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Abstract 22 

Modern biological screens yield enormous numbers of measurements, and identifying 23 

and interpreting statistically significant associations among features is essential. Here, 24 

we present a novel hierarchical framework, HAllA (Hierarchical All-against-All 25 

association testing), for structured association discovery between paired high-26 

dimensional datasets. HAllA efficiently integrates hierarchical hypothesis testing with 27 

false discovery rate correction to reveal significant linear and non-linear block-wise 28 

relationships among continuous and/or categorical data. We optimized and evaluated 29 

HAllA using heterogeneous synthetic datasets of known association structure, where 30 

HAllA outperformed all-against-all and other block testing approaches across a range of 31 

common similarity measures. We then applied HAllA to a series of real-world multi-omics 32 

datasets, revealing new associations between gene expression and host immune 33 

activity, the microbiome and host transcriptome, metabolomic profiling, and human 34 

health phenotypes. An open-source implementation of HAllA is freely available at 35 

http://huttenhower.sph.harvard.edu/halla along with documentation, demo datasets, and 36 

a user group. 37 

Author Summary 38 

Modern scientific datasets increasingly include multiple measurements of many 39 

complementary data types. Here, we present HAllA, a method and implementation that 40 

overcomes the statistical challenges presented by data of this type by using feature 41 

similarity within each dataset to find statistically significant groups of features between 42 

them. We applied HAllA to simulated and real datasets, showing that HAllA 43 

outperformed existing procedures and identified compelling biological relationships. 44 

HAllA is widely applicable to diverse data structures and presents the user with grouped 45 

results that are easier to interpret than traditional methods.  46 

  47 
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Introduction 48 

Pattern discovery in high-dimensional, heterogeneous data is a longstanding problem in 49 

applied statistics [1,2]. It is challenging for several reasons, including the inherent 50 

tradeoffs between sensitivity and generality - that is, the ability and power to detect 51 

associations given varying assumptions about the functional form of the relationship [3]. 52 

When applied in contexts such as high-throughput biology, these challenges are 53 

exacerbated by noisy, diverse, and non-linear data. Examples include biospecimens 54 

drawn from large cohorts, in which each sample may be decorated with heterogeneous 55 

phenotypic variables (clinical features, diseases status, etc.) and multiple high-56 

dimensional molecular measurements (microbial taxa, epigenetic markers, gene 57 

expression, etc.). In the biological sciences specifically, selecting a subset of 58 

associations for follow-up validation experiments can be a complex yet important 59 

decision point. A gap remains to efficiently identify related features in such data, while 60 

both maintaining sensitivity and controlling spurious association reporting. 61 

All-against-all (AllA) approaches, which test all pairs of features and then correct for 62 

false discovery, scale well only in completely independent tests of moderate size [4]. 63 

Under other conditions, such feature-wise approaches can have limited statistical power 64 

due to testing many correlated hypotheses for individually weak associations [5]. This 65 

has led to the development of a variety of (typically parametric) block-testing 66 

approaches, such as partial least squares (PLS) [6], canonical correlation analysis 67 

(CCA) [7], PLS discriminant analysis (PLS-DA), sparse principal component analysis 68 

(SPCA) [8], and SPARSE-CCA [9]. These serve to detect associations between 69 

reduced-dimensional representations of large input datasets, but they are typically 70 

limited by one or more of 1) applicability only to continuous measurements with no 71 

missing values (or only categorical, not mixed; PLS, CCA, SPCA); 2) a focus on the 72 

single, strongest axis of covariation between the datasets (CCA); 3) an assumption of 73 

linear covariation (CCA, SPCA, PLS); 4) identifying complex combinations of feature 74 

loadings implicated in associations, rather than specific features (particularly in kernel 75 

methods such as Kernel PCA [10]); and 5) a lack of explicit control of the false discovery 76 

rate (FDR). 77 
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Recent advances have focused on nonparametric methods for identifying highly general 78 

(i.e., linear and non-linear) associations between individual pairs of features, sometimes 79 

relying on computational or permutation-based methods not readily accessible to early 80 

applied statisticians. These include, for example, distance correlation (dCor) [11], which 81 

measures (not necessarily linear) dependency of two random variables with possibly 82 

different dimensions. The Chatterjee rank correlation (XICOR) [12] is another recently-83 

introduced similarity measure that uses rank differences to assess the degree to which 84 

one variable is a measurable function of another. While dCor and XICOR provide 85 

comparatively general methods to discover complex associations between individual 86 

pairs of features, when applied to many combinations of linear feature pairs with varying 87 

degrees of dependence, the resulting statistical power can fall below simpler traditional 88 

approaches after controlling FDR for multiple hypothesis tests [13]. 89 

In this work, we develop a hierarchical all-against-all association testing framework 90 

