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Abstract. Sequencing data is rapidly accumulating in public repositories. Making this re-
source accessible for interactive analysis at scale requires efficient approaches for its storage
and indexing. There have recently been remarkable advances in building compressed represen-
tations of annotated (or colored) de Bruijn graphs for efficiently indexing k-mer sets. However,
approaches for representing quantitative attributes such as gene expression or genome positions
in a general manner have remained underexplored. In this work, we propose Counting de Bruijn

graphs (Counting DBGs), a notion generalizing annotated de Bruijn graphs by supplementing
each node-label relation with one or many attributes (e.g., a k-mer count or its positions).
Counting DBGs index k-mer abundances from 2,652 human RNA-Seq samples in over 8-fold
smaller representations compared to state-of-the-art bioinformatics tools and yet faster to con-
struct and query. Furthermore, Counting DBGs with positional annotations losslessly represent
entire reads in indexes on average 27% smaller than the input compressed with gzip for human
Illumina RNA-Seq and 57% smaller for PacBio HiFi sequencing of viral samples. A complete
searchable index of all viral PacBio SMRT reads from NCBI’s SRA (152,884 samples, 875 Gbp)
comprises only 178 GB. Finally, on the full RefSeq collection, we generate a lossless and fully
queryable index that is 4.4-fold smaller than the MegaBLAST index. The techniques proposed
in this work naturally complement existing methods and tools employing de Bruijn graphs and
significantly broaden their applicability: from indexing k-mer counts and genome positions to
implementing novel sequence alignment algorithms on top of highly compressed graph-based
sequence indexes.

1 Introduction

The sequencing of DNA and RNA has become a commodity in the portfolio of biomedical
data acquisition techniques, leading to an increase both in the demand and availability of
sequencing data [45]. Often, independent from the original research questions that individual
data sets were created to answer, they find a second life as a valuable source for other
analyses [46, 33]. Thus, methods for the efficient storage and indexing of sequence data
are urgently needed. In the past years, various approaches have been proposed to address
this problem. On the one side there are methods that extract relevant information, such
as expression counts from vast cohorts of (RNA)-Sequencing data, and summarize it in
aggregated form [13]. On the other side stand approaches that provide a full-text index of
the sequencing data and allow to retrieve metadata for arbitrary sequence queries [9, 22],
which is of great practical relevance for projects generating large sequence cohorts [15, 1].
As a balance between compressibility and access, methods using k-mer decompositions of
the input sequences have proven very successful [36, 9, 22, 29]. In this work, we focus on
approaches representing such k-mer sets as annotated sequence graphs, which we will briefly
review in the following, discussing benefits and limitations of existing approaches.
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1.1 Annotated genome graphs

To fully represent all information of a sequencing sample for interactive study, two compo-
nents are necessary: i) an index representing the sequence information, allowing for the query
of presence; and ii) a structure containing additional metadata, such as the biological label
of a sequence or the location of a sequence within a genome context (commonly referred to
as genome coordinate) [31, 26, 4]. Both components can be represented jointly or in separate
data structures.

Conceptually, a de Bruijn graph is fully represented by its k-mer set. In practice, all k-mers
must also be indexed and assigned unique numeric identifiers to allow for association with
any metadata (e.g., counts or coordinates). Such indexes can be either represented explicitly
as a hash table-like structure (e.g., Counting Quotient Filter [38]) or a self-index (e.g., the
space-efficient BOSS representation [8]). The label information on the other hand can be
encoded separately. The numeric k-mer identifiers provided by the k-mer index generate an
address-space that can be used by a separate data structure holding the metadata, e.g.,
linking the k-mers to their presence in different input sources [32, 30, 22].

Other approaches, such as Bloom filters [12, 9, 7], do not require numeric k-mer identifiers.
However, the lack of any address-space for structuring additional metadata limits their uses
to only answering approximate k-mer membership queries. Thus, in this work we consider
the approach encoding the metadata in a separate structure called graph annotation and
focus on its efficient representation.

In addition, we further extend the notion of genome coordinates and introduce k-mer

coordinates, representing the occurrence positions of a certain k-mer in the input stream.
This stream may be a single genome, a list of sequencing reads, or an entire collection of
arbitrary sequences. All (not only distinct) k-mers from the input are naturally ordered, and
knowing this order allows reconstructing the original sequences from their corresponding
paths in the graph, which we call sequence traces. Indeed, the first k-mer provides the first k
characters of the first sequence, and every k-mer with the following coordinate can be used to
reconstruct the next character of the sequence, while the end of the sequence can be encoded
with a skipped coordinate. Hence, by representing k-mer coordinates, we encode traces of
the input sequences in the graph and thereby make the index fully lossless.

1.2 Graph annotations

Approaches for representing relations between k-mers and input files have been extensively
explored in the past decade [20, 32, 3, 23, 2, 14]. Motivated by the experiment discovery
problem, which is to find a sequencing library within a large collection based on a query
pattern, these methods encode binary metadata attributes (e.g., the membership of a k-mer
to a certain sequence or file) in a sparse binary matrix. Depending on the number of k-mers
and files, this matrix can have up to ∼ 1012 rows (corresponding to distinct k-mers) and
∼ 107 columns (corresponding to different files or, in general, labels) [22]. However, it can
be highly compressed thanks to its sparsity [32, 3, 23, 2, 14].

Supplementing a de Bruijn graph with this type of binary graph annotation provides an
excellent tool for answering k-mer membership queries. However, any quantitative informa-
tion of the original data is lost. In particular, queries relating to the exact occurrence position
in a sequence or relating to how often the queried sequence is present in a sample can not
be answered with binary annotations.

To address this problem, methods for representing non-binary graph annotations have
recently started to emerge, but very few have been proposed so far. On the one end stands
gPBWT, which supplements genome graphs and enables lossless encoding of haplotypes [34].
On the other end, REINDEER [30] represents approximate k-mer counts in genome graphs
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by averaging them within each unitig of the sample de Bruijn graphs and compressing them
via run-length encoding. Unfortunately, these methods do not cover the entire spectrum
of needs. In particular, REINDEER does not represent genome coordinates and does not
provide a lossless representation of input sequences. In contrast, gPBWT does provide a
lossless representation, but the time complexity of querying quantitative information on a
pattern would be linear in the number of its occurrences, making it less well suited for
indexing large read collections.

1.3 Sequence-to-graph alignment

Many tools have used de Bruijn graphs as indexes for alignment to collections of sequences [27,
5, 28, 43, 22, 40], applying the seed-and-extend paradigm with varying seed filtration and
extension strategies. Some strategies extract sequences from the index onto which a sequence-
to-sequence alignment is performed [27, 5], while others traverse the graph and compute [22]
or approximate [28, 43] an alignment score. However, very few of these methods index global
coordinates in reference genomes to avoid alignments to spurious paths in the graph, which
would be especially helpful when aligning to complex regions in the graph with many short
overlapping unitigs. To our knowledge, deBGA [27] and PuffAligner [5] (the aligner from
Pufferfish [4]) are the only de Bruijn graph-based tools that index global coordinates. The
more recent PuffAligner, employs a co-linear chaining approach inspired by minimap2 [26]
to effectively select a good candidate location for alignment, and to limit alignment to query
regions between seed hits. However, both deBGA and PuffAligner are designed for indexing
long reference genomes and optimize for query performance, thus making only limited use
of compression techniques and reducing their scalability. Lastly, both use k-mer hash tables
to index the unitig set, restricting the minimum seed length to k.

1.4 Our contributions

In this work, we consider the problem of representing numeric attributes assigned to each
k-mer–label relation in graph annotations. We call such annotations extended graph anno-

tations, emphasizing that each label is supplemented with an attribute, which may include
a single or multiple numeric values. In particular, we focus on indexing a) k-mer counts,
representing the number of times a k-mer occurs in a certain sequencing sample, and b)
k-mer coordinates, where the attributes represent all the occurrence positions of a k-mer
in a sequence, a genome, or a collection thereof. Notably, the latter makes a fully lossless
representation of the input sequences. Together with the underlying de Bruijn graph, such
extended graph annotations make up an abstract data structure which we call a Counting

de Bruijn graph. We demonstrate the advantage of such an index by devising a sequence-
to-graph alignment algorithm called TCG-Aligner (Trace-Consistent Graph-based Aligner)
that avoids spurious paths and correctly estimates the alignment score even when aligning
sequences with repeats to loops in the graph.

