock are not plotted by default. For analysis results where large numbers of blocks are
198 detected, only the strongest blocks are shown (30 by default), with potentially-
199  incomplete, lower-ranked blocks boxed in grey. Together, this set of plotting techniques
200 allows users to visually understand the related sets of hypotheses that HAIIA has
201  detected. Other plotting utilities are also included with the method's current
202 implementation, such as a clustermap that displays the entire association tree in the
203 margins for both datasets, as well as a diagnostic plot that displays the input data

204  associated with individual hypothesis blocks.

205 Results

206  HAIIA increases power while controlling FDR to report blockwise associations

207  When applied to paired datasets with no significantly related blocks of features, HAIIA’s
208 descent algorithm reduces to all-against-all (AllA) direct pairwise feature testing. In such
209 circumstances, HAIIA is expected to perform similarly to AllA. However, when there are
210 sets of correlated variables within one dataset that are correlated with another set of
211 variables in the other, HAIIA will report the block-wise associations. Notably, we expect
212  this behavior to be common in multi-omics data, where we see large clusters of
213  molecular features (e.g. co-expressed genes in a metabolic pathway).

214  To evaluate these claims, we applied HAIIA and AllA to paired, synthetic datasets
215 generated with the data simulator function in the HAIIA software. These datasets
216  contained pre-specified block associations, which allowed us to evaluate the statistical
217  and computational performance of these two methods (Fig 2 and Fig 3). With a constant
218 target FNT in associated blocks of 0.2, HAIIA controls FDR, reports association in block
219  form, and improves power on average by 7-11% (Fig 2A) across varied FDR thresholds.
220 HAIIA also consistently boosts the true positive rate relative to AllA using different target

221 FNT values in associated blocks (Fig 2B).
8
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Controlling FDR with different target FDR
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223  Figure 2. HAIIA improves statistical power while controlling the FDR. 50 paired,
224  synthetic datasets with 200 features and 50 samples containing clusters with linear block
225 associations were analyzed. A) with FNT = 0.2, HAIIA maintains the simulated FDR
226  below the target (here (0.05, 0.1, 0.25, and 0.5), with associated trade-offs in statistical
227 power. In addition, HAIIA is consistently better powered than all-against-all (AllA)
228  association testing across this range of target FDR values. Dashed lines parallel to the
229 x-axis indicate the target FDR value in each comparison. B) By increasing the FNT,
230  HAIIA can improve the true positive rate with a comparatively minor increase in FDR.
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232  Figure 3. HAIIA discovers block-structured associations while controlling false
233 discovery rate. For a variety of feature linkage relationships, we simulated 50
234  independent paired datasets, each containing 200 features, 50 samples, and clusters of
235 correlated features. We then evaluated the ability of hierarchical versus all-against-all
236  testing to recover these associations using a variety of similarity metrics. Performance
237 was evaluated by comparing power and false discovery rates. Our hierarchical all-
238 against-all approach improved sensitivity relative to naive all-against-all approaches at a
239 comparable false discovery rate. Similarity metrics that don’t accept categorical data
240 have not been evaluated in the categorical or mixed association type. Other similarity
241  metrics included in HAIIA (dCor, NMI) were not applied in these simulations because
242  their reliance on permutation tests made them too slow for simulations of this size (i.e.
243  with many repeated iterations), although they are typically practical in individual real-
244  world datasets.
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245

246  We evaluated many different forms of feature association, including linear, quadratic,
247  logarithmic, sinusoidal, stepwise, parabolic, and mixed (combined discrete and
248  continuous) data. We compared HAIIA and AllIA across these association types using a
249  variety of similarity measures, including XICOR, mutual information (MI), Spearman
250 correlation, and Pearson correlation. Across datasets and similarity measures, HAIIA
251  consistently detected more built-in associations (had better average power by as much
252  as 10%) than AlIA while controlling FDR at the same pre-specified level (Fig 3B). Each
253  similarity measure exhibited various strengths and weaknesses across evaluations
254  depending on data type. As expected, for mixed and categorical data, Ml is appropriate,
255  and for monotonic associations in continuous data, Spearman correlation performs well.
256  XICOR is applicable to both continuous and discrete outcomes and performs well on
257  difficult nonlinear association types. However, it is rarely the most statistically powerful
258  option, and its interpretation is limited to measuring the association of features in Y as a
259  measurable function of features in X and not vice versa. A similar power analysis that
260 used a fixed association structure with varying correlation strength led to similar
261  conclusions (Fig 2 in S1 Appendix). Together these results show that the HAIIA
262  approach increases statistical power while maintaining the FDR across a wide variety of

263 association structures under simulation.