(HAllA) that identifies highly general association types in paired, high-dimensional, and 91 

potentially heterogeneous datasets. HAllA preserves statistical power in the presence of 92 

collinearity by testing coherent clusters of variables in a hierarchical manner, while 93 

controlling overall FDR with hierarchical multiple hypothesis testing. HAllA discovers 94 

associations between blocks of features among paired datasets in a way that increases 95 

interpretability by grouping features according to their relatedness. 96 

Methods 97 

In this section, we provide an overview of the HAllA algorithm and its component steps. 98 

Additional methods details, including pseudocode, are provided in S1 Appendix. 99 

The HAllA Algorithm. 100 

Hierarchical All-against-All Association testing (HAllA) identifies block associations 101 

between two potentially heterogeneous datasets co-indexed along one axis (Fig 1A). 102 

This co-indexing is referred to as the "samples" axis (columns), and the measurement 103 

axis as "features" (rows). For a pair of datasets containing measurements that describe 104 

the same set of samples and a specified pairwise similarity measure, the HAllA algorithm 105 
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proceeds by 1) optionally discretizing features to a uniform representation (if required by 106 

the similarity measure), 2) finding the Benjamini–Hochberg (BH) FDR threshold, 3) 107 

hierarchically clustering each dataset separately to generate two data hierarchies, 4) 108 

coupling clusters of equivalent resolution between the two data hierarchies, 5) testing 109 

coupled clusters for statistically significant association in block format where the block 110 

passes a threshold for false negative tolerance (FNT), and 6) iteratively increasing 111 

resolution by descending through the pair of hierarchies according to which split results 112 

in a higher Gini score gain. The final pair of hierarchies are those that lead to the largest 113 

hypothesis blocks that pass the FNT threshold (Fig 1 and S1 Appendix).  114 

115 
Figure 1. Hierarchical all-against-all (HAllA) association testing. (A) HAllA provides 116 
a novel method for heterogeneous association discovery in high dimensional data. Input 117 
data are represented in matrix form as features (rows) and samples (columns). (B) Data 118 
are discretized to provide a unified representation of heterogeneous feature types. This 119 
step is skipped for similarity metrics that requires continuous data (e.g. Spearman). (C) 120 
Features within each data set are hierarchically clustered using average linkage and 121 
Spearman association as default methods. (D) Reject block-wise null hypotheses that 122 
pass the false negative tolerance (FNT) threshold using Benjamini-Hochberg FDR 123 
threshold for pair-wise associations within the block. (E) Block format hypotheses are 124 
built by pairing clusters between two datasets at equivalent relative homogeneity. Each 125 
hypothesis node has two data clusters whose descendants are used for the next level of 126 
hypothesis testing. In hypothesis testing, the FNT threshold is used to determine which 127 
clusters are significantly associated between the two datasets. (F) Significant 128 
associations are reported after controlling the FDR for each hypothesis set in the 129 
descending approach using hypothesis tree-oriented structure. 130 

Optionally discretizing input datasets.  131 

This step permits direct comparison of continuous and categorical features (Fig 1B) and 132 

further enables the application of highly general measures of association from 133 
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information theory, such as mutual information (MI). This combination allows HAllA to 134 

detect significant 1) non-linear associations between paired continuous features (e.g., 135 

quadratic or sinusoidal relationships), 2) differences in group means for paired 136 

continuous and categorical features, and 3) non-random associations between paired 137 

categorical features. HAllA’s default discretization scheme divides continuous features 138 

into bins of equal size once at the start of processing. By default, the number of bins is 139 

the cube root of the sample size, which provides reasonable power at a variety of 140 

sample sizes and correlation levels (Fig 1 in S1 Appendix). HAllA also removes features 141 

with low variance by applying a configurable frequency threshold (defaulting to 100%, 142 

meaning only features with no variability are removed) in order to reduce the number of 143 

unnecessary tests. 144 

Hierarchical clustering and cluster coupling allow detection of associations 145 

between groups of features.  146 

Each dataset is subjected to average-linkage hierarchical clustering using the specified 147 

similarity measure (Spearman’s rank correlation by default) within each dataset (Fig 1C). 148 

