

1 Predicting efficiency of writing short sequences 2 into the genome using prime editing

3
4 Jonas Koeppel^{1,†} Elin Madli Peets^{1,†}, Juliane Weller^{1,†}, Ananth Pallaseni¹, Fabio Liberante¹, Leopold
5 Parts^{1,2,*}

6
7 ¹ Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK

8 ² Department of Computer Science, University of Tartu, Tartu, Estonia

9 [†] These authors contributed equally to this work

10 * Corresponding author. Tel: +44 1223 834 244; E-mail: leopold.parts@sanger.ac.uk

11

12

13 SUMMARY

14 Short sequences can be precisely written into a selected genomic target using prime editing.
15 This ability facilitates protein tagging, correction of pathogenic deletions, and many other
16 exciting applications. However, it remains unclear what types of sequences prime editors can
17 easily insert, and how to choose optimal reagents for a desired outcome. To characterize
18 features that influence insertion efficiency, we designed a library of 2,666 sequences up to 69
19 nt in length and measured the frequency of their insertion into four genomic sites in three
20 human cell lines, using different prime editor systems. We discover that insertion sequence
21 length, nucleotide composition and secondary structure all affect insertion rates, and that
22 mismatch repair proficiency is a strong determinant for the shortest insertions. Combining the
23 sequence and repair features into a machine learning model, we can predict insertion
24 frequency for new sequences with $R = 0.69$. The tools we provide allow users to choose
25 optimal constructs for DNA insertion using prime editing.

26 INTRODUCTION

27 Efficient insertion of short DNA sequences into genomes could change the course of
28 biotechnology and medicine. Small insertions can encode protein tags for purification and
29 visualization, or allow manipulation of protein localization, half-life, and interaction profiles to
30 control their function. Integrating sequences for transcription factor binding sites and splicing
31 modulators provides control over gene expression, while introducing structural elements or
32 recombinase sites can change DNA conformation and provide a substrate for large-scale
33 engineering^{1,2}. For therapeutic opportunities, over 16,000 small deletion variants have been
34 causally linked to disease^{3,4}, and could in principle be restored by inserting the missing
35 sequence^{5,6}. A prominent example is cystic fibrosis, where 70% of cases are caused by a 3 nt
36 deletion^{7,8}. An ideal tool to enable these applications would integrate the edits efficiently,
37 accurately, and safely, avoiding unintended outcomes or double strand break stress that has
38 hampered Cas9-based therapies⁹⁻¹¹.

39

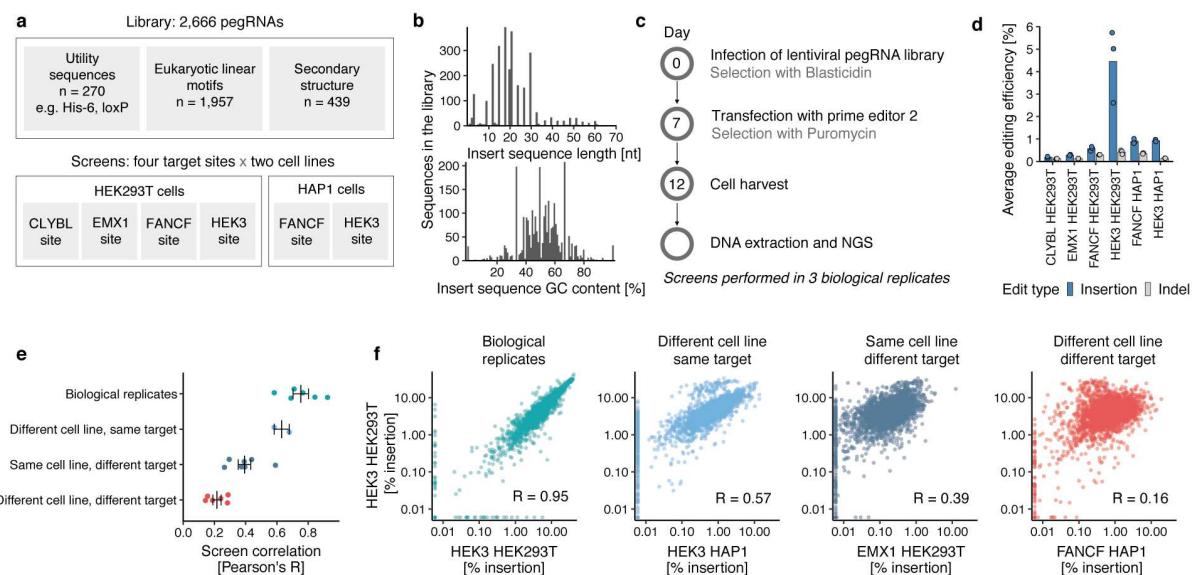
40 Prime editors can insert short DNA sequences without generating double-strand breaks or
41 needing an external template. They consist of a nicking version of Cas9 fused to a reverse
42 transcriptase domain, which is complexed with a prime editing guide RNA (pegRNA)¹². The
43 pegRNA comprises a primer binding site homologous to the sequence in the target, and a
44 reverse transcriptase template that includes the intended edit, all in the 3' extension of a
45 standard CRISPR/Cas9 guide RNA. At the target site, Cas9 nicks one strand of the genomic
46 DNA, which then anneals to the primer binding site on the pegRNA, and is extended by the
47 Cas9-fused reverse transcriptase using the pegRNA-encoded template sequence. Next, DNA
48 repair mechanisms resolve the conflicting sequences on the two DNA strands, ultimately
49 writing the intended edit into the genome. When CRISPR/Cas9 was compared to molecular
50 scissors capable of disrupting target genes, and base editors were called molecular pencils
51 for their ability to substitute single nucleotides, prime editors were described as molecular
52 word processors able to perform search and replace operations directly on the genome¹³.

53

54 The prime editing system is complex, and the determinants of its efficiency are not fully
55 understood. Several partly independent steps, including three DNA binding events and a
56 successful mismatch repair are needed to produce an edit, each potentially introducing biases.
57 In the largest study so far to understand these biases, Kim et al. comprehensively tested the
58 consequences of varying the reverse transcription templates and primer binding site lengths
59 using a library of 55,000 pegRNAs. Editing rate increased with Cas9 gRNA activity, as well as

60 GC content and melting temperature of the primer binding site. Primer binding sites of 13 nt
61 and reverse transcriptase templates of 12 nt generally worked well¹⁴.

62


63 The majority of libraries used by Kim *et al.* contained the same single nucleotide substitution
64 5 nt upstream of the nick site. Similarly, nearly all current characterization of prime editing
65 efficacy has predominantly focused on single nucleotide substitutions^{12,15-18}. Of the many
66 possible useful sequences in molecular biology, only a handful have been introduced with
67 prime editing and the longest successfully reported insertion was 44 nt in length¹². Therefore,
68 in contrast to relatively deep understanding of Cas9 mutagenesis^{10,19-21} and base editing
69 outcomes²²⁻²⁴ very little is known about how the inserted sequence affects efficiency, and the
70 length range of insertions feasible by prime editing has not been defined.

71

72 Here, we systematically measure the insertion efficiency of over 2,600 sequences and identify
73 the features responsible. We find that insertion sequence length, nucleotide composition,
74 secondary structure, and repair pathway activity together explain most of the variation in
75 insertion rate. We then use these insights to train a sequence-based prediction model
76 informed by mismatch repair efficiency that predicts editing outcomes for novel sequences
77 with high accuracy, and allows selection of optimal reagents for new insertions.

78 **RESULTS**

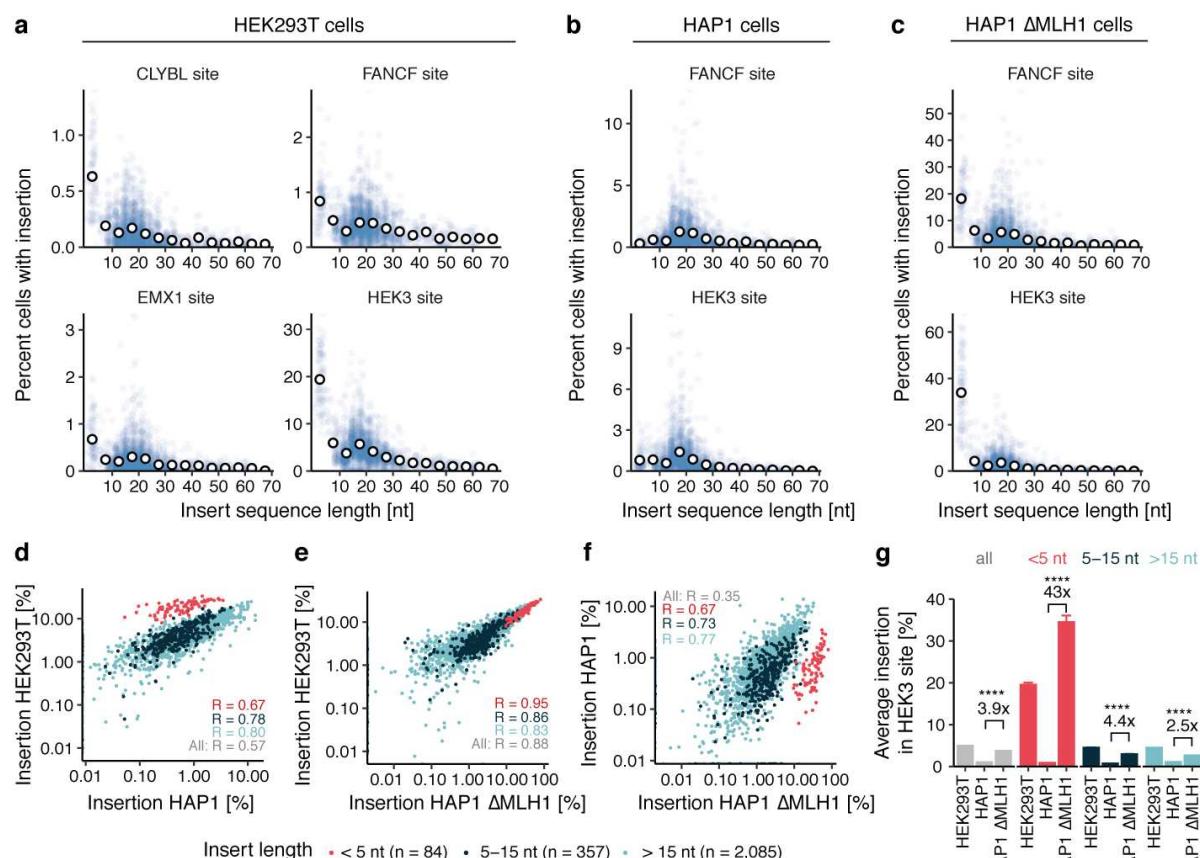
79 We sought to systematically characterize how the length and composition of inserted
80 sequence, as well as cell line, target site, and the version of the prime editor system affect
81 insertion rates. To do so, we designed 2,666 pegRNAs encoding insertions immediately
82 upstream of the nick site. These comprise 270 sequences useful for molecular biology
83 (including e.g. His-6 tag, recombinase sites, and mNeonGreen11²⁵), 1,957 eukaryotic linear
84 motifs^{26,27}, and 439 sequences with variable secondary structure (Figure 1a). The insertion
85 lengths ranged from 1 to 69 nt, with varied GC content (Figure 1b). We used lentiviruses to
86 deliver the library against four target sites (three previously tested: HEK3, EMX1, FANCF¹²
87 and the safe-harbor CLYBL locus²⁸) in two cell lines (HEK293T and HAP1), followed by
88 transient transfection of the prime editor plasmid, five days of selection, and sequencing of
89 two amplicons from the cell pool, one of the targeted locus and one of the pegRNA locus
90 (Figure 1c). We calculated insertion efficiencies as the fraction of reads in the target site
91 amplicon with a given insertion divided by the fraction of reads for the pegRNA encoding it in
92 the pegRNA amplicon, and analyse them as the main statistic in the rest of the study.

