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Abstract

The Human BioMolecular Atlas Program aims to compile a reference atlas for the healthy
human adult body at the cellular level. Functional tissue units (FTU, e.g., renal glomeruli and
colonic crypts) are of pathobiological significance and relevant for modeling and understanding
disease progression. Yet, annotation of FTUs is time consuming and expensive when done
manually and existing algorithms achieve low accuracy and do not generalize well. This paper
compares the five winning algorithms from the “Hacking the Kidney” Kaggle competition to
which more than a thousand teams from sixty countries contributed. We compare the accuracy
and performance of the algorithms on a large-scale renal glomerulus Periodic acid-Schiff stain
dataset and their generalizability to a colonic crypts hematoxylin and eosin stain dataset.
Results help to characterize how the number of FTUs per unit area differs in relationship to their
position in kidney and colon with respect to age, sex, body mass index (BMI), and other clinical
data and are relevant for advancing pathology, anatomy, and surgery.

Introduction

The Human BioMolecular Atlas Program (HUBMAP) aims to create an open, computable human
reference atlas (HRA) at the cellular level'. The envisioned HRA will make it possible to register
and explore human tissue data across scales—from the whole-body macro-anatomy level to the
single-cell level. Medically and pathologically relevant functional tissue units (FTUs) are seen as
important for bridging the meter level scale of the whole body to the micrometer scale of single

cells. Functional tissue units are defined as a three-dimensional block of cells centered around a
capillary where each cell is within diffusion distance from any other cell within the same block; a
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term coined by De Bono et al.? Plus, FTUs accomplish important biomedical functions and are
“units of physiological function that are replicated multiple times in a whole organ®’. The value of
FTUs is acknowledged by the scientific and medical communities, yet limited data exists about
human diversity in terms of the number and size distribution for a single organ and across
individuals with different age, sex, BMI. A key reason for this knowledge gap is the fact that
annotation of FTUs is time consuming and expensive when done manually. For example, there
are over 1 million glomeruli in an average human kidney?, but a trained pathologist needs ca. 10
hours of time to annotate 200 FTUs. FTU detection algorithms exist*'2 and approaches range
from simple thresholding' to deep learning methods. Existing methods achieved varying levels
of performance (see Supplementary Tables 1 and 2 and performance metric definitions in
Methods) and face challenges when applied to human data (e.g., training on murine glomerulus
data generated false positives when applied to the much larger glomeruli in human data'?).
Rapid progress is desirable as a robust and highly performant FTU detector would make it
possible to compute size, shape, variability in number and location of FTUs within tissue
samples and to use this information to characterize human diversity—providing critical
information for the construction of a spatially accurate and semantically explicit model of the
human body.

This paper is organized as follows: We present results from comparing the top-five winning
algorithms from the recent “Hacking the Kidney” Kaggle competition'. Specifically, we
reproduce results and then apply the five algorithms to segment colon data (from scratch and
transfer learning) to determine their generalizability to other FTU types. Segmentation data is
then used to characterize the number of FTUs per unit area in dependence on location in the
human body as well as donor sex, age, and BMI. Last but not least, we discuss how FTU
detection advances the construction of a Human Reference Atlas. All data and code can be
freely accessed at https://github.com/cns-iu/ccf-research-kaggle-2021.

Results

Data Preparation

For the “Hacking the Kidney” Kaggle competition, a unique dataset was compiled comprising 30
Periodic acid-Schiff (PAS) stain whole slide images (WSI) with 7,102 annotated renal glomeruli
(see Supplementary Table 3 and Methods). To determine if algorithms generalize to other FTU
types, a second dataset was compiled comprising seven colon hematoxylin and eosin stain WSI
with 395 segmented colonic crypts (see Supplementary Table 4 and Methods). Fig. 1a shows
the tissue extraction sites for the 30 kidney and seven colon WSI datasets (explore three-
dimensional reference organs at https://cns-iu.github.io/ccf-research-kagale-2021). Exemplary
glom and crypt annotations are given in Fig. 1b. Fig. 1c¢ lists basic information (sex, age, BMI)
for all 37 datasets; the datasets are sorted by their spatial location in the reference organ—
using the mass point of the tissue block from which they were extracted (top-most block is on
top), see Methods.
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Figure 1. FTU Datasets. a. The 30 kidney and 7 colon tissue datasets were registered into the
corresponding male/female, left/right HUBMAP 3D reference organs for kidney and colon to
capture the size, position, and rotation of tissue blocks. b. Sample kidney WSI (scale bar: 2mm)
with zoom into one glomerulus annotation (scale bar: 50um). Right below is a sample colon WSI
(scale bar: 500um) with zoom into a single crypt annotation (scale bar: 20um). ¢. Metadata for
37 WSI sorted top-down by vertical location within the reference organs; test datasets are given
in bold.

The Kaggle dataset was split into a 15 WS training and 5 WSI validation dataset; both were
available to competition participants. The 10 WSI private test dataset was used for scoring
algorithm performance, see competition design in Methods. Analogously, the colon dataset was
split into five WSI used in training and two WSI used for testing. All test datasets are rendered in
bold in Fig. 1c.

Algorithm Comparison

The top-5 winning algorithms from the “Hacking the Kidney” Kaggle Competition are from teams
named Tom, Gleb, Whats goin on, DeepLive.exe, and Deepflash2. All five use the UNet
architecture, see algorithm descriptions in Methods section. Performance results are shown in
Fig. 2 using violin plots for three metrics: DICE, precision, and recall (see details in the Methods
section, data values are in Supplementary Table 5 and interactive data visualization at
https://cns-iu.github.io/ccf-research-kaggle-2021). For each of the five algorithms we report
DICE coefficient in Fig. 2a, recall in Fig. 2b, and precision in Fig. 2¢c. For each metric, we show
distribution for the ten kidney WSI with 2038 glomeruli on the left and the distribution for the two
colon WSI with 160 crypts transfer learning predictions on the right. Performance on kidney vs.
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colon data can be easily compared. As expected, all five algorithms have a higher DICE
coefficient for kidney data than for transfer learning on colon data. Tom—the Kaggle competition
performance winner—has the highest mean DICE score of 0.88 for transfer learning on colon
data. As for recall, Tom again has the highest value with 0.92—uwith 9 false negatives and 17
false positives out of 160 crypts. In terms of precision, DeepLive.exe wins with 0.86—with 8
false negatives and 19 false positives. The data in Supplementary Table 5 also shows that all
five algorithms have the lowest DICE scores on WSI 7 and 28. 7 has a low number of crypts,
only 51; any false positive/negative prediction has a major impact on the DICE coefficient. WSI
28 has several artifacts and overall lower quality (higher saturation and darker) than other
kidney WSils. The crypt segmentation solution for Tom in comparison with ground truth for colon
data can be explored at https://cns-iu.github.io/ccf-research-kaggle-2021.
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Figure 2. Algorithm Performance Results. Violin plots show performance for kidney on the
left (one dot per 2,038 glomeruli) and transfer learning performance for colon data (one dot for
each of the 160 crypts) on the right. a. DICE coefficient. b. Recall performance. ¢. Precision
performance. Interactive versions of these graphs are at https://cns-iu.github.io/ccf-research-
kaggle-2021.

Run time performance was recorded for the training phase on kidney data, colon data
exclusively (no transfer), and on kidney data and colon data, see Table 1. We also report run
time for the two prediction tasks: from scratch without transfer learning (i.e., trained on five
colon, tested on two colon datasets) and transfer learning (i.e., trained on 15 kidney datasets
initially and then trained on five colon datasets, then tested on two colon datasets), see Methods
section for details.
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Table 1. Approximate run time performance for training and prediction runs for all five
algorithms. (*Times reported by teams.)