Associations between datasets are tested in a top-down manner by pairing nodes of 149 

similar resolution between their respective data trees. More specifically, HAllA 150 

recursively builds a tree of hypotheses to test (the <hypothesis tree=), beginning at the 151 

top of each dataset’s tree, descending to a set of nodes within each data tree, and then 152 

pairing each selected node from the first tree with each selected node of the second 153 

tree. At each step in the descent process, the choice of whether to descend within the X 154 

or Y hypothesis tree is made by comparing which split leads to a higher Gini score gain. 155 

In the case of ties, both descent steps are made. This procedure is repeated until 156 

termination, i.e. when the hypothesis block passes the FNT threshold or when the 157 

selected nodes represent single features in their respective data trees (Fig 1E). Another 158 

way to visualize this process is by focusing on the all-by-all hypothesis matrix (Fig 1F, 159 

left). The process begins by checking if the entire matrix passes the FNT threshold. If 160 

not, the matrix is recursively cut horizontally or vertically into smaller hypothesis blocks, 161 

with the position of each cut decided by each dataset’s similarity tree and Gini score 162 

gain. The cutting process stops when the smaller hypothesis blocks pass the FNT 163 

threshold or have been reduced to one-by-one blocks. 164 
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The notion of identifying and testing hypotheses in a hierarchical manner was previously 165 

proposed by Yekutieli [14]. HAllA’s hypothesis tree similarly groups more specific child 166 

hypotheses below a more general parent hypothesis. However, HAllA’s approach differs 167 

fundamentally from the Yekutieli approach in that HAllA tests hierarchical hypotheses 168 

until a null hypothesis can be rejected; Yekutieli’s method tests until the first failure to 169 

reject a null hypothesis. This results in HAllA maintaining greater power, while Yekutieli’s 170 

method instead maintains greater specificity. 171 

Determining the statistical significance of block associations.  172 

The method proceeds by testing the nodes in the hypothesis tree (each representing a 173 

pair of feature clusters, one from each dataset) for significant between-cluster 174 

associations. Each node in the hypothesis tree is evaluated using the following 175 

procedure: let ℋ denote the null hypothesis that the two clusters of features are not 176 

related, and ℋ� be the null hypothesis of no association between two individual features 177 

within those clusters. Define �� as the p-value of the association between an individual 178 

pair of features considered by ℋ�. We then count all rejected ℋ� (i.e. �� f ���), and all 179 ℋ�  that failed to reject, i.e. �� > ���  where ���  is the global BH FDR threshold. The 180 

blockwise FNT is provided by the user (default FNT = 0.2) and acts as the allowed 181 

fraction of paired associations which are expected to fail to reject despite being true 182 

associations. If the fraction of paired associations in a block with �� > ��� is greater than 183 

or equal to FNT, we reject the entire block hypothesis ℋ. 184 

If any hypothesis involved clusters rather than feature tips, and failed to reject, the 185 

procedure is repeated with new null hypotheses for associations between sub-clusters 186 

(Fig 1E), as described in section <Descending in sub-hypotheses of block hypotheses= in 187 

S1 Appendix. HAllA reports all significant associations between clusters of any size that 188 

pass the FNT threshold (Fig 1F).  189 

Visualizing outputs 190 

Once the analysis is complete, the results are visualized in a <HAllAgram= (Fig 4). This 191 

comprises a heatmap visualizing the relatedness and strength of association between 192 
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pairs of features in the two datasets. Features are ordered along each axis according to 193 

their position in the hierarchical tree so that clusters of significant features can be boxed 194 

into contiguous units. Marginally associated pairs are dotted, and each hypothesis block 195 

is labelled with the rank of its association strength. Features not associated with any 196 

block are not plotted by default. For analysis results where large numbers of blocks are 197 

detected, only the strongest blocks are shown (30 by default), with potentially-198 

incomplete, lower-ranked blocks boxed in grey. Together, this set of plotting techniques 199 

allows users to visually understand the related sets of hypotheses that HAllA has 200 

detected. Other plotting utilities are also included with the method's current 201 

implementation, such as a clustermap that displays the entire association tree in the 202 

margins for both datasets, as well as a diagnostic plot that displays the input data 203 