2 Methods

In this section, we present methods and techniques ultimately employed to efficiently repre-
sent extended graph annotations in compressed data structures that cat be queried without
full decompression. Assume each node-label relation (i, j) is supplemented with an attribute
ai,j , representing a single or multiple numeric values. Naturally, such annotations can be rep-
resented as a sparse matrix, and thus, the first question to be answered is how such matrices
can be represented to minimize the memory footprint, while still allowing for efficient queries
without full decompression.
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a1,1

<latexit sha1_base64="Z3nR7BSJi0sQuqtTnQwUG/O0qWY=">AAAB7nicbVC7SgNBFL0bH4mJj6hlmsEgWEjYDaIpgzaWEcwD4hJmJ7PJkJnZZWZWCEv+wMbGQhFbv8fO37C2cPIoNPHAhcM593LvPUHMmTau++lk1tY3NrO5rXxhe2d3r7h/0NJRoghtkohHqhNgTTmTtGmY4bQTK4pFwGk7GF1N/fY9VZpF8taMY+oLPJAsZAQbK7VxL62eepNesexW3BnQKvEWpFwvfV1mCw/fjV7x464fkURQaQjHWnc9NzZ+ipVhhNNJ/i7RNMZkhAe0a6nEgmo/nZ07QcdW6aMwUrakQTP190SKhdZjEdhOgc1QL3tT8T+vm5iw5qdMxomhkswXhQlHJkLT31GfKUoMH1uCiWL2VkSGWGFibEJ5G4K3/PIqaVUr3nnl7MamUYM5clCCIzgBDy6gDtfQgCYQGMEjPMOLEztPzqvzNm/NOIuZQ/gD5/0HxjOSKw==</latexit>

a2,1

<latexit sha1_base64="HQKcvehEHU8c+kDf1Ldr5pHNQDU=">AAAB7nicbVC7SgNBFL3rKzHxEbVMMxgECwm7EjRl0MYygnlAsoTZyWwyZHZmmZkVwpI/sLGxUMTW77HzN6wtnDwKTTxw4XDOvdx7TxBzpo3rfjpr6xubW5nsdi6/s7u3Xzg4bGqZKEIbRHKp2gHWlDNBG4YZTtuxojgKOG0Fo+up37qnSjMp7sw4pn6EB4KFjGBjpRbupZUzb9IrlNyyOwNaJd6ClGrFr6tM/uG73it8dPuSJBEVhnCsdcdzY+OnWBlGOJ3kuommMSYjPKAdSwWOqPbT2bkTdGKVPgqlsiUMmqm/J1IcaT2OAtsZYTPUy95U/M/rJCas+ikTcWKoIPNFYcKRkWj6O+ozRYnhY0swUczeisgQK0yMTShnQ/CWX14lzfOyd1Gu3No0qjBHFopwDKfgwSXU4Abq0AACI3iEZ3hxYufJeXXe5q1rzmLmCP7Aef8ByUGSLQ==</latexit>

a4,1

<latexit sha1_base64="TC5qYLGtmK2p/0gHq8Nc10yrktY=">AAAB7nicbVC7SgNBFL3jKzHxEbVMMxgECwm7KpoyaGMZwTwgWcLsZDYZMju7zMwKYckf2NhYKGLr99j5G9YWTh6FJh64cDjnXu69x48F18ZxPtHK6tr6Ria7mctvbe/sFvb2GzpKFGV1GolItXyimeCS1Q03grVixUjoC9b0h9cTv3nPlOaRvDOjmHkh6UsecEqMlZqkm56duONuoeSUnSnwMnHnpFQtfl1l8g/ftW7ho9OLaBIyaaggWrddJzZeSpThVLBxrpNoFhM6JH3WtlSSkGkvnZ47xkdW6eEgUrakwVP190RKQq1HoW87Q2IGetGbiP957cQEFS/lMk4Mk3S2KEgENhGe/I57XDFqxMgSQhW3t2I6IIpQYxPK2RDcxZeXSeO07F6Uz29tGhWYIQtFOIRjcOESqnADNagDhSE8wjO8oBg9oVf0NmtdQfOZA/gD9P4Dx7qSLA==</latexit>

a3,1

<latexit sha1_base64="T2sfFvotIJDaaYB8RGaKMDKruik=">AAAB7nicbVC7SgNBFL3jKzHxEbVMMxgECwm74iNl0MYygnlAsoTZyWwyZHZ2mZkVwpI/sLGxUMTW77HzN6wtnDwKTTxw4XDOvdx7jx8Lro3jfKKV1bX1jUx2M5ff2t7ZLeztN3SUKMrqNBKRavlEM8ElqxtuBGvFipHQF6zpD68nfvOeKc0jeWdGMfNC0pc84JQYKzVJNz0/ccfdQskpO1PgZeLOSala/LrK5B++a93CR6cX0SRk0lBBtG67Tmy8lCjDqWDjXCfRLCZ0SPqsbakkIdNeOj13jI+s0sNBpGxJg6fq74mUhFqPQt92hsQM9KI3Ef/z2okJKl7KZZwYJulsUZAIbCI8+R33uGLUiJElhCpub8V0QBShxiaUsyG4iy8vk8Zp2b0on93aNCowQxaKcAjH4MIlVOEGalAHCkN4hGd4QTF6Qq/obda6guYzB/AH6P0HysiSLg==</latexit>

a5,1

<latexit sha1_base64="qWKMRXj2Uw/eapToNRG9d3hde/k=">AAAB7nicbVC7SgNBFL0bH4mJj1XLNINBsJCwG3ykDNpYRjAPSJYwO5lNhszOLjOzQljyBzY2ForY+j12/oa1hZNHoYkHLhzOuZd77/FjzpR2nE8rs7a+sZnNbeUL2zu7e/b+QVNFiSS0QSIeybaPFeVM0IZmmtN2LCkOfU5b/uh66rfuqVQsEnd6HFMvxAPBAkawNlIL99Lz08qkZ5ecsjMDWiXugpRqxa+rbOHhu96zP7r9iCQhFZpwrFTHdWLtpVhqRjid5LuJojEmIzygHUMFDqny0tm5E3RslD4KImlKaDRTf0+kOFRqHPqmM8R6qJa9qfif10l0UPVSJuJEU0Hmi4KEIx2h6e+ozyQlmo8NwUQycysiQywx0SahvAnBXX55lTQrZfeifHZr0qjCHDkowhGcgAuXUIMbqEMDCIzgEZ7hxYqtJ+vVepu3ZqzFzCH8gfX+A8xNki8=</latexit>

a5,2

<latexit sha1_base64="pjE6fSAX0o0hpxljyRXX4xEfx8I=">AAAB7nicbVC7SgNBFL0bH4mJj1XLNINBsJCwG4KmDNpYRjAPSJYwO5lNhszOLjOzQljyBzY2ForY+j12/oa1hZNHoYkHLhzOuZd77/FjzpR2nE8rs7G5tZ3N7eQLu3v7B/bhUUtFiSS0SSIeyY6PFeVM0KZmmtNOLCkOfU7b/vh65rfvqVQsEnd6ElMvxEPBAkawNlIb99PqeWXat0tO2ZkDrRN3SUr14tdVtvDw3ejbH71BRJKQCk04VqrrOrH2Uiw1I5xO871E0RiTMR7SrqECh1R56fzcKTo1ygAFkTQlNJqrvydSHCo1CX3TGWI9UqveTPzP6yY6qHkpE3GiqSCLRUHCkY7Q7Hc0YJISzSeGYCKZuRWREZaYaJNQ3oTgrr68TlqVsntRrt6aNGqwQA6KcAJn4MIl1OEGGtAEAmN4hGd4sWLryXq13hatGWs5cwx/YL3/AMrGki4=</latexit>

a4,2

<latexit sha1_base64="UJC0q6y69jLX0P7BvQUAOnOOUxY=">AAAB7nicbVC7SgNBFL0bH4mJj1XLNINBsJCwG0VTBm0sI5gHJEuYncwmQ2Znl5lZISz5AxsbC0Vs/R47f8Pawsmj0MQDFw7n3Mu99/gxZ0o7zqeVWVvf2MzmtvKF7Z3dPXv/oKmiRBLaIBGPZNvHinImaEMzzWk7lhSHPqctf3Q99Vv3VCoWiTs9jqkX4oFgASNYG6mFe+nZaWXSs0tO2ZkBrRJ3QUq14tdVtvDwXe/ZH91+RJKQCk04VqrjOrH2Uiw1I5xO8t1E0RiTER7QjqECh1R56ezcCTo2Sh8FkTQlNJqpvydSHCo1Dn3TGWI9VMveVPzP6yQ6qHopE3GiqSDzRUHCkY7Q9HfUZ5ISzceGYCKZuRWRIZaYaJNQ3oTgLr+8SpqVsntRPr81aVRhjhwU4QhOwIVLqMEN1KEBBEbwCM/wYsXWk/Vqvc1bM9Zi5hD+wHr/Ack/ki0=</latexit>

