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Abstract

Complex morphological traits are the product of many genes with transient or lasting developmental effects
that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because
they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately,
phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets
that are difficult to relate to one another for larger scale analyses. To enable meta-analyses of morphological
variation, particularly in the craniofacial complex and brain, we created MusMorph, a database of
standardized mouse morphology data spanning numerous genotypes and developmental stages, including
E10.5,E11.5,E14.5,E15.5, E18.5, and adulthood. To standardize data collection, we implemented an atlas-
based phenotyping pipeline that combines techniques from image registration, deep learning, and
morphometrics. Alongside stage-specific atlases, we provide aligned micro-computed tomography images,
dense anatomical landmarks, and segmentations (if available) for each specimen (N=10,056). Our workflow
is open-source to encourage transparency and reproducible data collection. The MusMorph data and scripts
are available on FaceBase (www.facebase.org, doi.org/10.25550/3-HXMC) and GitHub

(https://github.com/jaydevine/MusMorph).

Keywords: Mouse, phenomics, craniofacial, imaging pipelines, deep learning, morphometrics,
micro-computed tomography, FaceBase
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81 Background & Summary

82  Understanding how genes, development, and the environment produce variation in complex morphological
83  traits is a core challenge in biology with evolutionary and clinical implications. Explanations for the
84  generation of variation tend to cohere around the genotype-phenotype map concept. Genetic variation and
85  genetic effects, like epistasis and pleiotropy, drive variation in developmental processes that act at different
86  times and scales in anatomical context!. Specific developmental and genetic mechanisms then operate
87  alongside embedded mechanisms, such as nonlinearities** and gene redundancy®, to modulate these effects
88  to express a phenotype’®. Despite recent insights into these phenomena, the developmental-genetic basis
89  for morphological variation remains largely unknown, as there are likely many overlapping and coordinated
90  mechanisms involved, each with relative contributions'®. To help disentangle these mechanisms, it is

1-14 "Tn this work, we

91  important to build and integrate large phenotypic databases for model organisms
92  present MusMorph, a database of standardized mouse morphology data for meta-analyses of morphological

93  variability and variation, particularly in the craniofacial complex and brain.

94 The laboratory mouse is a useful model organism for studying the mechanisms of morphological
95  variation because of its 99% genetic homology with humans, short gestation, and rich set of tools for
96  manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often biased by
97  laboratory-specific data collection protocols. The International Mouse Phenotyping Consortium (IMPC,
98  www.mousephenotype.org) was born out of a need to determine the relationship between genotype and
99  phenotype with standardized phenotypic data. Using micro-computed tomography (uCT) and optical
100  projection tomography, the consortium has studied the anatomy of mouse lines heterozygous or
101  homozygous for a single gene mutation, particularly at embryonic day E9.5, E14.5-15.5, and E18.5'5%,
102 Less emphasis has been placed on uCT imaging and analysis of adults and mid-gestation (E10 to E11)
103 mutants, where critical developmental events, like fusion of the craniofacial prominences, occur. Mouse

104  lines with normal (non-pathological) levels of variation, such as recombinant inbred strains and outbred
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105  strains with high heterozygosity™°, have also been poorly characterized. Quantifying such variation is

106  important, because it drives disease susceptibility and course of disease in humans.

107 Recently, model organism phenotyping has transitioned from manual linear measurements to fully
108  automated computational pipelines. One common approach is voxel-based morphometry**?. Voxel-based
109  morphometry is based on the analysis of deformation fields obtained via image registration. After spatially
110  aligning images to an average atlas, the deformation fields can be quantitatively compared between groups
111 on a voxel-wise basis to identify differences in morphology. Voxel-based morphometry remains a pillar of
112 shape analysis, because it can localize small regions of shape change without any a priori knowledge of the
113 anatomy, but it is prone to the multiple testing problem?*?’. Another approach is atlas-based geometric
114  morphometrics, which instead uses registration fields to automatically derive landmarks, or Cartesian
115  coordinate points that are homologous across samples. Geometric morphometrics is central to evolutionary
116  biology and developmental biology, among other fields, because landmarks allow for statistically tractable
117  quantifications of morphological variation, as well as intuitive visualizations®®. These advantages continue
118  to fuel development of novel geometric morphometric pipelines and extensions®*. Yet large-scale

119  morphometric analyses remain rare due to the sparsity of standardized landmark data.

120 Here, we introduce MusMorph, a database of standardized mouse morphology data generated with
121  an open-source, atlas-based phenotyping pipeline that integrates techniques from image registration, deep
122 learning, and morphometrics. We compiled the database (N=10,056) using uCT scans of mice from a
123 variety of strain/genotype combinations and developmental stages, including E10.5, E11.5, E14.5, E15.5,
124 EI18.5, and adulthood. Most of MusMorph is composed of head morphology data, but there are also whole-
125  body embryo data for different integrative analyses. We provide (1) a developmental atlas for each
126  timepoint; (2) a rigidly aligned and preprocessed uCT scan, dense anatomical landmarks, and
127  segmentations (if available) for each specimen; (3) a set of scripts for transforming and comparing an input
128  scan to an atlas; (4) an approach to validate the transformed landmark data and optimize it, if needed. To

129  ensure reproducibility and data sharing, we make the data freely accessible from FaceBase*
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130  (www.facebase.org, doi.org/10.25550/3-HXMC)* and our code from GitHub
131 (https://github.com/jaydevine/MusMorph). By incorporating substantial developmental and genetic
132 variation alongside a rich set of metadata, MusMorph will enable standardized morphometric analyses of

133 genotype-phenotypes to better understand the mechanistic basis for morphological variation.

134  Methods

135 Mice

136 We compiled mouse embryos and adults from numerous sources. The mouse lines for the E15.5 and E18.5
137  datasets were generated by the IMPC. These mice were produced and maintained on a C57BL/6N genetic
138  background, with support from CS57BL/6NJ, C57BL/6NTac or C57BL/6NCrl. More details about
139 husbandry practices can be found at https://www.mousephenotype.org/impress. The mouse lines for the
140  E10.5, E11.5, E14.5, and adult datasets were produced on a variety of genetic backgrounds at different
141  institutions for studies of craniofacial variation. We hereafter refer to these lines as the Calgary mice,
142 because they were ultimately imaged at the University of Calgary. Specific information about study
143 protocols, such as husbandry practices and genotyping, should be gleaned from the MusMorph dataset
144 summaries on FaceBase or the original studies themselves. Each dataset within the MusMorph project on
145  FaceBase represents a study or set of studies defined by a common study design that yielded similar mouse
146 lines. Details about the experimental design were obtained from the original studies listed in the
147  “Publication(s)” section of each dataset. In addition, we provide a supplementary comma-separated values
148 (CSV) file (Study_Metadata.csv) in the project-wide metadata dataset®® on FaceBase that lists the associated

