

1 Posterior integration and thalamo-frontotemporal 2 broadcasting are impaired in disorders of consciousness

3 Rajanikant Panda^{1,2*}, Ane López-González^{3*}, Matthieu Gilson^{3,4}, Olivia Gosseries^{1,2}, Aurore
4 Thibaut^{1,2}, Gianluca Frasso⁵, Benedetta Cecconi^{1,2}, Anira Escrichs³, Gustavo Deco^{3,6,7,8}, Steven
5 Laureys^{1,2,9}, Gorka Zamora-López^{3#}, Jitka Annen^{1,2#}

6 **Author affiliations:**

7 ¹Coma Science Group, GIGA-Consciousness, University of Liege, Liege - 4000, Belgium

8 ²Centre du Cerveau², University Hospital of Liege, Liege - 4000, Belgium

9 ³Computational Neuroscience Group, Center for Brain and Cognition, Department of Information
10 and Communication Technologies, Pompeu Fabra University, Barcelona - 08002, Spain.

11 ⁴Institut des Neurosciences des Systèmes, INSERM-AMU, Marseille, France.

12 ⁵Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB, Wageningen, Netherlands

13 ⁶Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona - 08010, Spain.

14 ⁷Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences,
15 Leipzig - 04103, Germany.

16 ⁸School of Psychological Sciences, Monash University, Melbourne, Clayton VIC 3800, Australia.

17 ⁹CERVO Research Center, Laval University, Québec, QC G1E 1T2, Canada

18 *These Author Contributed Equally

19 #These authors share supervision

20 **Corresponding author:**

21 Jitka Annen

22 Coma Science Group, GIGA-Consciousness, University of Liege, Liège - 4000, Belgium

23 Email: Jitka.Annen@gmail.com

24 Gorka Zamora-López

25 Computational Neuroscience Group, Center for Brain and Cognition, Pompeu Fabra
26 University, Barcelona - 08002, Spain.

27 Email: gorka@zamora-lopez.xyz

28 **Running title:** Integration-broadcasting impaired in DoC

29 **Abstract:**

30 The study of the brain's static and dynamical activity is opening a valuable source of assistance
31 for the clinical assessment of patients with disorders of consciousness. For example, glucose
32 uptake and dysfunctional spread of naturalistic and synthetic stimuli has proven useful to
33 characterize hampered consciousness. However, understanding of the mechanisms behind loss of
34 consciousness following brain injury is still missing. Here, we study the propagation of
35 endogenous and *in-silico* exogenous perturbations in patients with disorders of consciousness,
36 based upon directed and causal interactions estimated from resting-state fMRI. We found that
37 patients with disorders of consciousness suffer decreased capacity for neural propagation and
38 responsiveness to events, and that this can be related to glucose metabolism as measured with
39 [¹⁸F]FDG-PET. In particular, we show that loss of consciousness is related to the malfunctioning
40 of two neural circuits: the posterior cortical regions failing to convey information, in conjunction
41 with reduced broadcasting of information from subcortical, temporal, parietal and frontal regions.
42 These results shed light on the mechanisms behind disorders of consciousness, triangulating
43 network function with basic measures of brain integrity and behavior.

44

45 **Keywords:** disorders of consciousness, *in-silico* exogenous perturbations, integration of
46 information, broadcasting of information,

47

48 **Highlights:**

49 1. Propagation of neural events and network responses are disrupted in patients with DoC.
50 2. Loss of consciousness is related to the malfunctioning of two neural circuits.
51 3. Posterior cortical regions lack to integrate information in altered consciousness.
52 4. Breakdown of information broadcasting of subcortical cortical areas in DoC.
53 5. Loss of network responses in DoC patients is related to glucose metabolism.

54

55 **Abbreviations:** BOLD = Blood oxygenation level dependent; [¹⁸F]FDG-PET = Fluoro-
56 deoxyglucose Positron Emission Tomography or glucose PET; fMRI = functional MRI; CRS-R =
57 Coma Recovery Scale-Revised; DoC = Disorders of consciousness; HC = Healthy control; MCS
58 = Minimally conscious state; UWS = Unresponsive wakefulness syndrome; PCC = Posterior
59 cingulate cortex; SC = structural connectivity; EC = effective connectivity; τ = Relaxation time
60 constants; MOU = multivariate Ornstein-Uhlenbeck.

61

62 1. Introduction

63 Consciousness is a subjective experience. Internally perceived as the personal experience of
64 “*what is it like, to be you*”, the definition of consciousness and its origin are still a matter of
65 scientific and philosophical debates without consensus (Damasio and Meyer, 2009; Nagel, 1974;
66 Tononi, 2004; Tononi et al., 2016). Within the clinical context, however, practitioners treating
67 patients with severe brain injuries and disorders of consciousness (DoC) face the daily reality to
68 help their patients in the best possible manner, regardless of the exact definition of consciousness.
69 For that, it is important to better understand the mechanisms behind pathological loss of
70 consciousness and its recovery, and to count with tangible correlates that accurately assess the
71 state of the patients. The introduction of neuroimaging proxies can thus help improving both
72 diagnosis and decision making (Owen and Coleman, 2008).

73 Behavioral assessment such as the response to sensory stimuli, pain or simple commands is
74 the first line of action taken at bedside to evaluate patients. From this perspective, it has proven
75 useful to characterize consciousness based upon two components: wakefulness (the level of
76 arousal) and awareness (the content of consciousness) (Demertzi et al., 2015; Laureys, 2005).
77 Patients with severe brain injury can fall into a coma, which is characterized by the absence of
78 both wakefulness and awareness. Patients surviving coma often recover signs of wakefulness, i.e.,
79 eye opening, but without manifestation of awareness of the self nor of the environment. Such state
80 is known as the unresponsive wakefulness syndrome (UWS) (Laureys, 2005). Some of these
81 patients gradually regain awareness and progress into the so-called minimally conscious state
82 (MCS), showing a wider range of non-reflexive behaviors such as visual pursuit, localization to
83 pain or response to simple commands, although their ability to functionally communicate remains

84 hampered (Laureys et al., 2004). While behavioral assessment is the gold standard approach for
85 diagnosis of DoC patients, recently the use of glucose PET (i.e., [¹⁸F]FDG-PET) has proven
86 valuable to enhance the accuracy of the diagnosis further (Thibaut et al., 2021). Along these lines,
87 the value of auxiliary assessments such as neuroimaging proxies are indicated to refine diagnosis,
88 (Giacino et al., 2018; Kondziella et al., 2020) and specially to gain understanding of the
89 mechanisms behind the loss and the recovery of consciousness that might form the foundation for
90 the development of new treatments.

91 An upcoming approach to assess brain states relies on the analysis of the brain's dynamical
92 activity. It is well-known that neural activity is characterized by different frequency bands across
93 sleep stages (Armitage, 1995) or cognitive circumstances, and that local field potentials display
94 intercalated epochs of bursting activity followed by silent periods during anesthesia (Silva et al.,
95 2010). Recent studies have shown that loss of consciousness leads to reduced spontaneous neural
96 activity (Wenzel et al., 2019) and that functional connectivity between brain or cortical regions is
97 also significantly reduced (Barttfeld et al., 2014; Demertzi et al., 2015; Thibaut et al., 2021).
98 Moreover, the fluctuating patterns of functional connectivity are altered during reduced
99 consciousness, with shorter life-times and more random transitions between the patterns as
100 observed in normal awake (Barttfeld et al., 2014; Demertzi et al., 2019; López-González et al.,
101 2021; Luppi et al., 2019).

102 Observing how external perturbations propagate through the brain constitutes an indirect
103 window to probe brain dynamics, and thus its mechanism, in different states. For example, natural
104 audio-visual stimuli presented to subjects undergoing general anesthesia or within deep sleep are
105 still processed in the sensory cortices but fail to integrate at the higher level cortical regions (Krom
106 et al., 2020; Portas et al., 2000). Application of artificial perturbations such as transcranial
107 magnetic stimulation triggers a response of the stimulated regions that is comparable across
108 conditions, but a rapid decline in the propagation of the signals is found during deep sleep,
109 anesthesia or patients with DoC (Casali et al., 2013; Massimini et al., 2005). These observations
110 have been successfully employed to classify the level of consciousness both in patients and during
111 anesthesia (Casali et al., 2013). However, as the procedure focuses on the description of the whole-
112 brain responses by a single number – the perturbational complexity index – it misses the
113 directionality of the evoked causal interactions. These causal interactions have been demonstrated

114 to be sensitive to different states of consciousness and moreover to hold explanatory power with
115 respect to their neural mechanisms (Seth et al., 2011; Signorelli et al., 2021).

116 In the present paper, we investigate the capacity of both endogenous and exogenous events to
117 propagate along the brain in patients with DoC as compared to normal wakefulness. By use of
118 model-free and model-based analysis methods, all relevant information to characterize the
119 potential of stimuli to propagate is extracted from the resting-state activity, as measured via
120 functional MRI. Thus, bypassing the need to carry out clinical stimulation protocols. First, we
121 studied how spontaneous endogenous events observed within the resting-state blood oxygenation
122 level dependent (BOLD) signals propagate and are subsequently integrated (Deco and
123 Krriegelbach, 2017). We found that the autocovariance relaxation times of the BOLD signals
124 exhibit a spatial distribution in healthy controls which was disrupted in the patients, especially in
125 the UWS group, followed by a significantly reduced capacity to integrate endogenous events.
126 Then, we employed a model-based approach to estimate the pair-wise effective connectivity
127 between brain regions (Adhikari et al., 2021; Gilson et al., 2019, 2016). Since effective
128 connectivity captures the directional causal relations, we could simulate the asymmetrical
129 propagation of exogenous perturbations on the network in order to identify feedforward and
130 backward effective pathways, and to recognize changes in the ability of brain areas to ‘broadcast’
131 or to ‘receive’ information. In particular, we found two well-differentiated subnetworks with
132 altered propagation properties in the patients. The posterior regions of the cortex fail to convey
133 information, while broadcasting of information is reduced in subcortical, temporal, parietal and
134 frontal regions. These results are in line with the decrease in cerebral glucose metabolism as
135 measured with [¹⁸F]FDG-PET and evidence that the brain activity in patients with prolonged
136 disorders of consciousness lack of the sufficient capacity for the propagation and the subsequent
137 integration of events, which are necessary conditions for conscious perception.