a3,2

<latexit sha1_base64="P+N8UvQv3sSsBET6T6CB4H5sWlg=">AAAB7nicbVC7SgNBFL0bH4mJj6hlmsEgWEjYDaIpgzaWEcwD4hJmJ7PJkNmZZWZWCEv+wMbGQhFbv8fO37C2cPIoNPHAhcM593LvPUHMmTau++lk1tY3NrO5rXxhe2d3r7h/0NIyUYQ2ieRSdQKsKWeCNg0znHZiRXEUcNoORldTv31PlWZS3JpxTP0IDwQLGcHGSm3cS6un1UmvWHYr7gxolXgLUq6Xvi6zhYfvRq/4cdeXJImoMIRjrbueGxs/xcowwukkf5doGmMywgPatVTgiGo/nZ07QcdW6aNQKlvCoJn6eyLFkdbjKLCdETZDvexNxf+8bmLCmp8yESeGCjJfFCYcGYmmv6M+U5QYPrYEE8XsrYgMscLE2ITyNgRv+eVV0qpWvPPK2Y1NowZz5KAER3ACHlxAHa6hAU0gMIJHeIYXJ3aenFfnbd6acRYzh/AHzvsPx7iSLA==</latexit>

a2,2

<latexit sha1_base64="66y2AtjFT/8E1dvqYXSWs7z14oo=">AAAB7nicbVC7SgNBFL0bH4mJj6hlmsEgWEjYDaIpgzaWEcwD4hJmJ7PJkJnZZWZWCEv+wMbGQhFbv8fO37C2cPIoNPHAhcM593LvPUHMmTau++lk1tY3NrO5rXxhe2d3r7h/0NJRoghtkohHqhNgTTmTtGmY4bQTK4pFwGk7GF1N/fY9VZpF8taMY+oLPJAsZAQbK7VxL/VOq5NesexW3BnQKvEWpFwvfV1mCw/fjV7x464fkURQaQjHWnc9NzZ+ipVhhNNJ/i7RNMZkhAe0a6nEgmo/nZ07QcdW6aMwUrakQTP190SKhdZjEdhOgc1QL3tT8T+vm5iw5qdMxomhkswXhQlHJkLT31GfKUoMH1uCiWL2VkSGWGFibEJ5G4K3/PIqaVUr3nnl7MamUYM5clCCIzgBDy6gDtfQgCYQGMEjPMOLEztPzqvzNm/NOIuZQ/gD5/0HxjGSKw==</latexit>

a1,2

<latexit sha1_base64="HhWydesfG+DYBQ0PYRqbaQPKQ6M=">AAAB7nicbVC7SgNBFL3jKzHxEbVMMxgECwm7KpoyaGMZwTwgWcLsZDYZMju7zMwKYckf2NhYKGLr99j5G9YWTh6FJh64cDjnXu69x48F18ZxPtHK6tr6Ria7mctvbe/sFvb2GzpKFGV1GolItXyimeCS1Q03grVixUjoC9b0h9cTv3nPlOaRvDOjmHkh6UsecEqMlZqkm7onZ+NuoeSUnSnwMnHnpFQtfl1l8g/ftW7ho9OLaBIyaaggWrddJzZeSpThVLBxrpNoFhM6JH3WtlSSkGkvnZ47xkdW6eEgUrakwVP190RKQq1HoW87Q2IGetGbiP957cQEFS/lMk4Mk3S2KEgENhGe/I57XDFqxMgSQhW3t2I6IIpQYxPK2RDcxZeXSeO07F6Uz29tGhWYIQtFOIRjcOESqnADNagDhSE8wjO8oBg9oVf0NmtdQfOZA/gD9P4Dx7aSLA==</latexit>

a1,3

<latexit sha1_base64="9utWzviGm0IzD5tU+1oAg2jBs/k=">AAAB7nicbVC7SgNBFL0bH4mJj1XLNINBsJCwG0VTBm0sI5gHJEuYncwmQ2Znl5lZISz5AxsbC0Vs/R47f8Pawsmj0MQDFw7n3Mu99/gxZ0o7zqeVWVvf2MzmtvKF7Z3dPXv/oKmiRBLaIBGPZNvHinImaEMzzWk7lhSHPqctf3Q99Vv3VCoWiTs9jqkX4oFgASNYG6mFe2nl9GzSs0tO2ZkBrRJ3QUq14tdVtvDwXe/ZH91+RJKQCk04VqrjOrH2Uiw1I5xO8t1E0RiTER7QjqECh1R56ezcCTo2Sh8FkTQlNJqpvydSHCo1Dn3TGWI9VMveVPzP6yQ6qHopE3GiqSDzRUHCkY7Q9HfUZ5ISzceGYCKZuRWRIZaYaJNQ3oTgLr+8SpqVsntRPr81aVRhjhwU4QhOwIVLqMEN1KEBBEbwCM/wYsXWk/Vqvc1bM9Zi5hD+wHr/Ack9ki0=</latexit>

a2,3

Attributes

<latexit sha1_base64="nar2kqr2Vf5asfGdY95CtXsoicA=">AAAB7nicbVC7SgNBFL0bH4mJj6hlmsEgWEjYEdGUQRvLCOYByRJmJ7PJkNnZZWZWCEv+wMbGQhFbv8fO37C2cPIoNPHAhcM593LvPX4suDau++lk1tY3NrO5rXxhe2d3r7h/0NRRoihr0EhEqu0TzQSXrGG4EawdK0ZCX7CWP7qe+q17pjSP5J0Zx8wLyUDygFNirNQivRSf4kmvWHYr7gxoleAFKddKX1fZwsN3vVf86PYjmoRMGiqI1h3sxsZLiTKcCjbJdxPNYkJHZMA6lkoSMu2ls3Mn6NgqfRREypY0aKb+nkhJqPU49G1nSMxQL3tT8T+vk5ig6qVcxolhks4XBYlAJkLT31GfK0aNGFtCqOL2VkSHRBFqbEJ5GwJefnmVNM8q+KJyfmvTqMIcOSjBEZwAhkuowQ3UoQEURvAIz/DixM6T8+q8zVszzmLmEP7Aef8BxKySKg==</latexit>

a1,1

<latexit sha1_base64="Z3nR7BSJi0sQuqtTnQwUG/O0qWY=">AAAB7nicbVC7SgNBFL0bH4mJj6hlmsEgWEjYDaIpgzaWEcwD4hJmJ7PJkJnZZWZWCEv+wMbGQhFbv8fO37C2cPIoNPHAhcM593LvPUHMmTau++lk1tY3NrO5rXxhe2d3r7h/0NJRoghtkohHqhNgTTmTtGmY4bQTK4pFwGk7GF1N/fY9VZpF8taMY+oLPJAsZAQbK7VxL62eepNesexW3BnQKvEWpFwvfV1mCw/fjV7x464fkURQaQjHWnc9NzZ+ipVhhNNJ/i7RNMZkhAe0a6nEgmo/nZ07QcdW6aMwUrakQTP190SKhdZjEdhOgc1QL3tT8T+vm5iw5qdMxomhkswXhQlHJkLT31GfKUoMH1uCiWL2VkSGWGFibEJ5G4K3/PIqaVUr3nnl7MamUYM5clCCIzgBDy6gDtfQgCYQGMEjPMOLEztPzqvzNm/NOIuZQ/gD5/0HxjOSKw==</latexit>

a2,1

<latexit sha1_base64="HQKcvehEHU8c+kDf1Ldr5pHNQDU=">AAAB7nicbVC7SgNBFL3rKzHxEbVMMxgECwm7EjRl0MYygnlAsoTZyWwyZHZmmZkVwpI/sLGxUMTW77HzN6wtnDwKTTxw4XDOvdx7TxBzpo3rfjpr6xubW5nsdi6/s7u3Xzg4bGqZKEIbRHKp2gHWlDNBG4YZTtuxojgKOG0Fo+up37qnSjMp7sw4pn6EB4KFjGBjpRbupZUzb9IrlNyyOwNaJd6ClGrFr6tM/uG73it8dPuSJBEVhnCsdcdzY+OnWBlGOJ3kuommMSYjPKAdSwWOqPbT2bkTdGKVPgqlsiUMmqm/J1IcaT2OAtsZYTPUy95U/M/rJCas+ikTcWKoIPNFYcKRkWj6O+ozRYnhY0swUczeisgQK0yMTShnQ/CWX14lzfOyd1Gu3No0qjBHFopwDKfgwSXU4Abq0AACI3iEZ3hxYufJeXXe5q1rzmLmCP7Aef8ByUGSLQ==</latexit>