Model Training® [ Train on Train on Inference on | Inference on
on Kidney | Colon (No Colon Kidney Data | Colon Data

transfer (transfer (n=10) (n=2)
learning) learning)

Tom 12 hours | 6 hours 4 hours 3 hours 2 mins

Gleb 8 hours 4 hours 4 hours 3 hours 2 mins

Whats goin on 26 hours | 3 hours 3 hours 30 mins 2 mins

DeepLive.exe 3 hours 48 hours 48 hours 3 hours 2 mins

Deepflash2 5 hours 50 minutes 1 hour 30 mins 2 mins

As can be seen, training takes time (three hours to 48 hours) while prediction runs are fast (3-
30h for kidney and 2mins for colon). Total algorithm run time (training on kidney, then colon plus
inference on colon) is lowest for Deepflash2 (6h), followed by Gleb (12h) and Tom (16h). Whats
goin on and Deepflash2 are fast in kidney prediction (30mins).

Note that one of the winning teams (Deepflash2) had access to a biomedical expert as a
teammate and two of the teams (Tom and DeepLive.exe) used additional data to improve
generalizability. The teams did employ clever approaches to sampling (e.g., Deepflash2 using
probabilistic sampling to make training time faster) and classification (e.g., DeepLive.exe using
a classifier to distinguish between healthy and diseased glomeruli).

Characterizing Human Diversity

Information on the spatial location of FTUs in human tissue makes it possible to characterize
human diversity in support of understanding human diversity. Specifically, we use data on 7,102
glomeruli and 395 crypt annotations to study the impact of sex, age, BMI but also location of
tissue in the human body on the number of FTUs per square millimeter. Fig. 3a shows the
impact of age on the number of detected glomeruli Blocks that have the same age are from the
very same donor. As can be seen, out of the 8 females, one has 4 tissue blocks (in y-sequence,
top-down: 5, 6, 8, 4), one has 3 tissue blocks (3, 2, 7), and two have 2 tissue blocks (9, 11;
10,14). For the 8 males, two have 3 tissue blocks (in y-sequence: 21, 23, 24; 29, 30, 26) and
three have 2 tissue blocks (25, 22; 28, 27; 18, 17). In general, the number of glomeruli per mm?
seems to decrease for females and increase for males (except for HBM 322:KQBK.747) going
from top to bottom of the kidney. (Slides are numbered by y-position of the 3D reference organ
registration.)
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Figure 3. Number of FTUs in dependence of donor sex, age, ethnicity, BMI, and spatial
tissue location. The plots show the number of FTUs per square millimeter. Donors are color
coded, BMI corresponds to size coding of symbols, squares denote ethnicity with squares
indicating White and diamond black or African American, age is position on x-axis. a. Graph for
kidney, male. b. Graph for kidney, female.

Understanding the spatial location and density of FTUs across organs is critically important for
advancing the construction of a Human Reference Atlas (HRA)'. A robust and highly
performant FTU detector would make it possible to compute the size, shape, variability in
number, and location of FTUs within tissue samples. This information can then be used to
characterize human diversity; to decide on what tissue data should be collected next to improve
the coverage and quality of a HRA, and for quality control (e.g., FTU size and density that is
vastly different from normal might indicate disease, problems with data preprocess, or
segmentation algorithms).

Discussion

There is a need for efficient and accurate segmentation of FTUs both within HUBMAP and the
broader biomedical community. Despite many breakthroughs in the field, the currently available
methods for glomerulus and crypt image segmentation do not meet this need. This paper
compared winning algorithms from the recently completed “HUBMAP - Hacking the Kidney”
Kaggle competition and identified the Tom algorithm as the most accurate, generalizable, and
best run time performant algorithm. To our knowledge, this is the first time that scientific
evidence is provided of the value of Kaggle competitions to develop algorithms that are superior
to existing code. The 1,600 Kaggle teams performed many iterations of experimentation that our
team would not have had the time/resources for or thought to try; they build on solutions taken
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from many different domains to arrive at the winning entries. Given the success of this first
competition; we are planning three new Kaggle competitions that aim to advance tissue
segmentation and annotation.

Code has been documented and made available freely for anyone to use. We are in the process
of preparing this winning algorithm for production usage in the HuBMAP Data Portal'® and
making it available as part of the HRA ecosystem—for free usage by anyone interested to
register and analyze tissue. Going forward, kidney and colon datasets that were spatially
registered using the HUBMAP registration user interface'® and that have anatomical structures
in which FTUs are known to exist will automatically be segmented. In addition, we are in the
process of creating additional datasets with FTU annotations for other organs (nephron tubule in
kidney; alveoli in lung; hair follicle in skin; white pulp in spleen; lobule in liver; lobule in lymph
node; lobule in thymus; sarcomere in heart). The datasets will be used to run transfer learning
for FTUs in other organs and to develop robust pipelines for the automatic segmentation and
analysis of FTUs across major organs of the human body.

Since all the five winning models use some specific methodology—either in data preprocessing,
sampling, or training—that gives them an edge over the others, we are exploring taking the best
parts of each and constructing a sixth model. For example, Deepflash2 uses a probabilistic
sampling strategy that makes its training faster; DeepLive.exe uses additional data and a
classifier in its model to improve its results. Plus, training time can be reduced by using
distributed training; training can be monitored in support of optimization and explainability.

Going forward, 3D data of FTUs will be used to identify the number, size, and shape of FTUs in
support of machine learning and single-cell simulation of the structure and function of FTUs.
Resulting data will be used to increase our collective understanding of (and variability in) the
size, number, and location of FTUs in relation to donor sex, age, ethniticy, and BMI. This data
and work is also critical for integrating top-down (segmenting out larger known structures) and
bottom-up (single-cell data) in multiplexed imaging techniques and relating composition within
these structures. Top-down and bottom-up data integration and analysis are needed for
constructing an accurate and comprehensive Human Reference Atlas.

Methods

Datasets

Renal glomeruli data

Renal glomeruli are groups of capillaries that facilitate filtration of blood in the outer layer of
kidney tissue known as the cortex'”. The size of normal glomeruli in humans ranges from 100-
350 um in diameter and they have a roughly spherical shape*. Glomeruli contain four cell types:
parietal epithelial cells (CL:1000452), podocytes (CL:0000653), fenestrated endothelial cells
(a.k.a. glomerular capillary endothelial cell CL:1001005), and mesangial cells (CL:1000742)18.
Parietal epithelial cells form the Bowman’s capsule. Podocytes cover the outer layer of the
filtration barrier. Fenestrated endothelial cells are in direct contact with blood and coated with a
glycolipid and glycoprotein matrix called glycocalyx. Mesangial cells occupy the space between
the capillary blood vessel loops and are stained by the colorimetric histological stain called
Periodic acid-Schiff (PAS) stain'®. PAS stains polysaccharides (complex sugars like glycogen)
such as those found in and around the glomeruli making it a favored stain for delineating them
in tissue sections™®.
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The kidney data used in the “HUBMAP - Hacking the Kidney” Kaggle competition comprises 30
whole slide images (WSIs) provided by the BlIOmolecular Multimodal Imaging Center (BIOMIC)
team at Vanderbilt University (VU) who are also members of HUBMAP’s Tissue Mapping Center
at VU (TMC-VU). The tissue blocks were collected through the Cooperative Human Tissue
Network?® and either fresh frozen (FF) or formalin fixed, paraffin embedded (FFPE)?' for
preservation. FF tissue is frozen in liquid nitrogen (-190°C) within 30-60 minutes after surgical
excision; this type of preservation has been the method of choice for transcriptomics and
immunohistochemistry; tissue samples are often embedded in Optimal Cutting Temperature
(OCT) media for thin sectioning®? or carboxymethylcellulose (CMC) for imaging mass
spectrometry?3. FFPE tissue is the preferred method for clinical pathology samples for histology
assessment since the formalin aldehyde cross links proteins to maintain structural integrity of
the sample?4. After preservation, the tissue blocks were sectioned?® and imaged using Periodic
acid-Schiff (PAS) staining?®. The slides were scanned with a brightfield scanner, and the
resulting images were converted from vendor formats to Tagged Image File Format (TIFF). The
images have a spatial resolution of 0.5um, and the average annotation area was calculated in
pixels and um?2. On average, the 7,102 glomerulus annotations cover 81,813.5 pixels, or
20,453.4 uym>.