associated with individual hypothesis blocks. 204 

Results 205 

HAllA increases power while controlling FDR to report blockwise associations 206 

When applied to paired datasets with no significantly related blocks of features, HAllA’s 207 

descent algorithm reduces to all-against-all (AllA) direct pairwise feature testing. In such 208 

circumstances, HAllA is expected to perform similarly to AllA. However, when there are 209 

sets of correlated variables within one dataset that are correlated with another set of 210 

variables in the other, HAllA will report the block-wise associations. Notably, we expect 211 

this behavior to be common in multi-omics data, where we see large clusters of 212 

molecular features (e.g. co-expressed genes in a metabolic pathway). 213 

To evaluate these claims, we applied HAllA and AllA to paired, synthetic datasets 214 

generated with the data simulator function in the HAllA software. These datasets 215 

contained pre-specified block associations, which allowed us to evaluate the statistical 216 

and computational performance of these two methods (Fig 2 and Fig 3). With a constant 217 

target FNT in associated blocks of 0.2, HAllA controls FDR, reports association in block 218 

form, and improves power on average by 7-11% (Fig 2A) across varied FDR thresholds.  219 

HAllA also consistently boosts the true positive rate relative to AllA using different target 220 

FNT values in associated blocks (Fig 2B).  221 
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222 
Figure 2. HAllA improves statistical power while controlling the FDR. 50 paired, 223 
synthetic datasets with 200 features and 50 samples containing clusters with linear block 224 
associations were analyzed. A) with FNT = 0.2, HAllA maintains the simulated FDR 225 
below the target (here (0.05, 0.1, 0.25, and 0.5), with associated trade-offs in statistical 226 
power. In addition, HAllA is consistently better powered than all-against-all (AllA) 227 
association testing across this range of target FDR values. Dashed lines parallel to the 228 
x-axis indicate the target FDR value in each comparison. B) By increasing the FNT, 229 
HAllA can improve the true positive rate with a comparatively minor increase in FDR. 230 
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 231 

Figure 3.  HAllA discovers block-structured associations while controlling false 232 
discovery rate. For a variety of feature linkage relationships, we simulated 50 233 
independent paired datasets, each containing 200 features, 50 samples, and clusters of 234 
correlated features. We then evaluated the ability of hierarchical versus all-against-all 235 
testing to recover these associations using a variety of similarity metrics. Performance 236 
was evaluated by comparing power and false discovery rates. Our hierarchical all-237 
against-all approach improved sensitivity relative to naive all-against-all approaches at a 238 
comparable false discovery rate. Similarity metrics that don’t accept categorical data 239 
have not been evaluated in the categorical or mixed association type. Other similarity 240 
metrics included in HAllA (dCor, NMI) were not applied in these simulations because 241 
their reliance on permutation tests made them too slow for simulations of this size (i.e. 242 
with many repeated iterations), although they are typically practical in individual real-243 
world datasets. 244 
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 245 

We evaluated many different forms of feature association, including linear, quadratic, 246 

logarithmic, sinusoidal, stepwise, parabolic, and mixed (combined discrete and 247 

continuous) data. We compared HAllA and AllA across these association types using a 248 

variety of similarity measures, including XICOR, mutual information (MI), Spearman 249 

correlation, and Pearson correlation. Across datasets and similarity measures, HAllA 250 

consistently detected more built-in associations (had better average power by as much 251 

as 10%) than AllA while controlling FDR at the same pre-specified level (Fig 3B).  Each 252 

similarity measure exhibited various strengths and weaknesses across evaluations 253 

depending on data type. As expected, for mixed and categorical data, MI is appropriate, 254 

and for monotonic associations in continuous data, Spearman correlation performs well. 255 

XICOR is applicable to both continuous and discrete outcomes and performs well on 256 

difficult nonlinear association types. However, it is rarely the most statistically powerful 257 

option, and its interpretation is limited to measuring the association of features in Y as a 258 

measurable function of features in X and not vice versa. A similar power analysis that 259 

used a fixed association structure with varying correlation strength led to similar 260 

conclusions (Fig 2 in S1 Appendix). Together these results show that the HAllA 261 

approach increases statistical power while maintaining the FDR across a wide variety of 262 

association structures under simulation. 263 

HAllA identifies novel fatty acid-xenobiotic metabolism associations in PPAR�-264 

deficient mice 265 

PPAR� is a nuclear receptor that regulates transcription of genes related to lipid 266 

metabolism in the liver [15]. These genes show high fatty acid catabolism rates, which 267 

can in turn affect hepatic fat storage and lipoprotein metabolism. We used HAllA to 268 

examine associations between 120 hepatic transcript levels and 21 liver lipid levels in a 269 

previously published dataset [16] (Fig 4). These data were originally collected from 40 270 

wild type and peroxisome proliferator-activated receptor-� (PPAR�)-deficient mice [15]. 271 