a4,1

<latexit sha1_base64="TC5qYLGtmK2p/0gHq8Nc10yrktY=">AAAB7nicbVC7SgNBFL3jKzHxEbVMMxgECwm7KpoyaGMZwTwgWcLsZDYZMju7zMwKYckf2NhYKGLr99j5G9YWTh6FJh64cDjnXu69x48F18ZxPtHK6tr6Ria7mctvbe/sFvb2GzpKFGV1GolItXyimeCS1Q03grVixUjoC9b0h9cTv3nPlOaRvDOjmHkh6UsecEqMlZqkm56duONuoeSUnSnwMnHnpFQtfl1l8g/ftW7ho9OLaBIyaaggWrddJzZeSpThVLBxrpNoFhM6JH3WtlSSkGkvnZ47xkdW6eEgUrakwVP190RKQq1HoW87Q2IGetGbiP957cQEFS/lMk4Mk3S2KEgENhGe/I57XDFqxMgSQhW3t2I6IIpQYxPK2RDcxZeXSeO07F6Uz29tGhWYIQtFOIRjcOESqnADNagDhSE8wjO8oBg9oVf0NmtdQfOZA/gD9P4Dx7qSLA==</latexit>

a3,1

<latexit sha1_base64="T2sfFvotIJDaaYB8RGaKMDKruik=">AAAB7nicbVC7SgNBFL3jKzHxEbVMMxgECwm74iNl0MYygnlAsoTZyWwyZHZ2mZkVwpI/sLGxUMTW77HzN6wtnDwKTTxw4XDOvdx7jx8Lro3jfKKV1bX1jUx2M5ff2t7ZLeztN3SUKMrqNBKRavlEM8ElqxtuBGvFipHQF6zpD68nfvOeKc0jeWdGMfNC0pc84JQYKzVJNz0/ccfdQskpO1PgZeLOSala/LrK5B++a93CR6cX0SRk0lBBtG67Tmy8lCjDqWDjXCfRLCZ0SPqsbakkIdNeOj13jI+s0sNBpGxJg6fq74mUhFqPQt92hsQM9KI3Ef/z2okJKl7KZZwYJulsUZAIbCI8+R33uGLUiJElhCpub8V0QBShxiaUsyG4iy8vk8Zp2b0on93aNCowQxaKcAjH4MIlVOEGalAHCkN4hGd4QTF6Qq/obda6guYzB/AH6P0HysiSLg==</latexit>

a5,1

<latexit sha1_base64="qWKMRXj2Uw/eapToNRG9d3hde/k=">AAAB7nicbVC7SgNBFL0bH4mJj1XLNINBsJCwG3ykDNpYRjAPSJYwO5lNhszOLjOzQljyBzY2ForY+j12/oa1hZNHoYkHLhzOuZd77/FjzpR2nE8rs7a+sZnNbeUL2zu7e/b+QVNFiSS0QSIeybaPFeVM0IZmmtN2LCkOfU5b/uh66rfuqVQsEnd6HFMvxAPBAkawNlIL99Lz08qkZ5ecsjMDWiXugpRqxa+rbOHhu96zP7r9iCQhFZpwrFTHdWLtpVhqRjid5LuJojEmIzygHUMFDqny0tm5E3RslD4KImlKaDRTf0+kOFRqHPqmM8R6qJa9qfif10l0UPVSJuJEU0Hmi4KEIx2h6e+ozyQlmo8NwUQycysiQywx0SahvAnBXX55lTQrZfeifHZr0qjCHDkowhGcgAuXUIMbqEMDCIzgEZ7hxYqtJ+vVepu3ZqzFzCH8gfX+A8xNki8=</latexit>

a5,2

<latexit sha1_base64="pjE6fSAX0o0hpxljyRXX4xEfx8I=">AAAB7nicbVC7SgNBFL0bH4mJj1XLNINBsJCwG4KmDNpYRjAPSJYwO5lNhszOLjOzQljyBzY2ForY+j12/oa1hZNHoYkHLhzOuZd77/FjzpR2nE8rs7G5tZ3N7eQLu3v7B/bhUUtFiSS0SSIeyY6PFeVM0KZmmtNOLCkOfU7b/vh65rfvqVQsEnd6ElMvxEPBAkawNlIb99PqeWXat0tO2ZkDrRN3SUr14tdVtvDw3ejbH71BRJKQCk04VqrrOrH2Uiw1I5xO871E0RiTMR7SrqECh1R56fzcKTo1ygAFkTQlNJqrvydSHCo1CX3TGWI9UqveTPzP6yY6qHkpE3GiqSCLRUHCkY7Q7Hc0YJISzSeGYCKZuRWREZaYaJNQ3oTgrr68TlqVsntRrt6aNGqwQA6KcAJn4MIl1OEGGtAEAmN4hGd4sWLryXq13hatGWs5cwx/YL3/AMrGki4=</latexit>

a4,2

<latexit sha1_base64="UJC0q6y69jLX0P7BvQUAOnOOUxY=">AAAB7nicbVC7SgNBFL0bH4mJj1XLNINBsJCwG0VTBm0sI5gHJEuYncwmQ2Znl5lZISz5AxsbC0Vs/R47f8Pawsmj0MQDFw7n3Mu99/gxZ0o7zqeVWVvf2MzmtvKF7Z3dPXv/oKmiRBLaIBGPZNvHinImaEMzzWk7lhSHPqctf3Q99Vv3VCoWiTs9jqkX4oFgASNYG6mFe+nZaWXSs0tO2ZkBrRJ3QUq14tdVtvDwXe/ZH91+RJKQCk04VqrjOrH2Uiw1I5xO8t1E0RiTER7QjqECh1R56ezcCTo2Sh8FkTQlNJqpvydSHCo1Dn3TGWI9VMveVPzP6yQ6qHopE3GiqSDzRUHCkY7Q9HfUZ5ISzceGYCKZuRWRIZaYaJNQ3oTgLr+8SpqVsntRPr81aVRhjhwU4QhOwIVLqMEN1KEBBEbwCM/wYsXWk/Vqvc1bM9Zi5hD+wHr/Ack/ki0=</latexit>

a3,2

<latexit sha1_base64="P+N8UvQv3sSsBET6T6CB4H5sWlg=">AAAB7nicbVC7SgNBFL0bH4mJj6hlmsEgWEjYDaIpgzaWEcwD4hJmJ7PJkNmZZWZWCEv+wMbGQhFbv8fO37C2cPIoNPHAhcM593LvPUHMmTau++lk1tY3NrO5rXxhe2d3r7h/0NIyUYQ2ieRSdQKsKWeCNg0znHZiRXEUcNoORldTv31PlWZS3JpxTP0IDwQLGcHGSm3cS6un1UmvWHYr7gxolXgLUq6Xvi6zhYfvRq/4cdeXJImoMIRjrbueGxs/xcowwukkf5doGmMywgPatVTgiGo/nZ07QcdW6aNQKlvCoJn6eyLFkdbjKLCdETZDvexNxf+8bmLCmp8yESeGCjJfFCYcGYmmv6M+U5QYPrYEE8XsrYgMscLE2ITyNgRv+eVV0qpWvPPK2Y1NowZz5KAER3ACHlxAHa6hAU0gMIJHeIYXJ3aenFfnbd6acRYzh/AHzvsPx7iSLA==</latexit>
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B2

Fig. 1. The proposed representation of sparse matrices in compressed form. Panel A: General scheme for
sparse matrices with abstract attributes, where the non-assigned attributes are eliminated by an indicator
binary matrix stored in a compressed representation (e.g., Multi-BRWT) supporting the rank operation
on its columns to enable the access to the corresponding attribute for any given cell of the matrix. These
attributes are stored separately, typically in a form of compressed arrays. Panel B: The scheme applied to a
single column with integer values (e.g., k-mer counts) and the query algorithm (e.g., the count of k-mer i is
retrieved as A1[rank(B1, i)]). Empty cells in grey represent zeros. Panel C: The scheme applied to a single
column where each cell is a set of numbers, or a tuple (e.g., representing k-mer coordinates). The ”zero”
attributes (empty sets) are eliminated with an indicator bitmap and the non-empty sets are encoded in an
array that holds all numbers and a delimiting bitmap.