Figure 1. High-throughput measurement of prime insertion efficiencies. **a.** Screen setup. **b.** Library composition. Number of sequences in the library (y-axis) with different insert sequence lengths (x-axis, top panel) and %GC content (x-axis, bottom panel). **c.** Experimental design. **d.** Editing frequencies. Average mutation frequency (y-axis) for different screens (x-axis) stratified by mutation type (blue: insertions; grey: indels). Markers represent one replicate and bars the average across $n=3$ biological replicates. **e.** Replicate concordance. Pearson's R between insertion rates in two screens (x-axis) for different comparisons (y-axis, colors). Markers: correlation value of one pair of screens (for replicate correlations, mean of pairwise comparison across $n=3$ biological replicates); line and whiskers: mean and standard error of mean. **f.** Representative examples of categories from (e). Percent insertion in the HEK3 locus in HEK293T cells (y-axis) compared to values (x-axis) in other contexts (panels, colors) for insertion sequences (markers). Left panel: comparison of biological replicates; other panels: comparison of replicate averages. Label: Pearson's R of values in linear scale. Colors: as in (e).

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

Insertion efficiencies of pegRNAs varied widely. The top 1% of pegRNAs were inserted 210-2,040 times more efficiently than the bottom 1% across the various target site and cell line combinations (Supplementary Figure 1a), indicating substantial sequence-dependent variation. The insertion rates were highly consistent across biological replicates (average Pearson's R=0.76, range 0.64-0.95; Supplementary Figure 1b), but differed in magnitude across screens (average across pegRNAs 0.19% for CLYBL locus in HEK293T to 4.45% for HEK3 locus in HEK293T cells, Figure 1d). Small insertions and deletions around the target site were rare (0.12%-0.42%, Figure 1d), as were additional single-nucleotide mutations around the nicking site derived from the prime editing process (0.03% on average in reads with an inserted sequence vs 0.03% in reads without insertions, Supplementary Figure 1c). Overall, the intended insertions were the dominant mutations generated, and we do not consider the unintended edits further.

120 To understand the consistency of insertion efficiencies across contexts, we next compared
121 them between replicates, cell lines, and target sites. Insertion rates into the same target site
122 in different cell lines were more correlated (mean Pearson's $R=0.63$) than into different target
123 sites in the same line (mean Pearson's $R=0.39$), indicating a greater dependence on target
124 locus than cellular background. The correlation was weakest when both target site and cell
125 line were different (mean Pearson's $R=0.22$, Figure 1e-f), demonstrating both target
126 sequence-specific, and cell line-dependent biases on insertion.

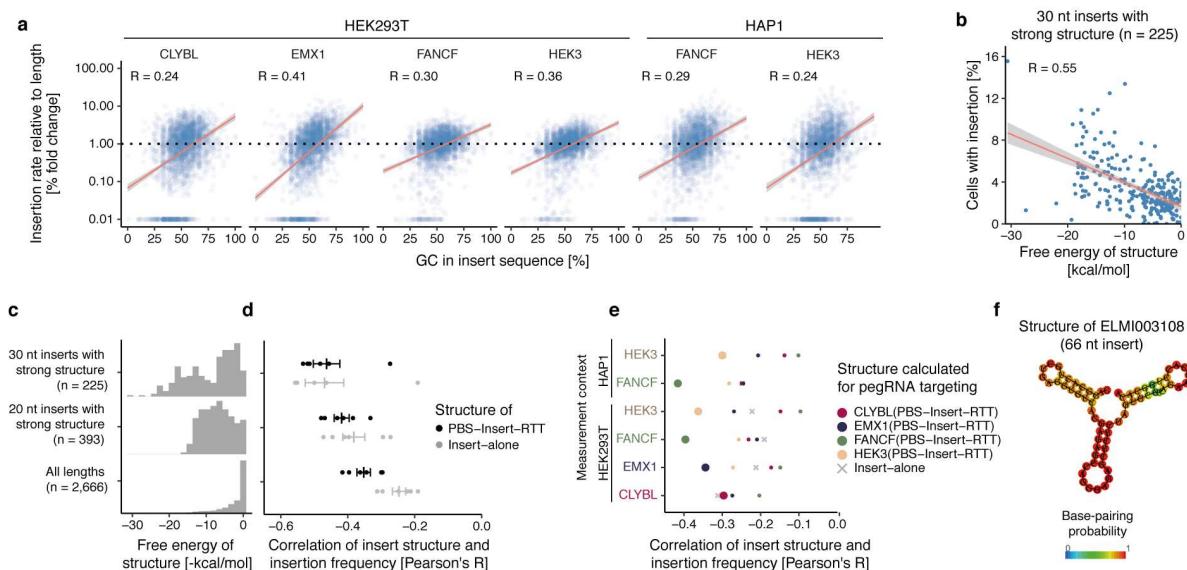

127 **Insert size effects**

128 Given the repeatable sequence dependent variation in insertion rates that spans over three
129 orders of magnitude, we sought to understand the responsible features. We first asked how
130 insert sequence length affects insertion efficiency. For HEK293T cells, sequences of up to
131 4 nt (all four single nucleotides, all 16 dinucleotides, and 63 trinucleotides) were inserted on
132 average 2.1-4.6 times more efficiently than longer ones across the four targeted sites (Figure
133 2a). Insertion frequency did not decrease monotonically with increasing insert length, as
134 sequences between 15 and 21 nt were inserted 1.3-1.6 times more efficiently than 10-14 nt
135 ones (Figure 2a). These relative biases in efficiency were shared between all target sites,
136 despite a 20-fold range of their average insertion rates. Inserts longer than 45 nt were
137 incorporated less frequently, albeit at a screen average rate of 22-38% of sequences shorter
138 than 45 nt. The longest sequence that was inserted at > 1% frequency (1.4%, HEK3 site in
139 HEK293T cells) was 66 nt, demonstrating that reasonably efficient integration of moderately
140 long sequences is feasible with prime editing.

141

142 In contrast to HEK293T cells, insertion frequency of the short 1-4 nt sequences was 1.2 to
143 3.7-fold lower than that for longer ones in HAP1 cells (Figure 2b). This reduced the correlation
144 of insertion rates between the two cell lines at the same site compared to replicate correlation
145 (Pearson's $R=0.68$ for FANCF and 0.57 for HEK3, Figure 2b; median replicate correlation
146 $R=0.75$, Supplementary Figure 2a). However, stratifying the inserted sequences by length
147 recovers strong concordance, with correlations between rates in HAP1 and HEK293 cells at
148 the HEK3 locus increasing to 0.67, 0.78, and 0.80, respectively, for sequences of lengths 1-4
149 nt, 5-15 nt, and 16-70 nt. This correlation within length bins indicates consistent pegRNA
150 effects, while the discordance between bin averages across lines (but not targets in the same
151 line) hints that the cellular context does not influence inserts of different lengths in the same
152 way. One possible explanation is mismatch repair (MMR) proficiency, since HEK293T cells
153 are partly MMR deficient due to promoter methylation of MLH1²⁹, while HAP1 cells are not.

154 The MMR pathway recognizes and excises short mismatches of less than 13 nt and could
 155 therefore remove short insertions in HAP1 cells before the nicked strand is re-ligated^{17,30}.
 156


157 **Figure 2. Prime insertion efficiency depends on insert length. a.** Insertion rate in HEK293T cells.
 158 Percent cells with insertion (y-axis) for different insert sizes (x-axis) of individual sequences (blue
 159 markers) and their averages in 5nt length bins (white markers) at different target sites (panels). Data
 160 represent the average of $n=3$ biological replicates. **b.** As a), but for HAP1 cells. **c.** As a), but for HAP1
 161 ΔMLH1 cells. **d.** Insertion rate in HEK293T cells (y-axis) compared to rate in HAP1 cells (x-axis) at the
 162 HEK3 target of individual sequences (markers). Red: short sequences (up to 4nt); blue: medium
 163 sequences (5-15nt); teal: longer sequences (>15nt). Label: Pearson's R between rates. The data are
 164 an average from $n=3$ biological replicates. **e-f).** As (d), but comparing insertion rates in HAP1 ΔMLH1
 165 cells with HEK293T cells (e) and HAP1 wild type cells (f). **g.** MLH1 knockout increases insertion rates
 166 disproportionately for short sequences. Average insertion rates at the HEK3 locus (y-axis) across
 167 different cellular contexts (x-axis) for different length bins (colors). Comparison: ratio of average
 168 insertion rate between HAP1 ΔMLH1 cells and HAP1 wild type cells; p-values (all $< 1 \times 10^{-33}$) from two-
 169 sided Student's t-test. Error bars: standard error of the mean. Colors as in (d)-(f).

171

172 To test the hypothesis that rates of inserting short sequences differ between cell lines due to
173 mismatch repair activity, we screened the HEK3 and FANCF-targeted libraries in HAP1 cells
174 that are knockout for MLH1 (HAP1 Δ MLH1, Supplementary Figure 2b,c). We found that
175 average insertion rates increased 3.9 to 5.1-fold in the mutant background compared to wild
176 type HAP1 cells. The rates 1-4 nt sequences were most affected, increasing by 43-66 fold to
177 19-34%, while the rates of 5-15 nt and >15 nt sequences increased 4.4-7.9 fold and 2.5-4.2
178 fold, respectively (Figure 2g, Supplementary Figure 2d,e). These remarkable increases in
179 insertion rates for short sequences are consistent with a model where MMR predominantly
180 recognizes short insertions, and thereby antagonizes prime editing. Indeed, for the HEK3
181 target site, insertion rates in HAP1 Δ MLH1 cells are as correlated to HEK293T cells as
182 replicates (Pearson's R = 0.88, Figure 2e, Supplementary Figure 1b) while correlations
183 between wild type HAP1 and HAP1 Δ MLH1 cells are modest (Pearson's R = 0.35, Figure 2f)
184 and improve when stratifying by sequence length. The same pattern of higher insertion rates
185 for short sequences in Δ MLH1 cells was observed for the FANCF locus (Supplementary
186 Figure 2f,g). These findings highlight that MMR proficiency is the major source of variation
187 between the tested cellular contexts for prime insertions.