HAllA recovered 109 block associations comprising 225 pairwise associations at target 272 

FDR of 0.05 (chosen to match the previous study). HAllA's results included all 273 

associations that were previously reported using canonical correlation analysis, including 274 
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a key relationship between fatty acids and the xenobiotic metabolism genes Cyp3a11 275 

and Car1(MGI:88268).  276 

 277 
Figure 4. Association of fatty acids with host transcriptional activity in murine 278 
liver. We applied HAllA to paired data comprising 120 hepatic transcript levels and 21 279 
liver lipid levels in a set of 40 previously profiled mice [15]. In this <HAllAgram= 280 
visualization of results, block associations are numbered in descending order of 281 
significance, with each numbered block corresponding to a group of co-expressed 282 
transcripts related to a group of co-occurring lipids. A white dot indicates marginal 283 
significance of a particular pair of features. A total of 109 block associations achieved 284 
significance at FDR 0.05, matching the previous study's threshold based on canonical 285 
correlation [16] (detailed in S1 Table). HAllA’s associations were a strict superset of 286 
those found earlier by CCA. Spearman correlation was used as a similarity metric. 287 

We further identified several novel associations, including a link between 288 

polyunsaturated fatty acids eicosatrienoic acid (C20:3n6) and arachidonic acid 289 

(C20:4n6) [17] with a group of transcripts including Mcad (Acadm, MGI:87867). This 290 

gene (C-4 to C-12 straight chain acyl-Coenzyme A dehydrogenase) encodes one of the 291 

main catalysts of the beta-oxidation process used for degradation of these fatty acids. 292 

Genes Car1 (MGI:88268) and Acot11 (MGI:1913736) (a carbonic anhydrase and lipid 293 

transfer protein, respectively [18-19]) fell in the same cluster with C20.3n.6 and 294 

C20.4n.6, which would suggest a trafficking and transport relationship between these 295 

genes and fatty acids.  296 

Associating microbes with metabolites in the infant gut microbiome 297 

In a prior study, Kostic and colleagues examined the development of the human gut 298 

microbiome in a prospective, longitudinally sampled cohort of 33 Finnish and Estonian 299 
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infants at high risk for type-1 diabetes [20]. Stool samples and clinical metadata (e.g. 300 

breastfeeding status, diet, and appearance of allergies) were collected monthly. 301 

Subjects’ stool samples were subsequently analyzed using 1) 16S rRNA amplicon 302 

sequencing (to profile gut microbiome composition) and 2) targeted mass spectrometry 303 

(to profile host and microbial metabolites). The dataset included 103 samples from 19 304 

individuals, each with paired metabolomics and 16S rRNA gene sequencing data. We 305 

applied HAllA to identify associations between the residuals of microbial and metabolite 306 

abundances after correcting for longitudinal trends and subject specific random effects 307 

using a linear mixed effects model [21] (S1 Appendix). 308 

HAllA recovered 44 microbial/metabolite cluster associations between 13 microbial 309 

genera and 44 metabolites using the same q < 0.05 threshold as in the original study 310 

(Fig 5A). These encompassed 57 pairwise associations, using Spearman correlation as 311 

the measure of pairwise feature similarity (as both data types are continuous). Using 312 

pairwise, all-against-all testing, 56 associations were significant at the same threshold. 313 
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 314 