149  studies.
150  Micro-computed tomography

151  Sample preparation. Each IMPC embryo underwent a hydrogel stabilization protocol®’ to prepare for

152 diffusible iodine-based contrast-enhanced pCT (diceCT)**. This involved incubating the embryo in a
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153 hydrogel solution composed of 4% (wt) paraformaldehyde, 4% (wt/vol) acrylamide (Bio-Rad, USA),
154  0.05% (wt/vol) bis-acrylamide, 0.25% VA044 Initiator (Wako Chemicals, USA), 0.05% (wt/vol) saponin
155  (Sigma-Aldrich, Germany), and phosphate-buffered saline at 4°C for 3 days. Following incubation, the air
156  in the specimen tube was replaced with nitrogen gas and the tube was immersed in a 37°C water bath for 3
157  h. The whole embryo was then stained with a 0.025 N to 0.1 N Lugol’s iodine (I,KI) solution (Sigma-
158  Aldrich, Germany) for 24 h and mounted in agarose for diceCT. This approach has become a popular
159  alternative to magnetic resonance imaging because it is faster, cheaper, and still offers remarkable contrast,

160  allowing for high-throughput phenotyping of soft and hard tissue’®.

161 The Calgary embryos were subjected to different fixation and staining protocols. Each embryo
162 acquired prior to 2017 was fixed in a solution of 4% (wt) paraformaldehyde and 5% (wt) glutaraldehyde.
163 The specimen was next submerged in the CystoCon Ray II (iothalamate meglumine) contrast agent for one
164  hour to stain external morphology. Embryos obtained after 2017 were put through a nucleic acid
165  stabilization protocol that allows for examination of RNA in embryos scanned via uCT>’. Each embryo was
166  fixed with the PAXgene Tissue FIX solution (Qiagen, PreAnalytics, cat #765312), incubated overnight (17
167  h +/- 1 h) at room temperature, then transferred to a solution of PAXgene Tissue STABILIZER prepared
168  to manufacturer specification (Qiagen, PreAnalytics, cat #765512). For diceCT, each specimen was placed
169  in a solution of PAXgene Tissue STABILIZER and 1% to 3.75% (wt/vol) Lugol’s iodine for 24 h. The
170  head of every embryo was dissected before being mounted in either agarose or soft wax, which was covered

171 by a microcentrifuge tube and infused with 50-100 pl of tissue stabilizer.

172 Each Calgary adult was set up with a standardized storage and mounting protocol. The mouse
173 carcass was stored at -20°C after euthanasia. Prior to the day of scanning, the mouse was retrieved and
174  thawed overnight at 4°C. The carcasses were then wrapped in foam and placed into a 37 mm diameter

175  sample holder for uCT.

176  Imaging. The IMPC embryos were imaged at six centers, including the Baylor College of Medicine, Czech

177 Center for Phenogenomics, MRC Harwell, Toronto Centre for Phenogenomics, The Jackson Laboratory,

6
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178  and University of California, Davis. A 3-D image of each iodine-stained whole embryo was acquired with
179 a Skyscan 1172 uCT scanner (Bruker, Kontich, Belgium) at 100 kVp and 100 pA. The raw images were
180 initially obtained with isotropic voxels but variable spatial dimensions and resolutions, ranging between
181  0.002 mm to 0.04 mm. Image projections were reconstructed into a digital stack using the Feldkamp

182  algorithm*.

183 The Calgary mice were imaged in the 3-D Morphometrics Center at the University of Calgary. A
184  3-D image of each stained embryo head was obtained with either (a) a Scanco uCT 35 scanner (Scanco
185  Medical, Briitisellen, Switzerland) at 45 kV and 177 pA or (b) a ZEISS Xradia Versa 520 X-ray microscope
186 (Carl Zeiss AG, Oberkochen, Germany) at 40-50 kV, 4-5 W, and 2 s exposure time. A 3-D image of each
187 adult skull was acquired with either (a) a Scanco vivaCT 40 puCT scanner (Scanco Medical, Briitisellen,
188 Switzerland), (b) a Scanco vivaCT 80 uCT scanner (Scanco Medical, Briitisellen, Switzerland), or (c) a
189  Skyscan 1173 v1.6 uCT scanner (Bruker, Kontich, Belgium) at 55-80 kV and 60-145 pA. Like the IMPC
190  data, these original images were obtained with isotropic voxels but variable spatial dimensions and
191  resolutions. Embryo image resolutions ranged between 0.007 mm and 0.027 mm, whereas adult resolutions
192 ranged between 0.035 mm and 0.044 mm. Image projections were reconstructed with the integrated Scanco

193 software, the ZEISS XMReconstructor software, or the Skyscan NRecon v1.7.4.2 software.
194  Image preprocessing

195  We preprocessed each image to account for differences in image acquisition that would interfere with the
196  atlas-based registration workflow described below (Fig. 1). The preprocessing scripts are provided in the
197  MusMorph GitHub repository (https://github.com/jaydevine/MusMorph/tree/main/Preprocessing). In this
198  preprocessing step, we first converted the reconstructed imaging data (.nrrd, .aim, .tiff) to the Montreal
199  Neurological Institute (MNI) .mnc format using file conversion scripts written in Bash and Python (see
200 AIM_to_MNC.sh, NII_to_MNC.sh, TIFF_to_MNC.sh, DCM_to_MNC.sh, and NRRD_to_MNC.py). As

201  part of the open-source MINC library (http://bic-mni.github.io/man-pages/), the .mnc format is
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202  implemented using HDFS5 (Hierarchical Data Format, version 5), which supports hierarchical data structure,

203 internal compression, 64-bit file sizes, and other modern features®*.

Image preprocessing

Stage E10.5, E11.5, and E14.5 E15.5 and E18.5 Adult
Preparation PFA (4%) and GD (5%) Hydrogel stabilization Freeze
or PAXgene
Staining Cysto or lodine (1-3.75% wi/v) lodine (1-5% wiv) None
Imaging MCT (Scanco pCT 35 or MCT (Skyscan 1172) MCT (Scanco vivaCT 40
ZEISS Xradia Versa 520) or Scanco vivaCT 80)
Preprocessing Intensity correction Intensity correction Resample
Intensity normalization Intensity normalization Initialize
Resample Resample
Initialize Initialize

Image processing and postprocessing

Target image Reference atlas Neural network
S
Register i
8]
Ke)
©
-
| Similarity
Recover transformations, measure Optimize sparse shape predictions
v similarity, and propagate labels with neural network

| >

204  Figure 1. Schematic overview of the phenotyping pipeline. Specimens were staged, prepared (fixed/stored),
205 stained, and imaged with different but standardized lab-specific protocols. While the E10.5, E11.5, E14.5,
206  and adult specimens were obtained in Calgary, the E15.5 and E18.5 specimens were acquired from the
207  IMPC. To account for differences in image acquisition (e.g., intensity artifacts, image resolution and
208  dimensions, and position), each image was subjected to a series of preprocessing steps. Next, each
209  preprocessed image was non-linearly registered to a stage-specific reference atlas with a detailed set of
210 landmarks and segmentations. We recovered deformation fields, landmarks, and segmentations (if
211  available) for each specimen. To optimize the landmark predictions of poorly registered specimens, as
212 measured by cross-correlation similarity, a downstream neural network was used.