138

139 **2. Materials and methods**

140 **2.1. Participants**

141 We included subjects with a pathological reduction or loss of consciousness after severe brain
142 injury, so called disorders of consciousness (DoCs), as well as healthy control (HC) volunteers.
143 Written informed consent was obtained from all HC participants and the legal representative of
144 DoC patients for participation in the study. The local ethics committee from the University
145 Hospital of Liège (Belgium) approved the study. This study includes 40 adult DoC patients, of
146 which 26 were diagnosed in the minimally conscious state (MCS) (7 females, age range 23-73
147 years; mean age \pm SD, 41 ± 13 years) and 14 were diagnosed with the unresponsive wakefulness
148 syndrome (UWS) (7 females, age range 20-74 years; mean age \pm SD, 49 ± 16 years). Besides 33
149 age and gender matched healthy controls (HC) (13 females, age range 19-72 years; mean age \pm
150 SD, 40 ± 14 years) without premorbid neurological problems were included. The diagnosis of the
151 DoC patients was confirmed through two gold standard approaches. The first is the repeated
152 behavioral assessment using the Coma Recovery Scale-Revised (CRS-R) by trained clinicians and
153 second, using Fluoro-deoxyglucose Positron Emission Tomography (FDG-PET) neuroimaging as
154 an objective test to complement behavioral assessment according to the procedure described by
155 Stender et al (Stender et al., 2014). Patients were behaviorally diagnosed through the best of at
156 least 5 CRS-R assessments evaluating auditory, visual, motor, oromotor function, communication
157 and arousal (Giacino et al., 2004). Patients for whom these two diagnostic approaches disagreed
158 were excluded from further analysis. Disorders of consciousness occur for a variety of reasons
159 (etiology). Among the 40 patients 17 suffered from anoxia causing widespread neural death and
160 22 of traumatic brain injuries (TBI), that also includes patients with hemorrhagic stroke and
161 cerebral vascular accident (CVA) leading to more focal lesions. Among the patients diagnosed
162 with UWS, 11 suffered anoxia and 3 TBI whereas the MCS group consists of 6 patients with anoxia
163 and 19 with TBI. Patient specific clinical information is presented in Supplementary Table 1.

164 **2.2. MRI Data Acquisition**

165 Structural (T1 and Diffusion Weighted Imaging, DWI) and functional MRI (fMRI) data was
166 acquired on a Siemens 3T Trio scanner. The 3D T1-weighted MP-RAGE images (120 transversal

167 slices, repetition time = 2300 ms, voxel size = 1.0 x 1.0 x 1.2 mm³, flip angle = 9°, field of view =
168 256 x 256 mm²) were acquired prior the 10 minutes of BOLD fMRI resting state (i.e., task free)
169 acquisition (EPI, gradient echo, volumes = 300, repetition time = 2000 ms, echo time = 30 ms, flip
170 angle = 78°, voxel size = 3 x 3 x 3 mm³, field of view = 192x192 mm², 32 transversal slices). Last,
171 diffusion weighted MRI was acquired in 64 directions (b-value =1,000 s/mm², voxel size =
172 1.8x1.8x3.3 mm³, field of view 230x230 mm², repetition time 5,700 ms, echo time 87 ms, 45
173 transverse slices, 128x128 voxel matrix) preceded by a single unweighted image(b0).

174 **2.3. MRI Data Analysis**

175 **2.3.1. MRI data preprocessing**

176 Preprocessing was performed using MELODIC (Multivariate Exploratory Linear Optimized
177 Decomposition into Independent Components) version 3.14, which is part of FMRIB's Software
178 Library (FSL, <http://fsl.fmrib.ox.ac.uk/fsl>). The preprocessing consisted of the following steps: the
179 first five functional images were discarded to reduce scanner inhomogeneity, motion correction
180 was performed using MCFLIRT, non-brain tissue was removed using BET, intensity was
181 normalized, temporal band-pass filtering with sigma 100 sec was performed, spatial smoothing
182 was applied using a 5mm FWHM Gaussian kernel, rigid-body registration and single-session ICA
183 with automatic dimensionality. Then noise components and lesion-driven artifacts (e.g., head
184 movement, metal, and physiological noise artifacts) were manually regressed out for each subject.
185 Specifically, FSLeys in Melodic mode was used to identify the single-subject Independent
186 Components (ICs) into "good" for cerebral signal, "bad" for noise or injury-driven artifacts, and
187 "unknown" for ambiguous components. Each component was evaluated based on the spatial map,
188 the time series, and the temporal power spectrum (Griffanti et al., 2017). FIX was applied with
189 default parameters to remove bad and lesion-driven artifacts components (Griffanti et al., 2017).
190 Subsequently, the Shen et al (2015) functional resting state atlas (without cerebellum) was used
191 for parcellation to obtain the BOLD time series of the 214 cortical and subcortical brain areas in
192 each individual's native EPI space (Finn et al., 2015). The cleaned functional data were co-
193 registered to the T1-weighted structural image using FLIRT. Then, the T1-weighted image was
194 co-registered to the standard MNI space by using FLIRT (12 DOF), and FNIRT. This
195 transformation matrix was inverted and applied to warp the resting-state atlas from MNI space to

196 the single-subject functional data. Finally, the time series for each of the 214 brain areas were
197 extracted using custom-made Matlab scripts using ‘fslmaths’ and ‘fslmeans’.

198 **2.3.2. Structural Connectivity Matrix**

199 We computed an average whole-brain structural connectivity matrix from all healthy participants
200 as described in our previous study (López-González et al., 2021). Briefly, the b0 image in native
201 diffusion space was co-registered to the T1 structural image using FLIRT. Next, the T1 structural
202 image was co-registered to the MNI space by using FLIRT and FNIRT. The resulting transformations
203 were inverted and applied to warp the resting-state atlas from MNI space to the native diffusion
204 space using a nearest-neighbor interpolation method. Then, analysis of diffusion images was
205 performed using the FMRIB’s Diffusion Toolbox (FDT) www.fmrib.ox.ac.uk/fsl. The structural
206 connectivity (SC) mask was obtained by averaging the all HC subjects’ SC matrix and applying a
207 threshold of 80% to maintain the top 20% of strongest connections to binarize the SC. This SC
208 mask was used to constrain the functional connectivity matrix for the whole brain EC computation.

209 **2.3.3. Phase-locking matrices**

210 The instantaneous level of pairwise synchronization was calculated by the phase-locking value
211 between two brain regions. First, the BOLD signals were filtered within a narrowband of 0.01-
212 0.09 Hz. Then the instantaneous phases $\phi_k(t)$ were computed using the Hilbert transform for each
213 BOLD signal individually. This yields the associated analytical signal which represents a
214 narrowband signal $s(t)$ in the time domain as a rotating vector with an instantaneous phase $\phi(t)$
215 and an instantaneous amplitude, $A(t)$. That is, $s(t) = A(t)\cos(\phi(t))$. Given the instantaneous phases
216 $\phi_j(t)$ and $\phi_k(t)$ calculated two brain regions from their corresponding BOLD signals, the pairwise
217 synchronization $P_{jk}(t)$ was defined as the cosine similarity of the two phases:

218
$$P_{jk}(t) = \cos(|\phi_j(t) - \phi_k(t)|)$$

219 Thus, $P_{jk}(t) = 1$ when the two regions are in phase, $P_{jk}(t) = 0$ when they are orthogonal and $P_{jk}(t)$
220 = -1 when they are in anti-phase (Deco et al., 2017; Ponce-Alvarez et al., 2015).

221 **2.3.4. Intrinsic Ignition**

222 Intrinsic ignition describes the influence of local endogenous events – spontaneously occurring –
223 over the whole-brain network and their subsequent integration (Deco and Kringelbach, 2017). See
224 Deco et al. (2017) for details (Deco and Kringelbach, 2017). Local events are defined as
225 significantly large fluctuations taking place in the resting-state BOLD signals. First, the BOLD
226 signals were transformed into z -scores, $Z_i(t)$, and binarized by imposing a threshold θ such that
227 the binary signal takes value 1 if $Z_i(t) > \theta$ and 0 otherwise. Here we considered $\theta = 2$ standard
228 deviation (SD). For every endogenous event identified, we calculated the subsequent integration
229 of the event by the network. The integration is assessed using the connectivity out of the phase-
230 locking matrix (Deco et al., 2017; Deco and Kringelbach, 2017). Phase-locking matrices account
231 for the instantaneous level of pairwise synchronization, see below. Integration is then calculated
232 as the area-under-the curve delimited by the size of the largest component in the binarized phase-
233 locking matrix, for all thresholds from 1 to 0 (Adhikari et al., 2017; Deco et al., 2015). The mean
234 intrinsic ignition is finally calculated as the average integration in a time window of 4 TR triggered
235 by all events occurring in the resting-state BOLD for a subject (Deco and Kringelbach, 2017).
236 Higher values of intrinsic ignition correspond to rich and flexible brain dynamics whereas lower
237 values correspond to poor and rigid, structurally driven brain dynamics.

238 It shall be noted that the analysis of the intrinsic ignition was performed for different thresholds,
239 from 0.5 to 2.5 SD. For ≥ 2.5 SD some subjects displayed no events in some of the brain regions,
240 therefore we could not analyze the intrinsic ignition for ≥ 2.5 SD.

241 **2.3.5. Relaxation time constants (τ)**

242 In order to obtain information about the operating regime of brain regions, we measured the
243 relaxation time constant τ from the BOLD signals. Specifically, we measured the time constant of
244 the autocovariance for each brain region individually, using time shifts from 0 to 1 TRs. Given
245 that \hat{Q}_{ij}^0 and \hat{Q}_{ij}^1 are the zero-lag and 1TR-lag covariance matrices from the empirical BOLD, the
246 time constants τ_i are calculated as:

247
$$\tau_i = -\frac{1}{a(v_i|u)},$$

248 where $a(v_i|u)$ corresponds to the slope of the linear regression of $v_i = [\log(Q_{ij}^0), Q_{ij}^1]$ by $u=[0,1]$.
249 Apart from the information extracted out of the regional time constants, the calculated τ_i were also
250 employed to inform the estimation of effective connectivity (Gilson et al., 2019).