264  HAIIA identifies novel fatty acid-xenobiotic metabolism associations in PPARa-
265 deficient mice

266 PPARa is a nuclear receptor that regulates transcription of genes related to lipid
267  metabolism in the liver [15]. These genes show high fatty acid catabolism rates, which
268 can in turn affect hepatic fat storage and lipoprotein metabolism. We used HAIIA to
269 examine associations between 120 hepatic transcript levels and 21 liver lipid levels in a
270  previously published dataset [16] (Fig 4). These data were originally collected from 40
271  wild type and peroxisome proliferator-activated receptor-a (PPARa)-deficient mice [15].
272  HAIIA recovered 109 block associations comprising 225 pairwise associations at target
273 FDR of 0.05 (chosen to match the previous study). HAIIA's results included all
274  associations that were previously reported using canonical correlation analysis, including

11


https://doi.org/10.1101/2021.11.11.468183
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.11.468183; this version posted November 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

275  a key relationship between fatty acids and the xenobiotic metabolism genes Cyp3aif
276  and Car1(MGI:88268).
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278 Figure 4. Association of fatty acids with host transcriptional activity in murine

279  liver. We applied HAIIA to paired data comprising 120 hepatic transcript levels and 21
280 liver lipid levels in a set of 40 previously profiled mice [15]. In this “HAIIAgram”
281  visualization of results, block associations are numbered in descending order of
282  significance, with each numbered block corresponding to a group of co-expressed
283 transcripts related to a group of co-occurring lipids. A white dot indicates marginal
284  significance of a particular pair of features. A total of 109 block associations achieved
285 significance at FDR 0.05, matching the previous study's threshold based on canonical
286  correlation [16] (detailed in S1 Table). HAIIA’s associations were a strict superset of
287  those found earlier by CCA. Spearman correlation was used as a similarity metric.

288 We further identified several novel associations, including a link between
289 polyunsaturated fatty acids eicosatrienoic acid (C20:3n6) and arachidonic acid
290 (C20:4n6) [17] with a group of transcripts including Mcad (Acadm, MGI:87867). This
291  gene (C-4 to C-12 straight chain acyl-Coenzyme A dehydrogenase) encodes one of the
292 main catalysts of the beta-oxidation process used for degradation of these fatty acids.
293 Genes Cari (MGI:88268) and Acot11 (MGI:1913736) (a carbonic anhydrase and lipid
294  transfer protein, respectively [18-19]) fell in the same cluster with C20.3n.6 and
295 (C20.4n.6, which would suggest a trafficking and transport relationship between these
296 genes and fatty acids.

297  Associating microbes with metabolites in the infant gut microbiome

298 In a prior study, Kostic and colleagues examined the development of the human gut
299  microbiome in a prospective, longitudinally sampled cohort of 33 Finnish and Estonian
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300 infants at high risk for type-1 diabetes [20]. Stool samples and clinical metadata (e.g.
301 breastfeeding status, diet, and appearance of allergies) were collected monthly.
302  Subjects’ stool samples were subsequently analyzed using 1) 16S rRNA amplicon
303 sequencing (to profile gut microbiome composition) and 2) targeted mass spectrometry
304 (to profile host and microbial metabolites). The dataset included 103 samples from 19
305 individuals, each with paired metabolomics and 16S rRNA gene sequencing data. We
306 applied HAIIA to identify associations between the residuals of microbial and metabolite
307 abundances after correcting for longitudinal trends and subject specific random effects

308 using a linear mixed effects model [21] (S1 Appendix).