213 Staining artifacts, such as extreme intensity gradients and variable penetrance, can bias the image
214  registration process. To minimize intensity inhomogeneities, we applied the N3 method*’. Since many of
215  the E15.5 images had background noise, where the stained scanning medium was indistinguishable from

216  the anatomy, we employed a thresholding script in Bash (see Threshold.sh). This script computes a lower
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217  anatomical density threshold, masks the voxels above this bound and those in proximity via dilation, and
218  equates all voxels outside the mask to 0. To ensure the image resolutions and dimensions were consistent
219  with the atlas, we implemented an image resampling script in Bash (see Downsample_and_Correct.sh). We
220  also used this script to control for differences in bit depth among scanners by including a min-max
221 normalization, which scaled the embryo intensities between 0 and 1. Table 1 outlines the source of the
222 image data, developmental stage, voxel dimensions, image resolutions, stage-specific sample sizes, and the
223 presence or absence of atlas anatomical labels. Note that the E14.5 images were solely used to create another
224  stage-specific atlas, as they are from a smaller, unpublished dataset.

Table 1. Summary of imaging data. Source is where the image was acquired. Stage is the age of the

specimen at sacrifice. Anatomy is the labelled and scanned anatomy. X, Y, and Z are the voxel lengths of

each atlas axis. Resolution is the isotropic resolution of each scan. N is the sample size, with the number

of scans awaiting publication of primary research in parentheses. Landmarks and segmentations indicate
the presence (v') or absence (x) of labels on the stage-specific atlas.

Source | Stage | Anatomy | X Y y/ Resolution | N Landmark | Segmentations
(mm) S
Calgary | E10.5 | Head 220 | 295 | 350 | 0.012 434 |V X
Calgary | E11.5 | Head 502 | 503 | 390 | 0.012 531 v X
Calgary | E14.5 | Head; 486 | 567 | 723 | 0.027 84 v X
Body (84)
IMPC | E15.5 | Head; 486 | 567 | 723 | 0.027 1426 | v v
Body
IMPC | E18.5 | Head; 293 | 414 | 667 | 0.054 1657 | v X
Body
Calgary | Adult | Skull 642 | 586 | 979 | 0.035 6000 | v v
(154)
225
226 Another essential step to all image registration workflows is the initialization, or a rigid alignment

227  between an image pair. Using initialization scripts written in Bash (see Preprocessing.md) and R
228  (Tag_Combine.R), we rigidly transformed each image to a stage-specific atlas or, if an atlas did not exist,
229  an arbitrary but stage-specific reference image. To determine the rigid transformation matrices, we utilized
230  a manual and automated approach, or a strictly automated approach, depending on anatomical orientation.

231 If the mouse was scanned in a random orientation, we rendered a minimum threshold surface in MINC,
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232 then manually placed five homologous three-dimensional (3-D) landmarks at anatomical extrema (e.g.,
233 ears, nose, top of the head, and back of the head), resulting in an MNI tag point file (.tag) with landmark
234 coordinates. Next, we concatenated the reference and arbitrary landmark matrices, and minimized their 3-
235 D Euclidean distances via least squares. If the specimen was already roughly aligned to the reference image,
236  we performed an automated, intensity-based rigid alignment using the full registration process outlined
237  below (see the “Image Registration and Label Propagation” section). This intensity-based rigid alignment
238  was also repeated for the manually aligned volumes to ensure consistency. With the rigid transformation
239  matrices, we resampled each image into their stage-specific reference coordinate space using tri-linear

240  interpolation.

241 Reference atlases

242  We generated a population average atlas for each stage, excluding E15.5 and adulthood, by spatially
243 normalizing 25 pCT images of wildtype mice with a group-wise registration workflow** (Fig. 2 and 3).
244 A nearly identical workflow was used to create the existing E15.5 and adult atlases. The atlas construction
245 script is available in the MusMorph GitHub
246  (https://github.com/jaydevine/MusMorph/tree/main/Processing) and is written in Python (see
247  HiRes_Atlas.py or LoRes_Atlas.py). This script produces Bash scripts that can be executed automatically
248  and in parallel on a compute cluster to maximize computational efficiency. Without massively parallel
249  computing, the volumetric registrations would need to be performed sequentially, each requiring hours of
250  computation and a large amount of memory. Before executing the workflow, the user must upload the
251  initialized images and registration scripts to a compute cluster. In addition, the user needs to install a MINC
252  Toolkit module onto the cluster via Docker (https://bic-mni.github.io/) or GitHub (https://github.com/BIC-
253  MNI/minc-toolkit-v2), or define a pre-existing module, because the scripts utilize the open-source MINC
254  software. An atlas can also be generated locally, but it will be significantly slower without massively

255  parallel computing.

10
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Section Lateral Superior Anterior

Figure 2. Embryo reference atlases. Sagittal cross-sections of the E10.5 (www.facebase.org/id/6-
FOOW), EI11.5 (www.facebase.org/id/6-F012), EIl14.5 (www.facebase.org/id/6-F016), E15.5
(www.facebase.org/id/6-F6SE), and E18.5 (www.facebase.org/id/6-F6T4) atlas volumes are shown
to display the stained internal anatomy. Each head surface was labelled with a dense landmark
configuration to capture global and local aspects of morphology. Lateral, superior, and anterior views
of each head isosurface are shown. The semi-landmark patches (small, color-coded points) were

256 interpolated between a set of sparse homologous landmarks (large, red points). They can be slid and
resampled for morphometric analyses.
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257 Spatial normalization involves an initial affine transformation for global alignment, followed by a
258 deformable transformation for non-linear alignment. To account for global variation in location, orientation,
259  and scale, we computed a series of multi-resolution (coarse to fine) affine transformations among the
260 images by optimizing a cross-correlation objective function®’. Given that sample-wide pairwise
261  registrations yield an improved affine template*, or intensity average, we completed all possible (N=25%24)
262  pairwise affine registrations, then averaged the resulting transformation for each specimen. Using the
263  averaged transformations, we resampled each initialized image into the affine coordinate space with tri-
264  linear interpolation and averaged the resulting images to produce an affine template. To correct for local
265  variation in shape, we computed a series of multi-resolution non-linear transformations with the ANIMAL
266  (Automatic Nonlinear Image Matching and Anatomical Labelling) algorithm*’, again optimizing for cross-
267  correlation. This iterative, four-step process involves non-linearly deforming each mouse to an evolving
268  template at increasingly higher resolutions, with the first template being the affine average and the next
269  three being improved versions of the non-linear average*®. The final product is a stage-specific average with

270  excellent contrast and a high signal-to-noise ratio.