251 **2.3.6. Estimation of effective connectivity**

252 We estimated whole-brain effective connectivity from the resting-state BOLD signals considering
253 the multivariate Ornstein-Uhlenbeck (MOU) process as the generative dynamical model of the
254 BOLD (Adhikari et al., 2021; Gilson et al., 2016). See Gilson et al (2016) for details (Gilson et al.,
255 2016). The MOU is a model of Gaussian noise diffusion on a network that has been popular to
256 study the relation between the anatomical connectivity and the whole-brain network dynamics
257 (Gilson et al., 2016). Given a structural connectivity matrix \mathbf{A} , the MOU is defined as:

258
$$dx_i = \left(-\frac{x_i}{\tau_i} + A_{ij}x_j \right) dt + dB_i,$$

259 where x_i corresponds to the activity (BOLD signal) of a brain region i , τ_i is the time constant
260 characterizing the exponential decay and dB is a colored noise given by a covariance matrix Σ .

261 The zero-lag Q^0 and 1TR-lag Q^1 covariance matrices of this model can be analytically calculated.
262 The model is thus fitted to empirical data by a Lyapunov optimization procedure such that the
263 distance between the empirical and the estimated Q^0 and Q^1 covariances is minimized (Gilson et
264 al., 2016). The optimization process was initialized considering \mathbf{A} as the binarized structural
265 connectivity matrix in order to restrict the optimization to links identified via diffusion imaging.
266 The estimations were performed using the pyMOU python package.

267 **2.3.7. *In-silico* exogenous perturbational analysis**

268 Considering the MOU as the generative dynamical model for the diffusion of noise in a network,
269 the network responses to local perturbations can be analytically estimated; see Gilson et al. (2019)
270 (Gilson et al., 2019). In particular, we characterize the Green function of the MOU for a given
271 connectivity matrix \mathbf{A} . The Green function describes the temporal network responses at times $t >$
272 0, due to a unit perturbation applied at a given brain region i at time $t = 0$. For the MOU process,
273 the spatiotemporal responses are given by:

274
$$R(t) = \|J^0\|(e^{Jt} - e^{J^0 t}),$$

275 where J is the Jacobian of the MOU process, $J_{ij} = \frac{-\delta_i}{\tau} + A_{ij}$ and $J_{ij}^0 = \frac{-\delta_{ij}}{\tau}$ is the Jacobian
276 associated to the leakage term alone, characterising the decay rate of the system. $\|J^0\|$ is a
277 normalization term to make analysis across networks comparable. The response matrices
278 $R(t)$ encode the spatio-temporal responses to nodal perturbations. In other words, a pair-wise
279 element $R_{ij}(t)$ represents the temporal response of area j to a unit perturbation applied on area i at
280 time $t = 0$. This conditional, pair-wise response encompasses all network effects from i to j acting
281 at different time scales. Note that in Ref. Gilson et al., (2019) (Gilson et al., 2019) the network
282 responses $R(t)$ were referred to as ‘dynamic communicability $C(t)$ ’. Here we adopted a
283 nomenclature that is clearer and conceptually more precise in order to facilitate the interpretation
284 of results.

285 As in Ref. Gilson et al. (2019), (Gilson et al., 2019) in the present study, the connectivity matrices
286 \mathbf{A} are the effective connectivity matrices previously estimated for each subject. Hence, the
287 propagation of responses to exogenous perturbations are constrained by the strength of the
288 directed, causal interactions between every pair of brain regions.

289 The global network response $r(t)$ is the sum of all pairwise responses at each time point:

290
$$r(t) = \sum_{i,j=1}^N R_{ij}(t),$$

291 accounting for the total excitability of a network to exogenous perturbation.

292 Since effective connectivity estimates the directed, causal pairwise interactions between brain
293 regions, and the response matrices $R(t)$ are constrained upon effective connectivity, $R(t)$ account
294 for the asymmetric interactions between brain regions. The broadcasting capacity of a region i is
295 calculated as the sum of all responses exerted by region i on the rest of brain areas, and the
296 receiving or integration capacity is given by the sum of responses elicited on region i , by the
297 perturbations at all areas. That is, the broadcasting and receiving capacities of a node are calculated
298 as the row and column sum of the response matrices $R(t)$ at each time point t :

299 Broadcasting capacity: $r_i^+(t) = \sum_{j=1}^N R_{ij}(t)$, and

300 Receiving capacity: $r_i^-(t) = \sum_{j=1}^N R_{ij}(t)$.

301 Note that in Refs. Gilson et al. (2019) (Gilson et al., 2019) the broadcasting and receiving
302 capacities are referred to as out-communicability and in-communicability respectively.

303 **2.3.8. Metabolic index using [¹⁸F]FDG-PET**

304 Alongside the MRI analyses, we have estimated the cerebral glucose metabolism by means of
305 the metabolic index for the best-preserved hemisphere (MIBH) using [¹⁸F]FDG-PET, that shows
306 high accuracy to discriminate UWS and MCS patients. Behavioral assessment such as the response
307 to sensory stimuli, pain or simple commands is the first line of action taken at bedside to evaluate
308 patients. From this perspective, it has proven useful to characterize consciousness based upon two
309 components: wakefulness (the level of arousal) and awareness (the content of consciousness)
310 (Demertzi et al., 2015; Laureys, 2005). Patients with severe brain injury can fall into a coma, which
311 is characterized by the absence of both wakefulness and awareness. Patients surviving coma often
312 recover signs of wakefulness, i.e., eye opening, but without manifestation of awareness of the self
313 nor of the environment. Such state is known as the unresponsive wakefulness syndrome (UWS).
314 To this end, data acquisition was performed as described elsewhere (e.g., Annen et al (2015)
315 (Annen et al., 2016)). The following steps were followed to calculate MIBH (Stender et al., 2016,
316 2015). First, we created the patient-specific template for the patients (by taking all DoC patients)
317 and control groups using the procedure described by Phillips and colleagues (Phillips et al., 2011).
318 Then individual images were registered to the appropriate template (for patients or healthy
319 controls) with affine and non-linear registration steps using Advanced Normalization Tools (ANTs
320 version 2.0.3). Images were then segmented into the left cortex, right cortex, extracerebral tissue
321 and normalized based on the metabolism of the extracerebral tissue as described by Stender and
322 colleagues (Stender et al., 2016). Last, metabolic activity was scaled by setting the mean activity
323 of extracerebral regions to an index value of 1 (all values are comprised from 0 to 1). The MIBH
324 was then computed as the highest mean metabolic activity out of the two hemispheres (Stender et
325 al., 2016). We computed differences in the MIBH between UWS and MCS groups using a two-
326 sample t-test. Finally, we correlate the MIBH values with the DoC patients' network response (i.e.,
327 of regions with alterations as compared to healthy controls) using Pearson correlation (considered
328 significant at $p < 0.05$) to explore if the $\mathbf{R}(t)$ response is grounded by neurobiological underpinnings.

329 **2.3.9. Statistical analyses**

330 For the model free measures, two-sample t-tests were used to assess group differences in global
331 Intrinsic Ignition and relaxation time constant τ at the whole brain level (Bonferroni correction for
332 3 groups). Specifically, we investigated local between group differences in regional relaxation time
333 constant τ using two-sample t-tests with Bonferroni correction ($p < 0.05$) accounting for the number
334 of regions (i.e., $N = 214$). Then, we assessed between group differences for the EC links using
335 two-sample t-tests with Bonferroni correction ($p < 0.05$) accounting for 20 % of the number of the
336 structural links between the brain regions (i.e., 9116 links).

337 For the model based measures, we assessed between group differences in whole-brain total (i.e.,
338 receiving and broadcasting) network response. The whole brain network response was calculated
339 as the average network response across all the brain regions. An ANOVA with Tukey post hoc
340 comparison, Bonferroni corrected for 200 timepoints of integration, was employed. Before
341 assessing the local broadcasting and receiving differences, we first evaluated the effect of etiology
342 (anoxia and TBI) versus diagnosis (UWS and MCS) for whole brain early peak responses (i.e., the
343 maximum amplitude of the whole brain network response curve) and late whole brain network
344 responses (i.e., from integration time 60-200 sec (modeled time), based on the findings of the
345 ANOVA described above) using a linear regression model as implemented in MATLAB (i.e., fitlm
346 function). Both the mean effects for diagnosis and etiology were considered as well as their
347 interaction. Regional modulation of communicability was evaluated only for factors with a
348 significant main effect on global communicability.

349 To investigate local broadcasting and receiving properties, we considered the area under the
350 receiving and broadcasting curves (i.e., from integration time 60-200 sec modeled time) separately
351 for every brain region. We identified regions with relatively high difference in network responses
352 within groups (i.e., HC, UWS and MCS separately) with a one-sample t-test with Bonferroni
353 correction ($p < 0.05$) accounting for the number of regions (i.e., $N = 214$). We identified the regional
354 dominance for broadcasting and receiving by subtracting the AUCs for the regional receiving from
355 the broadcasting curves and performed a within-group t-test to identify regions with specific
356 functional specialization (considered significant at $p < 0.05$ Bonferroni corrected for $N = 214$). Last,
357 between group differences in regional receiving and broadcasting information were assessed with

358 two-sample t-tests with Bonferroni correction (p<0.05) accounting for the number of regions (i.e.,
359 N = 214).

360 We computed differences in the MIBH between UWS and MCS groups using a two-sample t-test.
361 Finally, we correlate the MIBH values with the DoC patients' network response (i.e., of regions
362 with alterations as compared to healthy controls) using Pearson correlation (considered significant
363 at p<0.05) to explore if the computational the network response is grounded by neurobiological
364 underpinnings.

365 **2.3.10. Data Availability**

366 Phase interaction matrices for the fMRI connectivity are available at:
367 <https://search.kg.ebrains.eu/instances/Dataset/775c7858-2305-4a56-8bd6-865c4ab5dd4f>. After
368 the acceptance of the manuscript, the code used for this study will be available at:
369 https://github.com/RajanikantPanda/Ignition_and_Information_flow_for_DOC

370

371 **3. Results**

372 This study comprises resting-state fMRI (eyes-closed) of 33 healthy control (HC) subjects, 14
373 patients with unresponsive wakefulness syndrome (UWS) and 26 patients classified as in
374 minimally conscious state (MCS). The diagnoses were made using repeated CRS-R assessments
375 and confirmed with FDG-PET neuroimaging (Stender et al., 2014) to avoid including MCS*
376 patients (Thibaut et al., 2021).