188 **Sequence effects**

189 We next examined the length-independent causes of variation in insertion rate. We calculated
190 the relative insertion rate for each insert by dividing its marginal rate by the median in a 5-nt
191 length bin (Methods), and observed it is positively correlated with GC content across all target
192 sites and cell lines (Figure 3a). Each extra percentage in GC content increased the relative
193 insertion rate between 1.8% (FANCF site in HEK293 cells) and 4.9% (EMX1 site HEK293T
194 cells) on average. Specifically, we observed a strong cytosine preference for the CLYBL,
195 EMX1, and HEK3 loci (each extra percent cytosine increases relative insertion rate by 2.7-
196 5.4%), while both the percent of cytosines (0.9-1.2%) and guanines (1.3-3.3%) increase
197 insertion rates for the FANCF locus. Conversely, percent of adenine and thymine decreased
198 insertion rates for all loci and cell lines (-0.8% to -5.1% and -0.5% to -3.6% respectively,
199 Supplementary Figure 3a,b).

200
201
202 **Figure 3. GC content and secondary structure of the insert sequence are positively correlated**
203 **with insertion rate. a.** Insertion efficiency dependence on GC content. Insertion rate relative to length
204 bin average (y-axis) for inserts with different GC content (x-axis) of individual sequences (markers) at
205 different target sites and cell lines (panels). Red line: linear regression fit; shaded area: 95% posterior
206 confidence interval of the fit. Data represent the average of $n=3$ biological replicates. **b.** Insert sequence
207 free energy correlation with insertion rate. Percent of cells with insertion (y-axis) for 30 nt sequences
208 in the HEK3 locus in HEK293T cells (markers) with calculated Gibbs free energy (ΔG) from ViennaFold
209 (x-axis). Red line: linear regression fit; shaded area: 95% posterior confidence interval of the fit. Data
210 represent the average of $n=3$ biological replicates. **c.** Subsets of insertion sequences with fixed length
211 and variable secondary structure. Frequency (y-axis) of insert sequence free energy (ΔG , x-axis) for 30
212 nt (top panel) and 20 nt sequences (middle panel), and the entire library (bottom panel). **d.** Correlation
213 of insertion frequency and insert structure ΔG (x-axis) for 30 and 20 nt sequences, and the entire library
214 (y-axis), stratified by whether ΔG was calculated for the insert sequence alone (grey) or for the entire
215 3'-extension, consisting of primer binding site (PBS), insert, and reverse transcription template (RTT;
216 black) for different combinations of target sites and cell lines (markers). Data represents averages from
217 $n=3$ biological replicates. Bars: mean and standard error of the mean. **e.** Target dependence of pegRNA
218 secondary structure free energy correlation to insertion rate. Correlation (x-axis) between insertion
219 efficiency measured in different target sites and cell lines (y-axis) and pegRNA 3' extension structure
220 free energy calculated for pegRNAs against different target sites (colored markers), as well as insert
221 sequence alone (grey cross). **f.** Example long sequence with successful insertions. The predicted
222 secondary structure of a 66 nt insert sequence (ELM1003108) which was inserted with 1.4% efficiency
223 into the HEK3 locus in HEK293T cells. Colors: base pairing probability.

224

225 Our library contained 225 and 291 insert sequences of 20 nt and 30 nt respectively, that were
226 designed to form secondary structures of varying strength, including some sequences with
227 perfect hairpins. Their secondary structure free energy as quantified by the Vienna fold ΔG
228 (more negative ΔG values indicate stronger secondary structures)^{31,32} was negatively
229 correlated with insertion efficiency (average Pearson's R = -0.38 and -0.50 for 20 nt and 30 nt
230 insertions respectively, Figure 3b-d, Supplementary Figure 3c). Even when excluding the
231 shortest inserts of up to 3 nt, most of the inserted sequences in the library do not form strong
232 structures (Figure 3c) and the Vienna fold free energy explains less signal variation (average
233 Pearson's R=-0.25). We speculated that more important than the structure of the insert
234 sequence alone is the structure across the entire pegRNA 3' extension, comprising the primer
235 binding site and the reverse transcription template, and indeed, more variation was explained
236 when including the extension (average Pearson's R=-0.35, Figure 3d, Supplementary Figure
237 3d-f). Since the extension is specific to the target, this partly explains the differences in
238 insertion rates we observed across target sites. To quantify this effect, we measured how well
239 free energies of pegRNA extensions designed for one target site predict insertion efficiency at
240 another target site. Consistent with a target site-specific effect, the correlation was strongest
241 when the target site was matching to the 3' extension the structure it was calculated from
242 (Figure 3e).

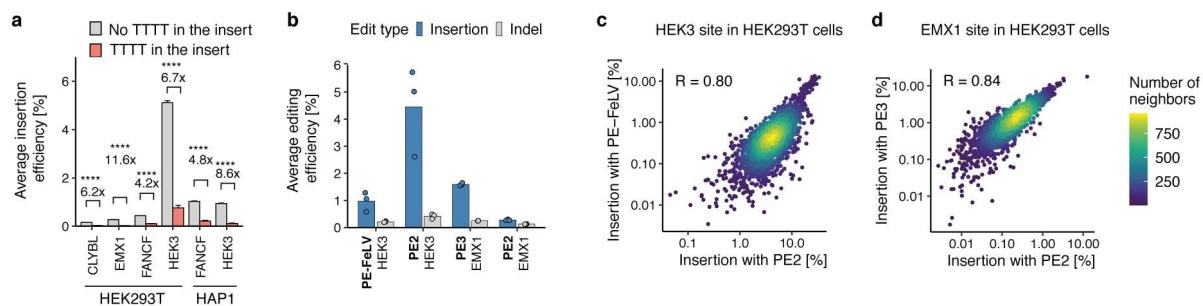
243

244 Combining insert sequence length, GC content and structure explained why some sequences
245 inserted much better than others, which can help guide the choice of tags to insert. For
246 example, the long 66 nt ELMI003108 sequence that was inserted in the HEK3 locus at 1.39%
247 insertion frequency (0.66% on average for the other 10 sequences > 66 nt) had a GC content
248 of 62% and formed a strong structure alone as well as within the pegRNA context (ViennaFold
249 free energy = -23.8 and -37.5 respectively, Figure 3f). Other longer sequences that inserted
250 well relative to their size were recombinase sites, presumably due to their secondary structure
251 that often contains hairpins (Supplementary Figure 4a,b).

252 CRISPR system effects

253 Finally, we considered how aspects of the CRISPR/Cas system itself impact insertion rates.
254 First, it is known that the occurrence of four consecutive thymines acts as a transcription
255 terminator for RNA polymerase III and strongly impairs guide RNA expression^{33,34}. We
256 confirmed that the average insertion rate for sequences that contain this tetranucleotide was
257 4.2 to 11.6-fold lower compared to sequences without (Figure 5a), while stretches of four
258 adenines showed a weaker but significant effect (average 1.5 to 1.8-fold reduction,

259 Supplementary Figure 4c). Overall, 21 of the 24 pegRNAs that were not inserted in any screen
260 contained at least one instance of the TTTT sequence.

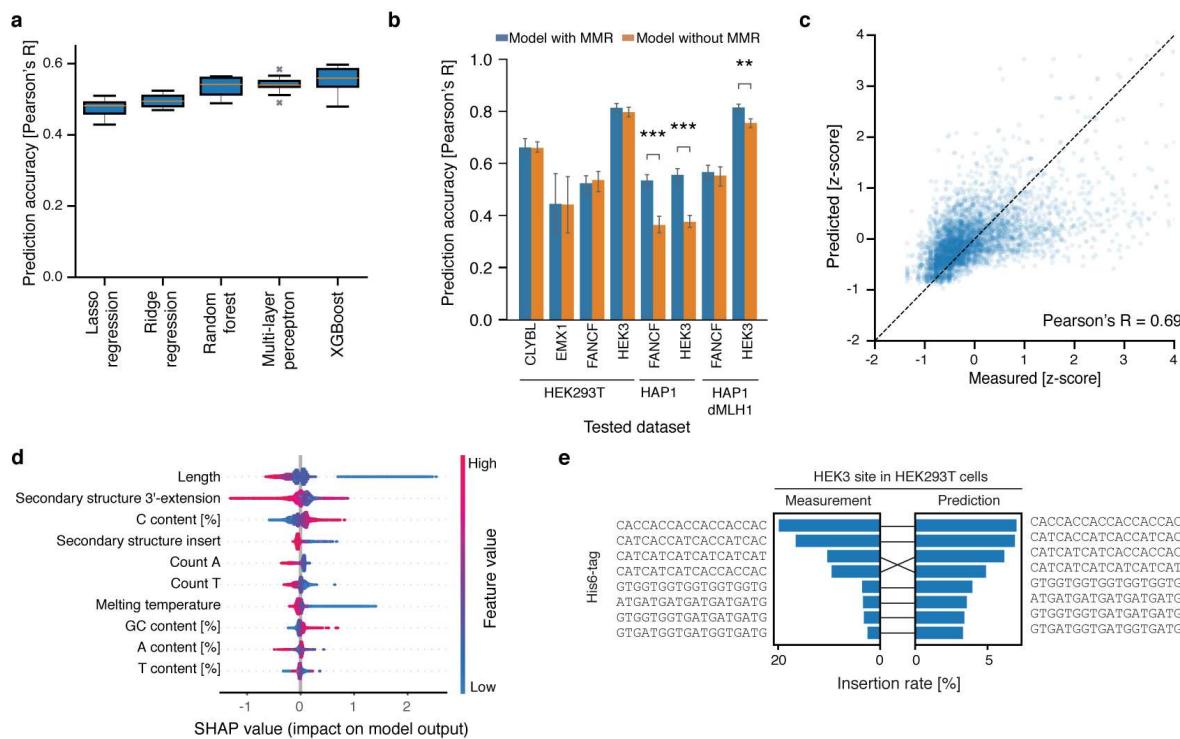

261

262 Second, to disentangle the contribution of the reverse transcription step, we made a prime
263 editor construct with the nicking Cas9 fused to an engineered feline leukemia virus reverse
264 transcriptase (MashUp RT - pipettejockey.com) with a similar fidelity to the murine leukemia
265 virus RT used in PE2. The average insertion rates observed using this construct were 4.6-fold
266 lower compared to the standard PE2 (0.98% and 4.56% respectively; Figure 4b), but as
267 correlated to PE2 as another biological replicate (Pearson's R=0.80; Figure 4c, Figure 1e),
268 and with consistent marginal effects of the contributing features (Supplementary Figure 5).
269 Therefore, the reverse transcriptase used is not a major cause of variation in insertion rate in
270 our study.

271

272 Including an additional sgRNA to nick the non-edited strand increases editing efficiency as
273 well as indel formation rate¹². We next explored how the addition of this extra sgRNA affects
274 the insertion frequencies of our library. We chose the EMX1 locus in HEK293T cells where we
275 observed poor insertion efficiencies of 0.28% on average without the nicking guide RNA, and
276 co-transfected with a nicking guide RNA that targets 77 nt downstream of the pegRNA target³⁵.
277 We found that the extra nick increased the average insertion rate by 5.7-fold to 1.59%, and
278 moderately increased the indel rate by 1.7-fold to 0.22% (Figure 4b). Importantly, the relative
279 insertion rates for sequences in the library remained similar, with correlations in line with those
280 of biological replicates and the other reverse transcriptase (Pearson's R=0.84, Figure 4d), and
281 consistent feature impact (Supplementary Figure 5) suggesting the determinants of prime
282 insertion efficiency we uncovered for PE2 are also valid for PE3.