Each of the 30 kidney datasets used in the Kaggle competition included a PAS stain whole slide
image, anatomical region (AR) masks, and glomeruli segmentation masks. The masks were
modified GeoJSON files that captured the polygonal outline of annotations by their pixel
coordinates (see samples in Fig. 1b), and they were generated from a mix of manually and
deep learning (DL) generated annotations. The initial annotations were generated automatically
by a segmentation pipeline?’, then they were inspected and edited by subject matter experts
(SMEs)?8 using QuPath??. In addition, information on sample size, location, and rotation within
the kidney and pertinent clinical metadata (age, sex, ethnicity, BMI, laterality) was provided (see
Supplementary Table 3).

For the Kaggle competition, this data was split into three datasets: public train (n=15, for training
models), public test (n=5, for model validation), and private test (n=10, for scoring and ranking
models). The public datasets were openly available for the competitors to use when designing
their models and creating submissions, and the private test set was only available to the Kaggle
team and hosts for evaluation of the submissions. After the competition concluded, all data was
made available publicly at the HUBMAP Data Portal'® as the “HUBMAP ‘Hacking the Kidney’
2021 Kaggle Competition Dataset - Glomerulus Segmentation on Periodic acid-Schiff Whole
Slide Images” collection°.

Colonic crypts data

Colonic crypts are epithelial invaginations into the connective tissue (stroma) surrounding the
colon, or large intestine3'. Also known as the crypts of Leiberkiihn, they contain stem/progenitor
cells in their base and are thought to protect these cells from metabolites®2. They are also the
site of absorption and secretion activities within the colon33. Normal human colonic crypts have
a diameter of 73.5+3.4um and length of 433+25um34. In addition to stem cells, there are many
epithelial subtypes, major subsets include: Paneth (CL:0009009), goblet (CL:1000321),
enteroendocrine (CL:0000164), and enterocytes (CL:0002071)3'. Total number of goblet cells is
increasing from the proximal to distal ends of the colon®®. Enterocytes are absorptive cells which
decrease in numbers from the proximal to distal end of the colon and are responsible for
absorption of nutrients®. Enteroendocrine cells make up a small proportion of the colonic
epithelium (<1%) and secrete hormones that control gut physiology?.
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The colon dataset was provided by the HUBMAP TMC-Stanford team. It consists of two TIFF
WSils and their GeoJSON annotations of colonic crypts. Each image is from a different donor
and contains scans of four unique hematoxylin and eosin (H&E) stained coverslips from
different regions of the colon (ascending, transverse, descending, and descending sigmoid) for
a total of 8 colon H&E images. Hematoxylin and eosin stain nucleic acids deep blue-purple and
nonspecific proteins varying degrees of pink, respectively®¢. The two WSIs were annotated by
Dr. Teri Longacre using QuPath?® and the Manual Annotation of Tissue SOP?%”. The resulting
annotations were exported to GeoJSON format and included 395 individual crypt annotations,
which on average had an area of 21,331.3 pixels, or 16.1 um?, a considerably smaller average
area than that of the glomeruli annotations (81,813.5 pixels, or 20,453.4 um?), see
Supplementary Table 4 for metadata.

Spatial location in human body

The HUBMAP Registration User Interface (RUI)'63 was used to capture the three-dimensional
size, position, and rotation of all tissue blocks used in this study in close collaboration with
subject matter domain experts. The resulting data was used to compute the vertical position of
the mass points of all kidney tissue blocks as a proxy of the sequence of tissue sections used
here. For the colon, we report the sequence of tissue sections according to the serial extraction
sites (ascending colon, transverse colon, descending colon, sigmoid colon).

Computation of FTU density

The approximate number of glomerulus annotations in a square millimeter of cortex annotation,
henceforth referred to as “FTU density”, was calculated to compare it across cohorts of donors
who varied in sex, age, race, and BMI. The 30 glomerulus annotation masks were read into a
jupyter notebook from .json format and saved as shapely Polygons3°. The average area per
glomerulus annotation per sample was calculated in pixels, then converted to square microns.
The anatomical region masks, which are rough estimates based on quickly-drawn annotations
by SMEs, were read into the same jupyter notebook from .json files as shapely polygons, then
the total cortex annotation area per sample was calculated by summing the area of all cortex
annotations, then converting from pixels to square microns. The approximate FTU density was
calculated from these two values and converted to the number of glomerulus annotations per
square millimeter.

Postprocessing of prediction masks

The 70 prediction masks for all 14 WSI times five algorithm runs were manually examined and
FTUs that were overlapping or adjacent were separated via manual addition of a line, see
details in Segmentation Mask Analysis section.

Kidney glomerulus segmentation prior work

For glomerulus segmentation, Sheehan et al. implemented a classifier trained on PAS stain
murine renal images through llastik'. It performed well on their mouse validation set , but when
applied to human data it divided glomeruli and generated many false positives. Gallego et al.
used transfer learning to fine tune the pre-trained AlexNet CNN with an overlapping sliding
window method to segment and classify glomeruli in human WSIs of PAS stained renal tissue.
They discovered that the pre-trained model outperformed the model trained from scratch®.
Govind et al. employed a Butterworth bandpass filter to segment glomeruli from multimodal
images (autofluorescence and immunofluorescence marker stain)4?. Kannan et al. also
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employed a CNN with an overlapping sliding window operator to segment glomeruli in
trichrome-stained images, but they used training data of human origin and watershed
segmentation*. Methods employing CNNs for the task of glomerulus segmentation seem to be
increasingly popular in recent years with highly promising performance®-2.