377 **3.1. Global integration of local endogenous events is hampered 378 in lower conscious states**

379 We started this study by investigating whether endogenous spontaneous events occurring locally
380 propagate differently depending on the level of consciousness, across healthy controls, MCS or
381 UWS patients. For that, we employed the *intrinsic ignition* measure (Deco and Kringelbach, 2017).
382 The level of global intrinsic ignition for a subject is calculated as the average integration triggered
383 by all endogenous events identified in a resting-state BOLD session, see Methods. As shown in
384 **Fig. 1a**, the mean intrinsic ignition driven by events of 2SD BOLD signal threshold was lowest in

385 UWS patients implying that the endogenous BOLD events lead to a lower network response than
386 in healthy controls and in MCS patients (HC = 0.82 ± 0.02 , UWS = 0.78 ± 0.02 , MCS = 0.79 ± 0.02 ,
387 HC vs. UWS $t(45)=6.0$, $p<0.0001$, HC vs. MCS $t(57)=4.6$, $p<0.0001$, MCS vs. UWS $t(38)=2.0$,
388 $p=0.029$). It shall also be noted that the number of observed intrinsic events was lowest in UWS
389 patients, intermediate in MCS patients and highest in healthy controls (HC = 14.1 ± 3.6 , UWS =
390 7.6 ± 2.9 , MCS = 11.0 ± 3.6 , HC vs. UWS $t(45)=5.9$, $p<0.0001$, HC vs. MCS $t(57)=3.3$, $p=0.0017$,
391 MCS vs. UWS $t(38)=2.9$, $p=0.0048$). We found similar patterns in intrinsic ignition for healthy
392 control and DoC patients for other thresholds (i.e., 0.5, 1.0 and 1.5 SD; see **Supplementary Fig.**
393 **1**).

394 **3.2. Shorter relaxation-time of BOLD signals in low levels of**
395 **consciousness**

396 Measuring time-scales from signals can reveal changes in the underlying mechanisms
397 controlling the local dynamics and determining their operating regime. Specifically, the
398 autocovariance profile of the BOLD for each brain area estimates the duration for which the signal
399 is altered before going back to pre-event baseline activity (Murray et al., 2014). Here, we measure
400 the autocovariance time constant τ , also called the *relaxation time* or *memory depth* in the
401 literature. Large τ implies a longer lingering effect of a signal after an event or perturbation before
402 it decays, thus suggesting that the brain region might remain available for processing longer.

403 At a whole-brain level, averaging over the τ_i for all regions in one subject, we found that τ
404 was shorter in UWS patients (1.96 ± 0.38) than in healthy controls (2.72 ± 0.35 ; $t(45)=6.5$, $p<0.0001$)
405 and MCS patients (2.70 ± 0.58 ; $t(38)=4.2$, $p<0.001$), see **Fig. 1b**. Looking at the region-wise spatial
406 distributions, we found that in healthy controls τ_i is heterogeneously distributed showing a gradient
407 with shorter time constants in subcortical areas ($\tau_i \sim 1.5$ sec) and longer ($\tau_i \sim 3.5$ sec) in the frontal
408 and in the parietal areas, see **Supplementary Fig. 2**. Importantly, the diversity of relaxation times
409 is lost in the UWS patients with τ_i being homogeneously distributed and dominated by small
410 values. Compared to healthy controls, the decrease of τ_i in UWS patients was most predominant
411 in the bilateral thalamus, right caudate, left hippocampus, parahippocampus, bilateral posterior,
412 middle and anterior cingulate, insula, inferior, middle, superior and dorsolateral frontal areas, **Fig.**
413 **1c and Supplementary Table 2**. In the case of MCS patients the heterogeneity of τ_i distribution
414 was practically recovered, **Supplementary Fig. 2**. Compared to the healthy controls, in MCS

415 patients τ_i was lower only in the bilateral thalamus and left medial prefrontal cortex, see **Fig. 1d**
416 and **Supplementary Table 2**.

417 So far, the results obtained for the intrinsic ignition and the distribution of relaxation time
418 constants indicate a breakdown in the spatiotemporal structure of the BOLD signals that involves
419 reduced propagation and integration capabilities of endogenous events in DoC patients, especially
420 in the UWS group. For the remaining of the paper we shift to model-based analyses.

421 **3.3. Whole-brain effective connectivity shows altered causal
422 interactions in DoC patients**

423 In order to identify alterations to the causal relations between the brain regions, we estimated
424 whole-brain effective connectivity (EC) from the resting-state BOLD for each subject. The
425 estimation of EC considers a model of Gaussian noise diffusion – the multivariate Ornstein-
426 Uhlenbeck – on top of the anatomical connectivity as the generative dynamics (Adhikari et al.,
427 2021; Gilson et al., 2016) in order to capture the origin of the fluctuations in the BOLD; see **Fig.**
428 **2a** and Methods for further details. In short, EC estimation consists of identifying the most likely
429 causal interactions that give rise to the observed BOLD signals, fitting both the interaction
430 strengths between all pairs of ROIs and the levels of noise to stimulate each ROI, **Fig. 2a**.

431 At the whole-brain level, averaging across all EC links, we found that the EC of the UWS
432 patients was higher than for the healthy controls or in MCS patients (HC = 0.015 ± 0.002 , UWS =
433 0.019 ± 0.004 , MCS = 0.014 ± 0.003 ; HC vs. UWS $t(45) = -4.7$, $p < 0.0001$, MCS vs. UWS $t(38) = -4.0$,
434 $p < 0.001$). A closer inspection of the pair-wise EC values revealed the presence of links that either
435 increased or decreased in the UWS patients in respect to the healthy controls, **Fig. 2b**. The UWS
436 patients showed increased EC for connections between subcortical and cortical regions (thalamus,
437 caudate and putamen), but decreased EC in connections spanning posterior (i.e., parietal, occipital)
438 to frontal (i.e., temporal and frontal) regions as well as between midline posterior regions (parietal,
439 occipital) and middle frontal regions. The MCS patients showed especially lower EC in
440 interactions from posterior to frontal and temporal regions and midline regions encompassing the
441 middle prefrontal and posterior cortex and the thalamus, see **Fig. 2c**, including regions important
442 for long range connectivity and overlapping with key areas of the Default Mode Network.

443 **3.4. Altered spatiotemporal propagation of exogenous**
444 **perturbations**

445 Having identified changes in specific pair-wise EC connections for both UWS and MCS
446 patients, the question is now how do those alterations affect the propagation of information in the
447 brain. To answer this question, we perform an *in-silico* perturbational study to assess how
448 exogenous perturbations, applied to individual ROIs, spread along the network. Considering the
449 same generative dynamical model as for the EC estimation, the effect of regional perturbations on
450 the rest of the network can be analytically estimated, (Gilson et al., 2019) see Methods. The
451 spatiotemporal responses of nodal perturbations are encoded into the temporal response matrices
452 R(t). The evolution of response matrices for the three study cases are shown in **Fig. 3a**.
453 Specifically, a pair-wise element $R_{ij}(t)$ represents the temporal response of area j to a unit
454 perturbation applied on area i at time $t = 0$. This conditional, pair-wise response encompasses all
455 network effects from i to j acting at different time scales.

456 **Figure 3a** illustrates how the patterns of responses are progressively reshaped over time for
457 the three study groups – healthy controls, UWS patients and MCS patients. The global brain
458 responses (sum over all pair-wise responses) are shown in **Fig. 3b**. As seen, the global responses
459 undergo a transient peak short after the initial perturbations and then decay as the effects of the
460 stimuli dilute with time and the system relaxes back to its stationary state. This relaxation is also
461 observed by the homogenization of the response matrices at the longer latencies in **Fig. 3a**. The
462 global response curves for controls and MCS groups follow quite a similar behavior, both peaking
463 at 18.2 ± 2.9 and 15.6 ± 3.7 seconds respectively and taking peak values 0.30 ± 0.03 and 0.28 ± 0.05 .
464 In the UWS patients, however, the global response peaks sooner (10.6 ± 2.9 sec) (HC vs. UWS
465 $t(45)=8.2$, $p < 0.0001$, HC vs. MCS $t(57)=3.0$, $p=0.0036$, MCS vs. UWS $t(38)=4.3$, $p < 0.001$) and
466 displays a higher peak (0.34 ± 0.05) (HC vs. UWS $t(45)=-3.3$, $p=0.0019$, MCS vs. UWS $t(38)=-$
467 3.1 , $p = 0.0031$) than for the controls and MCS groups, but then it decays notably faster.
468 Quantitatively, we found that the area-under-the-curve in the time spanning 60-200 sec (modeled
469 time) significantly decreases for the UWS group (0.08 ± 0.06) and MCS patients (0.15 ± 0.04)
470 compared to healthy controls (0.18 ± 0.02) (HC vs. UWS $t(45)=7.1$, $p < 0.0001$, HC vs. MCS
471 $t(57)=2.9$, $p=0.005$, MCS vs. UWS $t(38)=3.6$, $p < 0.001$).

472

473 **3.5. Broadcasting and integrative capabilities of brain regions**
474 **across states of consciousness**

475 We then explored the response of single regions within the network by column- and row-wise
476 exploration of the response matrices $\mathbf{R(t)}$ in **Fig. 4a**. Since EC identifies the directed causal
477 interactions, this allows us to study the input and output relations for each area in respect to the
478 exogenous perturbations. The row sum of the response matrices $\mathbf{R(t)}$ represent the broadcasting
479 capacity of a region (i.e., the response that a perturbation in one region elicits on all other areas)
480 and the columns describe the integrative capacity of the brain region (i.e., how much is a region
481 affected by the perturbations applied to all other areas) (Gilson et al., 2019). The temporal
482 evolution of broadcasting and receiving of single regions shows distinct functional roles for
483 various regions in healthy controls. This functional specialization is much reduced in MCS
484 patients, and almost absent in UWS patients, in which the regional roles within the response to in-
485 silico perturbation in the network is homogenized.