283


284
285

286 **Figure 4. CRISPR system effects.** **a.** Impact of four consecutive thymines. Average insertion rate (y-axis) for different screens (x-axis) stratified by presence of four consecutive thymines (grey: absent; red: present). Comparison: ratio of grey to red bar height. p-values derived from a two-sided student's t-test with all p-values $< 1 \times 10^{-67}$. $n=3$ biological replicates. **b.** Editing frequencies for alternative prime editing systems. Mutation frequency (y-axis) for three biological replicate screens (markers) using different prime editor systems (x-axis) stratified by mutation type (blue: insertions; grey: indels). Bar: average of markers. **c.** Impact of an alternative reverse transcriptase. Insertion frequencies at the HEK3 site in HEK293T using the standard MMLV reverse transcriptase (PE2, x-axis) and the FeLV reverse transcriptase (PE-FelV, y-axis) for different insertion sequences (markers). Colors: number of neighboring data points. Label: Pearson's R. $n=3$ biological replicates **d.** As c), but comparing PE3, and at EMX1 site.

297

298 Predicting insertion rates

299 Given our improved understanding of prime insertion efficiency, we next created a prediction
300 model. We extracted salient features such as insert length, nucleotide composition, and
301 folding energy for each pegRNA, and trained regression models of insertion rates. We chose
302 to use XGBoost (gradient boosted decision trees³⁶), as it achieved the best cross-validation
303 performance (Figure 5a), and further evaluated its accuracy on datasets narrowed to individual
304 sites and cell lines (Supplementary Figure 6a). The model generalized well (Supplementary
305 Figure 6b), but we noticed that training on data only from HAP1 experiments resulted in worse
306 performance on the HEK293T and HAP1 ΔMLH1 lines (average Pearson's R = 0.31 vs 0.49
307 and 0.50 respectively). Given the observations of mismatch repair importance above, and the
308 lack of repair proficiency as a feature input to the model, we hypothesized that including an
309 experiment-specific and sequence-independent feature to capture this will improve prediction
310 accuracy. Indeed, the model improved substantially when adding MMR status as a feature
311 (increase in Pearson's R > 0.1 ; paired t-test $p < 10^{-3}$; Figure 5b).

312

Figure 5. Predicting prime insertion efficiencies. **a.** Cross-validation performance of different models. Pearson's R between predicted and measured held-out pegRNAs (y-axis) for ten cross-validation folds across a range of models (x-axis). Box: median and quartiles; whiskers: 90th percentile; cross: outlier. **b.** Impact of sequence-independent mismatch repair (MMR) proficiency feature. Pearson's R between measured and predicted insertion rate on held-out pegRNAs (y-axis) on different screens (x-axis) for XGBoost model that includes MMR feature (blue) or not (orange). Whiskers: standard error of mean. Comparison: Student's t-test between models with MMR and without; ***: p < 10⁻³; **: p < 10⁻². **c.** Concordance of prediction and measurement. Predicted (x-axis) and measured (y-axis) insertion efficiency on the combined dataset for held-out pegRNAs (markers). Label: Pearson's R. Dashed line: y=x. **d.** Feature importance. Distribution (row y-axis) of SHAP values (x-axis) for features ordered top to bottom by median absolute SHAP value (y-axis). Colors: feature value. **e.** His6-tag insertion rate. Insertion rate (x-axis) for Predicted (right) vs. measured (left) insertion rates of different alternative His6-tags (y-axis) into HEK3 locus in HEK293T cells.

326

327 Our final model is trained on data from experiments on all cell lines and target sites, and
328 includes sequence characteristics as well as repair proficiency as features. It predicted
329 insertion rates for unseen insert sequences with high accuracy (Pearson's R=0.69, Figure 5c),
330 which is very near the limit set by the correlation of biological replicates (average Pearson's
331 R=0.76). The features important for prediction³⁷ reflected the observations above, with insert
332 sequence length, secondary structure of the pegRNA, and nucleotide composition having the
333 largest impact (Figure 5d). We call this method MinsePIE (Modelling insertion efficiency for

334 Prime Insertion Experiments) and make it available at
335 <https://github.com/julianeweller/MinsePIE>.

336

337 Predictive models inform experiments and help in selecting the components of a desired
338 insertion. A common application of small sequence insertion is endogenous protein tagging,
339 and the His6-tag is frequently used to enable purification. The possible tags that give
340 equivalent amino acid sequences range in codon choice, thus resulting in pegRNAs with
341 varying secondary structure and nucleotide composition when inserted. Our library contained
342 8 codon variations of the His6-tag in forward and reverse orientations. The average insertion
343 difference between the best codon variant and the worst was 13.3-fold, highlighting the
344 importance of choosing the optimal codon variant for insertion. We withheld the data for all
345 His6-tags in our library from the training set, and predicted their efficacy of insertion into the
346 HEK3 locus in HEK293T cells. The versions of the His6-tag that were both predicted and
347 measured to have the highest insertion rates had the highest cytosine content by using mainly
348 the CAC histidine codon (Figure 5e). While the predicted preference varied across target
349 contexts, the His6-tag with the highest predicted insertion rate was within the top two
350 measured rates in each editing context (Supplementary Figure 6).

351 **DISCUSSION**

352 We present the first comprehensive analysis of prime editing insertion efficiencies using 2,666
353 pegRNAs. We discovered that short sequences insert with predictable frequencies across cell
354 lines, target sites, and prime editor systems based on their length, GC content and tendency
355 to form secondary structure. Together, these features enable it to accurately predict variation
356 in insertion rates, and to choose optimal reagents for writing short stretches of DNA into
357 genomes.

358

359 We uncovered a complex relation between insertion sequence length and efficiency.
360 Sequences between 15 and 21 nt generally inserted well, while longer sequences are
361 incorporated less frequently, but still at moderate efficiencies even for sequences larger than
362 60 nt. This disparity is potentially due to steric issues for reverse transcription and base pairing
363 with the unedited strand. The insertion efficiency of sequences shorter than 10 nt was variable,
364 with high rates in MMR-deficient cell lines (HEK293T, HAP1 ΔMLH1) but not in MMR-proficient
365 ones (HAP1). This is consistent with recent findings that MMR antagonizes prime editing¹⁷.
366 Longer sequences are less efficiently recognized by MMR³⁰ and therefore insert better than
367 short ones in mismatch repair proficient cell lines.

368 We further discovered that stronger secondary structure of the pegRNA 3'-extension led to
369 higher insertion efficiency. This effect was evident when comparing different inserts into the
370 same target, but also explained variable rates when attempting to write the same sequence
371 into different target sites. One potential explanation is that structured pegRNAs are more
372 protected from digestion by 3'-exonucleases. Indeed, Nelson and Randolph *et. al.* recently
373 demonstrated that incorporating structured motifs at the 3'-end of pegRNAs improved prime
374 editing efficiency 3 to 4-fold by preventing degradation of the 3'-extension¹⁸. Alternatively,
375 structured inserts could ease pairing of the edited strand with the non-edited strand due to
376 being sterically smaller via folding onto themselves.

377

378 Our improved understanding of insertion efficiency using the prime editing system naturally
379 leads to recommendations for experimental design. First, we suggest choosing sequences
380 with high GC, and especially cytosine content that are prone to form secondary structures.
381 Sequences whose lengths vary between 15 and 21 nt are well inserted using prime editing
382 while sequences between 10 and 14 nt are not. Knocking out MLH1 will drastically improve
383 insertion rates for sequences shorter than 10 nt. To boost the efficiency of short sequence
384 insertions in mismatch repair proficient contexts, additional silent mutations should be inserted
385 on the reverse transcriptase template or mismatch repair could be transiently inhibited (as
386 implemented in PE4 or PE5 systems)¹⁷.

387

388 These factors can influence the choice of tag and codon. For example, the His-6 tag,
389 especially if choosing the CAC codon, inserts almost 6 times as well as the next best tag in
390 our library (Myc-tag). For the correction of pathogenic deletions, our model can help prioritize
391 targets and pick high efficiency replacement sequences (for example through codon variation).
392 Our libraries cover many commonly used small sequences and their respective insertion
393 efficiencies (Supplementary Data 2). For predicting the insertion efficiency of novel
394 sequences, we provide the MinsePIE algorithm as a command line script.

395

396 We studied four target sites in two cell lines across three prime editor systems and uncovered
397 both universal and target site-dependent determinants of insertion efficiency. Models trained
398 specifically on one target site still outperformed predictions on withheld data from the same
399 target site when compared to predictions on other target sites. Screening a smaller focussed
400 library across many target sites should help to more fully understand the interactions of target
401 site and insertion sequences. Moreover, all pegRNAs had a constant primer binding site length
402 of 13 nt and a reverse transcriptase template length (without insertion) of 34 nt. Given the

403 model based on our sequence features (that implicitly also quantify these factors) generalised
404 well to unseen pegRNAs, we expect the determinants we uncovered to also broadly hold for
405 different lengths of primer binding site and reverse transcriptase template.

406

407 The prime editing field is moving rapidly³⁸. Diverse applications are already emerging³⁹ and
408 some of the most exciting ones are specifically built around insertion of short sequences.
409 Communicated, but as yet unpublished examples include insertion of recombinase sites using
410 prime editing to enable directed insertion of large DNA cargo of up to 36 kb^{1,2}, as well as clever
411 utilization of short sequence insertion to generate a molecular recorder for sequential cellular
412 events⁴⁰⁻⁴². Better understanding of how cellular determinants¹⁷ and pegRNA features affect
413 prime editing rates^{14,18} provides a foundation for these advances. Our work adds the important
414 dimension of short sequences insertions, which hold the promise to both enable sophisticated
415 genome engineering and to correct thousands of pathogenic mutations.

416 **Author contributions**

417 Conceptualized and initiated the study: JK, LP. Performed experiments: EMP with help from:
418 JK, FL. Analysed the data: JK, JW with help from: AP. Build the machine learning models: JW
419 with help from: AP. Supervised the project: LP with help from: FL. Wrote the manuscript: JK,
420 JW, LP with input from all authors.

421 **Competing interests**

422 The authors do not declare any competing interests

423 **Acknowledgements**

424 We thank Balca R. Mardin and Özdemirhan Serçin for discussions on the discrepancies in
425 insert rates for short sequences between HEK293T and HAP1 cell lines, and for pointing us
426 towards the mismatch repair pathway; We thank Thomas Vanderstichele, Matthew Coehlo,
427 Erica Bello, Jacob Hepkema, Megan Gozzard, Luca Crepaldi and Tom Ellis for discussions
428 and input on the manuscript. We thank Alexander Klenov for sharing the sequence of the
429 MashUp Reverse Transcriptase derived from Feline Leukaemia Virus (FeLV). AP, EMP, JK,
430 JW, and LP were supported by Wellcome (206194). LP was also supported by the Estonian
431 Centre of Excellence in IT (EXCITE) (TK148).

432 **METHODS**

433 **Mammalian cell culture**

434 The human HEK293T cell line was purchased from AMS Biotechnology (EP-CL-0005). The
435 HAP1 WT cell line was provided by Andrew Waters (Wellcome Sanger Institute) and the HAP1
436 ΔMLH1 cell line was purchased from Horizon discovery (HZGHC000343c022). HEK293T cells
437 were cultured in DMEM (Invitrogen) and HAP1 cells in IMDM (Invitrogen), both supplemented
438 with 10% FCS (Invitrogen), 2 mM glutamine (Invitrogen), 100 U/ml penicillin and 100 mg/ml
439 streptomycin (Invitrogen) at 37 °C and 5% CO₂.