2.1 Succinct representation of sparse matrices

Here we propose a general approach for the efficient compressed representation of sparse
matrices and, in particular, extended graph annotations, which supplement each binary rela-
tion kmer-label (i, j) with an attribute ai,j (Figure 1A, left). This attribute may be a single
numeric value (e.g., the number of times k-mer i occurs in experiment j) or a set of numbers
(e.g., all positions where k-mer i occurs in genome j). Without loss of generality, we assume
a very high sparsity of the annotation matrix and decompose the initial annotation into two
components schematically shown in the right part of Figure 1A: i) a binary indicator matrix
representing the indexes of the entries present in the matrix, and ii) the relation attributes
ai,j stored in a separate data structure, typically in form of a compressed array. The indica-
tor matrix is then represented with a scheme supporting the rank operation on its columns
or rows (depending on the layout of the attribute values), defining an ordering on the (i, j)
pairs and enabling access to the attribute values stored in separate arrays in the consistent
order.

Note that the layout of the attribute arrays can be different depending on the rank
operation supported by the indicator matrix. Namely, this can be the rank on its columns
(shown in Figure 1), rows, or their concatenation. Thus, this scheme allows for compressing
the indicator matrix using a large class of approaches for the compressed representation of
binary relations, which have already been applied for representing binary graph annotations:
ColumnCompressed [23], Multi-BRWT [23], BinRelWT [6], RowFlat (the scheme employed
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in VARI [32]), all of which support the rank operation on the non-zero entries in a certain
layout.

Succinctness of the proposed scheme Notably, the proposed decomposition does not
change the entropy of the data, which suggests that it also does not change the theoret-
ical minimum of the number of bits required to store the matrix by representing the two
components separately.

To prove this formally, consider the problem of representing a sparse matrix of size n×m

with s ”non-zero” entries from universe A and other nm − s entries set to a fixed ”zero”
value that does not belong to A. As there are

(

mn
s

)

ways to pick s out of mn positions for
non-zero values, where each can store one of |A| possible values, the total number of such
matrices is

(

mn
s

)

|A|s. Hence, the minimum number of bits required to encode any such matrix
is M∗(n,m, s) := +log2(

(

mn
s

)

|A|s), ∼ log2
(

nm
s

)

+ s log2 |A|. On the other hand, the indicator
matrix in the proposed scheme (Figure 1A) can be reshaped into a vector encoded in the
succinct Raman-Raman-Rao (RRR) representation [39] taking asymptotically log2

(

nm
s

)

bits,
which together with an optimal coding of the attributes, makes up the same space complexity
∼ M∗(n,m, s). We now can make the following claim (see the proof in the Supplemental
Material).

Theorem 1. If both the indicator matrix and the arrays of attributes are represented suc-

cinctly, the proposed scheme also is a succinct representation of the matrix. That is, there is

no other data structure that could represent any such matrix with asymptotically fewer bits.

Base representations Now, we will show that the commonly used Compressed Sparse
Column (CSC) format (e.g., used in NumPy [18]) is a special case of our proposed scheme.
CSC stores the matrix-entries in three arrays: i) an array containing all non-zero values in
the order they appear in the rows of the matrix, ii) an array with their column indexes,
and iii) a compressed array delimiting the positions in the first two arrays corresponding to
different rows of the matrix. One can see that the first array corresponds to the attribute
arrays in our scheme, while the other two essentially encode the indicator matrix, making
our scheme at least as efficient as the basic CSC format. Our scheme, however, allows for
additional freedom in choosing specific encodings for the attribute arrays and the indicator
matrix.

Encoding the columns of the indicator matrix with succinct RRR bit vector representa-
tions [39] asymptotically achieves the theoretical minimum in space. Extra compression can
be achieved in practice by exploiting column-correlations using the Multi-BRWT scheme [23].

In practice, we use succinct bitmaps to represent the columns of the indicator matrix
during construction. Subsequently, we convert the matrix to the Multi-BRWT represen-
tation, to reduce its final size and enhance the query speed. Typically, we compress the
attribute arrays with simple bit-packing or universal coding such as Directly Addressable
Codes (dac vector) [10], supporting the direct access.

Representing attributes with multiple numeric values The scheme described above
effectively erases zero-entries from the matrix and stores any non-zero entries in a separate
data structure (Figure 1A). We note that this approach generalizes beyond single integers
as matrix entries shown in Figure 1B. In particular, it allows entries to be number sets,
and hence, can be used for representing k-mer coordinates, where each k-mer may occur in
multiple positions of a genome or, more generally, a collection of input sequences.

Without loss of generality, Figure 1C schematically shows how the entries of such matrices
can be encoded and queried, using a single column as example. All tuples (entries) are
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concatenated into a single dense array storing all values together, and an additional delimiting
bitmap is used to separate the different tuples. The dense array together with the delimiting
bitmap represents a single array of attributes in the general scheme as shown in Figure 1A.

2.2 Diff-compression of extended graph annotations

Similar to the case of binary annotations, extended graph annotations often possess a certain
structure that can be exploited for their compression. Indeed, attributes of nodes in the graph
can often be approximated with high accuracy from the attributes of their neighbors. For
example, k-mer counts, being an aggregate function of contiguous paths induced from reads,
usually change incrementally, and hence, can be approximated by averaging the counts of
their adjacent k-mers. Another example is k-mer coordinates, which simply shift by 1 at
each node along the paths of the de Bruijn graph derived from the input sequences, which
we call traces. Hence, one can construct an expected set of coordinates at a node if the set
of coordinates at its adjacent node is known or can be reconstructed recursively.

Leveraging similarity of annotations of neighboring nodes For the case of binary an-
notations, transformations assuming likely similarity between annotations of adjacent nodes
in the graph and replacing them with relative differences have been explored in Mantis-
MST [2] and RowDiff [14]. The RowDiff algorithm conceptually consists of two parts. First,
for each node with at least one outgoing edge, it arbitrarily picks one of them and marks its
target node as a successor. The subset of edges leading to the assigned successor nodes form
a spanning tree of the graph. Second, it replaces the original annotations at nodes with their
differences to the annotations at their assigned successor nodes. This delta-like transform is
applied to all nodes in the graph except a small subset of them (called anchors). These anchor
nodes keep the original annotation unchanged and serve to terminate every path composed
of successors and break the recursion when reconstructing the original annotations (inverse
transform).

Here, we devise a generalization of the RowDiff scheme to the case of extended graph
annotations. We design an invertible transform, which losslessly compresses them by effec-
tively removing the information that can be reconstructed from a neighborhood in the graph.
Our generalization goes in two directions. First, in the following section, we generalize the
diff-operation to act on arbitrary sets and define specific functions for the two specific cases
considered in this work: k-mer counts and k-mer coordinates (genome positions). Second, we
propose a more efficient algorithm for the anchor assignment (see Supplemental Section 2)
and a data-driven procedure for assigning successor nodes instead of assigning them ran-
domly as in RowDiff. The motivation of this idea is illustrated in Supplemental Figure 1 and
the procedure itself is described in Supplemental Section 1. Note that this is also applica-
ble to binary annotations and enables better compression. In addition, we consider schemes
admitting the aggregation of multiple successors at forks before computing the diff (see
Supplemental Section 3). This essentially replaces the diff-paths with trees and, by design,
helps improve the compression at forks, where some of the traces branch out and carry their
annotations away, increasing the diff.

Generalized diff-transform for graph annotations Suppose the nodes in the graph are
annotated with attributes from a set A. Consider a node v holding an attribute a(v) ∈ A
and its successor node vsucc holding an attribute a(vsucc) ∈ A. To define a diff-transform of
the graph annotation, we need to specify an invertible diff-operation ¸ : A×A → A acting
on pairs of attributes and replacing the original annotation a(v) with its delta relative to
the annotation at the successor: aδ(v) := a(v) ¸ a(vsucc). The invertibility of this transform
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Fig. 2. A schematic diagram illustrating encoding of k-mer counts in m columns with the proposed approach.
Circles represent nodes of a de Bruijn graph. Edges are shown as arrows. Red nodes represent anchor nodes
and red edges represent paths to row-diff successors. The transformed counts are shown in red (e.g., compare
L1 : −1 for k-mer GCT after the transform and L1 : 17, L2 : 11 before; for k-mer TAT, the transformed counts
are not shown because they depend on TAT’s successors, not shown in the graph). Then, the diff-transformed
matrix is decomposed into an indicator binary matrix stored in the compressed Multi-BRWT representation
supporting the rank operation on the columns and arrays storing non-zero diffs.

entails the existence of an inverse transform ·, such that (a¸ a′)· a′ = a ∀a, a′ ∈ A, which
makes it always possible to reconstruct the original annotation a(v) from the delta aδ(v) and
the original annotation a(vsucc), which is, in turn, either reconstructed recursively (or stored
explicitly if vsucc is an anchor).