Colon crypt segmentation prior work

In 2010, Gunduz-Demir et al. approached the task of automatic segmentation of colon glands
using an object-graph in conjunction with a decision tree classifier, which obtained a Dice
coefficient of 88.91+4.63, an improvement over the pixel-based counterparts at the time*'. Five
years later, Cohen et al. developed a memory-based active contour method that used a random
forest classifier that performed pixel level classification with an F-measure of 96.2%*2. That
same year, the Gland Segmentation (GlaS) Challenge Contest was held in conjunction with the
Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015) convention3.
Teams were challenged to present their solutions for automating segmentation of benign and
malignant crypts within 165 images from 16 Hematoxylin and Eosin (HE) stained intestinal
tissue sections, known as the Warwick-QU dataset. Chen et al. had the winning submission,
dubbed “CUMedVision”, which was a novel deep contour-aware fully convolutional neural
network (CNN)#. Kainz, Pfeiffer, and Urschler submitted the “vision4GlaS” method, a CNN for
pixel-wise segmentation and classification paired with a contour based approach to separate
pixels into objects, to the GlaS Challenge Contest. Their method ranked 10th in the challenge’s
entries*S. They paired two distinct CNNs (Object-Net for predicting labels and Separator-Net for
separating glands) together for pixel-wise classification of the same HE stained images®. For
this second method, they also preprocessed the RBG images, only inputting the red channel
into the model. Banwari et al. took a very computationally efficient approach to colonic crypt
segmentation by also isolating the red channel from the GlaS Challenge dataset images and
applying intensity based thresholding™'. Li et al. also used a portion of the GlaS Challenge
dataset in 2016 to craft their model, a combination of a window based classification CNN and
hand-crafted features with support vector machines (HC-SVM)#¢. Sirinukunwattana, Snead, and
Rajpoot used the GlaS challenge dataset in 2015 to develop a random polygons model*’. In
2018, Tang, Li, and Xu’s Segnet model for crypt segmentation outperformed the contest winner
in some portions of the challenge*®. One of the most recent uses of the GlaS Challenge dataset
was by Graham et al. in 2019 for the development of their Minimal Information Loss Dilated
Network (MILD-Net) segmentation method which performs simultaneous crypt and lumen
segmentation. Their proposed network “counters the loss of information caused by max-pooling
by re-introducing the original image at multiple points within the network.” and received higher
evaluation metric scores than the winner of the GlaS Challenge or Segnet*. Another use of the
GlaS Challenge dataset was by Rathore et al. as they tested the efficacy across institutions of
their support vector machine (SVM) method for segmenting colonic crypts®°.

Competition design

The “HUBMAP - Hacking the Kidney" Kaggle competition teams were tasked with the challenge
of detecting glomeruli FTUs in colon data across different tissue preparation pipelines (FF and
FFPE). The goal was the implementation of a highly accurate and robust FTU segmentation
algorithm.

Two separate types of prizes were offered: Accuracy Prizes and Judges Prizes. The Accuracy
Prize awarded $32,000 to the three teams with the highest scores on the Kaggle leaderboard at
the conclusion of the competition (1st: $18,000, 2nd: $10,000, 3rd: $4,000). The Judges Prize
awarded $28,000 to the teams that advanced science and/or technology (Scientific Prize:
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$15,000), were the most innovative (Innovation Prize: $10,000), or were the most diverse
(Diversity Prize: $3,000) as identified by the panel of judges through a presentation of the
teams’ findings and subsequent scoring based on a predetermined rubric®'. Teams were
allowed to enter in multiple categories and had the option of either receiving cash prizes or
choosing to have their winnings donated to a charity foundation. Additionally, the use of
supplemental publicly available training data was allowed, but organizers were not permitted to
participate.

The competition launched on November 16th, 2020 and ran through the final submission date of
May 10th, 2021. The data was updated and timeline extended on March 9th, 2021, and the
Awards ceremony was held on May 21st, 2021. Submissions were made in the form of Kaggle
notebooks with a run-length encoding of the predictions saved in a “submission.csv” file. The
notebooks had to run in less than or equal to 9 hours without internet access. See Competition
Rules®? and Judging Rubric5' for more details.

Algorithm performance was evaluated using the mean Dice coefficient (see Metrics). The
leaderboard scores were the mean of the Dice coefficients for all ten WSI in the private test set.
Any test WSI with predictions missing completely were factored into the mean score as a zero.
This metric has been successfully used for previous segmentation task challenges. For
example, 922 teams competed in the “Ultrasound Nerve Segmentation” Kaggle competition®3.
The top scoring teams achieved a mean Dice coefficient of 0.73226 and 0.73132 for the private
and public leaderboards, respectively. Another competition, entitled “SIIM-ACR Pneumothorax”,
engaged 1,475 teams to classify and segment pneumothorax from chest radiographic images,
with leaderboard scores topping at 0.8679 and 0.9304 mean Dice coefficients for private and
public datasets, respectively®*. A third competition,”Severstal: Steel Defect Detection” focused
on localizing and classifying surface defects on a sheet of steel®; it had 2,427 teams competing
and achieved mean Dice coefficients of 0.90883 (private leaderboard) and 0.92472 (public
leaderboard).

In the “HUBMAP - Hacking the Kidney" Kaggle competition, a total of 1,200 teams competed

and the top-5 scoring teams had a mean Dice coefficient of 0.9515 and 0.9512 for the private
and public leaderboards, respectively. These are the highest scores for this type of challenge
ever achieved.

Transfer learning

While the Kaggle competition involved developing models for segmenting glomeruli in kidney
tissue samples, it is crucial to test the generalization capability of such segmentation models
across other organs. To accomplish this goal, we implemented several strategies to train and
test the models: 1) The models are trained only on the kidney data and tested on kidney data. 2)
The models are trained on kidney data and tested on colon data (without training on any colon
data). 3) The models are trained only on colon data and tested on colon data. 4) The models
are trained on colon data (using the pretrained models on kidney data for transfer learning) and
tested on colon data.

The fourth strategy is called transfer learning in machine learning. It is widely used to improve
performance on a dataset by pretraining it on a different but similar dataset. This allows the
model to learn more features from the previous dataset and helps improve the generalizability of
the overall model. Transfer learning may involve training the entire model or freezing some
layers of the model and training the remaining unfrozen layers.
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Algorithms

Teams “Tom,” “Gleb,” and “Whats goin on” won first, second and third place for the accuracy
prize respectively. DeepLive.exe and Deepflash2 won the first and second judges prizes
respectively. The setup, optimization, and prediction run of all five algorithms are discussed
here.

Tom

The model uses a single U-Net SeResNext101 architecture with Convolutional Block Attention
Module (CBAM)%¢, hypercolumns, and deep supervision. It reads the WSiIs as tiled 1024x1024
pixel images and then further resized as 320x320 tiles and sampled using a balanced sampling
strategy. The model is trained using a combination of Binary Cross-entropy loss®” and Lovasz
Hinge loss®8, and the optimizer used is SGD (Stochastic gradient descent). Training is for 20
epochs, with a learning rate of 10#to 106 and batch size of 8 (i.e., training is done using
batches of 8 samples per batch).

For the model trained on colon data from scratch or using transfer learning, the training is done
for 50-100 epochs and the validation set is increased from 1 slide to 2 slides.

Gleb

The model is trained using an ensemble of four 4-fold models namely, Unet-regnety16, Unet-
regnetx32, UnetPlusPlus-regnety168°, and Unet-regnety16 with scse attention decoder. The
model reads tiles of size 1024x1024 sampled from the kidney/colon data. During model training,
general data augmentation techniques such as adding gaussian blur and sharpening, adding
gaussian noise, applying random brightness or gamma value are used. The models are trained
for 50-80 epochs each, with a learning rate of 10#to 10, and batch size of 8. The loss function
is Dice coefficient loss®! and the optimizer used is AdamW®é2,

For the model trained on data from scratch or using transfer learning, the model is trained for
50-100 epochs and the sampling downscale factor is changed from 3 to 2.