271 Since the goal of MusMorph was to aggregate landmark data for morphometrics, and our primary
272  imaging data are head scans, we focused on labelling each atlas head surface with a standardized landmark
273  configuration (Fig. 2 and 3). Specific information about the number of landmarks and their anatomical
274 definitions can be found below in the “Data Records: Landmarks” section. To generate the landmarks, we
275  first rendered a minimum density isosurface in MINC, which uses ITK’s marching cubes algorithm, and
276  saved the 3-D rendering as a Stanford PLY (.ply) file. We then used 3D Slicer*® or the MINC Toolkit to
277  acquire a landmark configuration on each surface that provided a comprehensive representation of shape™.
278  For the embryos, we used 3D Slicer and the SlicerMorph extension® to identify sparse landmarks and
279  interpolate landmark patches of variable density in between, depending on the size of the area, resulting in
280  dense coverage of the head. This also ensured that the patches were homologous, allowing for a

281  developmental morphospace into which all specimens may be superimposed. Because developmental
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282  homology was not a consideration for the adults, we landmarked the adult atlas in MINC using built-in

283  display tools, again ensuring sparse and dense landmark coverage.

Lateral Superior Inferior

Cranium

Q
=
©
c
@©
=

Endocast

284  Figure 3. Adult reference atlas. Cranium (top), mandible (middle), and endocast (bottom) surfaces were
285  segmented from the skull atlas (www.facebase.org/id/6-F6VC), then labelled with a dense landmark
286  configuration to capture global and local aspects of morphology. Lateral, superior, and anterior views of
287  each segmentation isosurface are shown. There are sparse landmarks (red) as well as surface (blue) and
288  curve (green) semi-landmarks that can be slid and resampled for morphometric analyses.

289 Shared developmental pathways lead to correlated morphological variation, or morphological

290  integration’!-’

. To enable analyses of integration, we added landmark configurations to segmented surfaces
291 of the adult skull atlas. We manually segmented the cranium, mandible, and neurocranial endocast (i.e., a
292 proxy for the brain) in MINC, then rendered these segmentations as isosurfaces before landmarking them
293  with a dense configuration. Once again, the landmark details are described below in the “Data Records:
294  Landmarks” section. The segmentations may further be used for surface-based analyses®®, measures of size

295  (e.g., volume or surface), or as masks to reduce the shape dimensionality of a voxel-based morphometry

296  analysis. Unlike the adult atlas, the embryo atlases do not come with segmentations due to the scope of this
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297  work, apart from the pre-existing E15.5 atlas, which has 48 manually segmented structures

298  (http://www.mouseimaging.ca/technologies/mouse_atlas/mouse_embryo_atlas.html).

299  Image registration and label propagation

300  We pairwise registered each image to their stage-specific atlas to obtain a composite (affine and non-linear)
301  transformation for label propagation (Fig. 1). Like the atlas workflow described above, the registration
302  scripts are available in the MusMorph GitHub
303  (https://github.com/jaydevine/MusMorph/tree/main/Processing) and are written in Python (see
304  HiRes_Pairwise.py or LoRes_Pairwise.py). The purpose once more is to produce Bash scripts en masse for
305  massively parallel computing on a compute cluster due to the computational requirements of volumetric
306  deformable registration and anatomical labelling. Only the initialized images and registration scripts need
307  to be uploaded to the cluster to execute the workflow. While the pairwise registrations involved the same
308  multi-resolution affine alignment described above, the non-linear alignment differed. Here, we
309  implemented the geodesic SyN (Symmetric Normalization) algorithm®, because it was previously
310  validated for atlas-based landmarking and morphometrics of mouse models*. The SyN registrations were
311  optimized using cross-correlation. After registration, we used labelling scripts written in Bash and produced
312 via Python (see Label_Propagation.py) to recover the non-linear transformations, concatenate them with

313 the affine transformations, invert them, and propagate the atlas labels to the rigid space of each image.

314 Neural network shape optimization

315  Although top-performing registration algorithms provide an effective and generalizable way to
316  automatically label anatomy, there are instances where outliers and problematic landmarks can alter shape
317  representations. This is particularly true for model organisms, where mutant phenotypes may show little to
318  no resemblance with an atlas. To demonstrate how biological signal can be restored, we implemented a
319  supervised deep learning workflow available in the MusMorph GitHub

320  (https://github.com/jaydevine/MusMorph/tree/main/Postprocessing), which employs scripts written in R
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321  and Julia (see GPA_and_Projection.R and Landmark_Optimization.jl)®. Using a subset of 68 sparse adult
322 craniofacial landmarks (N=2,000) described in previous work®"®>, we trained a deep feedforward neural
323  network to learn a domain-specific loss function that minimizes automated and manual shape differences.
324  The sparse landmark numbers amenable to optimization (see Optimization_Order.csv)*® are available on

325  FaceBase. We focused on the adults because that was the only stage with a large existing set of homologous

326  manual landmarks for training.

327 We tested the network predictions on a random subset (N=500) of adult skulls described further in
328  the “Technical Validation” section. To help others initialize the network without having to retrain it, we
329  provide the adult network model (Calgary_Adult_Cranium_Model.bson) and weights
330  (Calgary_Adult_Cranium_Weights.bson) in the Binary JSON (.bson) file format on GitHub. We also make
331 available the optimized sparse shape predictions for the entire adult crania dataset
332 (Adult_Cranium_Sparse_Landmarks.csv)*. Although we focused on adults, this optimization strategy is
333  generalizable, so other research groups with manual landmark data on any structure of the atlases may use

334 the network architecture to improve outlier predictions.

335 Data Records

336  Specimen metadata

337  Each specimen is associated with a rich set of identifiers to accommodate morphometric analyses using
338  multiple factors and/or covariates. Alongside detailed metadata descriptions in FaceBase, we provide the
339  specimen metadata as a supplementary CSV file (MusMorph_Metadata.csv)* for convenience and to
340  include auxiliary fields. Table 2 enumerates the metadata and Table S1 summarizes the metadata

341 distributions for each dataset on FaceBase.
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Table 2. Summary of metadata identifiers.

Identifier Description

Biosample The name of the specimen, which corresponds to the image and label names.

Strain The background strain of the specimen.

Strain_MGI_ID The MGI ID for the strain.

Strain_Type An attribute of strain that describes whether it is inbred or outbred and lab-derived
or wild-derived.

Gene The gene symbol as provided by MGI.

Gene_MGI_ID The MGI ID for the gene.

Zygosity Whether the specimen is homozygous, heterozygous, wildtype, or otherwise (e.g.,
flox/null) for a given gene mutation.

Genotype A concatenation of the gene symbol and zygosity symbol.

Anatomy The region of anatomy that has been scanned and labelled.

Treatment An environmental effect that the specimen has been treated with.

Experimental An identifier derived from genotype that denotes whether the specimen is a control

Group or mutant.

Sex The sex of the specimen.