440

441 **Primers**

442 All primers used in this study are listed in Supplementary Table 1.

443

444 **Library design**

445 The insert sequence library contained 2,666 sequences, made up from useful molecular
446 biology sequences, the eukaryotic motif library (ELM) and sequences with strong secondary
447 structure. The utility sequences were hand-picked for their usefulness in molecular biology.
448 The ELM instances library with the corresponding fasta file of the genes was downloaded from
449 elm.eu.org/instances.html?q=*>26,27 on 2020/11/19 and filtered to only contain sequences from
450 “homo sapiens” that are longer than 1 amino acid. The amino acid motifs were extracted from
451 the fasta file based on the indicated start and end sites. Finally, the amino acid motifs were
452 reverse translated into DNA sequence using the ‘reversetranslate’ R package (version 1.0.0)
453 and using the most frequent codon from the homo sapiens codon table. For the secondary
454 structure library, 100,000 random DNA sequences of 20 and 30 nt length were generated
455 (RBioinf::randDNA function; version 1.48.0) and their secondary structure calculated (see
456 insert sequence structure section). The sequences were distributed into 10 bins based on the
457 strength of their secondary structure and 20 sequences were randomly picked from each
458 structure bin to be included in the library. Finally, 30 random perfect 20 and 30 nt RNA hairpins
459 were generated and amended to the secondary structure library. The combined library of
460 insert sequences is included as Supplementary Data 1. The insert sequences were then
461 flanked with primer binding sites, random nucleotide stuffer sequence for shorter inserts,
462 BsmBI sites and target vector compatible overhangs, resulting in 11,166 sequences of 199 nt
463 (Supplementary Data 3). The oligonucleotide library was ordered from Twist Biosciences.

464

465 **Plasmid cloning**

466 *pCMV-PE2-P2A-PuroR* was generated by replacing eGFP from pCMV-PE2-P2A-GFP
467 (Addgene 132776) with PuroR. Therefore, a gene fragment containing parts of the MMLV
468 reverse transcriptase and the puromycin resistance gene was ordered from IDT
469 (Supplementary Table 3). The gene fragment and pCMV-PE2-P2A-GFP were digested using
470 Agel, purified with the Monarch PCR & DNA Cleanup Kit (NEB) and ligated with T4 DNA ligase
471 (NEB). 2 μ l of the ligation product was transformed into bacteria using XL10-Gold
472 Ultracompetent Cells (Agilent) according to the manufacturer's protocol. Plasmid DNA was
473 isolated using the Plasmid Plus Midi Kit (Qiagen).

474

475 *pCMV-PE-FeLV-P2A-EGFP* was generated by replacing the MMLV coding sequence
476 between the XTEN linker and the 2A cleavage peptide with a synthesised gene fragment from
477 IDT using Gibson Assembly that encodes an IDT human codon optimised version of the
478 MashUp reverse transcriptase (pipettejockey.com) that is engineered from the Feline
479 Leukaemia Virus (UniProt Q85521).

480

481 *pLentiGuide-Blast* was generated by replacing the puromycin resistance gene from
482 Lenti_gRNA-Puro (Addgene 84752) with a blasticidin resistance gene. A gene fragment
483 containing parts of the EF1a promoter and the blasticidin resistance gene was ordered from
484 Twist Biosciences (Supplementary Table 3). The gene fragment and Lenti_gRNA-Puro were
485 digested using Fsel (NEB) and MluI-HF (NEB), purified with the Monarch PCR & DNA Cleanup
486 Kit (NEB) and ligated with T4 DNA ligase (NEB). 2 μ l of the ligation product was transformed
487 into bacteria using XL10-Gold Ultracompetent Cells (Agilent) according to the manufacturer's
488 protocol. Plasmid DNA was isolated using the Qiagen Spin Miniprep Kit.

489

490 **Library cloning**

491 First, a separate, site-specific backbone was cloned for each target site. A gene fragment was
492 ordered containing the protospacer, guide RNA scaffold, parts of the reverse transcriptase
493 template and primer binding site, a stuffer sequence flanked with BsmBI sites for insert library
494 insertion and the T7 terminator motif (Supplementary table 3). 100 ng of the gene fragments
495 were digested with Bsal-HFv2 (NEB) and purified with the Monarch PCR & DNA Cleanup Kit
496 (NEB). The pLentiGuide-Blast plasmid was digested with BsmBI-V2 (NEB) at 55°C for 8h
497 followed by 20 min heat inactivation at 80°C and gel purified using the QIAEX II Gel Extraction
498 Kit (Qiagen). The gene fragments were ligated into the backbone using T4 DNA ligase (NEB)
499 and transformed into XL10-Gold Ultracompetent bacteria (Agilent). The plasmids were purified
500 with Qiagen Spin Miniprep Kit.

501
502 Second, pegRNA insert libraries were inserted into the site-specific backbones. The insert
503 libraries were synthesized as 199 nt oligo pools (Twist BioSciences) and amplified using KAPA
504 HiFi HotStart ReadyMix (Roche). Libraries for individual target sites were amplified with
505 separate primers (Supplementary Table 1). The products were purified using the Monarch
506 PCR & DNA Cleanup Kit, digested with BsmBI-v2 at 55°C for 4h and heat inactivated at 80°C
507 for 20 min alongside 5 µg of site-specific plasmids. The digested oligos were purified using
508 the Monarch PCR & DNA Cleanup Kit. The vectors were treated with quick CIP (NEB) for 15
509 minutes at 37°C and then purified using QIAquick PCR Purification Kit (Qiagen). Inserts were
510 ligated into vectors using Golden Gate assembly. A 1:3 molar ratio of insert and vector were
511 mixed with BsmBI-v2 and T4 DNA ligase and incubated in a thermocycler for 30 cycles,
512 alternating between 5 minutes at 42°C and 5 min at 16°C and finishing with a heat inactivation
513 step at 60°C for 5 min. The ligation products were purified with Monarch PCR & DNA Cleanup
514 Kit and electroporated into MegaX DH10B T1R Electrocomp Cells (Thermo Fisher) according
515 to manufacturer's protocol. The bacteria were grown overnight in liquid culture and plasmid
516 was extracted using the Plasmid Plus Midi Kit. The spacer sequences, primer binding sites,
517 and reverse transcriptase templates (without insertions) are attached as Supplementary
518 Table 2).

519
520 **Lentivirus production**
521 Lentivirus was produced in HEK293FT cells that were transfected with Lipofectamine LTX
522 (Invitrogen). 5.4 µg of a lentiviral vector, 5.4 µg of psPax2 (Addgene 12260), 1.2 µg of pMD2.G
523 (Addgene 12259) were mixed in 3 ml Opti-MEM together with 12 µl PLUS reagent and
524 incubated for 5 min at room temperature. 36 µl of the LTX reagent was added and the mix
525 was incubated for another 30 min at room temperature. 3 ml of the transfection mix was then
526 added to 80% confluent cells in 10 ml DMEM media in a 10-cm dish. After 48h the supernatant
527 was collected and stored at 4°C. Fresh media was added to the cells and harvested 24h later.
528 The two harvests were kept separate. For virus titration, Lenti-X GoStix Plus (Takara) was
529 used following the manufacturer's protocol.

530
531 **pegRNA insertion screens**
532 *Infection with pegRNA library.* All cell lines were infected with the pegRNA library aiming at a
533 multiplicity of infection (MOI) of 0.5 and a guide coverage of > 1000x. Each screen was
534 performed in 3 biological replicates and independently infected. To achieve this, 6x10⁶ cells
535 were plated in three wells of a six well plate and spin infected for 15-30 mins at 2000 rpm.

536 Following infection, cells were resuspended and replated at 2×10^4 cells/cm². Cells were
537 cultured for 7 days and selected for pegRNA integration with 10 μ g/ml blasticidin. Cells were
538 passaged at day 3 post-infection and a higher coverage than at the time of infection was
539 maintained.

540

541 *Transfection with prime editors.* HEK293T cells were seeded at a concentration 6.9×10^4
542 cells/cm² to a 15-cm dish. The next day the media was replaced with fresh media and the cells
543 were transfected using Lipofectamine LTX reagent. Next, 72 μ g PE-Puro or PE-FeLV plasmid
544 were mixed with 8 μ g pCS2-GFP and 40 μ l Lipofectamine P3000 (Invitrogen) in 3.2 ml Opti-
545 Mem (Gibco). In another tube, 40 μ l of Lipofectamine 3000 and 160 μ l Lipofectamine LTX
546 were mixed in 3.2 ml Opti-Mem. The solutions were mixed together, incubated for 30 minutes
547 at room temperature and then added onto the cells. For PE3, an additional 6 μ g of nicking
548 guide RNA was added.

549

550 Hap1 and HAP1 Δ MLH1 cells were seeded at a concentration of 9.3×10^4 cells/cm² into two
551 T75-flasks. The following day, the media was refreshed one hour before transfection. Cells
552 were transfected using Xfect Transfection Reagent (Takara). Next, 72 μ g PE-Puro plasmid
553 was mixed with 8 μ g pCS2-GFP and Xfect Reaction Buffer to a total volume of 750 μ l. To the
554 reaction, 48 μ l of Xfect Polymer was added and incubated at room temperature for 10
555 minutes. The mixture was then added onto the cells. Media was changed 4 h after transfection.
556 One day after transfections, 2 μ g/ml of puromycin was added to the cells to start selection.
557 Cells were kept in selection for 3 days and harvested 5 days after transfection.

558

559 **DNA extraction and library preparation for next generation sequencing**

560 Genomic DNA extraction and sequencing library preparation for screens were done as
561 described in Allen et al., 2019¹⁰. Briefly, cell pellets were resuspended in TAIL BUFFER A
562 (100 mM Tris-HCl, 5 mM EDTA, 200 mM NaCl) and then mixed with 1 volume of TAIL BUFFER
563 B (100 mM Tris-HCl, 5 mM EDTA, 200 mM NaCl, 0.4% SDS) supplemented with freshly
564 thawed Proteinase K (20 mg/ml final). The lysate was incubated overnight at 56°C. On the
565 next day, RNase A was added to a final concentration of 10 μ g/ml and incubated at 37°C for
566 30 min - 4 h. 1 volume of isopropanol was added and the DNA spooled on a sterile inoculation
567 loop. The DNA was washed three times by dipping into consecutive 5 ml tubes containing
568 70% ethanol. The DNA was air dried for 5-10 mins and resuspended in TE buffer (pH 8.0).