309 HAIIA recovered 44 microbial/metabolite cluster associations between 13 microbial
310 genera and 44 metabolites using the same q < 0.05 threshold as in the original study
311 (Fig 5A). These encompassed 57 pairwise associations, using Spearman correlation as
312 the measure of pairwise feature similarity (as both data types are continuous). Using
313 pairwise, all-against-all testing, 56 associations were significant at the same threshold.
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315 Figure 5. HAlIIAgram for block-wise associations. a) Using HAIIA to associate
316  multi-omic data for the analysis of metabolome-microbiome interactions. We used
317  HAIIA to associate paired stool metabolomic and 16S rRNA gene sequencing data from
318 the DIABIMMUNE [20] cohort, in which infants were recruited at birth and sampled
319  monthly for the first three years of life. The data comprise 104 samples and describes
320 the abundance of 20 genera and 284 labeled metabolites. Here, we show the 30
321  strongest associations ranked by p-value (target FDR=0.05). b) Relating host
322 transcriptome and microbial taxa in IBD patients. We applied HAIIA to identify
323  associations between the human gut microbiome and transcriptome in 204 patients
324  receiving ileal pouch-anal anastomosis (IPAA) surgeries [23]. Block associations are
325 numbered in descending order of significance based on best p-values in each block with
326 each numbered block corresponding to a group of co-expressed transcripts related to a
327  group of co-occurring microbial taxa (operational taxonomic units, OTUs).
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328 Our results again replicate all significant associations from the previous study's
329 canonical correlation analysis (CCA), and most of the associations from the original
330 pairwise association analysis of the previous paper. HAIIA also found additional
331  associations, including a novel association between Prevotella and inosine (Spearman
332  coefficient = -0.439, FDR Q-value = 0.0053), which could be explained by a mechanism
333  where increased levels of urotoxins in the body from inosine decreased the abundance
334  of intolerant Prevotella. HAIIA also reports novel associations between fecal bile acids
335 lithocholate and lithocholic acid and genera Faecalibacterium and Veillonella (Spearman
336 coefficients = 0.36, -0.39; Q-values = 0.026, 0.015, respectively). Faecalibacterium is
337  Gram-positive anaerobic bacteria genera from order Clostridiales, while Veillonella are
338 Gram-negative anaerobic cocci. Relationships between these genera and global bile
339 acid levels (with matching correlation signs) has been previously indicated by several
340  studies, particularly in cirrhosis [22]. These data thus demonstrate HAIIA's potential
341  benefits relative to pairwise or omnibus (e.g. CCA) testing by simultaneously providing
342  both greater interpretability and power.

343  Associating the gut microbiome with host transcription in ulcerative colitis

344  We next applied HAIIA to data combining 1) 16S rRNA amplicon sequencing of the
345 human gut microbiome and 2) Affymetrix microarray screens of ileal RNA expression
346  across 204 individuals in a cohort of ileal pouch-anal anastomosis (IPAA) patients [23].
347 In the original multivariate analysis of these data [24], microbial operational taxonomic
348 unit (OTU) abundances were decomposed into principal components (PCs), and PCs
349  accounting for up to 50% of the variance in the datasets were compared by all-against-
350 all testing (an example of PC regression). While this approach enables well-powered
351  comparisons of large numbers of features, the features are embedded as loadings in
352  PCs, which complicates biological interpretation of the resulting associations.

353  HAIIA identified 327 block associations in these microbial and gene expression data
354 using an FDR threshold of 0.05 and a FNT of 0.1 (Fig 5B and S2 Table). Total
355 relationships encompassed 125 OTUs, 187 transcripts, and the equivalent of 368
356 pairwise associations. The original study focused on the 9" principal component (PC9)

357  of the dataset due to its linking of a group of IL12/complement pathways to members of
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358  the microbiome, using an FDR threshold of 0.25. Of HAIIA’s reported microbe-transcript
359  associations when run with the same threshold, 20 genes were drawn from the 26
360 transcripts whose largest loading was in PC9. HAIIA’s findings support a surprising result
361  of the original study: although PC9 represented only 1% of the transcriptional variation in
362 these samples, it captured most associations between transcription and the microbiome
363  during pouchitis. These results also agree with a previous re-analysis of these data [25]
364  assessing global covariation between gut microbial and transcriptional structure, which
365 called out three pathways (interleukin-12, inflammatory, and inflammatory bowel disease
366 genes) that overlap heavily with HAIIA’s block results (e.g. 28 out of 51 tested genes in
367 the KEGG TRP channel mediator pathway and 34 of 61 tested genes in the KEGG IBD

368  pathway were significantly associated with microbial species).