Stage The age of the specimen in days, either embryonic (E) or postnatal (PN).

Life_Phase An identifier derived from stage that indicates life phase (e.g., gestation vs.
adulthood).

Dataset The published or unpublished study (see Study_Metadata.csv) the sample is
associated with.

Availability Whether the images and phenotypic data are available or pending publication of a
primary research article.

342
343 Fig. 4a-b illustrates the distributions of sex, strain type, and genotype across the embryo and adult

344 datasets. Sex is well-annotated for the E15.5, E18.5, and adult datasets, but is missing (“NA”) for many of
345  the E10.5 and E11.5 specimens. While most of the embryo mouse models were produced on an isogenic
346  inbred background, particularly C57BL/6N, strain diversity is a focal point of the adult datasets. Among
347  the nine adult strain types provided, there are 98 unique background strains. The majority are recombinant
348 inbred lines (e.g., the Collaborative Cross dataset®®), wild-derived crosses (e.g., the Hybrid dataset®’), and
349  outbred lines (e.g., the Diversity Outbred dataset®®). We have included 459 unique genotypes for the embryo
350  datasets, most of which derive from the IMPC dataset®, as well as 179 genotypes for the adult datasets. A
351  minority of specimens, including several embryos in the Ap2’°, B9d"!, and Bulgy’? datasets as well as a

352  few adults in the Brain-Face”® dataset, have unknown genotypes (e.g., “-/~;NA” and “+/-;NA” in double
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Figure 4. Summary of metadata. (a) Distribution of sex, strain type, and genotype for the embryo datasets.
(b) Distribution of sex, strain type, and genotype for the adult dataset. (c) Sample sizes of each
developmental stage included in the database. All “NA” specimens are mature or middle-aged adults. (d)
Left: Example landmarks and segmentations of the adult skull and endocast (brain). Middle/Right:
Morphological analyses, such as PCA and allometry regressions, that one might perform with a dense
landmark dataset. Each color in the plot represents a different mouse genotype.
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(e) Left: Slice visualization of a non-linear deformation grid. Middle/Right: Morphological analyses, such
as statistical parametric mapping, that one might perform with a deformation field. The t values show
significant (p < 0.05) voxel-wise differences in form (i.e., volume shrinkage) in Ghrhr homozygous
mutants relative to wild type, whereas the variance heatmap shows voxel-wise variances in Ghrhr
mutants.
354  knockout designs or “NA” and “+/+ or +/-” in single knockouts) due to genotyping complications in the
355  past. Specimens homozygous for a single gene mutation predominate the embryo datasets, whereas normal
356  wildtype variants comprise the bulk of the adult datasets. Fig. 4c shows the developmental stages
357  represented in MusMorph. Of the 10,056 specimens processed, 40% are embryos and 60% are adults, many

358  of which have just finished maturing around postnatal day 90. All specimens without a recorded stage

359 (“NA”) are mature adults.

360 It is often desirable to compare mutants to their wildtype counterparts from the same sample
361  because background strains vary. To preserve sample provenance where possible, specimens that are
362  wildtype for a given mutation will have the same gene symbol as their heterozygote and homozygote
363 littermates. For wildtype specimens without litter information, like the IMPC dataset, their genotypes are
364  equated to background strain. Mouse strain nomenclature follows the MGI guidelines, except when the
365  straindesign is unknown and has no MGI ID (e.g., novel hybrid backcrosses). We also abbreviate genotypes
366  for complex strain designs using MGI synonyms if available. Furthermore, while most wildtype specimens
367  fall within the control experimental group, there are cases where they can exhibit mutant-like phenotypes
368  and be categorized as such. One example in MusMorph is the artificial selection Longshanks dataset’,
369  which through many generations of artificial selection produced wildtype specimens with extreme tibia and

370  craniofacial phenotypes”’S.

371 We selected the above identifiers, because they tend to explain a significant amount of
372  morphological variation in morphometric analyses. For instance, many structures in the mouse are sexually
373  dimorphic, including the shape of the brain’’ and craniofacial complex’®, cortical bone size and strength”,
374  adipose tissue distribution®’, and feto-placental growth®!2, to name a few. It is also known that classical

t83

375  laboratory strains, such as those in the Strain Comparison dataset®’, exhibit naturally occurring craniofacial
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376  phenotypes®. Moreover, gene mutations can interact with a background strain via epistasis to produce
377  different phenotypes®®, like those in the Spry dataset®. Another key driver of variation is developmental
378  stage, as differences in age often define a principal axis of allometric variation via correlations with size
379  and/or shape®®. Given the ubiquity of allometry, these correlations can be found across most MusMorph
380  datasets (Fig. 4d). Finally, numerous studies have reported the phenotypic outcomes of single gene
381  mutations, environmental perturbations, and how zygosity modulates these effects®*“. These identifiers
382  have corresponding images, landmarks, segmentations, and deformation fields for morphological analyses

383  (Fig. 4d-e).
384 Images

385  We provide the atlases and initialized images for each specimen in the MNI .mnc format. The naming
386 convention for the atlas volumes is <Source>_<Stage>_<Anatomy>_Atlas.mnc. They are categorized as

387  “Imaging Data” in the project-wide dataset®®

on FaceBase. The naming convention for the initialized
388  volumes is <Biosample>.mnc, where Biosample is the name of the specimen in the metadata (see the
389  “Specimen metadata” section). One exception is the naming convention for the subset of thresholded E15.5
390  images, which is <Biosample>_Thresh.mnc. These volumes are also categorized as “Imaging Data” across
391  the MusMorph datasets on FaceBase. Each .mnc file has four key attributes: 1) a named dimension (xspace,
392 yspace, zspace), 2) length (number of voxels on each dimension), step (resolution), and start (origin). MINC
393  defines a voxel and world coordinate system, so one can move between them with the simple
394  “voxeltoworld” and “worldtovoxel” MINC commands. If users want to convert between .mnc and different
395 file formats (e.g., raw data, DICOM, NIfTI, Analyze, ECAT, TIFF, Concorde, VFF), there are a variety of
396  other Bash commands available (http://bic-mni.github.io/man-pages/). While the raw IMPC images are

397  freely accessible in the NRRD (.nrrd) format at https://www.mousephenotype.org/data/embryo, the raw

398  Calgary images are available upon request in the AIM (.aim) or TIFF (.tiff) formats.

399  Transformations
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400  For each pairwise registration, we recovered an inverted non-linear and composite (affine and non-linear)
401 transformation. Given the file sizes of the non-linear deformation fields (~3 GB on average x 10,000 = 30
402  TB), we make the transformations available upon request. The deformation fields and composite
403  transformations are in the MNI .mnc and .xfm formats. Each .mnc file shares the same image attributes
404 described above with an additional named dimension called vector_dimension which describes the non-
405  linear displacement vectors. Each .xfm file contains a header and affine transformation matrix. The naming
406 convention for the deformation fields is <Biosample>_ANTS_nl_inverse_grid_0.mnc and
407 <Biosample>_ANTS_nl_inverse.xfm, whereas the composite transformations are called
408 <Biosample>_origtoANTSnl_grid_0.mnc and <Biosample>_origtoANTSnl.xfm. “ANTS” denotes the
409  algorithm and “nl” stands for “non-linear”. Much like the images, the transformations for the subset of

410  thresholded E15.5 volumes have “Thresh” appended to the <Biosample> name.