Whats goin on

Model training uses an ensemble of 2 sets of 5-fold models using the U-Net8® architecture
(pretrained on Image) with resnet50_32x4d and resnet101_32x4d®% as backbones, respectively.
Additionally, the a Feature Pyramid Network (FPN)®® is added to provide skip connections
between upscaling blocks of the decoder, atrous spatial pyramid pooling (ASPP)% is added to
enlarge receptive fields, and pixel shuffle” is added instead of transposed convolution to avoid
artifacts. The model reads kidney/colon data downsampled by a factor of 2 and tiles of size
1024x1024 are sampled and filtered based on a saturation threshold of 40. General data
augmentation techniques are used such as flipping, rotation, scale shifting, deformation, artificial
blurring, Hue Saturation Value (HSV) shifting, Contrast Limited Adaptive Histogram Equalization
(CLAHE), brightness and contrast shifting, and Piecewise Affine. The models are trained for 50
epochs each, using a one cycle learning rate scheduler with pct_start=0.2, div_factor=1e2,
max_lIr=1e-4, batch size of 16. The model uses an expansion tile size of 32. The model uses
binary cross entropy loss, with gradient norm clipping at 1 and Adam optimizer.

For the model trained on data from scratch or using transfer learning, the batch size is
increased to 64 and the expansion tile size is increased to 64.
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DeeplLive.exe

The model architecture used is a simple U-net® with an efficientnet-b® encoder. In addition to
the provided training data, the model is trained on additional data from Mendeley” (31 WSIs),
Zenodo’' (20 WSiIs), and the HUBMAP Data Portal'® (2 WSIs). The additional data is annotated
into two classes: healthy and unhealthy glomeruli. The model employs a dynamic sampling
approach whereby it samples tiles of size 512x512 pixels (at a resolution downscale factor of 2)
and 768x768 pixels (at a resolution downscale factor of 3). The tiles are sampled from regions
having visible glomeruli in them based on annotations, instead of sampling randomly. Model
training uses the cross-entropy loss, Adam optimizer, an adaptive learning rate (linearly
increased up to 0.001 during the first 500 iterations and then linearly decreased to 0), and a
batch size of 32. During training the general data augmentation techniques are used such as
brightness and contrast changes, RGB shifting, HSV shifting, color jittering, artificial blurring,
CutMix” and MixUp”3. The model is trained using 5-fold cross validation for at least 10,000
iterations. The key to the model is to reframe the problem as a healthy/unhealthy glomerulus
classification problem along with a segmentation problem. This setup enables the model to
learn to classify the unhealthy glomeruli as glomeruli and then decide whether the particular
instance is healthy enough.

For the model trained on colon data from scratch, on_spot_sampling of 1 and an overlap factor
of 2 is used. For the model trained on colon data using transfer learning, on_spot_sampling is
set to 1 and an overlap factor of 1 is used. In both cases, no external datasets are used for
training.

Deepflash2

The model architecture used is a simple U-Net architecture with an efficientnet-b2 encoder
(pretrained on ImageNet’#). Input data is converted and stored as .zarr file format for efficient
loading on runtime. The model collectively employs two sampling approaches: 1) Sampling tiles
that contain all glomeruli (to ensure that each glomerulus is seen at least once during each
epoch of training). 2) Sampling random tiles based on region (cortex, medulla, background)
probabilities (to give more weight to the cortex region during training since glomeruli are mainly
found in the cortex). The region sampling probabilities were chosen based on expert knowledge
and experiments: 0.7 for cortex, 0.2 for medulla, and 0.1 for background. On runtime, the model
samples tiles of size 512x512 and uses a resolution downscale factor of 2, 3, and 4 in
subsequent runs. During training, general data augmentation techniques are applied such as
flipping, blurring, deformation, etc. Model training uses a weighted sum of Dice’® and cross-
entropy loss”® (where both losses have equal weight), Ranger’” optimizer (a combination of
RAdam?”® and LookAhead optimizer’®), a maximum learning rate of 1e-3, and a batch size of 16.
The model training is done using a learning rate scheduler whereby the learning rate is
scheduled with a cosine annealing® from max_learning_rate / div to max_learning_rate (where
div=25). The models are trained and tested using 5-fold cross validation in which each fold is
trained on 12 WSiIs and validated on 3 WSiIs. The best model ensemble for the final score
consists of three models trained on different zoom scales (i.e., 2x, 3x, 4x).

For the model trained on the colon data (both with and without transfer learning), the
background probability is set to 0.1 and the colon probability is set to 0.9 for sampling, since the
colon data lacks the masks for anatomical structures. A weight decay of 10-° was added (for the
model trained without transfer learning). For the transfer learning model, saved weights are
loaded from the model trained on kidney data at 3x downsampling and the first 13 parameter
groups are frozen during training.
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Performance Metrics Terminology

Ground Truth. The set of all FTU segmentations in the human annotated dataset using the
SOP at (cite) is called ground truth (GT, blue in Fig. 4).

a Datasets

False L Predicted

Ground
Truth Positive Set
(GT) (FP) (PS)
b Metrics
2x | |
Dice coefficient = Recall =—— Precision =

@

Figure 4. Performance metrics terminology. a. Ground truth, predicted set, and false
negatives, true positives and false positives datasets. b. Dice coefficient, recall, and precision
metrics.

Predicted Set. The set of all FTU segmentations predicted by an algorithm is called the
predicted set (PS, purple in Fig. 4).

False Negatives, True Positives, and False Positives. Typically, the GT and PS sets overlap
creating three sets that are called false negatives (FN, FTUs not predicted by the algorithm),

true positives (TP, FTUs in ground truth that are correctly predicted by the algorithm), and false
positives (FP, FTUs predicted by the algorithm but not present in the ground truth), see Fig. 4).

The sets can be represented via vector-based polylines or pixel masks and different algorithms
are used to compare these. Note that the metrics in Fig. 4 can be applied to pixels that
represent an object of interest (e.g., an FTU) or to FTU counts.

Performance Metrics

Dice coefficient, or Sarensen—Dice index®!, is widely used to compare the pixel-wise
agreement between a predicted segmentation and its corresponding ground truth. The formula
is given by %, see Fig. 4. The Dice coefficient is defined to be 1 when both sets are
empty.

Mean Dice coefficient is the sum of all Dice coefficients (e.g., one for each image in the test
set) divided by the count of all numbers in the collection (e.g., the number of images in the test
set).

Recall, also referred to as sensitivity, measures the proportion of instances that were correctly

. . . . . TP
predicted compared to the sum of false negatives and true positives. It is defined as Tporw S€e
Fig. 4.
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Precision denotes the proportion of predictions that were correct and it is defined as I see

TP+FP’
Fig. 4.
Other performance metrics used by related work, see Supplementary Table 1 and 2:

F-measure/F-score/Fi-score: The F-measure, also called the F-score or Fi-score is the
. .. . 2xPrecisionxRecall
harmonic mean of Precision and Recall, defined as

Precision+Recall

Accuracy: Accuracy is the proportion of of correct predictions as defined by L L —
TP+TN+FP+FN
Matthews correlation coefficient: The Matthews correlation coefficient is used for binary

classifiers to provide a balanced measure of quality*. It is defined as
TP*TN—FP*FN

\(TP+FP)(TP+FN)(TN+FP)(TN+FN)’

Hausdorff Distance: The Hausdorff distance is a measure used to calculate how similar two
objects or images are to one another by calculating the distance between two sets of edge
points &2,

Jaccard index: The Jaccard index, also known as Intersection over Union (loU), is defined by

__ |AnB| _ |ANB| . .
J(A,B) = 40B| — TAITIE|—|anE]’ where A and B are the two objects being compared, e.g., GT

and PS in Fig. 4. It represents the proportion of area of overlap out of the area of union for the
two objects.

Segmentation Mask Analysis

Ground truth segmentation masks were provided as vector files (one polyline per FTU; many
FTUs per WSI). However, algorithm predictions are generated as run-length encodings—one
mask for all FTUs in each WSI. Some FTUs are adjacent, effectively merging multiple FTUs into
one; this makes it hard to count FTUs or to compute the Dice coefficient but also recall and
precision per FTU.