Figure 5. HAllAgram for block-wise associations. a) Using HAllA to associate 315 
multi-omic data for the analysis of metabolome-microbiome interactions. We used 316 
HAllA to associate paired stool metabolomic and 16S rRNA gene sequencing data from 317 
the DIABIMMUNE [20] cohort, in which infants were recruited at birth and sampled 318 
monthly for the first three years of life. The data comprise 104 samples and describes 319 
the abundance of 20 genera and 284 labeled metabolites. Here, we show the 30 320 
strongest associations ranked by p-value (target FDR=0.05). b) Relating host 321 
transcriptome and microbial taxa in IBD patients. We applied HAllA to identify 322 
associations between the human gut microbiome and transcriptome in 204 patients 323 
receiving ileal pouch-anal anastomosis (IPAA) surgeries [23]. Block associations are 324 
numbered in descending order of significance based on best p-values in each block with 325 
each numbered block corresponding to a group of co-expressed transcripts related to a 326 
group of co-occurring microbial taxa (operational taxonomic units, OTUs). 327 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2021. ; https://doi.org/10.1101/2021.11.11.468183doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.11.468183
http://creativecommons.org/licenses/by-nd/4.0/


15 

 

Our results again replicate all significant associations from the previous study's 328 

canonical correlation analysis (CCA), and most of the associations from the original 329 

pairwise association analysis of the previous paper. HAllA also found additional 330 

associations, including a novel association between Prevotella and inosine (Spearman 331 

coefficient = -0.439, FDR Q-value = 0.0053), which could be explained by a mechanism 332 

where increased levels of urotoxins in the body from inosine decreased the abundance 333 

of intolerant Prevotella. HAllA also reports novel associations between fecal bile acids 334 

lithocholate and lithocholic acid and genera Faecalibacterium and Veillonella (Spearman 335 

coefficients = 0.36, -0.39; Q-values = 0.026, 0.015, respectively). Faecalibacterium is 336 

Gram-positive anaerobic bacteria genera from order Clostridiales, while Veillonella are 337 

Gram-negative anaerobic cocci. Relationships between these genera and global bile 338 

acid levels (with matching correlation signs) has been previously indicated by several 339 

studies, particularly in cirrhosis [22]. These data thus demonstrate HAllA's potential 340 

benefits relative to pairwise or omnibus (e.g. CCA) testing by simultaneously providing 341 

both greater interpretability and power. 342 

Associating the gut microbiome with host transcription in ulcerative colitis 343 

We next applied HAllA to data combining 1) 16S rRNA amplicon sequencing of the 344 

human gut microbiome and 2) Affymetrix microarray screens of ileal RNA expression 345 

across 204 individuals in a cohort of ileal pouch-anal anastomosis (IPAA) patients [23]. 346 

In the original multivariate analysis of these data [24], microbial operational taxonomic 347 

unit (OTU) abundances were decomposed into principal components (PCs), and PCs 348 

accounting for up to 50% of the variance in the datasets were compared by all-against-349 

all testing (an example of PC regression). While this approach enables well-powered 350 

comparisons of large numbers of features, the features are embedded as loadings in 351 

PCs, which complicates biological interpretation of the resulting associations. 352 

HAllA identified 327 block associations in these microbial and gene expression data 353 

using an FDR threshold of 0.05 and a FNT of 0.1 (Fig 5B and S2 Table). Total 354 

relationships encompassed 125 OTUs, 187 transcripts, and the equivalent of 368 355 

pairwise associations. The original study focused on the 9th principal component (PC9) 356 

of the dataset due to its linking of a group of IL12/complement pathways to members of 357 
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the microbiome, using an FDR threshold of 0.25. Of HAllA’s reported microbe-transcript 358 

associations when run with the same threshold, 20 genes were drawn from the 26 359 

transcripts whose largest loading was in PC9. HAllA’s findings support a surprising result 360 

of the original study: although PC9 represented only 1% of the transcriptional variation in 361 

these samples, it captured most associations between transcription and the microbiome 362 

during pouchitis. These results also agree with a previous re-analysis of these data [25] 363 

assessing global covariation between gut microbial and transcriptional structure, which 364 

called out three pathways (interleukin-12, inflammatory, and inflammatory bowel disease 365 

genes) that overlap heavily with HAllA’s block results (e.g. 28 out of 51 tested genes in 366 

the KEGG TRP channel mediator pathway and 34 of 61 tested genes in the KEGG IBD 367 

pathway were significantly associated with microbial species). 368 

Expanding on these previous associations, HAllA found a group of facultative anaerobes 369 

(mainly streptococci) to be positively associated with expression of the genes WDR49 370 

and SERPINI2. WDR49 is a WD repeat-containing protein upregulated in alveolar 371 

macrophages, a cell type specifically responsible for nasopharyngeal pathogen uptake 372 