486 We further characterized the functional specialization of distinct regions by creating an
487 anatomical map of the quantitative regional broadcasting and receiving properties. **Figure 4**
488 reveals that the three levels of consciousness are characterized by distinct spatial distributions of
489 **broadcaster** (**Fig. 4b.**) and **receiver** (i.e., integrator; **Fig. 4c.**) areas. Notably, in UWS patients no
490 brain region stands out either as a broadcaster or as an integrator, except for the thalamus which
491 displays a relatively large receiving capacity. In the healthy controls, we found several regions
492 with both significant broadcasting and receiving capacity: the bilateral occipital, calcarine, lingual,
493 cuneus, precuneus, superior and inferior parietal, right middle temporal. Significant broadcasting-
494 only capacity was found in the bilateral middle and superior temporal, right inferior temporal, left
495 parahippocampal, bilateral insula, inferior parietal, right supramarginal and right inferior frontal
496 areas. On the other hand, the bilateral thalamus, posterior cingulate cortex (PCC), precuneus,
497 middle cingulate and right supramarginal gyrus displayed significant receiving-only capacity. The
498 MCS patient group was characterized by globally reduced broadcasting and receiving properties
499 compared to healthy controls, however they showed a relatively preserved receiving and
500 broadcasting of information within bilateral occipital, cuneus, bilateral superior and inferior
501 parietal and precuneus. Additionally, they presented preserved broadcasting in left supramarginal
502 and receiving capacity in the right thalamus, see **Fig. 4c. and Supplementary Table 3**. After
503 quantification of the regional roles in broadcasting and receiving within the network, we evaluated

504 the functional specialization of each brain area **Fig. 4d.** by subtraction of the AUC of the $\mathbf{R}(t)$
505 curve for receiving from the AUC of the broadcasting curve in a region-wise fashion. This clearly
506 shows two distinct networks, a receiving network prominently represented by the posterior and
507 occipital cortex and the thalamus, and a broadcasting network encompassing parietal, temporal
508 and frontal cortices.

509 We ended our perturbative analysis by comparing the region-wise group differences of the
510 patients in respect to the healthy controls, which are shown in **Fig. 5**. Following the severely
511 hampered broadcasting and integrating capacity in UWS, reduced information broadcasting in
512 UWS patients as compared to healthy controls was especially notable at the bilateral hippocampus,
513 parahippocampus, thalamus, caudate, amygdala, putamen, insula, inferior/middle temporal,
514 temporal pole, right superior temporal, fusiform, lingual, calcarine, occipital, anterior cingulate,
515 right inferior and middle frontal cortices. The notorious lack of broadcasting capacity of the
516 subcortical regions evidences a reduced activity of the whole network. A profound reduction of
517 the capacity to receive information in the UWS patients compared to the healthy controls was
518 found at the bilateral precuneus, PCC, lingual, calcarine, fusiform, middle occipital, middle /
519 anterior cingulum, inferior / superior parietal, supramarginal, middle temporal, inferior frontal
520 cortices and the middle prefrontal cortex. These regions encompass primary visual and auditory
521 areas, but also higher integration areas in the PCC that have an important hub function within the
522 whole-brain network, see **Fig.5 and Supplementary Table 4**.

523 The MCS patients showed a less pronounced picture of impaired information in- and out-
524 flows. Compared to healthy controls they showed a significant reduction in the potential to
525 broadcast information in the bilateral thalamus, parahippocampus, left hippocampus, bilateral
526 insula, inferior / middle temporal, right superior temporal, bilateral fusiform and lingual cortices.
527 A reduced capacity to receive information at the bilateral precuneus, PCC, cuneus, right lingual,
528 calcarine, bilateral middle cingulum and right middle temporal cortices. Finally, compared to MCS
529 patients, UWS patients showed additional significant reduction in receiving and broadcasting of
530 information at the left precuneus, occipital cortex, temporal and right superior parietal, thus
531 indicating that the information flow in these areas might be the most important contributors to
532 conscious information processing.

533 **3.6. Association of whole-brain network responses to clinical**
534 **measures**

535 Last, we explored how the computational measures employed here were associated with other
536 aspects of clinical interest. We first evaluated if the whole brain responses (as in **Fig. 3a.**) are
537 sensitive to etiology alongside level of consciousness. Main and interaction effects of diagnosis
538 and etiology on the peak value (i.e., early response) and late global brain responses (area-under-
539 the-curve in the 60-200 sec of modeled time) were quantified using a linear regression model. We
540 did not find significant differences for peak global responses for diagnosis ($p= 0.405$), etiology
541 ($p= 0.137$), or the interaction between diagnosis and etiology ($p= 0.258$), the model r-squared =
542 0.27 and model p-value = 0.008. For the late global response, we noted significant differences in
543 the case of diagnosis but neither in etiology nor in the interaction between diagnosis and etiology
544 (p -value for diagnosis = 0.0004, p -value for etiology = 0.063, p -value for interaction = 0.096; the
545 model r-squared = 0.32 and model p-value = 0.0027). This confirms that the main differences in
546 our analyses are due to diagnosis and ensured that the observed effects were mediated by the level
547 of consciousness primarily, rather than the different neurobiological effects of etiology. Indeed,
548 looking at the global brain responses of individual subjects it shows that the anoxia and TBI
549 subjects are diversely distributed in both UWS and MCS patient group (**Fig. 6a**). As etiology and
550 the interaction between etiology and diagnosis were not significant, we did not explore their
551 relationship with the (regional) communicability responses further.

552 Since information processing requires the consumption of energy at the neural level, we
553 quantified the neurobiological underpinnings of the integrative network response by establishing
554 a direct link between cerebral glucose metabolism (as measures with glucose PET imaging) and
555 network integration (as measured with the whole-brain computational response to perturbation).
556 Specifically, we correlated the whole brain network response of the regions that showed different
557 network responses in HC and UWS patients with glucose PET MIBH. The MIBH of UWS was
558 significantly lower (2.53 ± 0.31) as compared to MCS patients (4.57 ± 1.32), $p < 0.0001$) (**Fig. 6c.**).
559 The association of the complex model-based assessment of network function to basic neural
560 function in the first place helps to increase confidence in the model. Second, although a causal
561 relation cannot be established to date, it is a first step towards the exploration of the mechanism
562 behind the widespread observed glucose metabolic changed in DoC patients. We noted positive
563 correlations of MIBH with the whole brain network responses ($r=0.44$, $p=0.005$) (see **Fig. 6b.**).

564 Indeed, patients with more preserved MIBH and functional network responses show more complex
565 behaviors as evidenced by the clinical evaluation with the CRS-R (see color coding in **Fig.6b.**).

566 In summary, our model-based analyses to estimate effective connectivity and to simulate *in*-
567 *silico* the response to exogenous perturbations can be related to basic biological measures and
568 clinical observations, allowing us to identify specific directed pathways that are disrupted in
569 patients with DoC.

570

571 **4. Discussion**

572 In the present paper, we have studied the neural propagation of endogenous and exogenous
573 perturbations in the brain using model-free and model-based analysis methods, applied to the
574 problem of elucidating the mechanisms behind the loss of consciousness due to acquired brain
575 injury and its partial recovery. The methods here employed add significant value to the dynamical
576 approaches for two main reasons. First, they rely on simple observables – the resting-state fMRI –
577 and thus they do not require the execution of experimental exogenous stimulation protocols. And
578 second, unlike previous approaches, they allowed us to investigate the directional causal
579 interactions between brain regions, thus elucidating alterations in the broadcasting and the
580 integrating capacities of individual areas or pathways, between normal awake and unconscious
581 patients. Our main finding is that we could identify two distinct malfunctioning neural circuits in
582 patients with DoC: the posterior cortical regions fail to convey information, in conjunction with
583 reduced broadcasting of information from subcortical, temporal, parietal and frontal regions. These
584 results show that patients with prolonged disorders of consciousness lack of the capacity for the
585 integration of events that would lead to conscious perception.

586 In healthy controls we found that the relaxation time constants associated with the resting-
587 state BOLD signals display a gradient distribution with shorter relaxation times in subcortical areas
588 and longer time constants in the frontal and in the parietal areas, **Supplementary Fig. 2a.**
589 Accordingly, analysis of exogenous *in-silico* perturbations revealed that the broadcasting of
590 information flow is predominant in a broad range of cognitive modules, including the
591 hippocampus, parahippocampal, temporal, posterior and inferior frontal regions. This subcortical-
592 cortical loop has been proposed to mediate the sensory information to be globally ‘accessible’ to

593 other cognitive functions through feedforward and feedback loops by the global neuronal
594 workspace theory, and only when access to all cognitive modules occurs, sensory content is
595 elevated to conscious perception (Dehaene et al., 2011; Dehaene and Changeux, 2011; Mashour
596 et al., 2020). Although the activity in the posterior regions is highly influenced by perturbations,
597 suggesting that they have a large cause-effect capacity to receive and integrate the information
598 flow, one of the key principles of conscious perception in integration information theory (Oizumi
599 et al., 2014; Tononi, 2004; Tononi et al., 2016).

600 Regarding the patients with unresponsive wakefulness syndrome (UWS), the results observed
601 were very much altered. First, the propagation of endogenous events occurring in the resting-state
602 BOLD rapidly decay avoiding their subsequent integration, **Fig. 1a**. This is corroborated by the
603 fact that the spatial distribution of relaxation times fades away in the UWS patients, with all areas
604 taking short relaxation times (**Figs. 1b** and **c**) and evidencing that local activity does not properly
605 propagate along the network. Especially frontal, parietal and higher-order cortices which ensure
606 sensory information processing, need longer time to integrate diverse information (Hasson et al.,
607 2008; Yeshurun et al., 2017). Second, effective connectivity is reduced overall but interestingly
608 some effective subcortical-cortical connections were found to significantly increase, **Fig. 2b**. The
609 propagation of *in-silico* exogenous perturbations showed a rapid and large response followed by a
610 fast decay, **Fig. 3**, since the information fails to propagate along the network in a sustained manner.
611 Such early hyper-response has been previously seen in UWS patients (Di Perri et al., 2013) and in
612 loss of consciousness due to generalized epilepsy possibly caused by an excess of electrical
613 discharges in the brain (Moeller et al., 2008). The mechanism for this hyper-response,
614 **Supplementary Fig. 3.**, is yet to be elucidated but we envision two possibilities: it could arise
615 either due to the network being dominated by short local recurrent loops, or due to a lack of
616 inhibition as in unconscious anesthetized ferrets (Wollstadt et al., 2017). Finally, the regional
617 specificities for broadcasting and receiving that were observed in the healthy controls are vanished
618 for the UWS patients. Only the thalamus stands-out, as an area with significant receiving capacity
619 thus probably allowing its gateway function between the body and the brain.