369 Expanding on these previous associations, HAIIA found a group of facultative anaerobes
370 (mainly streptococci) to be positively associated with expression of the genes WDR49
371 and SERPINI2. WDR49 is a WD repeat-containing protein upregulated in alveolar
372  macrophages, a cell type specifically responsible for nasopharyngeal pathogen uptake
373 [26]. This association suggests this protein may also be involved in recognition of
374  Dbacteria in the gut environment. Another novel association in HAIIA's results linked a
375 group of Bifidobacterium OTUs with FABP1, a member of the long-chain fatty acid
376  binding protein family involved both in lipid sensing and metabolic regulation of energy
377  harvest [27]. This positive relationship has also been observed in mice [28]. Finally,
378  during intestinal inflammation and bleeding, host-microbial iron competition is a limiting
379  factor in subsets of microbial growth [29], which may be responsible for the significant
380 negative association identified between the siderophore-rich genus Blautia and
381  SLC40A1, a human intestinal epithelial iron ion transmembrane transporter [30].

382

383 HAIIA’s applicability to heterogeneous datasets

384  We finally applied HAIIA to identify associations between mixed clinical metadata and

385 RNA expression in the breast cancer cohort of the Cancer Genome Atlas (TCGA) [31]

386 available from the LinkedOmics R package [32], focusing on highly expressed yet

387  variable transcripts (Fig 3 in S1 Appendix). HAIIA identified 483 significant (Q-value <
16
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388 0.1) metadata-RNA associations within 261 blocks, including clusters of transcripts
389  associated with tumor purity, PAM50 subtype, and ER Status. Notably, the transcripts
390 occupying the block associated with PAMS50 subtype include CA12, GABRP, NAT1, and
391 TBC1D9, which have been previously proposed as predictor genes for breast cancer
392  mortality, recurrence [33], and drug response [34]. Coupled with the results of the
393 preceding applications, these results speak to the generality of HAIIA’s association-

394  discovery power across large, heterogeneous datasets.

395 In order to demonstrate the usefulness of alternative similarity measures like XICOR, we
396 decided to look for non-linear functional relationships between RNA and protein
397  expression in the breast cancer cohort of the Cancer Genome Atlas (TCGA) [31]. We
398 applied HAIIA to this data using both Spearman and XICOR as similarity measures, then
399 examined the significant associations that came out with the latter but not the former.
400 Among these we noticed three associations between RNA expression of transcription
401  factor FOXC1 and protein expression of CCNE2, PIK3CA, and SRSF1 (FDR Q-value =
402 9.3x107, 3.9x10°, 0.015, respectively) which showed compelling U-shaped relationships
403 (Fig 6). When compared with PAM50 clinical subtypes, these relationships emerge as a
404  result of two features of the originating tumors. First, the different PAM50 subtypes vary
405 in average FOXC1 expression (i.e. average position on the x-axis). Secondly, the effect
406 of FOXC1 on the expression of each protein appears to vary between the subtypes, with
407 the opposite sign in the basal subtype. There are individually well-established links
408 between subtype and FOXC1, CCNE2, and PIK3CA [35-37]. However, the varying
409 relationship of each protein with FOXC1 by subtype has seemingly gone unnoticed in
410 the literature, presumably due to the marginally non-linear shape of the overall
411 relationship. While further study of the clinical importance of these relationships is
412  warranted, these findings demonstrate the ease of well-powered, flexible, nonlinear
413  association discovery with HAIIA.
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415  Figure 6. Non-linear relationships detected between RNA and protein expression
416 in a breast cancer cohort. By using an association metric sensitive to nonlinear
417  relationships (XICOR), HAIIA detects U-shaped relationships between FOXC1 RNA
418  expression and the protein expression of three genes. Overlaying the PAM50 subtype
419  reveals that the U-shapes seem to emerge from a varying response to increased FOXC1
420  RNA expression by subtype. This effect seems to have gone unnoticed in the literature,
421  thus demonstrating the ease with which HAIIA can aid in the discovery of complicated
422  relationships that might be missed otherwise.

423 Discussion

424  In this work, we proposed and validated HAIIA, a novel statistical method to find
425  associations between multi-omic datasets. HAIIA addresses several important
426  methodological challenges in the analysis of high-dimensional datasets. It is applicable
427  to data that are heterogeneous both within and between experiments, and it maintains
428  statistical power using a novel hierarchical association testing and FDR control
429  procedure. In this method, groups of correlated tests are modeled as blocks, ultimately
430 reporting associations within blocks and between block representatives from multiple
431 data types and experiments. This permits both great flexibility in the types of
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432 measurements to which it is applied and ease of interpretation of the resulting significant
433  associations.