569

570 For each screen, two independent amplicons were generated by PCR using Q5 Hot Start
571 High-Fidelity 2X Master Mix (NEB). One amplicon for the targeted locus and one amplicon of
572 the pegRNA locus (primers listed in Supplementary Table 1, staggered forward primers were
573 used to ensure complexity for sequencing). To ensure coverage for each sample, 40 µg of
574 gDNA was used as template and each PCR reaction was run in 50 µl aliquots containing no
575 more than 5 µg DNA. The PCR reactions were column-purified using the QIAquick PCR
576 Purification Kit (Qiagen). Sequencing adaptors and barcodes were added with a second round
577 of PCR using the KAPA HiFi HotStart ReadyMix (Roche), primers P3 and P4 (Supplementary
578 Table 1) and 1 ng of template DNA. Amplicons were purified with Agencourt AMPure XP beads
579 in 0.7:1 ratio (beads to PCR reaction volume) and quantified with the Quant-iT™ High-
580 Sensitivity dsDNA Assay Kit (Invitrogen). The amplicons were pooled together and sequenced
581 on the Illumina HiSeq 2500 using HiSeq Rapid SBS Kit v2 (500 cycles, no phiX addition).

582

583 **Generating read count tables**

584 Paired forward and reverse reads from illumina sequencing were merged using PEAR v0.9.11.
585 Data for the same screen but from different sequencing lanes was concatenated. The resulting
586 merged fastq files were processed using a custom R script (read_match_pegRNAs.R in
587 Supplementary Information). First, DNA sequences were trimmed to contain the 10 nt up and
588 downstream of the nick site (for target site amplicon) or to contain 15 nt up and downstream
589 of the nick site (pegRNA amplicon). On average, 98% of reads were matched for the target
590 site amplicon and 84% for the pegRNA amplicon. The trimmed sequences were then matched
591 to each insert in the pegRNA library in the context of 10 nt target site (for target site amplicon)
592 or in the context of 15 nt pegRNA plasmid (pegRNA amplicon), requiring 0 mismatches.
593 Adding the context is to ensure that only insertions at the correct location are considered. On
594 average 92% of reads were matched to the unedited locus or an insertion for both the target
595 site amplicon and the pegRNA amplicon. The read count tables are attached as
596 Supplementary Data 2.

597

598 **Combining replicates**

599 We filtered out pegRNAs where any replicate had fewer than 10 reads in the pegRNA
600 amplicon mapping to it. Across the screens, between 39 and 174 pegRNAs did not pass this
601 minimum requirement, and were discarded from further analysis (1.5-6.5%, Supplementary
602 Figure 1d). pegRNA abundance in the screens correlated with their abundance in the plasmid
603 library (range of Pearson's R across all samples 0.84 to 0.96, Supplementary Figure 1e). Insert
604 counts were normalized to frequencies by dividing the reads for each insert by the number of

605 reads in each screen. Insertion efficiencies were calculated for each replicate and screen by
606 dividing the target insert frequency by the pegRNA insert frequency. Finally, insertion
607 efficiencies were averaged across replicates. The script used to combine replicates is
608 attached in the supplementary information as 'combine_replicates.R'. Insertion efficiencies
609 were normalized (z-score) between screens and replicates by subtracting the corresponding
610 mean insertion efficiency from each individual insertion efficiency and dividing it by the
611 standard deviation of the insertion efficiency.

612

613 **Mutation rates around the insertion site and indel detection**

614 The fastq reads of the target sites were trimmed by matching a stretch of ten nucleotides 60
615 nt up and downstream of the nicking site (CLYBL: TAGGGCTGGA, CAGAGTTCCA; EMX1:
616 GAGGACAAAG, ATGGGGAGGA; FANCF: GTCTCCAAGG, AGCACCTGGG; HEK3:
617 CTTTTTTTCT, AGCTTTTCCT). Occurrence of library insertions was detected by pattern
618 matching the trimmed reads for library sequences. Going from outside to inside (with the
619 nicking site being between the two innermost nucleotides), the occurrence of the four
620 nucleotides was counted at every position. There is a non-reference SNP (G>A) in HEK293T
621 cells for 2 of 3 alleles at position +9. The RT template on the pegRNA corresponds to the
622 sequence of the minor allele (A). For indel detection, the trimmed reads were filtered in a
623 series of steps. First, sequences with insertions at the nick site that perfectly match a
624 sequence in the insert libraries were removed (this also means that our method cannot detect
625 single/double/triple nucleotide insertions at the nick site because our library contains all
626 possible singlets/doublets/triplets). Second, sequences which contained 'N' were removed.
627 Third, sequences with a perfectly preserved sequence around the cut site were removed.
628 Fourth, sequences that are 120 nt long were removed (120 nt corresponds to the length of a
629 sequence without indels). The remaining sequences were classified as indels. The scripts
630 used to call mutation rates and indels are attached in the Supplementary Information as
631 'find_SNVs.R' and 'find_indels.R'.

632

633 **Data analysis**

634 Length residuals were calculated by dividing sequences into length bins and dividing the
635 insertion rate by the median insertion rate across the length bin. The length bins consisted of
636 sequences from 1-4, 5-9, 10-14, 30-39, 40-49, 50-59, and 60-69. The sequences with lengths
637 above 30 nt were divided into length bins of 10 nt because there were fewer longer sequences
638 in the library. Melting temperature for the insert sequence was calculated using
639 SeqUtils.MeltingTemp.Tm_NN from biopython. The Vienna fold (VF) algorithm^{31,32} was used

640 to calculate the tendency of insert sequences to form secondary structures. RNA fold (version
641 2.4.16) was run on the insert sequences alone or on the insert sequences in context of the 13
642 nt PBS and 34 nt RT template with the --noPS parameter.

643

644 **Modelling**

645 Categorical features were one-hot encoded. Scikit-learn models were applied using default
646 parameters, if not stated otherwise. Lasso regression was performed with alpha = 0.1; Ridge
647 regression was performed with alpha of 0.03 and Stochastic Average Gradient descent;
648 Random forest had a maximum depth of 4 and 100 estimators; Multilayer perceptron regressor
649 with 100 hidden layers was trained with 500 maximum iterations at a constant learning rate of
650 0.001 and 'lbfgs' solver. Gradient boosted tree from XGBoost³⁶ was trained with a minimum
651 loss reduction of 0.1, 100 trees, a learning rate of 0.1, maximum depth of 5, no L1
652 regularization on weights, 0.375 L2 regularization on weights, and a 0.95 subsample ratio of
653 columns when constructing each tree. For training, unique insert sequences were split
654 randomly into training and test sequences at a ratio of 0.8. Measurements for different target
655 sites and cell lines were assigned into training and test data based on the grouping of insert
656 sequences. For 10-fold cross validation, insert sequences were split randomly for every fold
657 validation. The model was trained and predictions were evaluated using Pearson's R based
658 on the correlation between test data and corresponding predictions. SHapley Additive
659 exPlanations (SHAP) values for the model and feature importance for the prediction of specific
660 outcomes were calculated using the SHAP TreeExplainer and explainerModel³⁷.

661

662 **Statistics and reproducibility**

663 The *n* numbers denoted in the figure legends refer to independent experiments that were
664 separately infected with the pegRNA library. No statistical methods were used to predetermine
665 sample size. The experiments were not randomized and the investigators were not blinded to
666 allocation during experiments and outcome assessment.

667

668 **Data and material availability**

669 Read count tables for all screens, mutation frequencies at each position, sequences with
670 indels and scripts necessary to reproduce the analysis are attached in the Supplementary
671 Information. The pCMV-PE2-P2A-PuroR and pLentiGuide_BlastR plasmids will be made
672 available on AddGene. Scripts and models are made available on
673 <https://github.com/julianeweller/MinsePIE>.

674

675 **Software**

676 PEAR (0.9.11); Python (3.8.10); Python packages: Biopython (1.79), scikit-learn (0.24.2),
677 scipy (1.5.3), shap (0.39.0), statannot (0.2.3), XGBoost (1.4.0); R (4.0.2); RNA fold (2.4.16);
678 R packages: Broom (0.7.9), ggpointdensity (0.1.0), RBioinf (1.48.0), reversetranslate (1.0.0),
679 ShortRead (1.46.0), spgs (1.0-3), Tidyverse (1.3.1), Viridis (0.6.1).

680

681 **REFERENCES**

- 682 1 Anzalone, A. V. *et al.* Programmable large DNA deletion, replacement, integration,
683 and inversion with twin prime editing and site-specific recombinases. *bioRxiv*,
684 2021.2011.2001.466790, doi:10.1101/2021.11.01.466790 (2021).
- 685 2 Ioannidi, E. I. *et al.* Drag-and-drop genome insertion without DNA cleavage with
686 CRISPR-directed integrases. *bioRxiv*, 2021.2011.2001.466786,
687 doi:10.1101/2021.11.01.466786 (2021).
- 688 3 Landrum, M. J. *et al.* ClinVar: public archive of interpretations of clinically relevant
689 variants. *Nucleic Acids Res* **44**, D862-868, doi:10.1093/nar/gkv1222 (2016).
- 690 4 Landrum, M. J. *et al.* ClinVar: improving access to variant interpretations and
691 supporting evidence. *Nucleic Acids Res* **46**, D1062-D1067, doi:10.1093/nar/gkx1153
692 (2018).
- 693 5 Geurts, M. H. *et al.* Evaluating CRISPR-based prime editing for cancer modeling and
694 CFTR repair in organoids. *Life Sci Alliance* **4**, doi:10.26508/lsa.202000940 (2021).
- 695 6 Schene, I. F. *et al.* Prime editing for functional repair in patient-derived disease
696 models. *Nat Commun* **11**, 5352, doi:10.1038/s41467-020-19136-7 (2020).
- 697 7 Drumm, M. L., Ziady, A. G. & Davis, P. B. Genetic variation and clinical heterogeneity
698 in cystic fibrosis. *Annu Rev Pathol* **7**, 267-282, doi:10.1146/annurev-pathol-011811-
699 120900 (2012).
- 700 8 Zielenski, J. & Tsui, L. C. Cystic fibrosis: genotypic and phenotypic variations. *Annu
701 Rev Genet* **29**, 777-807, doi:10.1146/annurev.ge.29.120195.004021 (1995).
- 702 9 Leibowitz, M. L. *et al.* Chromothripsis as an on-target consequence of CRISPR-Cas9
703 genome editing. *Nat Genet* **53**, 895-905, doi:10.1038/s41588-021-00838-7 (2021).
- 704 10 Allen, F. *et al.* Predicting the mutations generated by repair of Cas9-induced double-
705 strand breaks. *Nat Biotechnol*, doi:10.1038/nbt.4317 (2018).
- 706 11 Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by
707 CRISPR-Cas9 leads to large deletions and complex rearrangements. *Nat Biotechnol*
708 **36**, 765-771, doi:10.1038/nbt.4192 (2018).
- 709 12 Anzalone, A. V. *et al.* Search-and-replace genome editing without double-strand
710 breaks or donor DNA. *Nature* **576**, 149-157, doi:10.1038/s41586-019-1711-4 (2019).
- 711 13 Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR-Cas nucleases,
712 base editors, transposases and prime editors. *Nat Biotechnol* **38**, 824-844,
713 doi:10.1038/s41587-020-0561-9 (2020).
- 714 14 Kim, H. K. *et al.* Predicting the efficiency of prime editing guide RNAs in human cells.
715 *Nat Biotechnol* **39**, 198-206, doi:10.1038/s41587-020-0677-y (2021).
- 716 15 Kweon, J. *et al.* Engineered prime editors with PAM flexibility. *Mol Ther* **29**, 2001-
717 2007, doi:10.1016/j.moltherap.2021.02.022 (2021).