Manually, we added 647 lines to the 70 predicted kidney WSI segmentation masks (232 lines
for 50 kidney slides and 415 lines for 20 colon slides) to separate glued together FTUs. We then
converted pixel masks for each FTU into one polyline per FTU. Next, we calculated the Dice
coefficient for each segmented FTU (glomerulus or crypt) separately; assuming that a Dice
coefficient greater than 0.5 indicates that the FTU was correctly predicted, the set of true
positives. All FTUs with a Dice coefficient less than 0.5 are false positives (FP), while all ground
truth masks with no matching algorithm predictions are false negatives (FN). All results of Dice
coefficient, recall, and precision computations are provided in Supplementary Table 5.
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Supplementary table legends
All tables can be accessed at Supplementary Tables.

Supplementary table 1. Prior work on renal glomerulus segmentation. This table lists prior
work on renal glomerulus segmentation. For each published paper given in the Reference
column, we list model name (if applicable), algorithm type, tissue donor species, performance
metrics used, and scores achieved.
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Supplementary table 1. Prior work on renal glomerulus segmentation.

Model Algorithm
Name Type

Reference

Sheehan, S. M. & Korstanje, R. Automatic -
glomerular identification and quantification of
histological phenotypes using image analysis and
machine learning. Am. J. Physiol. - Ren. Physiol.

315, F1644-F1651 (2018).

Bukowy, J. D. et al. Region-Based Convolutional

Neural Nets for Localization of Glomeruli in
Trichrome-Stained Whole Kidney Sections. J. Am.
Soc. Nephrol. 29, 2081-2088 (2018).

Gallego, J. et al. Glomerulus Classification and

Detection Based on Convolutional Neural

Networks. J. Imaging 4, 20 (2018).
Govind, D., Ginley, B., Lutnick, B., Tomaszewski,

J. E. & Sarder, P. Glomerular detection and
segmentation from multimodal microscopy images
using a Butterworth band-pass filter. in Medical
Imaging 2018: Digital Pathology vol. 10581
1058114 (International Society for Optics and

Photonics, 2018).
Kannan, S. et al. Segmentation of Glomeruli

Within Trichrome Images Using Deep Learning.
Kidney Int. Rep. 4, 955-962 (2019).

Pedraza, A. et al. Glomerulus Classification with

Convolutional Neural Networks. in Medical Image
Understanding and Analysis (eds. Valdés
Hernandez, M. & Gonzalez-Castro, V.) 839-849
(Springer International Publishing, 2017). doi:

10.1007/978-3-319-60964-5_73.

Hermsen, M. et al. Deep Learning—Based -
Histopathologic Assessment of Kidney Tissue. J.
Am. Soc. Nephrol. 30, 1968—-1979 (2019).

Marsh, J. N. et al. Deep Learning Global -
Glomerulosclerosis in Transplant Kidney Frozen
Sections. IEEE Trans. Med. Imaging 37, 2718—

2728 (2018).

Species

llastik object Mouse

classifier

Faster
RCNN

AlexNet CNN

Butterworth
band-pass
filter

Google’s
Inception v3
CNN

Pre-trained

AlexNet CNN

U-net CNN

Pre-trained

VGG16 CNN

Rat

Human
Rat

Human

Human

Mouse

Human

Human

Human

Human

Performance

Metric(s)
Precision,

Recall,
F-measure

Precision,
Recall

Recall

Precision,
Recall

Precision,
Recall

F-measure

Accuracy,
Error,
F-measure,
Recall,
Specificity,
Precision

Specificity,
Recall,
F-measure,
Matthews
correlation
coefficient

F-measure

Dice coefficient

Precision,
Recall,
F-measure

Score(s)

0.984,
0.952,
0.960

0.523,
0.986

0.89

0.9694,
0.9679

0.802,
0.8167

0.937

0.8731,
0.13,
0.83,
0.95,
0.84,
0.74

0.999,
0.558,
0.623,
0.628

0.999

0.95

0.932,
0.962,
0.947
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Supplementary table 2. Prior work on colon crypts segmentation. This table lists prior work
on colon crypts segmentation. For each published paper given in the Reference column, we list

model name (if applicable), algorithm type, tissue donor species, performance metrics used,
and scores achieved.
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Supplementary table 2. Prior work on colon crypts segmentation.

Reference

Gunduz-Demir, C., Kandemir, M., Tosun, A. B.
& Sokmensuer, C. Automatic segmentation of
colon glands using object-graphs. Med. Image
Anal. 14, 1-12 (2010).

Cohen, A., Rivlin, E., Shimshoni, |. & Sabo, E.
Memory based active contour algorithm using
pixel-level classified images for colon crypt
segmentation. Comput. Med. Imaging Graph.
43, 150-164 (2015).

Chen, H., Qi, X., Yu, L. & Heng, P.-A. DCAN:
Deep Contour-Aware Networks for Accurate
Gland Segmentation. ArXiv160402677 Cs
(2018).

Kainz, P., Pfeiffer, M. & Urschler, M.
Segmentation and classification of colon
glands with deep convolutional neural networks
and total variation regularization. PeerdJ 5,
e3874 (2017). / Kainz, P., Pfeiffer, M. &
Urschler, M. Semantic Segmentation of Colon
Glands with Deep Convolutional Neural
Networks and Total Variation Segmentation.
ArXiv151106919 Cs (2017).

Banwari, A., Sengar, N., Dutta, M. K. &
Travieso, C. M. Automated segmentation of
colon gland using histology images. in 2016
Ninth International Conference on
Contemporary Computing (IC3) 1-5 (2016).
doi:10.1109/IC3.2016.7880223.

Li, W. et al. Gland segmentation in colon
histology images using hand-crafted features
and convolutional neural networks. in 2016
IEEE 13th International Symposium on
Biomedical Imaging (ISBI) 1405-1408 (2016).
doi:10.1109/1SB1.2016.7493530.

Sirinukunwattana, K., Snead, D. R. J. &
Rajpoot, N. M. A Stochastic Polygons Model
for Glandular Structures in Colon Histology
Images. |IEEE Trans. Med. Imaging 34, 2366—
2378 (2015).

Tang, J., Li, J. & Xu, X. Segnet-based gland
segmentation from colon cancer histology
images. in 2018 33rd Youth Academic Annual
Conference of Chinese Association of
Automation (YAC) 1078-1082 (2018). doi:
10.1109/YAC.2018.8406531.

Graham, S. et al. MILD-Net: Minimal
Information Loss Dilated Network for Gland
Instance Segmentation in Colon Histology
Images. Med. Image Anal. 52, 199-211 (2019).

Rathore, S. et al. Segmentation and Grade
Prediction of Colon Cancer Digital Pathology
Images Across Multiple Institutions. Cancers
11, 1700 (2019).