For sparsifying k-mer count annotations, where the labeling at each node is encoded by a
row of the integer count matrix, we use the simple vector difference as the diff operation. For
the case of coordinate annotations, each attribute a is a set of natural numbers (occurrence
positions of a k-mer in a genome or a file), that is, A = 2N. At the same time, we naturally
expect the coordinates to shift by 1 when transitioning from a k-mer to its adjacent successor.
Thus, the diff operation ¸ in this case is the symmetric set difference between the coordinates
at the successor node vsucc and the incremented coordinates at node v:

aδ(v) := (a(v) + 1)∆a(vsucc), (1)

where operator ∆ denotes the symmetric set difference: A∆B = (A ∪ B) \ (A ∩ B). Note
that we chose Eq. (1) over a probably more intuitive formula aδ(v) := a(v)∆(a(vsucc) − 1)
to avoid negative numbers and keep the result aδ(v) in the same set A = 2N of subsets of
positive coordinates.

2.3 Compressed extended graph annotations

In this section, we combine the techniques presented in the sections above and propose two
memory-efficient representation schemes for encoding quantitative data for two important
practical cases of non-binary graph annotations: k-mer counts (e.g., in read sets, representing
gene expression levels) and k-mer coordinates. Coordinates may represent positions of k-mers
in genomes, any collections of sequences, or in a file in general.

Representation of k-mer counts Formally, the task is to represent a matrix with integer
entries, where each entry corresponds to a kmer-label pair and encodes the k-mer’s count in
the respective label.

We use the techniques presented above and, first, transform the initial count matrix
with the generalized diff-transform (see Section 2.2). The proposed method is schematically
illustrated in Figure 2. Assuming that adjacent nodes in the graph are likely to have identical
or similar counts, we use the following formula to compute the diff between two rows of the
integer annotation matrix: Lδ(v) := L(v) − L(vsucc). After this operation, the diff values
Lδ(v) are often either zeros or integer values close to zero, thus require fewer bits to represent
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Fig. 3. Extraction of k-mer coordinates from sequence ACTAGCTAGCTAG for k=3 (panel A) and subsequent
compression with a diff-transform (panel B), where the coordinates at a node’s successor are expected to be
the same but incremented by +1, as these nodes are likely to be consecutive in the input sequence(s). The
symmetric set difference A∆B := (A∪B) \ (A∩B) is used as a diff-operation. Thus, for example, Lδ(TAG) =
({3, 7, 11}· 1)∆{4, 8} = {12}. The inverse transform is performed losslessly by L(v) = (L(vsucc)∆Lδ(v))¸ 1,
which follows from the following property: (A∆B)∆B = A ∀A,B.

compared to the original counts L(v). If the diff Lδ(v) does not require fewer bits to store it
than the original counts L(v) (as for nodes GGC and AGC in the example graph in Figure 2),
such nodes are explicitly made anchors and no transform is applied to them (for more details,
see the anchor assignment procedure described in Supplemental Section 2).

Note, in work [21] developed independently in parallel to ours, a similar delta-like coding
was considered for compression of k-mer counts in the framework of weighted rooted trees.
This solution is close to our diff-transform for the case of a single annotation column with
k-mer counts.

After performing the diff-transform, we decompose the transformed count matrix into a
binary matrix of the same shape indicating the non-zero entries and a set of additional arrays
containing those entries (Figure 2, right), according to the scheme shown in Figure 1A-B.
The binary matrix is stored in the compressed Multi-BRWT representation and the count
arrays are stored separately.

Lastly, we note that the diff-transformed values in the count arrays may be negative.
We, thus, map them to non-negative integers to enable further compression with variable-
length codes, using the following invertible mapping: 2(|x| − 1) + 1[x < 0], where 1[A] is a
boolean predicate function, which evaluates as 1 if the statement A is true and as 0 otherwise.
After this mapping, we further compress the count arrays using Directly Addressable Codes
(dac vector) [10].

Representation of k-mer coordinates Finally, in this section we describe how to effi-
ciently encode k-mer coordinates and thereby create a lossless index of the input sequences.
We observe that aggregating all sequences from a single source (or label) and encoding the
enumerations of each k-mer is sufficient to reconstruct the original sequences. We, thus, will
consider this simplified case for brevity of the description. However, our implementation does
support the explicit indexing of multiple sources with multiple annotation columns.

After all the k-mers are enumerated (Figure 3A), the underlying de Bruijn graph is
annotated and the coordinates are stored in an array of lists (Figure 1C). It is easy to see
that most of the adjacent pairs of k-mers are crossed by the same sequences, and hence, the
successor k-mer usually has the same coordinates as its predecessor k-mer incremented by +1.
Thus, it is most natural to define the diff-operation for sparsifying coordinate annotations
as described in Section 2.2, Eq. (1). If this delta Lδ(v) is an empty set, very few bits are
needed to encode it. Otherwise, it would contain the information necessary to losslessly
reconstruct the coordinates at the predecessor from the known (or recursively reconstructed)
coordinates at the successor. This transformation step is schematically shown in Figure 3B
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and demonstrates how well the predictability of the coordinates at the successor nodes can
be exploited to compress the coordinate annotations.

After the coordinate annotation is transformed, the new attributes Lδ(v) ∈ 2N are still
subsets of natural numbers, and hence, the full diff-transformed annotation matrix can be
encoded with the same general scheme as shown in Figure 1C, right.

2.4 Sequence-to-graph alignment with k-mer coordinates

The usage of Counting de Bruijn graphs encoding k-mer counts or k-mer coordinates can
greatly broaden the range of problems to which de Bruijn graphs are currently applied. In this
section, we extend the sequence-to-graph alignment algorithm introduced in MetaGraph [22].
With this, we can not only ensure that all aligned paths in the graph are trace-consistent,
but can also construct seed chains (detailed below) to more efficiently select good candidate
positions for alignment and to reduce the number of base pairs from the query which need
to be aligned.

We start by generating the initial seed set for a query sequence q. For low-error reads,
these seeds consist of all maximal unique matches of the query which are contained in graph
unitigs (called uni-MEMs [27]) with a minimum length of 19, as in [22]. For error-prone
reads, we use all matches of length 19 as the seeds. For cases where the k-mer size is greater
than 19, all matches are made to the suffixes of k-mers [22].

We then use the coordinates to discard all seeds which are not contained in a graph trace.
Each remaining seed is associated with one or more coordinate ranges. Then, we apply a
dynamic programming seed chaining algorithm similar to the approaches from Minimap2 [26]
and PuffAligner [5] (see Supplemental Algorithm 2) to produce an initial partial alignment
composed of a sequence of seeds (a chain). Let C = (S1, . . . , SN ) be the highest-scoring chain.
For a given seed Si matching ℓi characters with initial node vi, we denote the corresponding
position in the query by yi. We complete the alignments between each pair Si and Si+1 by
extending Si using a modification of the extension algorithm from MetaGraph [22] on the
region of the query from yi to yi+1 + ℓi+1. To complete the alignment of q, we extend SN

forward and S1 backward until the end and beginning of q, respectively.
Our modification of the extension algorithm ensures that paths traverse along the corre-

sponding graph trace of the starting coordinates L(vi) (in practice, only a subset originating
from the top labels detected among the seeds is used for faster alignment). More precisely, we
construct a trace-consistent alignment tree Ti = (Vi, Ei) rooted at vi during graph traversal
similar to the one defined in MetaGraph [22], where Vi ¢ V ×N contains all the nodes along
the traces originating at vi:

Vi := {(vi, 0)} ∪ {(v, s) ∈ V × N | L(v) ∩ (L(vi) · s) ̸= ∅, ∃v′ : (v′, s− 1) ∈ Vi},

and Ei := {((v, s), (v′, s + 1)) ∈ Vi × Vi | (v, v′) ∈ E} ¢ Vi × Vi contains all the edges within
these paths. To avoid querying coordinates on each traversal step, we collect all reachable
nodes during the forward pass of seed extension with their adjacent edges. Then, we discard
non-coordinate consistent paths to obtain Ti at forks in the graph (i.e., nodes with outdegree
> 1). Finally, during the backtracking pass, we only extract the highest-scoring coordinate-
consistent alignment (i.e., a path along Ti) to correct for cases where the alignment terminates
before the next fork node is reached. With this, we can reduce the alignment search space by
more effectively filtering seeds, refining the traversal search space, and by only performing
alignment on defined substrings of the query.