620 The patients in minimally conscious state (MCS) studied here underwent through a coma and
621 a UWS phases after brain injury, but later regained partial consciousness and cognitive
622 functionalities. All the results found for the MCS patients show light alterations to those in the
623 healthy participants, as expected from their partial functional recovery. The spatial gradient of

624 relaxation time constants from the resting-state BOLD is recovered, **Supplementary Fig. 2**, except
625 shorter time constants were still found in the thalamus and the left medial prefrontal cortex.
626 Effective connectivity was in general slightly below values observed in control subjects but a
627 significant reduction was found remaining in fronto-parietal connections and in between temporal
628 regions, **Fig. 2c**. Regional broadcasting and receiving capacities to *in-silico* perturbations
629 displayed a recovered scenario, see **Fig. 4** and see **Supplementary Table 3**. It is clinically relevant
630 to understand why or how MCS patients could partially recover from the unresponsive
631 wakefulness state. In the light of our results, it seems that a sufficient regain of the propagation of
632 information leading to an increase in receiving and broadcasting of information at the left
633 precuneus, occipital cortex, temporal and right superior parietal is instrumental for the recovery of
634 conscious information processing, **Fig. 5**.

635 In comparison with healthy controls, the UWS patients showed a reduction of receiving
636 information in posterior regions, which implies sensory information integration is impaired already
637 at the level of sensory regions to the high-level hub regions of the Default Mode Network (i.e.
638 PCC and Precuneus). Indeed, the lack of receiving of information in the sensory areas hampers a
639 stimulus or event to reach awareness, as integration of external inputs is a prerequisite for
640 consciousness (Herbet et al., 2014). Our results provide a mechanistic explanation for how the
641 ability to receive information in sensory and DMN hub regions alters cerebral information
642 processing, which might be at the essence for the structural and functional anomalies in UWS
643 patients. Although it is known that the PCC and Precuneus have decreased structural, functional
644 and metabolic integrity, (Annen et al., 2016; Demertzi et al., 2015; López-González et al., 2021;
645 Luppi et al., 2019; Stender et al., 2014) our results show that the ability to receive information in
646 sensory and DMN hub regions is reduced in UWS patients. On the other hand, broadcasting was
647 reduced in the subcortical regions (i.e., thalamus, caudate, putamen) and regions involved in higher
648 cognitive function (i.e., temporo-parietal, anterior cingulate and frontal regions). This is aligned
649 with the mesocircuit hypothesis (Schiff, 2010) which states that the feedforward connections
650 between these regions play a key role in reaching levels of (cortical) activity that support the
651 stimuli to access consciousness processing. This has been recently confirmed in macaques using
652 intracranial-EEG, showing that integration at the thalamus, caudate, putamen and parietal cortex
653 is a hallmark of conscious states (Afrasiabi et al., 2021). Our findings unravel that human
654 consciousness also relies on the broadcasting capacities (i.e., from the thalamus, caudate and

655 putamen) to support the transmission of activity, functional integration and recurrent activity
656 between subcortical and cortical neurons, all of which is lost in UWS patients. Interestingly, we
657 also noted a decrease in receiving and broadcasting capacities in the bilateral temporal areas for
658 DoC patients. Recent studies also noted altered structural (Annen et al., 2018) and functional loss
659 in the temporal area in DoC patients (Demertzi et al., 2015; Thibaut et al., 2021). To date, there is
660 limited explanation for the involvement of the temporal cortex in consciousness. We speculate that
661 a lesser involvement of the temporal areas in the information pathways could impede self-
662 awareness and memory.

663 From a clinical point of view, there is a variety of causes leading to disorders of consciousness.
664 These are typically classified into two categories. On the one hand, *anoxia* is a generalized damage
665 of brain tissue due to a temporary disruption of oxygen supply caused by, e.g., heart attack or
666 asphyxia. On the other hand, loss of consciousness can also occur due to focal brain lesions due
667 to, e.g., traumatic brain injury, stroke or epilepsy. It is well-known that the probability of (partial)
668 recovery from UWS is larger for patients with focal lesions than for anoxic patients (Thibaut et
669 al., 2021). This is reflected in the sample of patients here studied since 11 out of 14 patients with
670 UWS are anoxic and 19 out of 26 patients in MCS suffered from focal brain injuries. However,
671 the extent of damage is not a perfect predictor and the heterogeneity of lesions across patients calls
672 for a better understanding of the mechanistic causes leading to the loss and the (partial) recovery
673 of consciousness. We have explored the effects of etiology in our results and found that the
674 diagnostic classification of the patients into UWS and MCS based on EC and on the propagation
675 of perturbations significantly correlate, while this was not the case for etiology. Even though at
676 this point we could not establish a link between etiology and network responses, perhaps due to a
677 lack of data and heterogeneity within the data, hypothetically the evaluation of lesion-specific
678 alterations in network responses could help formulate more specific predictions about where
679 propagation is altered in reduced conscious states. Other samples including healthy volunteers
680 under sedation could help narrowing down the location of possible consciousness mechanisms
681 further as well.

682 Additionally, we have observed the presence of information processing leading to
683 consciousness follows relatively widespread preserved glucose metabolism (**Fig. 6**). This potential
684 neurobiological basis for information processing is associated to the richness of signs of
685 consciousness at the behavioral level as well. However, the causal relationship between regional

686 glucose metabolism and their broadcasting / receiving properties is still to be clarified. On the one
687 hand, we could speculate that a significant disruption of the propagation of events along the neural
688 network leads to a loss of metabolic demand, which is then observed via glucose PET. But, on the
689 other hand, the opposite possibility also needs to be considered that the brain lesions could disrupt
690 the metabolic supply chains, thus exhausting the capacity of the neural network to generate
691 sufficient activity and responses.

692 Our *in-silico* pertubational study revealed transient global changes to the dissemination of
693 information, associated to glucose metabolism, that are similar to those we observed from the
694 integration of endogenous events with the intrinsic ignition. In DoC patients, and especially in
695 UWS patients, the brain's cause-effect capacity to respond is significantly lower than during
696 normal wakefulness in healthy subjects. It seems that the observed spatiotemporal alterations of
697 local event processing also hamper global integration and whole brain neural responses; as
698 observed both after *in-silico* and endogenous perturbations. These results are in line with empirical
699 studies using TMS, in which the recruitment of global neural activity after perturbation, both in
700 space and time, has been found to be reduced during deep sleep, anesthesia and in DoC (Casali et
701 al., 2013; Massimini et al., 2005). In conclusion, the cerebral capacity of propagation and
702 integration of local, naturally occurring events into the entire network is affected by reduced states
703 of consciousness and shares similarities with both information integration theory (Tononi, 2004;
704 Tononi et al., 2016) and global neuronal workspace theory (Dehaene et al., 2011; Mashour et al.,
705 2020). Although these theories have distinct concepts of consciousness, our results suggest that
706 they might represent two sides of the same coin (Northoff et al., 2020; Northoff and Lamme, 2020;
707 Winters, 2020).

708 **Acknowledgements**

709 We would like to thank the healthy participants and the patients, their families, caregivers and
710 treating clinicians for their participation in this study. The authors thank the whole staff from the
711 ICU and Nuclear Medicine departments, University Hospital of Liege. We are highly grateful to
712 the members of the Liege Coma Science Group for their assistance in clinical evaluations.

713 **Funding**

714 RP is a research fellow, OG and AT is research associate and SL is research director at F.R.S.-
715 FNRS. ALG and GD was supported by Swiss National Science Foundation Sinergia grant no.
716 170873. S.L. and G.D. received funding from the European Union's Horizon 2020 Framework
717 Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human
718 Brain Project SGA2) and No. 945539 (Human Brain Project SGA3). The study was further
719 supported by the University and University Hospital of Liege, the Belgian National Funds for
720 Scientific Research (FRS-FNRS), Human Brain Project (HBP), the European Space Agency
721 (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the
722 PRODEX Programme, "Fondazione Europea di Ricerca Biomedica", the Bial Foundation, the
723 Mind Science Foundation and the European Commission, the fund Generet, the King Baudouin
724 Foundation, AstraZeneca foundation, Leon Fredericq foundation and the DOCMA project [EU-
725 H2020-MSCA-RISE-778234]. GD acknowledges funding from the FLAG-ERA JTC (PCI2018-
726 092891), the Spanish Ministry Project PSI2016-75688-P (AEI/FEDER), the Catalan Research
727 Group Support 2017 SGR 1, and AWAKENING (PID2019-105772GB-I00, AEI FEDER EU)
728 funded by the Spanish Ministry of Science, Innovation and Universities (MCIU), State Research
729 Agency (AEI) and European Regional Development Funds (FEDER).

730 **Authors' contributions**

731 RP, ALG, JA, GZL, MG, GD and SL designed research. JA, SL and GZL supervised the research.
732 JA, AT, CM, OG and the Coma Science Group Collaborators acquired the data. RP, ALG and AE
733 preprocessed the data. RP, ALG, JA, GZL and GF analyzed the data. MG and GZL designed the
734 computational model and optimized the code as per this research study. RP, JA, ALG and GZL
735 wrote the manuscript. All authors interpreted the results and contributed to the editing of the
736 manuscript.

737 **Competing interests**

738 All the authors report no competing interests.

739 **Collaborators**

740 Alice Barra, Charlotte Martial, Claire Bernard, Estelle Bonin, Emilie Szymkowicz, Jean-Flory
741 Luaba Tshibanda, Leandro Sanz, Marie Vitello, Roland Hustinx.