Model Name

“CUMedVision”
/DCAN

“vision4GlaS”

Stochastic
Polygons
Model

“Segnet”

“MILD-Net”

Algorithm
Type
Object-graph +
decision tree
classifier

Memory Based
Active Contour
Algorithm:
Pixel classifier
+ active
contour

Deep Contour-
Aware Network

Two deep
CNNs: pixel
classifier +
contour based

Intensity based
thresholding

Hand-crafted
Support Vector
Machine +
Alexnet CNN

Random
Polygons
Model (RPM)

CNN with
pixel-wise
classifier

CNN with MIL
unit

SVM

Subject
species

Human

Human

Human

Human

Human

Human

Human

Human

Human

Human

Performance
Metric(s)
Recall,
Specificity,
Accuracy,

Dice coefficient

Recall,
Accuracy,
F-measure

F-measure,
Dice coefficient,
Hausdorff
distance

Precision,
Recall,
F-measure,
Dice coefficient,
Hausdorff
distance

Accuracy

Jaccard index,
Dice coefficient

Jaccard index,
Dice coefficient,
Execution time
(seconds)

Dice coefficient,
Hausdorff
distance

F-measure,
Dice coefficient,
Hausdorff
distance

Accuracy,
Jaccard index,
Dice coefficient,
Recall,
Specificity,
F-measure

Score(s)

0.8580 + 0.671,
0.8914 + 0.1040,
0.8759 + 0.501,
0.8891 + 0.463

0.87,
0.96,
0.962

0.9116,
0.8974,
45.4182

0.67,
0.77,
0.68,
0.75,
103.49

0.9376

0.77 £0.11,
0.87 £ 0.08

0.74 £0.11,
0.82 +0.09,
206.4 £ 332.5

0.8636,
102.5729

0.844,
0.836,
105.89

0.8840,
0.89,
0.87,
0.92,
0.88,
0.89


https://doi.org/10.1101/2021.11.09.467810
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.09.467810; this version posted November 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary table 3. Kidney metadata. This table provides metadata for all 30 kidney WSI,
one per row. For each WSI, we assigned a running number ID that is also used in Fig. 1 and 3.
We provide corresponding HUBMAP sample and donor IDs, as well as the Kaggle IDs. We list
tissue preservation method (fresh frozen, FF; formalin fixed, paraffin embedded, FFPE), image
width and height in pixels, race (White, W; Black or African American, B), sex (male, M; female,
F), weight, height, BMI, age, laterality (right kidney, R; left kidney, L), tissue block vertical
location (y-position) according to Registration User Interface (RUI) registration. We also
computed the glomerulus annotation area in square microns and the approximate number of
glomeruli per square millimeter of kidney cortex.

Note that there is one patient with 4 tissue blocks in this dataset, 3 patients with 3 blocks, 5
patients who have 2, and the rest only have one. Of the 30 tissue blocks, 25 are from white
patients and 5 are from black or African American patients. The dataset is evenly divided
between Male/Female sources. All females sampled were white, but male samples were split
between white (10) and black or african american (5). None of the samples were associated
with a Hispanic or Latino ethnicity. All samples came from adults (minimum age 31 years old).
The average weight (85.9kg) lies between the average weights for females (77.47kg) and males
(90.63kg) in the United States®. The average height (170.35cm) also lies between the average
heights for females (161.29cm) and males (175.26¢cm) in the US®. The average BMI of the
dataset (29.61kg/m?) is between that given as the average for females (29.8kg/m?) and males
(29.4kg/m?) in the US®. Only 6 of the samples fell into the "Healthy weight" category (18.5—
24.9), and they originated from two patients. The other 24 samples were either in the
"Overweight" (25.0-29.9, 8 samples) or "Obese" (30 and above, 16 samples) categories. There
are no noticeable abnormalities when comparing weight and height between the sexes. Average
BMI was still above "healthy" (24.9) for each subset when sex was taken into account.
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Supplementary table 3. Kidney metadata.

Slide

0 N O A WN =

10
1"
12
13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

HuBMAP ID

HBM874.RZDW.757
HBM463.JRTB.582
HBM636.ZPTS.368
HBM324.ZGZM.874
HBM832.FQKR.463
HBM649.XFQG.775
HBM958.GHFM.676
HBM296.RLWW.755
HBM623.RPMC.638
HBM276.PGFS.693
HBM849.XMPC.398
HBM362.PTQJ.743
HBM673.JJRZ.435
HBM979.HDZH.896
HBM875.QHDJ.259
HBM344.LLLV.539
HBM627.RSGW.898
HBM227.THVC.544
HBM783.GJWP.694
HBM783.GDKK.879
HBM833.DBGG.252
HBM389.MBWW.346
HBM649.DLZF.463
HBM662.PMPZ.644
HBM879.CDHB.995
HBM984.PMZN.942
HBM264.XSVF.528
HBM676.SNVK.793
HBM636.GVWP.354
HBM725.PDDC.788

Donor ID

HBM679.GXQW.326
HBM938.LVRS 434

HBM938.LVRS.434

HBM485.HTBW.247
HBM485.HTBW.247
HBM485.HTBW.247
HBM938.LVRS.434

HBM485.HTBW.247
HBM455.HLHM.985
HBM769.HVDR.369
HBM455.HLHM.985
HBM758.JRSC.348

HBM633.KPHW.963
HBM769.HVDR.369
HBM547.NCQL.874
HBM429.BVWN.357
HBM226.XVDP.877

HBM226.XVDP.877

HBM368.WSHR.356
HBM522.WZBV.379
HBM322.KQBK.747
HBM745.MDSR.597
HBM322.KQBK.747
HBM322.KQBK.747
HBM745.MDSR.597
HBM525.JNPV.685

HBMG687.KPKM.763
HBM687.KPKM.763
HBM525.JNPV.685

HBM525.JNPV.685

Kaggle ID

095bf7atf
aa05346ff
b9a3865fc
e464d2féc
bacb03928
ff339c0b2
afa5e8098
a14e495cf
3589adb90
2f6ecfcdf
26dc41664
d488c759a
5274ef79a
57512b7f1
aaa6a05cc
5d8b53a68
00a67c839
0749c6ccc
0486052bb
1242528
2ec3f1bb9
e79de561¢c
1eb18739d
c68fe75ea
b2dc8411c
9e81e2693
4ef6695ce
8242609fa
cb2d976f4
54f2eec69

Tissue

Image

preservation width

method

FF
FF
FFPE
FFPE
FF
FFPE
FF
FFPE
FFPE
FFPE
FF
FF
FF
FF
FFPE
FF
FFPE
FFPE
FFPE
FF
FFPE
FF
FF
FF
FFPE
FF
FF
FFPE
FFPE
FF

39000
47340
40429
40816
22163
38912
43780
32768
22165
25794
42360
29020
18491
43160
13013
36732
28672
26624
34937
32220
47723
27020
33103
19780
31262
33100
50680
44066
49548
22240

(pixels) (pixels)

Image Race Sex Weight Height
height (kg) (cm)
38160 W F 7.7 160
30720 W F 59 160
31295 W F 59 160
50560 W F 91.6 165.1
23968 W F 91.6 165.1
48544 W F 91.6 165.1
36800 W F 59 160
62688 W F 91.6 165.1
29433 W F 713 167.6
31278 W F 93 157.4
38160 W F 71.3 167.6
46660 W F 81.5 158.8
22134 W F 74.6 162.6
33240 W F 93 1574
18484 W F 875 162.3
22153 W M 116.9 1829
30400 W M 96.6 175.3
30368 W M 96.6 175.3
25784 W M 106.1 180.3
26780 W M 1315 193
23990 W M 91.2 167.6
16180 B M 73 166
20329 W M 91.2 167.6
26840 W M 91.2 167.6
14844 B M 73 166
27642 B M 79.9 190.5
39960 W M 914 181.6
31299 W M 914 181.6
34940 B M 79.9 190.5
30440 B M 79.9 190.5

BMI Age

28

23

23
33.6
33.6
33.6

23
33.6
25.4
375
254
32.2
28.2
37.5
33.2
34.9
31.4
314
32.6
35.3
325
26.5
32.5
325
26.5