[26]. This association suggests this protein may also be involved in recognition of 373 

bacteria in the gut environment. Another novel association in HAllA's results linked a 374 

group of Bifidobacterium OTUs with FABP1, a member of the long-chain fatty acid 375 

binding protein family involved both in lipid sensing and metabolic regulation of energy 376 

harvest [27]. This positive relationship has also been observed in mice [28]. Finally, 377 

during intestinal inflammation and bleeding, host-microbial iron competition is a limiting 378 

factor in subsets of microbial growth [29], which may be responsible for the significant 379 

negative association identified between the siderophore-rich genus Blautia and 380 

SLC40A1, a human intestinal epithelial iron ion transmembrane transporter [30]. 381 

 382 

HAllA’s applicability to heterogeneous datasets 383 

We finally applied HAllA to identify associations between mixed clinical metadata and 384 

RNA expression in the breast cancer cohort of the Cancer Genome Atlas (TCGA) [31] 385 

available from the LinkedOmics R package [32], focusing on highly expressed yet 386 

variable transcripts (Fig 3 in S1 Appendix). HAllA identified 483 significant (Q-value < 387 
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0.1) metadata-RNA associations within 261 blocks, including clusters of transcripts 388 

associated with tumor purity, PAM50 subtype, and ER Status. Notably, the transcripts 389 

occupying the block associated with PAM50 subtype include CA12, GABRP, NAT1, and 390 

TBC1D9, which have been previously proposed as predictor genes for breast cancer 391 

mortality, recurrence [33], and drug response [34]. Coupled with the results of the 392 

preceding applications, these results speak to the generality of HAllA’s association-393 

discovery power across large, heterogeneous datasets. 394 

In order to demonstrate the usefulness of alternative similarity measures like XICOR, we 395 

decided to look for non-linear functional relationships between RNA and protein 396 

expression in the breast cancer cohort of the Cancer Genome Atlas (TCGA) [31]. We 397 

applied HAllA to this data using both Spearman and XICOR as similarity measures, then 398 

examined the significant associations that came out with the latter but not the former. 399 

Among these we noticed three associations between RNA expression of transcription 400 

factor FOXC1 and protein expression of CCNE2, PIK3CA, and SRSF1 (FDR Q-value = 401 

9.3x10-7, 3.9x10-5, 0.015, respectively) which showed compelling U-shaped relationships 402 

(Fig 6). When compared with PAM50 clinical subtypes, these relationships emerge as a 403 

result of two features of the originating tumors. First, the different PAM50 subtypes vary 404 

in average FOXC1 expression (i.e. average position on the x-axis). Secondly, the effect 405 

of FOXC1 on the expression of each protein appears to vary between the subtypes, with 406 

the opposite sign in the basal subtype. There are individually well-established links 407 

between subtype and FOXC1, CCNE2, and PIK3CA [35-37]. However, the varying 408 

relationship of each protein with FOXC1 by subtype has seemingly gone unnoticed in 409 

the literature, presumably due to the marginally non-linear shape of the overall 410 

relationship. While further study of the clinical importance of these relationships is 411 

warranted, these findings demonstrate the ease of well-powered, flexible, nonlinear 412 

association discovery with HAllA. 413 
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 414 

Figure 6.  Non-linear relationships detected between RNA and protein expression 415 

in a breast cancer cohort. By using an association metric sensitive to nonlinear 416 

relationships (XICOR), HAllA detects U-shaped relationships between FOXC1 RNA 417 

expression and the protein expression of three genes. Overlaying the PAM50 subtype 418 

reveals that the U-shapes seem to emerge from a varying response to increased FOXC1 419 

RNA expression by subtype. This effect seems to have gone unnoticed in the literature, 420 

thus demonstrating the ease with which HAllA can aid in the discovery of complicated 421 

relationships that might be missed otherwise. 422 

Discussion 423 

In this work, we proposed and validated HAllA, a novel statistical method to find 424 

associations between multi-omic datasets. HAllA addresses several important 425 

methodological challenges in the analysis of high-dimensional datasets. It is applicable 426 

to data that are heterogeneous both within and between experiments, and it maintains 427 

statistical power using a novel hierarchical association testing and FDR control 428 

procedure. In this method, groups of correlated tests are modeled as blocks, ultimately 429 

reporting associations within blocks and between block representatives from multiple 430 

data types and experiments. This permits both great flexibility in the types of 431 
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measurements to which it is applied and ease of interpretation of the resulting significant 432 

associations. 433 

Class prediction approaches are commonly used to model relationships between high-434 

dimensional datasets with variables measured using shared observational units. For 435 

example, Partial Least Squares [38] and its close relative Canonical Correlation Analysis 436 