411 Non-linear deformation fields describe the displacements of each target image voxel to each

197

412  reference image voxel”’. By calculating the Jacobian determinant J for every point p(x,y,z) in the

413 deformation field,

dx 0dy 0z
dx O0x Ox
414 ey, 2) = 25 2 2
dx dy 0z
0z 0z 0z

415  one can quantify the magnitude of morphological change at each voxel (Fig. 4e). A Jacobian determinant
416  of 1 indicates no volume change, whereas determinants greater than 1 indicate volume expansion and
417  determinants between O and 1 indicate volume shrinkage. These determinants can also be scaled and
418  sheared with a composite transformation to examine voxel-wise differences in form. Jacobian determinants
419  can be analyzed with voxel-wise tests, such as an ANOVA with a false-discovery rate correction, to map

420  statistics onto the anatomy, a technique otherwise known as statistical parametric mapping (see

20


https://doi.org/10.1101/2021.11.11.468142
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.11.468142; this version posted November 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

421  VBM_Example.R). For example, in Fig. 4e, we use the RMINC R package (https://github.com/Mouse-
422  Imaging-Centre/RMINC) to show significant voxel-wise changes (shrinkages) in form between Ghrhr

423  mutants®® and wildtype specimens, as well as voxel-wise variances in form associated with this mutation.

424  Landmarks

425  We labelled each atlas, and thus every registered mouse embryo and adult, with a standardized landmark
426  configuration (Fig. 2 and 3). The atlas landmark files are named
427 <Source>_<Stage>_<Anatomy>_Atlas_lLandmarks.tag. They are stored as “Imaging Data” alongside the
428 atlas volumes on FaceBase®®. The individual specimen landmark files are named
429  <Biosample>_<Anatomy>_Landmarks.tag and are similarly categorized as “Imaging Data” across
430  FaceBase. The MNI .tag file format is an ASCII file which stores the coordinates of each landmark in the
431  millimetric world space of the volume. Each .tag file has a header above an array of p landmarks (rows) in
432  k dimensions (columns). These files can be imported into R individually or collectively as a 3-D array using
433 the tag2array function in the custom morpho.tools. GM package®. Alternatively, the user can employ the
434  read.csv function in R to import a vectorized .csv file. We provide landmark .csv files for every
435  developmental stage and anatomical region®, each of which contains a matrix of n specimens (rows) and
436  p X k landmark coordinate dimensions (columns). Importantly, there are dense semi-landmarks and sparse
437  fixed landmarks for local and global geometric morphometric analyses of craniofacial, endocast (brain),
438  and mandible morphology. In Fig. 4d, for instance, we show craniofacial shape morphs along the first
439  principal component (PC) in an adult subsample, as well as allometry regressions which relate craniofacial

440  shape to size.

441 The embryo landmarks are homologous across stages. Table S2 describes the sparse embryo
442 landmarks and their biological definitions. Table S3 lists the embryo semi-landmark patches and their
443 density, both of which are based on the sparse landmarks. The stage-specific semi-landmark patch files can

444  also be found as tab-separated value (TSV) files on GitHub
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445 (https://github.com/jaydevine/MusMorph/tree/main/Postprocessing). Each embryo has 22 sparse
446  homologous landmarks within their larger dense configuration. To perform a sparse landmark shape
447  analysis, users may subset the first 22 rows of each 3-D array. Since there are three additional sparse
448  landmarks for the E15.5 and E18.5 specimens, rows 23 to 25 may be included for stage-specific analyses

449  or excluded for ontogenetic analyses.

450 The adult landmarks are simply homologous within stage. Tables S4, S5, and S6 describe the sparse
451 adult craniofacial, endocast, and mandible landmarks, respectively, as well as their biological definitions.
452 While the adult curve semi-landmarks and surface semi-landmarks are not patch based, they can be slid and
453  resampled wusing the R scripts on GitHub (see Calgary_Adult_Cranium_Sliding_Semis.R,
454 Calgary_Adult_Mandible_Sliding_Semis.R, and Calgary_Adult_Endocast_Sliding_Semis.R) to mimic
455  patches or any other structure. Much like the embryos, the sparse landmarks are the first 93, 12, and 19
456  rows of the cranium, endocast, and mandible 3-D arrays, respectively, and can be partitioned for a sparse
457  shape analysis. If users want to generate new landmarks, such as internal landmarks or whole-body
458  landmarks, they can use a script (see Label_Propagation.py), the inverted composite transformations (see
459  the “Transformations” section), and a local or remote compute cluster to propagate the landmarks to an
460 initialized image. To promote standardization, we encourage users to add new landmark subsets to the pre-

461  existing configurations.
462 Segmentations

463  We provide segmentation labels for the E15.5 and adult atlases and specimens to support alternative
464  morphological analyses, such as 3-D visualizations, voxel-based morphometry, volumetric size
465  comparisons, and surface-based image processing pipelines. Other stages do not have segmentation labels
466  due to the scope of this work. The segmentations follow the same naming conventions described above:
467 <Source>_<Stage>_Atlas_Segs.mnc and <Biosample>_Segs.mnc. The atlas segmentations are available

468  as “Imaging Data” on FaceBase®, as are the individual segmentation files across various MusMorph
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469  datasets.  The  published EI15.5 atlas contains 48  whole body  segmentations
470  (http:/www.mouseimaging.ca/technologies/mouse_atlas/mouse_embryo_atlas.html)*®, while the adult
471 atlas comes with cranium, endocast, and mandible segmentations. Each label file is a .mnc volume of
472  integers that matches the dimensionality of the image. To visualize the adult segmentations, for example,
473  the user may load the atlas and label files together and input an integer of 1 to render the endocast, 2 for the
474  cranium, and 3 for the mandible. As with new landmarks, there is the potential to resample new atlas
475  segmentation labels into the initialized space of any image using the composite transformations (see the

476  “Transformations” section) and a local or remote compute cluster (see Label_Propagation.py).