22
27.7
27.7

22

22

Laterality Tissue block
y-position in
3D reference

| e Y N e N e s e s B B s B « B « I e ol i i i - « B s B « B « B « B s B v R o

organ

11.08
11.69
13.70
13.93
14.11
14.28
16.35
20.31
5.91
9.58
10.81
11.15
12.42
18.72
99.49
9.75
14.02
14.18
14.33
18.05
50.70
51.24
54.63
56.86
57.83
61.97
134.43
136.11
138.44
138.91

Number
of
glomeruli

350
325
469
315
118
341
235
355
239
160
245
175

51
141

99
320

97
109
130
178
399
180
157
118
138
175
439
586
319
139

Average
glomerulus
area
(square
micron)

24855
29153
14081
22774
14096
22522
28262
20946
13868
12455
26441
20966
11891
24352
10835
14675
22860
22929
18331
26214
14134
22025
16385
27664
11058
25669
25405
13800
19704
25465

Approximate
number of
glomeruli per
square mm
cortex

2.39
2.06
4.22
1.96
2,74
2.34
1.63
2.29
4.93
3.27
257
2.08
1.92
1.59
4.52

3.2
1.16
1.55
2.51
1.89
2.85

2.6
249
0.92
4.05
235
1.97
3.55
2.79
2.63
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Supplementary table 4. Colon metadata. This table provides metadata for the seven colon
WSI. Four of these dataset were sampled from a male donor and three from a female donor.
For each WSI, we assigned a running number ID that is also used in Fig. 1. We provide

corresponding HUBMAP sample and donor IDs, and the Kaggle IDs. We list race (White, W;

Black or African American, B), sex (male, M; female, F), BMI, and age. We also computed the
average crypt annotation area in square microns.
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Supplementary table 4. Colon metadata.

Slides Sample Name
31 HandE_B005_CL_b_RGB_bottomleft
32 HandE_B005_CL_b_RGB_topleft
33 HandE_B005_CL_b_RGB_bottomright
34 CL_HandE_1234_topright
35 CL_HandE_1234_topleft
36 CL_HandE_1234_bottomleft
37 CL_HandE_1234_bottomright

HuBMAP ID
HBM438.JXJW.249
HBM353.NZVQ.793
HBM439.WJDV.974
HBM938.KMNW.825
HBM334.QWFV.953
HBM462.JKCN.863
HBM575.THQM.284

Patient Anatomical
Number Structure

B005 Transverse
B005 Descending
B005 Sigmoid
B004 Ascending
B004 Transverse

B004 Descending B

B004 Sigmoid

Race Sex BMI
w F 2324
w F 2324
w F 2324
B M  35.08
B M  35.08
M 35.08
B M  35.08

Age
24
24
24
78
78
78
78

Average crypt Average crypt Total number

annotation annotation of crypt

area (pixels) area (um”*2) annotations
18,428.90 13.90 38
27,295.50 20.60 30
13,674.90 10.30 37
18,092.40 13.70 40
22,689.40 17.10 N
20,269.80 15.30 118
41,300.10 31.20 35
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Supplementary table 5. Algorithm performance. This table lists DICE coefficients, false
negatives (FN), true positives (TP), and false positives (FP) of winning algorithms for individual
WSis in all three predicted datasets (10 WSI kidney in Kaggle reproduced task, 2 WSI colon in
transfer learning task (trained on kidney and colon; tested on colon), 2 WSI colon in from
scratch task (trained on colon; tested on colon). Threshold used for calculations is 0.5.
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Supplementary table 5. Algorithm performance.

Kaggle reproduced (kidney)

Ground truth |Tom Gleb Whats goin on DeepLive.exe Deepflash2 DICE accross 5 models

Slide HuBMAP ID #FTUs DICE FN TP FP|DICE FN TP FP|DICE FN TP FP|DICE FN TP FP|DICE FN TP FP DICE
4 HBM324.ZGZM.874 315| 097 1 314 4| 097 2 313 4| 097 1314 4| 097 1314 6| 096 0 315 9 0.97
5 HBM649.DLZF.463 157| 095 3 154 3| 095 5 152 5| 095 3 154 6| 095 3 154 5[ 095 2 155 8 0.95
6 HBM296.RLWW.755 355| 097 2353 2| 097 4351 6| 097 3352 7| 097 1354 5/ 096 1354 7 0.97
8 HBM649.XFQG.775 341 097 7 334 4| 097 7 334 4| 097 7 334 5/ 097 7 334 7| 096 2 339 8 0.97
13 HBM673.JJRZ.435 511 093 2 49 2| 093 2 49 2| 093 1 50 2 092 1 50 4| 092 0 51 4 0.93
16 HBM344.LLLV.539 320| 093 9 311 14| 0.93 16 304 31| 0.93 16 304 18| 0.93 7 313 23| 0.93 11 309 21 0.93
17 HBM627.RSGW.898 97 094 2 95 5/ 095 1 96 4| 095 2 95 4| 095 2 95 5|/ 094 1 96 8 0.95
18 HBM227.THVC.544 109 096 1 108 2| 096 4 105 3| 096 3 106 2( 096 1 108 3| 096 1 108 3 0.96
23 HBM832.FQKR.463 118 093 4 114 5| 093 4 114 5| 094 2 116 7| 094 1 117 7| 093 5 113 5 0.93
26 HBM984.PMZN.942 175 096 5 170 2| 094 10 165 5| 095 9 166 3| 095 6 169 7| 095 4 171 8 0.95

Transfer learning (trained on kidney & colon, tested on colon)

Ground truth |Tom Gleb Whats goin on DeepLive.exe Deepflash2 DICE accross 5 models

Slide HuBMAP ID #FTUs DICE FN TP FP|DICE FN TP FP|DICE FN TP FP|DICE FN TP FP|DICE FN TP FP DICE
31 HBM438.JXJW.249 36| 0.83 2 34 12| 0.76 10 26 8| 075 2 34 16| 082 2 34 10| 0.65 11 25 29 0.76
36 HBM462.JKCN.863 124| 093 7 117 5| 091 10 114 2| 0.89 5 119 11| 093 6 118 9| 0.78 25 99 46 0.89

From scratch (trained on colon, tested on colon)

Ground truth |Tom Gleb Whats goin on DeepLive.exe Deepflash2 DICE accross 5 models

Slide HuBMAP ID #FTUs DICE FN TP FP|DICE FN TP FP|DICE FN TP FP|DICE FN TP FP|DICE FN TP FP DICE
31 HBM438.JXJW.249 36| 082 1 35 15/ 0.75 10 26 7| 071 3 33 18| 085 1 35 12| 0.75 4 32 21 0.78
36 HBM462.JKCN.863 124| 093 6 118 10 0.90 15 109 6| 0.88 3 121 11| 094 6 118 3| 086 9 115 11 0.90



https://doi.org/10.1101/2021.11.09.467810
http://creativecommons.org/licenses/by/4.0/

	Authors
	Abstract
	Introduction
	Results
	Data Preparation
	Algorithm Comparison
	Characterizing Human Diversity

	Discussion
	Methods
	Datasets
	Renal glomeruli data
	Colonic crypts data
	Spatial location in human body
	Computation of FTU density
	Postprocessing of prediction masks

	Kidney glomerulus segmentation prior work
	Colon crypt segmentation prior work
	Competition design
	Transfer learning
	Algorithms
	Tom
	Gleb
	Whats goin on
	DeepLive.exe
	Deepflash2

	Performance Metrics Terminology
	Performance Metrics
	Segmentation Mask Analysis

	References
	Acknowledgements
	Author contributions
	Competing interests
	Data availability
	Code availability
	Supplementary table legends