742 References

743 Adhikari, M.H., Griffis, J., Siegel, J.S., Thiebaut de Schotten, M., Deco, G., Instabato, A.,
744 Gilson, M., Corbetta, M., 2021. Effective connectivity extracts clinically relevant
745 prognostic information from resting state activity in stroke. *Brain Commun.* 3.
746 <https://doi.org/10.1093/braincomms/fcab233>

747 Adhikari, M.H., Hacker, C.D., Siegel, J.S., Griffa, A., Hagmann, P., Deco, G., Corbetta, M.,
748 2017. Decreased integration and information capacity in stroke measured by whole brain
749 models of resting state activity. *Brain* 140. <https://doi.org/10.1093/brain/awx021>

750 Afrasiabi, M., Redinbaugh, M.J., Phillips, J.M., Kambi, N.A., Mohanta, S., Raz, A., Haun, A.M.,
751 Saalmann, Y.B., 2021. Consciousness depends on integration between parietal cortex,
752 striatum, and thalamus. *Cell Syst.* 12. <https://doi.org/10.1016/j.cels.2021.02.003>

753 Annen, J., Frasso, G., Crone, J.S., Heine, L., Di Perri, C., Martial, C., Cassol, H., Demertzi, A.,
754 Naccache, L., Laureys, S., 2018. Regional brain volumetry and brain function in severely
755 brain-injured patients. *Ann. Neurol.* 83. <https://doi.org/10.1002/ana.25214>

756 Annen, J., Heine, L., Ziegler, E., Frasso, G., Bahri, M., Di Perri, C., Stender, J., Martial, C.,
757 Wannez, S., D'ostilio, K., Amico, E., Antonopoulos, G., Bernard, C., Tshibanda, F.,
758 Hustinx, R., Laureys, S., 2016. Function–structure connectivity in patients with severe brain
759 injury as measured by MRI-DWI and FDG-PET. *Hum. Brain Mapp.* 37.
760 <https://doi.org/10.1002/hbm.23269>

761 Armitage, R., 1995. The distribution of EEG frequencies in REM and NREM sleep stages in
762 healthy young adults. *Sleep* 18. <https://doi.org/10.1093/sleep/18.5.334>

763 Barttfeld, P., Uhrig, L., Sitt, J.D., Sigman, M., Jarraya, B., Dehaene, S., 2014. Signature of
764 consciousness in the dynamics of resting-state brain activity. *Proc. Natl. Acad. Sci.* 112,
765 201418031. <https://doi.org/10.1073/pnas.1418031112>

766 Casali, A.G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K.R., Casarotto, S.,
767 Bruno, M.A., Laureys, S., Tononi, G., Massimini, M., 2013. A theoretically based index of
768 consciousness independent of sensory processing and behavior. *Sci. Transl. Med.*
769 <https://doi.org/10.1126/scitranslmed.3006294>

770 Damasio, A., Meyer, K., 2009. Consciousness: An overview of the phenomenon and of its
771 possible neural basis, in: *The Neurology of Consciousness*. <https://doi.org/10.1016/B978-0-12-374168-4.00001-0>

773 Deco, G., Kringelbach, M.L., 2017. Hierarchy of Information Processing in the Brain: A Novel
774 ‘Intrinsic Ignition’ Framework. *Neuron*. <https://doi.org/10.1016/j.neuron.2017.03.028>

775 Deco, G., Kringelbach, M.L., Jirsa, V.K., Ritter, P., 2017. The dynamics of resting fluctuations
776 in the brain: Metastability and its dynamical cortical core. *Sci. Rep.* 7.
777 <https://doi.org/10.1038/s41598-017-03073-5>

778 Deco, G., Tononi, G., Boly, M., Kringelbach, M.L., 2015. Rethinking segregation and
779 integration: Contributions of whole-brain modelling. *Nat. Rev. Neurosci.*
780 <https://doi.org/10.1038/nrn3963>

781 Dehaene, S., Changeux, J.P., 2011. Experimental and Theoretical Approaches to Conscious
782 Processing. *Neuron*. <https://doi.org/10.1016/j.neuron.2011.03.018>

783 Dehaene, S., Changeux, J.P., Naccache, L., 2011. The global neuronal workspace model of
784 conscious access: From neuronal architectures to clinical applications. *Res. Perspect.*
785 *Neurosci.* 18. https://doi.org/10.1007/978-3-642-18015-6_4

786 Demertzi, A., Antonopoulos, G., Heine, L., Voss, H.U., Crone, J.S., De Los Angeles, C., Bahri,
787 M.A., Di Perri, C., Vanhaudenhuyse, A., Charland-Verville, V., Kronbichler, M., Trinka,
788 E., Phillips, C., Gomez, F., Tshibanda, L., Soddu, A., Schiff, N.D., Whitfield-Gabrieli, S.,
789 Laureys, S., 2015. Intrinsic functional connectivity differentiates minimally conscious from
790 unresponsive patients. *Brain* 138. <https://doi.org/10.1093/brain/awv169>

791 Demertzi, A., Tagliazucchi, E., Dehaene, S., Deco, G., Barttfeld, P., Raimondo, F., Martial, C.,
792 Fernández-Espejo, D., Rohaut, B., Voss, H.U., Schiff, N.D., Owen, A.M., Laureys, S.,

793 Naccache, L., Sitt, J.D., 2019. Human consciousness is supported by dynamic complex
794 patterns of brain signal coordination. *Sci. Adv.* 5. <https://doi.org/10.1126/sciadv.aat7603>

795 Di Perri, C., Bastianello, S., Bartsch, A.J., Pistarini, C., Maggioni, G., Magrassi, L., Imberti, R.,
796 Pichieccchio, A., Vitali, P., Laureys, S., Di Salle, F., 2013. Limbic hyperconnectivity in the
797 vegetative state. *Neurology* 81. <https://doi.org/10.1212/WNL.0b013e3182a43b78>

798 Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Papademetris, X.,
799 Todd Constable, R., Author, N.N., 2015. Functional connectome fingerprinting: Identifying
800 individuals based on patterns of brain connectivity HHS Public Access Author manuscript.
801 *Nat Neurosci* 18.

802 Giacino, J.T., Kalmar, K., Whyte, J., 2004. The JFK Coma Recovery Scale-Revised:
803 Measurement characteristics and diagnostic utility. *Arch. Phys. Med. Rehabil.* 85, 2020–
804 2029. <https://doi.org/10.1016/j.apmr.2004.02.033>

805 Giacino, J.T., Katz, D.I., Schiff, N.D., Whyte, J., Ashman, E.J., Ashwal, S., Barbano, R.,
806 Hammond, F.M., Laureys, S., Ling, G.S.F., Nakase-Richardson, R., Seel, R.T., Yablon, S.,
807 Getchius, T.S.D., Gronseth, G.S., Armstrong, M.J., 2018. Practice Guideline Update
808 Recommendations Summary: Disorders of Consciousness: Report of the Guideline
809 Development, Dissemination, and Implementation Subcommittee of the American
810 Academy of Neurology; the American Congress of Rehabilitation Medicine; and the
811 National Institute on Disability, Independent Living, and Rehabilitation Research, in:
812 *Archives of Physical Medicine and Rehabilitation*.
813 <https://doi.org/10.1016/j.apmr.2018.07.001>

814 Gilson, M., Kouvaris, N.E., Deco, G., Mangin, J.F., Poupon, C., Lefranc, S., Rivière, D.,
815 Zamora-López, G., 2019. Network analysis of whole-brain fMRI dynamics: A new
816 framework based on dynamic communicability. *Neuroimage*.
817 <https://doi.org/10.1016/j.neuroimage.2019.116007>

818 Gilson, M., Moreno-Bote, R., Ponce-Alvarez, A., Ritter, P., Deco, G., 2016. Estimation of
819 Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries
820 of Cortical Connectome. *PLoS Comput. Biol.* 12.

821 https://doi.org/10.1371/journal.pcbi.1004762

822 Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., Glasser, M.F.,
823 Duff, E.P., Fitzgibbon, S., Westphal, R., Carone, D., Beckmann, C.F., Smith, S.M., 2017.
824 Hand classification of fMRI ICA noise components. Neuroimage 154.
825 https://doi.org/10.1016/j.neuroimage.2016.12.036

826 Hasson, U., Yang, E., Vallines, I., Heeger, D.J., Rubin, N., 2008. A hierarchy of temporal
827 receptive windows in human cortex. J. Neurosci. 28.
828 https://doi.org/10.1523/JNEUROSCI.5487-07.2008

829 Herbet, G., Lafargue, G., de Champfleur, N.M., Moritz-Gasser, S., le Bars, E., Bonnetblanc, F.,
830 Duffau, H., 2014. Disrupting posterior cingulate connectivity disconnects consciousness
831 from the external environment. Neuropsychologia 56.
832 https://doi.org/10.1016/j.neuropsychologia.2014.01.020

833 Kondziella, D., Bender, A., Diserens, K., van Erp, W., Estraneo, A., Formisano, R., Laureys, S.,
834 Naccache, L., Ozturk, S., Rohaut, B., Sitt, J.D., Stender, J., Tiainen, M., Rossetti, A.O.,
835 Gosseries, O., Chatelle, C., 2020. European Academy of Neurology guideline on the
836 diagnosis of coma and other disorders of consciousness. Eur. J. Neurol. 27.
837 https://doi.org/10.1111/ene.14151

838 Krom, A.J., Marmelshtein, A., Gelbard-Sagiv, H., Tankus, A., Hayat, H., Hayat, D., Matot, I.,
839 Strauss, I., Fahoum, F., Soehle, M., Bostrom, J., Mormann, F., Fried, I., Nir, Y., 2020.
840 Anesthesia-induced loss of consciousness disrupts auditory responses beyond primary
841 cortex. Proc. Natl. Acad. Sci. U. S. A. 117. https://doi.org/10.1073/pnas.1917251117

842 Laureys, S., 2005. The neural correlate of (un)awareness: Lessons from the vegetative state.
843 Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2005.10.010

844 Laureys, S., Owen, A.M., Schiff, N.D., 2004. Brain function in coma, vegetative state, and
845 related disorders. Lancet Neurol. https://doi.org/10.1016/S1474-4422(04)00852-X

846 López-González, A., Panda, R., Ponce-Alvarez, A., Zamora-López, G., Escrichs, A., Martial, C.,
847 Thibaut, A., Gosseries, O., Kringelbach, M.L., Annen, J., Laureys, S., Deco, G., 2021. Loss

848 of consciousness reduces the stability of brain hubs and the heterogeneity of brain
849 dynamics. *Commun. Biol.* 4, 2020.11.20.391482. <https://doi.org/10.1038/s42003-021-02537-9>

851 Luppi, A.I., Craig, M.M., Pappas, I., Finoia, P., Williams, G.B., Allanson, J., Pickard, J.D.,
852 Owen, A.M., Naci, L., Menon, D.K., Stamatakis, E.A., 2019. Consciousness-specific
853 dynamic interactions of brain integration and functional diversity. *Nat. Commun.* 10.
854 <https://doi.org/10.1038/s41467-019-12658-9>

855 Mashour, G.A., Roelfsema, P., Changeux, J.P., Dehaene, S., 2020. Conscious Processing and the
856 Global Neuronal Workspace Hypothesis. *Neuron*.
857 <https://doi.org/10.1016/j.neuron.2020.01.026>

858 Massimini, M., Ferrarelli, F., Huber, R., Esser, S.K., Singh, H., Tononi, G., 2005. Breakdown of
859 cortical effective connectivity during sleep. *supplement. Science* 309.