477  Technical Validation

478  Cross-correlation and root mean squared error

479  We computed intensity-based, pairwise registrations between each target image (/) and a reference atlas

480  (J) by optimizing a normalized cross-correlation (NCC) similarity metric:

I
481 Neeq,)) = —2vlw/o)

2 2
Ypealp)” Lpeal p)

482  Normalized cross-correlation is calculated for all voxel positions p over a discrete domain (p € 2). If the
483  domain is the entire 3-D volume and NCC(I,]) = 1, the deformed target image and reference image are
484  perfectly aligned. To assess the quality of each registration, we recorded the normalized cross-correlation
485  between each deformed target image and the atlas using code in the labelling scripts (see
486  Label_Propagation.py). Unfortunately, it is difficult to know whether the final registration correlations are
487  “good” or “bad” without relating them to the quality of the labels collected. We investigated the relationship

488  between landmark root mean squared error and cross-correlation in the adult crania training set above to

489  build a quality assessment model. Letting x,” and @(1) denote the observed (manual) and predicted
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490  (automated) Euclidean vectors at landmark ¢ for a target image I, the root mean squared error for p

491 landmarks is defined as

2
492 RMSE = \/zf;:l% n (xe® - ")

493 After computing the root mean squared error for each specimen, we regressed these values on their
494 corresponding cross-correlation values with linear, squared, and cubic cross-correlation terms (Fig. 5a). We
495  found a statistically significant non-linear relationship (R’ = 0.3, p < 0.001), such that cross-correlation
496  values below 0.90 resulted in exponentially higher landmark errors. The average root mean squared error
497  was 0.23 mm (95% CI + 0.002 mm). This mean error is comparable to manual landmark intra-observer
498  detection errors across the skull, which tend to be 0.25 mm or less**°, To verify registration quality across
499  the rest of the database, we calculated cross-correlations for all specimens and stages. The mean cross-
500 correlation values and their standard deviations for E10.5, E11.5, E15.5, E18.5, and adulthood were 0.94 +
501 0.07,0.96 £ 0.04, 0.93 + 0.02, 0.93 £ 0.12, and 0.95 £ 0.02, respectively (Fig. 5a). These values are on par
502  or higher than those reported in previous mouse registration studies'® and speak to the reproducibility of

503  this approach for analyzing variable morphology.

504  Covariance patterns and the mean shape

505  We quantified differences in covariance structure and the sample mean shape between our baseline
506  automated landmarks, the optimized neural network landmarks, and the manual landmarks. To analyze
507  covariance similarity, we projected the automated configurations into the manual PC space and correlated
508  the uncentered PC scores. Fig. 5b shows automated and manual correlations for the first 10 PCs (65.1% of
509 the total variance). The average correlation within PCs for the baseline automated configurations was r =
510  0.6. This measure is biased downwards by lower order automated PCs, which tend to capture residual
511  covariance of the first manual PC. The average correlation within PCs for the optimized automated

512 configurations was r = 0.8, suggesting a restoration of signal among the major PCs.
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Figure 5. Validation of adult crania test set. (a) Left: Regression of automated-manual Euclidean distances
(error) on cross-correlation, a measure of the final target-reference image similarity. Right: Boxplots
showing the distribution of cross-correlation values within each developmental stage. (b) Correlation of
automated and manual PC scores. Left: Baseline automated PC correlations. Right: Optimized automated

513  PC correlations. (c) Mean shape deviations between the automated and manual datasets. Red arrows
indicate error prone areas.
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514 To analyze mean shape deviations, we computed the grand mean shape for the manual landmarks
515  and deformed it to the automated mean shapes via thin-plate spline. We then used the Morpho package'!
516  in R to generate a deformation heatmap of Procrustes distances at every vertex of the deformed mesh (Fig.
517  5c). Procrustes distance is equivalent to the root mean squared error between two configurations in shape
518 space. The total distance between the baseline automated mean and manual mean was 0.05, whereas the
519  distance between the optimized automated mean and manual mean was 0.01. Visually, the baseline
520  automated mean shape is largely indistinguishable from the manual mean shape, apart from several known
521  problematic areas*. First, the anterior extent of the frontonasal prominence is underestimated. Second, the
522 shape of the foramen magnum is altered. Third, the lateral extent of the frontal bone is underestimated,
523  likely because there are no sparse landmarks to interpolate there; however, this area is well-covered by the

524  dense landmark configurations. Optimization successfully corrected errors at these problematic locations.
525  Qutliers and stage-specific shape distributions

526  For each stage, we calculated the Procrustes distance between the mean shape and every configuration to
527  obtain shape distributions and identify outliers (Fig. S1). We defined outlier shapes as those with a
528  Procrustes distance above Q3 + 1.5 X IQR, where Q5 is the third quartile and IQR is the interquartile range.
529  Next, we displayed a minimum threshold isosurface of each outlier image alongside its landmarks to assess
530  theerrors. Landmark (.tag) files with clear head registration errors were removed. We observed most errant
531  outlier landmark configurations in the E15.5 and E18.5 embryos, which underwent whole-body
532 registrations. Since the orientation of the head relative to the body cannot be standardized in embryos, the
533 whole-body registrations and inherent constraints of spatial normalization resulted in local registrations

534  errors if their orientation was markedly different from the atlas.

535 Eliminating problematic outliers with distance distributions is a global solution but not always a
536  local one. For example, if a landmark configuration hardly deviates from the mean on average, yet still has

537  several landmarks with high detection errors, its distance to the mean could be small but its shape distinct.
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538  We performed a Principal Component Analysis on each stage-specific landmark dataset (Fig. S2 and S3)
539  to identify such localized errors, assuming the first PC would capture distinctly problematic shapes. Fig. 6

540  shows the resulting shape distributions along PC1 for each stage. Here, we morphed a surface of the mean

PC1 Min. Mean Shape PC1 Max.

E15.5 E11.5 E10.5

E18.5

Adult
Cranium

Adult
Endocast

Adult
Mandible

Figure 6. Principal Component Analysis of stage-specific shape data. The mean shape (center) was
deformed to the minimum (left) and maximum (right) extremes of PC1. Every morph is shown with
anterior and lateral views. Each row represents a different developmental stage, ranging from E10.5 to
adulthood.

541  shape to each extreme via thin-plate spline and visualized the outputs. If the deformed surface was unusual,

542 we displayed the image and landmarks as above, removed the errant landmark (.tag) file if necessary, and

543 repeated this process until the prediction was correct.
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544  Discussion

545 Why MusMorph?

546  The goal of MusMorph was to create a database of standardized mouse morphology data using an
547  automated, high-throughput, and open-source phenotyping pipeline. By combining developmental atlases
548  with a registration and deep learning framework, we constructed common coordinate systems into which
549  various phenotypic data can be integrated. We primarily focused on acquiring morphological data,
550 including anatomical landmarks, segmentations, and deformation fields, for the craniofacial complex and
551  brain. However, we also generated whole body data for other integrative analyses of late-gestation embryos.
552 To enable novel morphometric analyses of genotype-phenotype maps, we utilized mouse models with
553  substantial developmental and genetic variation. Paired alongside other key metadata, such as strain and
554  sex, MusMorph provides the community with a unique opportunity to disentangle the mechanistic basis for

555  morphological variation.