2.5 Implementation Details

The methods presented in this work were implemented within the MetaGraph framework
https://github.com/ratschlab/metagraph with basic compression algorithms and data
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Table 1. Comparison of the state-of-the-art methods for indexing raw sequencing data and the proposed
approach in three scenarios of indexing 2,586 RNA-Seq read sets: i) encoding k-mer presence/absence only
(binary); ii) encoding k-mer counts averaged over unitigs for each read set (smooth counts); and iii) encoding
the original k-mer counts (raw counts). Query time and peak RAM were measured while querying 100 random
human transcripts (≈ 90 kpb in total). If a method was not applicable to a given annotation scenario, the
table shows ’-’.

Index size Peak RAM during query Query time

Method binary smooth raw binary smooth raw binary smooth raw
counts counts counts counts counts counts

Mantis-MST 24.9 GB - - 25.1 GB - - 0.8 s - -
RowDiff 7.7 GB - - 8 GB - - 8.8 s - -
REINDEER 30.3 GB 59 GB - 58.9 GB 91.1 GB - 551.2 s 813.5 s -
This work 6.6 GB 11 GB 21 GB 7 GB 11 GB 21 GB 6.7 s 8.2 s 14.4 s

structures from the sdsl-lite library [17]. The resources and scripts used to create fig-
ures and start experiments presented in Section 3 are available at https://github.com/

ratschlab/counting_dbg.

3 Results and Discussion

3.1 Indexing k-mer counts in 2,652 RNA-Seq read sets

For comparing our approach to the current state of the art, we used a set of 2,652 RNA-Seq
read sets from different human tissues that was originally composed by [44] and has since
been widely used for benchmarking methods indexing raw sequencing data [44, 38, 2].

We counted all 21-mers in each read set with KMC3 [24] and extracted canonical k-mers
(defined as the lexicographical minimum of a k-mer and its reverse complement) occurring
at least a certain number of times, using frequency thresholds from [38]. 66 out of the 2,652
read sets contained only reads shorter than k = 21 and, hence, could not be indexed. The
remaining 2,586 read sets resulted in a de Bruijn graph with a total of 3.9 billion canonical
k-mers and an annotation matrix of density 0.27%.

We compared the Counting de Bruijn graph to REINDEER [30], which, to the best
of our knowledge, is the only published tool for indexing collections of samples with k-mer
counts. We also compared against two state-of-the-art methods limited to binary annotations:
Mantis-MST [2] and RowDiff [14]. The latter was used to highlight the effect of modifications
made to the diff-transform presented in this work.

The results for all methods are summarized in Table 1. When compressing binary data,
our approach achieved a 4.5- and 5.5-fold size improvement over Mantis-MST and REIN-
DEER, respectively. Compared to the original RowDiff scheme, it achieved a 20% improve-
ment in annotation compression, which resulted in an index-size reduction from 7.7 GB to
6.6 GB, thanks to our methodological improvements. The advantage is maintained when
indexing k-mer counts. Applying local neighborhood-smoothing of counts along the unitigs
of single-sample de Bruijn graphs, as introduced in REINDEER, our approach reduces the
state-of-the-art index size of 59 GB to only 11 GB. This effect becomes even more pronounced
when querying, as REINDEER needs to inflate its index for access. As we maintain our rep-
resentation compressed at all times, we achieve an 8-fold reduction in memory usage during
query. Even when the smoothing step is omitted, which is not possible in REINDEER, our
index takes only 21 GB, while performing a lossless compression of the full k-mer spectrum
of the input. Notably, our indexing workflow is also the fastest among all the compared
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Table 2. The summary of different representations constructed from Virus PacBio HiFi read sets. The
methods generating searchable representations are highlighted in bold.

Method Compression ratio Size Searchable

MegaBLAST 0.1× 125.85 bits/bp yes

PufferFish -s 0.4× 21.82 bits/bp yes

BLAST 3.0× 2.68 bits/bp yes

gzip -9 6.4× 1.25 bits/bp no

This work 14.7× 0.54 bits/bp yes

Spring 38.4× 0.21 bits/bp no

methods in all indexing scenarios (see Supplemental Table 1) thanks to its careful implemen-
tation and parallelization, as well as leveraging the efficiently implemented KMC3 [24] and
MetaGraph [22] tools.

3.2 Indexing read sets from the SRA

Indexing all viral HiFi reads In this experiment, we fetched from NCBI SRA [25] all
viral sequencing samples sequenced with the PacBio Single Molecule Real-Time (SMRT)
technology, including many recently sequenced SARS-CoV-2 samples. Out of all 152,957
samples (accessed on 3 Oct 2021), we could download 152,884 (99.95%) successfully. We will
refer to this dataset as Virus PacBio SMRT. Next, we filtered this set by selecting only
high-fidelity read sets to ensure a low sequencing error rate (see Supplemental Section 4
and Supplemental Figure 2). This left 152,418 read sets (99.7%), which we refer to as Virus
PacBio HiFi. Note that here and in all other experiments, the headers of the reads (sequence
names) and their quality scores were removed before indexing or compressing with the tools
tested, including gzip.

All 152,418 read sets combined contained a total of 717 Gbp (billion base pairs) and
were compressed (with headers and quality scores removed) with gzip -9 down to 112 GB,
which corresponds to 1.25 bits per base pair (bits/bp), or a compression ratio of 6.4× over
the ASCII coding (8 bits/bp). Far better compression of 38× was achieved by Spring [11],
a specialized method for read compression. Note, neither gzip nor Spring enable search or
alignment against the input data. Then, we individually constructed lossless searchable rep-
resentations of the read sets with Counting de Bruijn graphs over the {A,C,G,T,N} alphabet
with coordinate annotations, as well as BLAST databases and sparse PufferFish indexes (see
Table 2). The BLAST database required on average 2.68 bits/bp, and constructing an ad-
ditional MegaBLAST index on top increased its size to an average of 125.85 bits/bp, while
PufferFish required on average 21.8 bits/bp. In contrast, the compression performance of
Counting de Bruijn graphs was even better than gzip -9. They required on average only 0.54
bits/bp (57% less than 1.25 bits/bp for gzip -9), while at the same time being fully search-
able. For a more detailed comparison of the top four methods, see Supplemental Figure 3.
We also did a similar evaluation of the methods on the full Virus PacBio SMRT dataset (see
Supplemental Table 3).

Indexing Illumina RNA-Seq reads To evaluate compression performance on short reads,
we used the RNA-Seq read sets described in Section 3.1. However, instead of indexing k-mer
counts, here we constructed Counting de Bruijn graphs with coordinate annotations. We
indexed all 31-mers in each read set without any other filtering. In total, 2,411 read sets
(7.55 Tbp) were indexed, with the remaining samples discarded due to containing reads of
variable length or only reads shorter than 31.
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Table 3. Lossless indexing of RefSeq (rel. 97) with k-mer coordinates for the complete data set (32,881,422
accessions, 1.7 Tbp) and the set of all Fungi (69,034 accessions, 8.8 Gbp).

Method RefSeq (Fungi) RefSeq (All)

MegaBLAST 12.3 GB 11.19 bits/bp 2,359 GB 11.07 bits/bp

This work 3.3 GB 2.97 bits/bp 533 GB 2.50 bits/bp

Again, we compared the presented approach with two alternatives commonly used for
compressing read data: the general-purpose compressor gzip and the domain-specific Spring.
The results are presented in Supplemental Figure 4 and discussed in Supplemental Section 5.
Notably, Counting de Bruijn graphs generated on average 27% smaller representations of the
input reads compared to gzip -9 (1.488 bits/bp vs. 2.030 bits/bp, see Supplemental Table 4).

Dependence on k-mer length To investigate the relationship of k-mer length on index
size, we compressed several representative read sets for 12 different k-mer lengths (Supple-
mental Figure 5). We chose one of the human RNA-Seq samples (SRR805801), representing
low-error Illumina sequencing, and a Sinorhizobium genome sequencing sample, representing
higher-error PacBio long-read sequencing. While for short, low-error reads the graph size
slightly increases with k, the number of paths in the graph grows as well, which makes the
annotation size drop steadily, due to longer unitigs length. As a result, the overall index size
(combining graph and annotation) decreases with k. In contrast, the higher error rate in
PacBio reads (SRR3747284) leads to a very large number of k-mers in the graph, and hence,
its size. However, long reads with lower error (SRR13577847, PacBio HiFi) benefit from an
increase of k. As a practical consequence, the choice of a large k is beneficial for compression
in most scenarios.