718 16 Liu, Y. *et al.* Efficient generation of mouse models with the prime editing system. *Cell Discov* **6**, 27, doi:10.1038/s41421-020-0165-z (2020).

719 17 Chen, P. J. *et al.* Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. *Cell* **184**, 5635-5652 e5629, doi:10.1016/j.cell.2021.09.018 (2021).

720 18 Nelson, J. W. *et al.* Engineered pegRNAs improve prime editing efficiency. *Nat Biotechnol*, doi:10.1038/s41587-021-01039-7 (2021).

721 19 Doench, J. G. *et al.* Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. *Nat Biotechnol* **34**, 184-191, doi:10.1038/nbt.3437 (2016).

722 20 Meier, J. A., Zhang, F. & Sanjana, N. E. GUIDES: sgRNA design for loss-of-function screens. *Nat Methods* **14**, 831-832, doi:10.1038/nmeth.4423 (2017).

723 21 Kim, H. K. *et al.* SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. *Sci Adv* **5**, eaax9249, doi:10.1126/sciadv.aax9249 (2019).

724 22 Arbab, M. *et al.* Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. *Cell* **182**, 463-480 e430, doi:10.1016/j.cell.2020.05.037 (2020).

725 23 Pallaseni, A. *et al.* Predicting base editing outcomes using position-specific sequence determinants. *bioRxiv*, 2021.2009.2016.460622, doi:10.1101/2021.09.16.460622 (2021).

726 24 Song, M. *et al.* Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. *Nat Biotechnol* **38**, 1037-1043, doi:10.1038/s41587-020-0573-5 (2020).

727 25 Feng, S. *et al.* Improved split fluorescent proteins for endogenous protein labeling. *Nat Commun* **8**, 370, doi:10.1038/s41467-017-00494-8 (2017).

728 26 Dinkel, H. *et al.* The eukaryotic linear motif resource ELM: 10 years and counting. *Nucleic Acids Res* **42**, D259-266, doi:10.1093/nar/gkt1047 (2014).

729 27 Puntervoll, P. *et al.* ELM server: A new resource for investigating short functional sites in modular eukaryotic proteins. *Nucleic Acids Res* **31**, 3625-3630, doi:10.1093/nar/gkg545 (2003).

730 28 Cerbini, T. *et al.* Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. *PLoS One* **10**, e0116032, doi:10.1371/journal.pone.0116032 (2015).

731 29 Trojan, J. *et al.* Functional analysis of hMLH1 variants and HNPCC-related mutations using a human expression system. *Gastroenterology* **122**, 211-219, doi:10.1053/gast.2002.30296 (2002).

732 30 Gupta, S., Gellert, M. & Yang, W. Mechanism of mismatch recognition revealed by human MutS β bound to unpaired DNA loops. *Nat Struct Mol Biol* **19**, 72-78, doi:10.1038/nsmb.2175 (2011).

733 31 Gruber, A. R., Lorenz, R., Bernhart, S. H., Neubock, R. & Hofacker, I. L. The Vienna RNA websuite. *Nucleic Acids Res* **36**, W70-74, doi:10.1093/nar/gkn188 (2008).

734 32 Hofacker, I. L. Vienna RNA secondary structure server. *Nucleic Acids Res* **31**, 3429-3431, doi:10.1093/nar/gkg599 (2003).

735 33 Chen, B. *et al.* Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. *Cell* **155**, 1479-1491, doi:10.1016/j.cell.2013.12.001 (2013).

765 34 Porrua, O., Boudvillain, M. & Libri, D. Transcription Termination: Variations on
766 Common Themes. *Trends Genet* **32**, 508-522, doi:10.1016/j.tig.2016.05.007 (2016).
767 35 Liu, P. *et al.* Improved prime editors enable pathogenic allele correction and cancer
768 modelling in adult mice. *Nat Commun* **12**, 2121, doi:10.1038/s41467-021-22295-w
769 (2021).
770 36 Chen, T. & Guestrin, C. in *Proceedings of the 22nd ACM SIGKDD International
771 Conference on Knowledge Discovery and Data Mining* 785–794 (Association for
772 Computing Machinery, San Francisco, California, USA, 2016).
773 37 Lundberg, S. & Lee, S.-I. A Unified Approach to Interpreting Model Predictions.
774 arXiv:1705.07874 (2017).
775 <<https://ui.adsabs.harvard.edu/abs/2017arXiv170507874L>>.
776 38 Scholefield, J. & Harrison, P. T. Prime editing - an update on the field. *Gene Ther* **28**,
777 396-401, doi:10.1038/s41434-021-00263-9 (2021).
778 39 Erwood, S. *et al.* Saturation variant interpretation using CRISPR prime editing.
779 *bioRxiv*, 2021.2005.2011.443710, doi:10.1101/2021.05.11.443710 (2021).
780 40 Choi, J. *et al.* A temporally resolved, multiplex molecular recorder based on
781 sequential genome editing. *bioRxiv*, 2021.2011.2005.467388,
782 doi:10.1101/2021.11.05.467388 (2021).
783 41 Chen, W. *et al.* Multiplex genomic recording of enhancer and signal transduction
784 activity in mammalian cells. *bioRxiv*, 2021.2011.2005.467434,
785 doi:10.1101/2021.11.05.467434 (2021).
786 42 Loveless, T. B. *et al.* Molecular recording of sequential cellular events into DNA.
787 *bioRxiv*, 2021.2011.2005.467507, doi:10.1101/2021.11.05.467507 (2021).
788

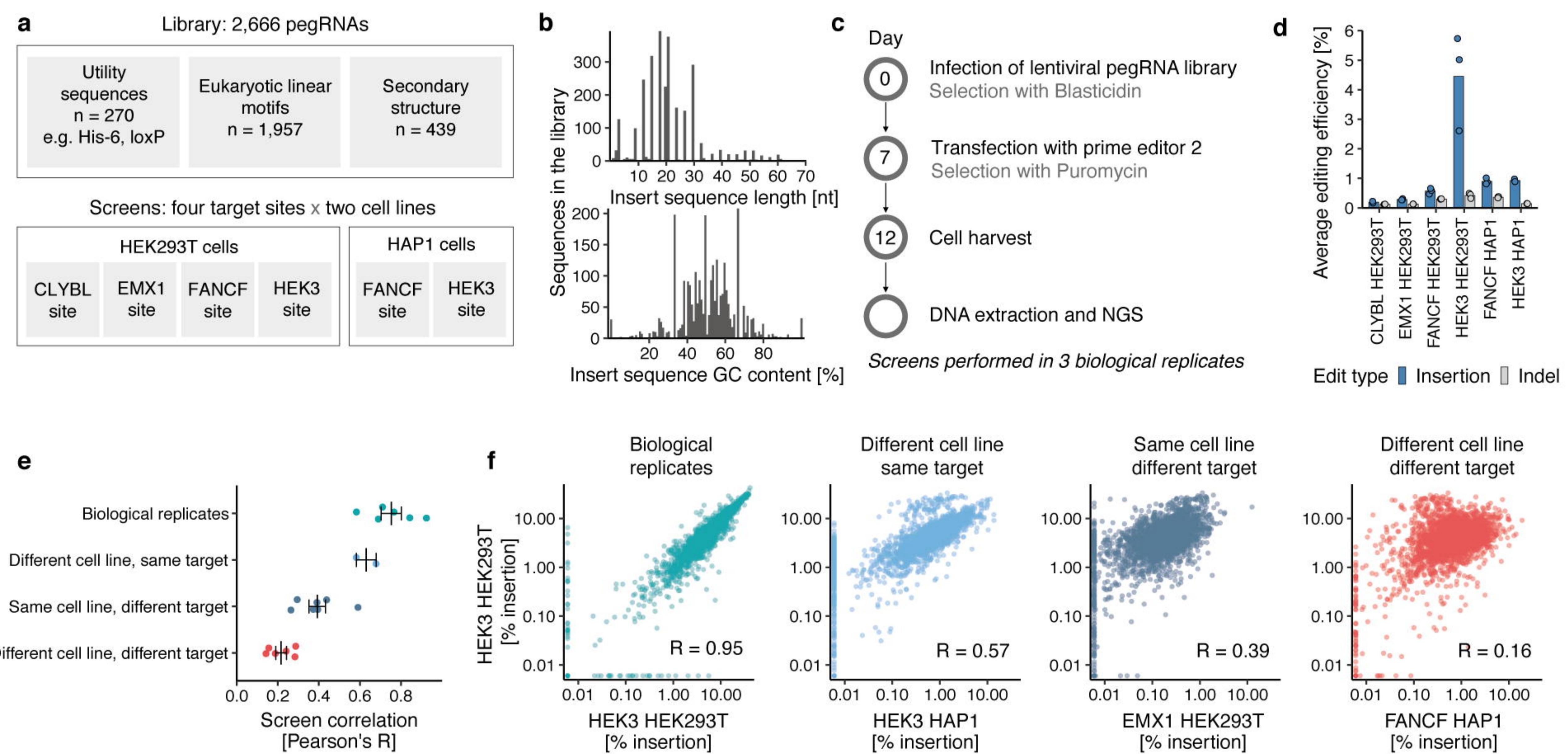
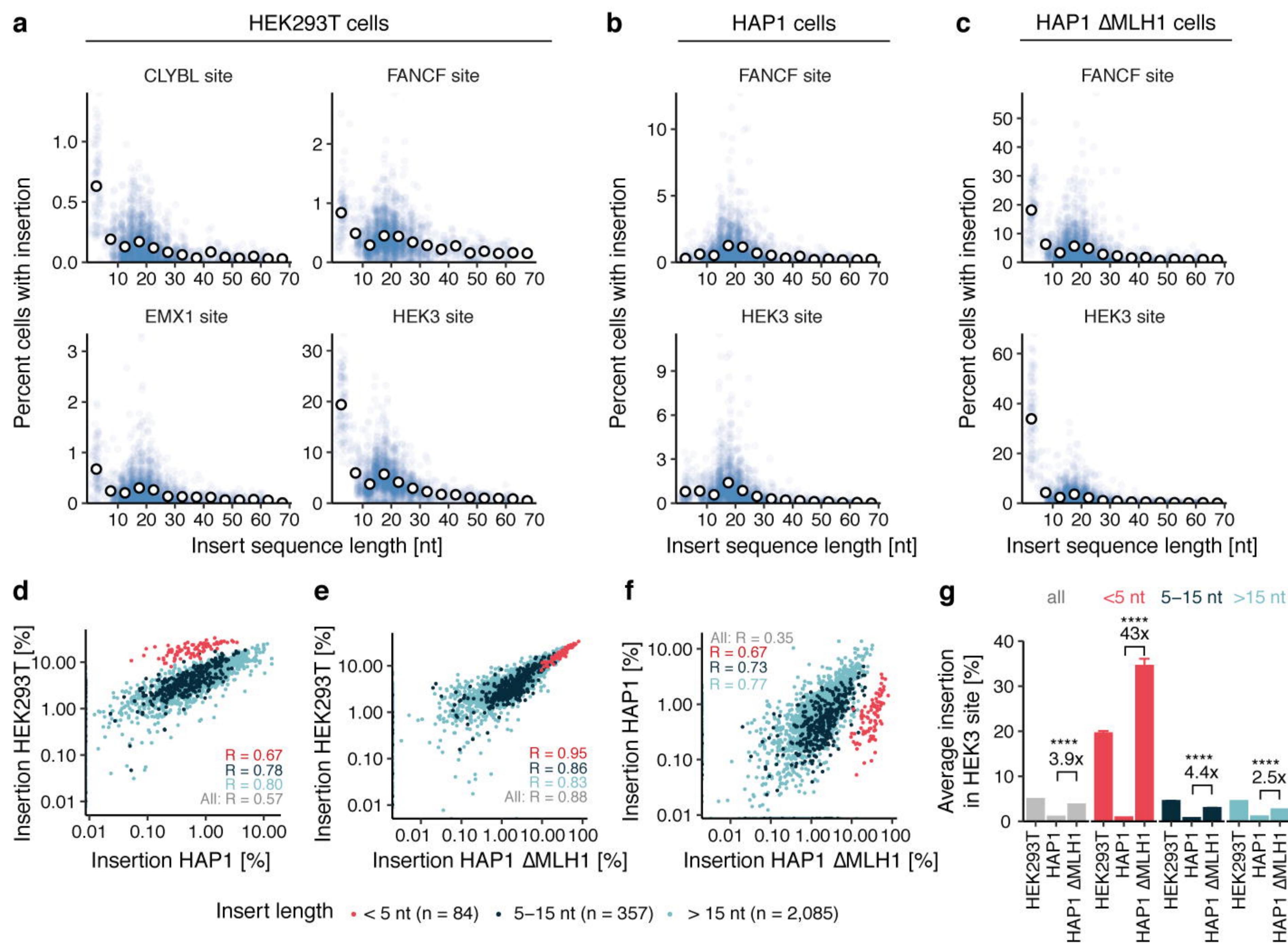