556 While sparse landmarks are invaluable for geometric morphometrics, there are scenarios where
557  local shape change can be poorly represented. More ambiguous anatomy, such as curves and surfaces,
558  cannot be sufficiently captured with fixed anatomical landmarks, and semi-landmarking each specimen can
559  be tedious and error-prone. Our standardized sparse and dense landmark datasets can enable global and

102,103

560  local shape analyses , an area in geometric morphometrics historically overlooked. Homologous dense
561  landmark patches across the embryo datasets will also permit joint superimposition of multiple stages into
562  acommon shape space for increased statistical power as well as analyses of ontogeny (Fig. S4). In addition
563  tolandmarks, we make the corresponding deformation fields available on an ad hoc basis to support voxel-
564  based meta-analyses of morphology. Despite its ubiquitous application in neuroimaging, voxel-based
565  morphometry is rarely seen in fields that study hard tissue, such as evolutionary developmental biology,

566  anthropology, and paleontology. These deformation fields will let one examine internal and external tissue

567  interactions within anatomical context. Finally, we include anatomical segmentations for several stages,
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568  which can be used to restrict the dimensionality of a voxel-wise analysis, calculate the size (e.g., volume or
569  surface area) of a structure, or perform a surface-based morphometry analysis. If users are dissatisfied with
570  the coverage of existing landmarks and segmentations, they can modify the atlases and use the image

571  transformations to generate new labels.

572 We have made the data and scripts freely available at FaceBase (www.facebase.org,
573  doi.org/10.25550/3-HXMC)* and GitHub (https://github.com/jaydevine/MusMorph) to promote
574  transparency, reproducibility, and future data aggregation. Completely open-source efforts like MusMorph
575  are critical for standardizing phenotypic datasets. Unlike the field of genomics, which has been
576  revolutionized through standardized sequencing and data crowdsourcing, phenomics continues to be limited
577 by one-off, self-contained studies that cannot be related to one another. Standardized morphological
578  datasets will allow research groups to, for instance, investigate the effects of a gene mutation alongside
579  other mutants or wildtype strains in a common morphospace. The same can be said for other significant
580  morphological factors and covariates, such as sex and age. Common morphospaces will further encourage
581  multimodal data integration across the phenomic hierarchy, ranging from cellular and developmental
582  phenotyping with light sheet microscopy'™ to tissue phenotyping with magnetic resonance imaging and
583  contrast-enhanced computed tomography?®. Large phenotypic datasets will ultimately give us the statistical

584  power needed to interrogate mechanisms that bias and generate morphological variation.
585  Sources of error and potential limitations

586  Staining artifacts are a drawback of contrast-enhanced computed tomography. Among the largest sources
587  of registration error were poor contrast and background noise, particularly in the E15.5 dataset. Variable
588  strain penetrance and inadequate contrast can underrepresent anatomy, whereas background noise can
589  masquerade as anatomy and deceive the registration, even if the alignment is constrained with a mask. We
590  mitigated labelling errors by registering thresholded images and by employing other preprocessing

591 techniques, such as intensity bias correction and normalization. However, in some cases, the intensities of
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592  the scanning tube could not be distinguished from the specimen, leading to surface landmark errors. Another
593  spatial alignment problem that was difficult to reconcile was variation in articulated anatomical positions.
594  For example, head orientation relative to the body varied widely among the E15.5 and E18.5 datasets, and
595  mandible orientation relative to the skull differed across the adult dataset. We chose to register the entire
596  scan instead of separate segmentations, masks or cropped volumes, because a) a single registration field is
597  computationally more feasible to generate, store, and use downstream and b) a single atlas with a detailed

598 set of labels is better for data standardization.

599 Non-linear alignment and labelling errors may occur around extreme anatomical points with high
600  variability. To demonstrate how automated landmark error can be reduced, we implemented a neural
601  network that minimized automated and manual craniofacial shape differences. Since the endocast,
602  mandible, and embryo datasets do not have manual landmark training data, they cannot be optimized.
603  However, if other investigators have training data, a network could be built to correct sparse phenotyping
604  errors in areas of high morphological variability. Lastly, it is important to consider the computational time
605  and memory needed for volumetric registration. To integrate new data, we strongly encourage users to

606  parallelize their work on compute clusters.
607  Future development

608  The majority of MusMorph is composed of head data, because we had reservations about registering whole
609  body data. Now that we have observed no significant differences in registration quality among the datasets,
610  we plan to experiment with more whole-body data for embryos and adults. Another area we intend to
611  improve is our developmental coverage. Despite sampling across most of development, we recognize that
612  additional embryo timepoints (e.g., E9.5 and E12.5-14.5) are needed, as are higher sample sizes throughout
613  mid-gestation and early adulthood. The developing mouse craniofacial complex, for example, undergoes
614  immense growth during the first 30 days after birth!®. Early postnatal datasets will be critical for asking

615  questions about size and ontogenetic allometry. Finally, to complement our large sample of homozygous
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616  embryo mutants, we hope to introduce more wildtype and heterozygous embryos for analyses of normal
617  variation. Heterozygotes have not been a focus of the IMPC, so there is ample opportunity to reveal
618  previously unrecognized embryo phenotypes with standardized MusMorph comparisons. The adult dataset,
619 by contrast, needs to be balanced with more homozygous mutants to better understand how mutations of
620 large effect influence morphological variance and other related phenomena, such as integration and

621  modularity.
622  Usage Notes

623  MusMorph is categorized as a “Project” on FaceBase. Projects can be found in the “Data Browser: Projects”
624  tab at the top of the home page. Project data are organized hierarchically. The levels of the hierarchy in
625  ascending order of data specificity are “Project”, “Dataset”, “Experiment”, and “Biosample”. A project
626 contains datasets, which are sets of similar studies. Each dataset is annotated with study abstracts,
627  experimental designs, and metadata identifiers. Datasets are composed of experiments. An experiment
628  represents a set of similar specimens, so mice with the same genetic background, age, treatment, and
629  mutation would constitute one experiment. Experiments contain biosamples. A biosample is an individual

630  specimen.

631 After creating a free account and logging in the MusMorph data and metadata can be downloaded
632  at any level in the project hierarchy using the “Export: BDBag” tool at the top-right of the browser. This
633  export function uses DERIVA!%, the software platform that powers FaceBase, to generate a BDBag (Big
634  Data Bag)'"” ZIP file. Users then need to download the file and process it via BDBag client tools, either via
635  the command line or GUI application. Specific details about the DERIVA Client installation and the step-

636  by-step export instructions are available here: www.facebase.org/help/exporting.

637 Code Availability
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638  Our code is freely available at https://github.com/jaydevine/MusMorph. The scripts describe every stage of
639  the MusMorph data acquisition and analysis, including image preprocessing (e.g., file conversion, image
640  resampling and intensity correction), processing (e.g., atlas generation, non-linear registration, label
641  propagation), and postprocessing (e.g., shape optimization, morphometric analysis). We developed and
642 implemented the code with Bash 4.4.20, R 3.6.1, Python 3.6, and Julia 1.2.0 on Ubuntu. All code is

643 distributed under the GNU General Public License v3.0.
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