3.3 Lossless index of RefSeq with k-mer coordinates

To demonstrate the use of Counting de Bruijn graphs with coordinate annotations for index-
ing reference genomes, we used a dataset consisting of all 32,881,422 reference sequence acces-
sions from Release 97 of the NCBI RefSeq database [35]. Each sequence has been annotated
with its associated accession ID along with all k-mer coordinates (k = 31). This approach
forms an alternative to the commonly used MegaBLAST search tool, which requires an ad-
ditional database index [31] for competitive high-throughput search. The summary of both
indexes is presented in Table 3 (an extended version is available in Supplemental Table 5).
Using our method, the input of 1.7 Tbp was losslessly represented in a self-index comprising
533 GB, which is 4.4× smaller than the corresponding MegaBLAST index (Table 3). We
also present the performance for the subset of RefSeq containing all Fungi genomes, which
we have used for demonstrating sequence alignment in the following section.

3.4 Sequence-to-graph alignment with k-mer coordinates

We evaluated the accuracy of our algorithm for alignment to Counting de Bruijn graphs and
compared it to the state-of-the-art aligners. We used simulated reads as queries and defined
the desirable ground truth for these alignments as the corresponding segments of the reference
from which the query reads were simulated. Given the human GRCh38 reference chromosome
22 [42] and the E. coli NC 000913.3 [41] genomes, we use ART [19] and pbsim [37] to simulate
2000 Illumina-type and 200 PacBio-type reads of lengths 150 and 10,000, respectively. After
aligning each read back to their respective reference (or graph for sequence-to-graph aligners),
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Fig. 4. Alignment accuracy on simulated Illumina- and PacBio-type reads (E. coli NC 000913.3 and human
chr22). The edit distance is measured between the alignment (the returned path in the graph) and the ground-
truth sequence. In the top left subplot, the curves of vg- and TCG-Aligner are superimposed.

we compute the edit distance of the matching sequence (alignment) to the ground-truth
sequence (i.e., the original reference segment from which the read was simulated) to measure
alignment accuracy. In our evaluation, all nucleotides which are clipped from a query sequence
by the aligner contribute as edits when measuring distance. Note, this measure is agnostic to
the choice of the scoring approach used by the aligners. In addition, even a simulated read
with a large number of errors can still contribute an edit distance of 0 in the evaluation if
an aligner matches it to the exact ground-truth sequence.

We computed the measure described above and compared our TCG-Aligner (see Sec-
tion 2.4) to other state-of-the-art methods [22, 26, 16, 5, 31, 40], run with default settings.
As shown in Figure 4, the degree to which incorporation of coordinates in the alignment
procedure improves accuracy and query execution time (see also Supplemental Table 2) is
dependent on the complexity of the target genome. This is evident for the alignments of
simulated E. coli reads, where the use of coordinates provides a limited improvement in ac-
curacy and query time due to the simplicity of the genome (see the top row of Figure 4 and
Supplemental Table 2). On the other hand, as can be seen in the bottom row of Figure 4, it
significantly improves alignment accuracy and query time for human reads. 40.2% of human
PacBio reads align to the exact ground-truth sequence when using TCG-Aligner, compared
to 0.49% with the MetaGraph aligner.

For MetaGraph and vg, the large edit distances of the PacBio read matches relative
to the ground truth are due to the aligners reporting shorter local alignments, rather than
alignments of the full reads. By incorporating coordinates to more effectively filter seeds,
and by restricting the alignment search space to graph traces, the TCG-Aligner provides
improved accuracy and query execution time when aligning against reference genomes.

3.5 Searching for the Delta variant of SARS-CoV-2 in SRA

Finally, to enable fast search in the entire collection of all 152,884 viral PacBio SMRT
read sets from SRA (see Section 3.2), we also indexed them in a joint Counting de Bruijn
graph with coordinate annotation. Being 178 GB in size and only 19% larger than the
input reads without quality scores compressed with gzip -9 (150 GB, 875 Gbp), our index
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provides a fully lossless representation of them and can be used for search and alignment
of arbitrary sequences. Notably, 152,272 (99.6%) of the indexed read sets originate from
BioProject PRJNA716984, consisting of PacBio Sequel II sequencing runs from SARS-CoV-2
samples.

We queried DNA sequences flanking the nine defining mutations of the SARS-CoV-2
21A (Delta) variant spike protein against this joint index to retrieve all the occurrences of
its specific mutations within the reads. In total, six sequences of length 59 and one of length
53 (to cover the deletion variants, see Supplemental Section 6 for a list of the sequences)
were queried. Each sequence was matched to an average of 107,892 samples and 7.68 million
positions in the joint index. Despite the enormous number of returned hits, the query took
under 4 minutes on a single thread.
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Fig. 5. Detection of the delta variants of the SARS-CoV-2 spike protein in SMRT virus sequencing samples
deposited on the SRA. Left: The number of samples detected to contain (orange) and not contain (blue)
the SARS-CoV-2 delta variant. Right: The number of reads containing defining mutations contributed by
samples containing the SARS-CoV-2 delta variant.

In this experiment, for a given sample, we classified it as containing SARS-CoV-2 21A
if, for each of the defining mutations of the spike protein, there exists at least one read in
the sample supporting that variant. If a sample is classified as such, we enumerate all reads
containing any of the defining mutations. As shown in Figure 5, 90.5% of samples deposited
after July 2021 contain each of the Delta variants of the spike protein, leading to a sharp
growth in the number of reads containing these variants. We would like to note that this
analysis is derived only from the dates on which these samples were uploaded to the SRA,
hence, cannot be used to determine when these variants actually emerged. Although this
metadata can be derived for further analysis, it is outside the scope of this work.

4 Conclusions

We have presented a novel approach for the efficient and compressed representation of quan-
titative annotations on de Bruijn graphs. Together with the underlying graph, these annota-
tions make up a data structure which we call a Counting de Bruijn graph. It can be used to
represent quantitative information and, in particular, encode traces of the input sequences in
de Bruijn graphs. This not only provides a much higher flexibility of graph annotations but
also allows for the truly lossless representation of any set of input sequences in them. This
offers a practical solution to a long-standing problem of many methods employing de Bruijn
graphs as a base structure and opens the doors to implementing novel sequence alignment
algorithms on top of them. Notably, the method is agnostic to the alphabet and hence can
be used not only for indexing nucleotide sequences but also protein sequences or sequences
over any other alphabet.
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In addition to the presented approach for the compressed representation of sparse non-
binary matrices, we have generalized the RowDiff scheme [14] to non-binary graph annota-
tions and optimized it by improving the algorithms for anchor and successor assignment.
We have considered and have shown the advantages of the coding where multiple successor
nodes may be assigned to each node. In future extensions, the aggregating operator g could
act not only on the immediate successors of the node but on the whole tree of all successors
spanning from it until the terminating anchor nodes. This would lead to a significantly better
compression, for instance, in the case of k-mer counts linearly increasing within the paths
in the graph. Moreover, an adaptive model can be trained with machine learning methods
to predict annotation at a node from its successors and their annotations to further reduce
the deltas stored explicitly in compressed data structures. We believe this has promising
potential for this coding to benefit from the recent advances in machine learning.

Finally, we devised an algorithm for aligning sequences to Counting de Bruijn graphs with
coordinate annotations, which avoids spurious paths. This algorithm correctly estimates the
alignment score even when aligning sequences with repeats to loops in the graph, which
would be impossible with de Bruijn graphs alone. Since sequences shared by many samples
are represented by a simple path, de Bruijn graph-based approaches can greatly reduce the
overhead of aligning to collections of highly similar sequences, while more traditional database
search methods would align to each database entry independently. The added availability of k-
mer coordinates to the MetaGraph alignment framework [22] allows for various other seeding
or extension heuristics to be implemented, such as those used in MegaBLAST [31]. While the
alignment method and evaluation presented here are restricted to graphs constructed from
assembled reference genomes, such seed extension methods can be adapted for alignment to
de Bruijn graphs constructed from raw read sets, which, we believe, is a promising direction
for future work.

Playing a similar role for indexing sequences in de Bruijn graphs as gPBWT does in
the realm of variation graphs and the indexing of pangenomes, we believe our approach is a
significant step forward for the representation of and the search in very large collections of
sequences, addressing a still increasing demand for interactive access to growing archives of
biological sequences. We envision this as the first step towards enhancing the performance
of BLAST-based sequence searches using graph-based approaches.
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