Figure 1

Figure 2

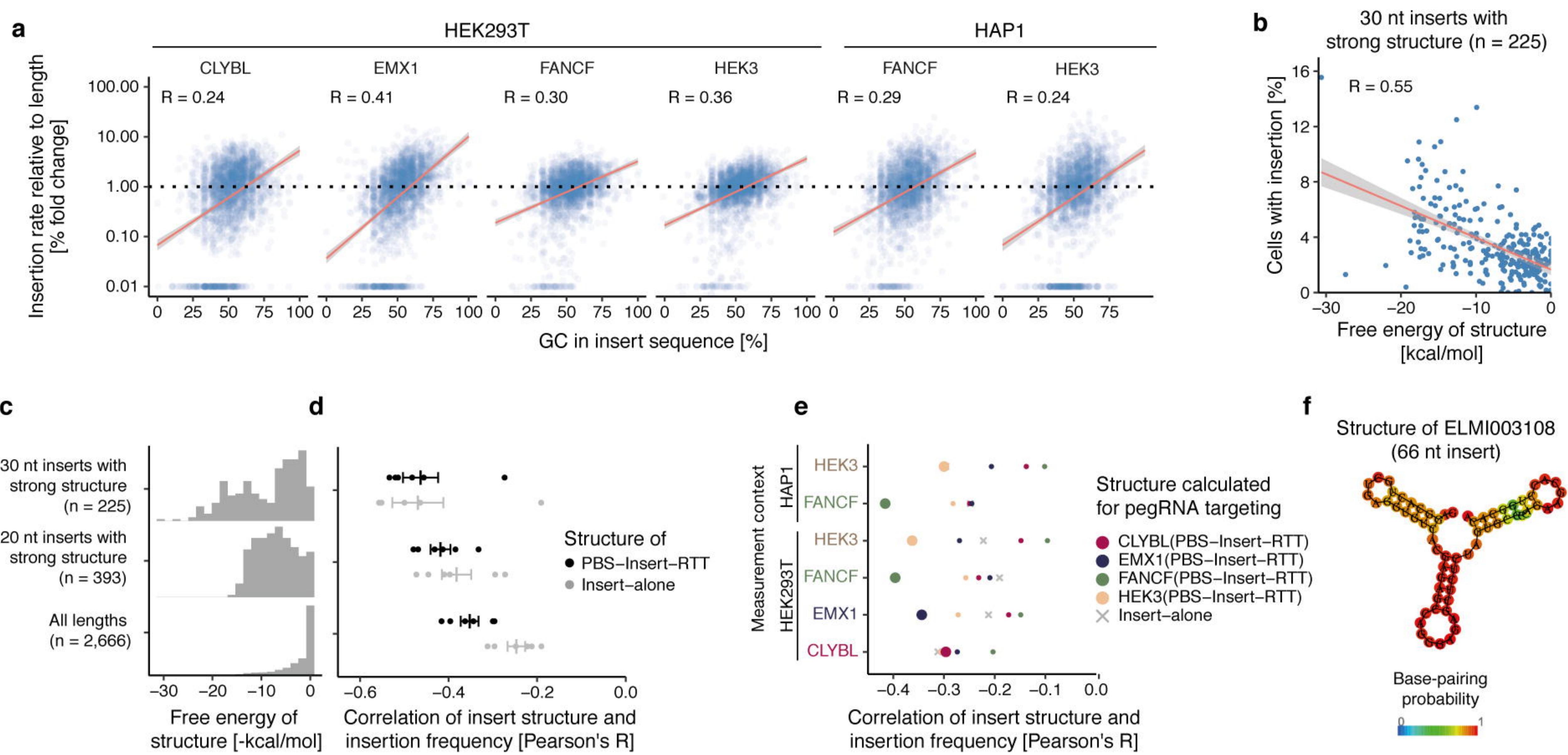


Figure 3

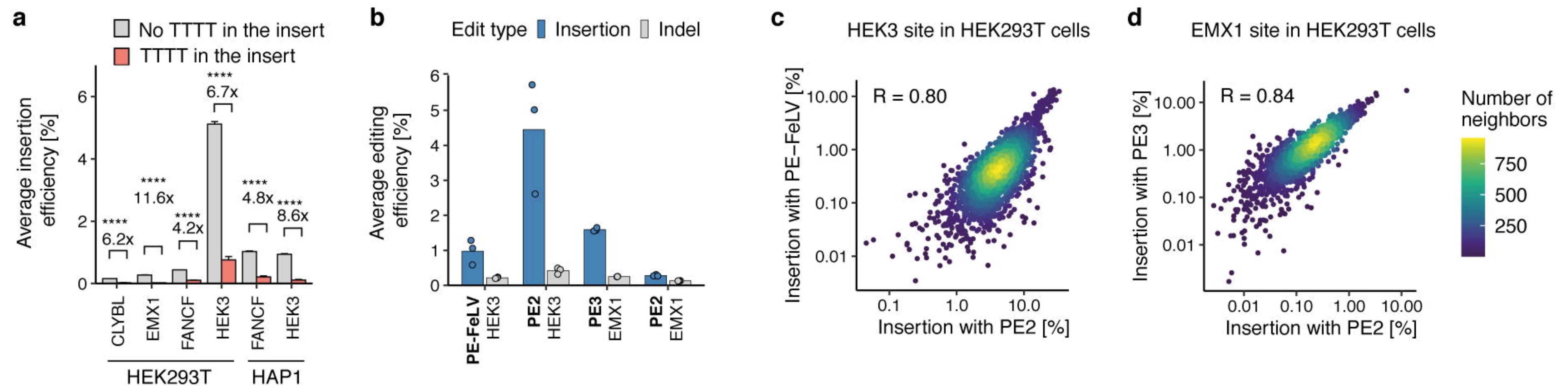
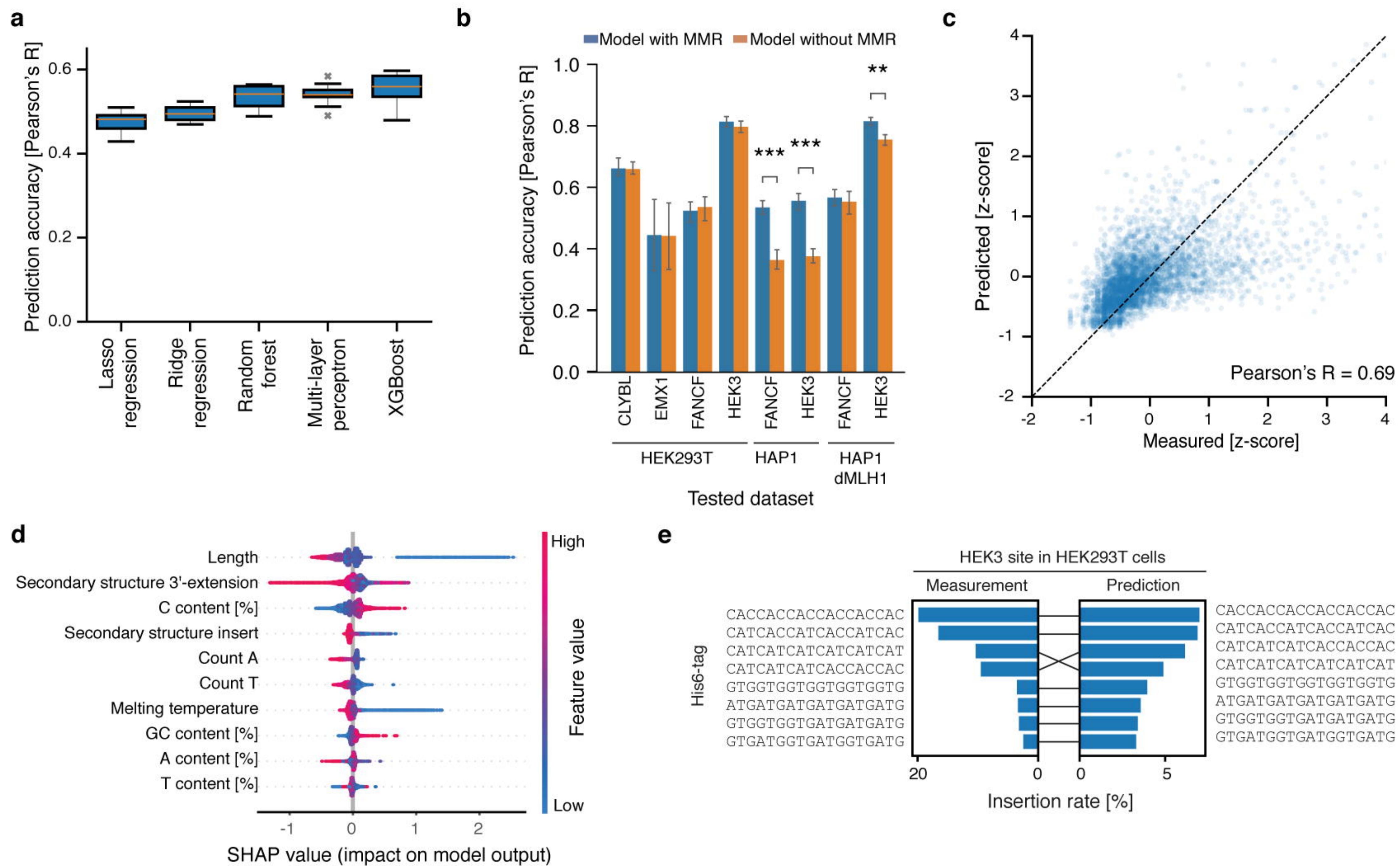



Figure 4