434  Class prediction approaches are commonly used to model relationships between high-
435 dimensional datasets with variables measured using shared observational units. For
436  example, Partial Least Squares [38] and its close relative Canonical Correlation Analysis
437 [39] identify latent variables in one dataset that are maximally correlated to latent
438 variables in the other dataset. These methods, and robust and penalized varieties [40-
439  41], can identify blocks of variables that are correlated within one dataset and in turn
440  with another block of correlated variables in another dataset. They do not, however,
441  control for family-wise error or FDR, and so are most suitable for prediction or
442  exploratory, visual, and descriptive analysis. With these methods, inference on the
443  existence of associations between the variables of two datasets against null hypotheses
444  of independence still relies on univariate hypothesis tests (and possibly dimension
445  reduction or clustering) and is performed subsequently in a separate step. The FDR for
446  the potentially large number of tests can be controlled by the Benjamini and Hochberg
447  method [42], which has been adapted for dependent tests [43] and hierarchically
448  organized tests [44] that are continued until non-significance. The approach described
449  here thus aims to combine the best features of these different existing approaches,
450 yielding clustering of potentially heterogeneous variable types within each dataset with
451 hierarchical testing and control of FDR.

452  While these approaches are frequentist, Bayesian models are also used to improve
453 power and share information among feature blocks [45-48]. While such methods are
454  extremely powerful within their target domains, they are typically intended for
455  incorporation of specific prior knowledge, such as graph structure [44, 49], phylogeny
456 [50], or pathway-based functional roles [51]. They can also be computationally
457  expensive in cases where many or long simulation chains are required for convergence
458 [52]. HAIIA's nonparametric frequentist approach will likely result in reduced power
459 relative to such models within the domains for which they are designed, but with
460  substantially reduced computational cost and without the need to specify model
461 relationships and priors in each new application domain. Like most statistical tradeoffs,

462  HAIIA’s generality as a tool for association discovery thus comes at a cost in specific
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463 circumstances where it is desirable to instead utilize prior knowledge and known data
464  structure.

465 A limitation of the current method is that it can only look for associations between two
466  datasets at a time. While the method can be applied to multiple pairs of joint datasets
467  manually, this becomes combinatorially prohibitive in particularly thorough studies where
468 a large number of high-dimensional data types are available (e.g. studies which collect
469  genetics, gene expression, epigenetics, microbial profiles, metabolites, and metadata
470 from each sample). In circumstances such as these, repeated application of HAIIA
471  across each pair of datasets would no longer properly control FDR. A potential extension
472  would be to incorporate multivariate testing directly as an association measure, e.g.
473  block PERMANOVA [53-54] or Procrustes analysis [55], to lower the combinatorial
474  burden by performing inference on sets of features rather than individual feature pairs.
475  Second, the model does not share information between blocks, as would be the case in
476  a fully multivariate test [53] or a hierarchical Bayesian model [48]. Cases in which data
477  do include such multi-layered nonindependence structure may indeed be better handled
478 in a Bayesian framework. Finally, and relatedly, it is not straightforward to incorporate
479  any type of prior knowledge into the HAIIA framework, again because of HAIIA’s intention
480 for wide applicability. Pre-filtering can be used, as in several of our own examples, but
481  this can be either beneficial or detrimental depending on context [56-57].

482  Future work could also provide several refinements to the method, in addition to
483  addressing these limitations. Currently, for example, known but undesirable confounders
484 must be separately regressed out prior to using HAIIA, and the method run on the
485  resulting residuals instead of raw data. Integrating such covariate adjustment would be
486  possible in future versions of the method's implementation. Perhaps most importantly, it
487 may be possible to place tighter theoretical bounds on the block-wise and global FDR
488  control beyond what is provided by HAIIA's adaptation of the Benjamini-Hochberg [42]
489  and Benjamini-Yekutieli methods [58]. This would also suggest a theoretical framework
490  within which to characterize the amount and types of non-independence best handled by
491 hierarchical block association testing. Ultimately, tradeoffs must be made between
492 power and generality [59]. However, we aim for HAIIA to provide a happy medium,
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493 capable of serving as an easy-to-use first pass analysis in a wide range of multi-omics
494  data types.
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