[39] identify latent variables in one dataset that are maximally correlated to latent 437 

variables in the other dataset. These methods, and robust and penalized varieties [40-438 

41], can identify blocks of variables that are correlated within one dataset and in turn 439 

with another block of correlated variables in another dataset. They do not, however, 440 

control for family-wise error or FDR, and so are most suitable for prediction or 441 

exploratory, visual, and descriptive analysis. With these methods, inference on the 442 

existence of associations between the variables of two datasets against null hypotheses 443 

of independence still relies on univariate hypothesis tests (and possibly dimension 444 

reduction or clustering) and is performed subsequently in a separate step. The FDR for 445 

the potentially large number of tests can be controlled by the Benjamini and Hochberg 446 

method [42], which has been adapted for dependent tests [43] and hierarchically 447 

organized tests [44] that are continued until non-significance. The approach described 448 

here thus aims to combine the best features of these different existing approaches, 449 

yielding clustering of potentially heterogeneous variable types within each dataset with 450 

hierarchical testing and control of FDR. 451 

While these approaches are frequentist, Bayesian models are also used to improve 452 

power and share information among feature blocks [45-48]. While such methods are 453 

extremely powerful within their target domains, they are typically intended for 454 

incorporation of specific prior knowledge, such as graph structure [44, 49], phylogeny 455 

[50], or pathway-based functional roles [51]. They can also be computationally 456 

expensive in cases where many or long simulation chains are required for convergence 457 

[52]. HAllA's nonparametric frequentist approach will likely result in reduced power 458 

relative to such models within the domains for which they are designed, but with 459 

substantially reduced computational cost and without the need to specify model 460 

relationships and priors in each new application domain. Like most statistical tradeoffs, 461 

HAllA’s generality as a tool for association discovery thus comes at a cost in specific 462 
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circumstances where it is desirable to instead utilize prior knowledge and known data 463 

structure. 464 

A limitation of the current method is that it can only look for associations between two 465 

datasets at a time. While the method can be applied to multiple pairs of joint datasets 466 

manually, this becomes combinatorially prohibitive in particularly thorough studies where 467 

a large number of high-dimensional data types are available (e.g. studies which collect 468 

genetics, gene expression, epigenetics, microbial profiles, metabolites, and metadata 469 

from each sample). In circumstances such as these, repeated application of HAllA 470 

across each pair of datasets would no longer properly control FDR. A potential extension 471 

would be to incorporate multivariate testing directly as an association measure, e.g. 472 

block PERMANOVA [53-54] or Procrustes analysis [55], to lower the combinatorial 473 

burden by performing inference on sets of features rather than individual feature pairs. 474 

Second, the model does not share information between blocks, as would be the case in 475 

a fully multivariate test [53] or a hierarchical Bayesian model [48]. Cases in which data 476 

do include such multi-layered nonindependence structure may indeed be better handled 477 

in a Bayesian framework. Finally, and relatedly, it is not straightforward to incorporate 478 

any type of prior knowledge into the HAllA framework, again because of HAllA’s intention 479 

for wide applicability. Pre-filtering can be used, as in several of our own examples, but 480 

this can be either beneficial or detrimental depending on context [56-57]. 481 

Future work could also provide several refinements to the method, in addition to 482 

addressing these limitations. Currently, for example, known but undesirable confounders 483 

must be separately regressed out prior to using HAllA, and the method run on the 484 

resulting residuals instead of raw data. Integrating such covariate adjustment would be 485 

possible in future versions of the method's implementation. Perhaps most importantly, it 486 

may be possible to place tighter theoretical bounds on the block-wise and global FDR 487 

control beyond what is provided by HAllA's adaptation of the Benjamini-Hochberg [42] 488 

and Benjamini-Yekutieli methods [58]. This would also suggest a theoretical framework 489 

within which to characterize the amount and types of non-independence best handled by 490 

hierarchical block association testing. Ultimately, tradeoffs must be made between 491 

power and generality [59]. However, we aim for HAllA to provide a happy medium, 492 
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capable of serving as an easy-to-use first pass analysis in a wide range of multi-omics 493 

data types.  494 
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