860 Moeller, F., Siebner, H.R., Wolff, S., Muhle, H., Granert, O., Jansen, O., Stephani, U.,
861 Siniatchkin, M., 2008. Simultaneous EEG-fMRI in drug-naive children with newly
862 diagnosed absence epilepsy. *Epilepsia* 49. <https://doi.org/10.1111/j.1528-1167.2008.01626.x>

864 Murray, J.D., Bernacchia, A., Freedman, D.J., Romo, R., Wallis, J.D., Cai, X., Padoa-Schioppa,
865 C., Pasternak, T., Seo, H., Lee, D., Wang, X.J., 2014. A hierarchy of intrinsic timescales
866 across primate cortex. *Nat. Neurosci.* 17. <https://doi.org/10.1038/nn.3862>

867 Nagel, T., 1974. What Is It Like to Be a Bat? *Philos. Rev.* 83. <https://doi.org/10.2307/2183914>

868 Northoff, G., Lamme, V., 2020. Neural signs and mechanisms of consciousness: Is there a
869 potential convergence of theories of consciousness in sight? *Neurosci. Biobehav. Rev.*
870 <https://doi.org/10.1016/j.neubiorev.2020.07.019>

871 Northoff, G., Wainio-Theberge, S., Evers, K., 2020. Is temporo-spatial dynamics the “common
872 currency” of brain and mind? In Quest of “Spatiotemporal Neuroscience.” *Phys. Life Rev.*
873 <https://doi.org/10.1016/j.plrev.2019.05.002>

874 Oizumi, M., Albantakis, L., Tononi, G., 2014. From the Phenomenology to the Mechanisms of
875 Consciousness: Integrated Information Theory 3.0. *PLoS Comput. Biol.* 10.
876 <https://doi.org/10.1371/journal.pcbi.1003588>

877 Owen, A.M., Coleman, M.R., 2008. Functional neuroimaging of the vegetative state. *Nat. Rev.*
878 *Neurosci.* <https://doi.org/10.1038/nrn2330>

879 Phillips, C.L., Bruno, M.A., Maquet, P., Boly, M., Noirhomme, Q., Schnakers, C.,
880 Vanhaudenhuyse, A., Bonjean, M., Hustinx, R., Moonen, G., Luxen, A., Laureys, S., 2011.
881 “Relevance vector machine” consciousness classifier applied to cerebral metabolism of
882 vegetative and locked-in patients. *Neuroimage* 56.
883 <https://doi.org/10.1016/j.neuroimage.2010.05.083>

884 Ponce-Alvarez, A., Deco, G., Hagmann, P., Romani, G.L., Mantini, D., Corbetta, M., 2015.
885 Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology
886 and Heterogeneity. *PLoS Comput. Biol.* 11. <https://doi.org/10.1371/journal.pcbi.1004100>

887 Portas, C.M., Krakow, K., Allen, P., Josephs, O., Armony, J.L., Frith, C.D., 2000. Auditory
888 processing across the sleep-wake cycle: Simultaneous EEG and fMRI monitoring in
889 humans. *Neuron* 28. [https://doi.org/10.1016/S0896-6273\(00\)00169-0](https://doi.org/10.1016/S0896-6273(00)00169-0)

890 Schiff, N.D., 2010. Recovery of consciousness after brain injury: a mesocircuit hypothesis.
891 *Trends Neurosci.* 33, 1–9.

892 Seth, A.K., Barrett, A.B., Barnett, L., 2011. Causal density and integrated information as
893 measures of conscious level. *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.*
894 <https://doi.org/10.1098/rsta.2011.0079>

895 Signorelli, C.M., Wang, Q., Khan, I., 2021. A compositional model of consciousness based on
896 consciousness-only. *Entropy* 23. <https://doi.org/10.3390/e23030308>

897 Silva, A., Cardoso-Cruz, H., Silva, F., Galhardo, V., Antunes, L., 2010. Comparison of
898 anesthetic depth indexes based on thalamocortical local field potentials in rats.
899 *Anesthesiology* 112. <https://doi.org/10.1097/ALN.0b013e3181ca3196>

900 Stender, J., Gosseries, O., Bruno, M.A., Charland-Verville, V., Vanhaudenhuyse, A., Demertzi,
901 A., Chatelle, C., Thonnard, M., Thibaut, A., Heine, L., Soddu, A., Boly, M., Schnakers, C.,
902 Gjedde, A., Laureys, S., 2014. Diagnostic precision of PET imaging and functional MRI in
903 disorders of consciousness: A clinical validation study. *Lancet* 384.
904 [https://doi.org/10.1016/S0140-6736\(14\)60042-8](https://doi.org/10.1016/S0140-6736(14)60042-8)

905 Stender, J., Kupers, R., Rodell, A., Thibaut, A., Chatelle, C., Bruno, M.A., Gejl, M., Bernard, C.,
906 Hustinx, R., Laureys, S., Gjedde, A., 2015. Quantitative rates of brain glucose metabolism
907 distinguish minimally conscious from vegetative state patients. *J. Cereb. Blood Flow
908 Metab.* 35. <https://doi.org/10.1038/jcbfm.2014.169>

909 Stender, J., Mortensen, K.N.N., Thibaut, A., Darkner, S., Laureys, S., Gjedde, A., Kupers, R.,
910 2016. The Minimal Energetic Requirement of Sustained Awareness after Brain Injury. *Curr.
911 Biol.* 26. <https://doi.org/10.1016/j.cub.2016.04.024>

912 Thibaut, A., Panda, R., Annen, J., Sanz, L.R.D., Naccache, L., Martial, C., Chatelle, C., Aubinet,
913 C., Bonin, E.A.C., Barra, A., Briand, M.M., Cecconi, B., Wannez, S., Stender, J., Laureys,
914 S., Gosseries, O., 2021. Preservation of Brain Activity in Unresponsive Patients Identifies
915 MCS Star. *Ann. Neurol.* 90. <https://doi.org/10.1002/ana.26095>

916 Tononi, G., 2004. An information integration theory of consciousness. *BMC Neurosci.* 5, 42.
917 <https://doi.org/10.1186/1471-2202-5-42>

918 Tononi, G., Boly, M., Massimini, M., Koch, C., 2016. Integrated information theory: From
919 consciousness to its physical substrate. *Nat. Rev. Neurosci.*
920 <https://doi.org/10.1038/nrn.2016.44>

921 Wenzel, M., Han, S., Smith, E.H., Hoel, E., Greger, B., House, P.A., Yuste, R., 2019. Reduced
922 Repertoire of Cortical Microstates and Neuronal Ensembles in Medically Induced Loss of
923 Consciousness. *Cell Syst.* 8. <https://doi.org/10.1016/j.cels.2019.03.007>

924 Winters, J.J., 2020. The temporally-integrated causality landscape: A theoretical framework for
925 consciousness and meaning. *Conscious. Cogn.* 83.
926 <https://doi.org/10.1016/j.concog.2020.102976>

927 Wollstadt, P., Sellers, K.K., Rudelt, L., Priesemann, V., Hutt, A., Fröhlich, F., Wibral, M., 2017.
928 Breakdown of local information processing may underlie isoflurane anesthesia effects.
929 PLoS Comput. Biol. 13. <https://doi.org/10.1371/journal.pcbi.1005511>

930 Yeshurun, Y., Nguyen, M., Hasson, U., 2017. Amplification of local changes along the timescale
931 processing hierarchy. Proc. Natl. Acad. Sci. U. S. A. 114.
932 <https://doi.org/10.1073/pnas.1701652114>

933 **Figure legends**

934 **Figure 1. Changes in endogenous properties from resting-state BOLD signals.** Healthy
935 controls (HC), unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS)
936 (a) Comparison of mean intrinsic ignition for the three groups, illustrating the reduced capacity to
937 integrate endogenous spontaneous events in patients with DoC. (b) Relaxation time-scales of the
938 BOLD signals (τ) at the whole-brain level shows significant reductions in UWS and MCS patients
939 compared to HC. Stars reflect the Bonferroni corrected (for three groups) significance levels (*=p-
940 value<0.05; **= p-value<0.001; ***= p-value<0.0001). (c, d) Maps of significant differences in
941 regional distributions of τ between patients and controls. The color bar represents the t-values of
942 significant between-group differences (Bonferroni corrected for 214 tests, p-value=0.05).

943 **Figure 2. Comparison of effective connectivity (EC) between healthy controls and patients.**
944 (a) Schematic representation of the fitting procedure leading to estimation of EC. Considering a
945 model of noise diffusion – the multivariate Ornstein-Uhlenbeck process – the whole-brain network
946 model is constrained using structural connectivity obtained from diffusion imaging and then fitted
947 to reproduce the empirical resting-state data. In particular, to fit the zero-lag and 1TR-lag
948 covariance matrices (FC0 and FC1), and the regional noise level Σ_i . (b, c) Maps of significantly
949 different EC connections between patients and controls. UWS patients show connections with both
950 decreased and increased EC (decreased in fronto-temporal, frontal-parietal and midline regions;
951 increased in subcortical and wide cortical areas). Blue and red arrows indicate lower and higher
952 EC respectively in patients as compared to HC subjects. MCS patients show decreased EC in
953 fronto-temporal and interhemispheric midline connections. The directional connections in the

954 glass brain represents connections with significant between-group differences (Bonferroni
955 corrected for 11395 tests, p-value < 0.05) are represented.

956 **Figure 3. *In-silico* propagation of exogenous perturbations.** (a) Temporal evolution of the
957 response matrices $R(t)$ for healthy controls (HC) and patients (unresponsive wakefulness
958 syndrome, UWS; minimally conscious state, MCS) at different times (early = 2 sec, middle = 20
959 sec, late 60 sec and very late = 200 sec). Matrix elements $R_{ij}(t)$ represent the conditional response
960 at region j due to a unit perturbation applied at region i at time $t = 0$. Note that here time corresponds
961 to the arbitrary simulation time after the *in-silico* perturbation is applied and thus it does not
962 correspond to actual time, although the time-constants governing the evolution were estimated
963 from the BOLD signals. The colorbar represents the relative strength of the response between brain
964 regions (unitless). (b) Whole brain response curves for the three study cases reflecting the sum of
965 all pair-wise responses at each time point post-stimulus. Shaded areas represent the 95%
966 confidence intervals across subjects. Black stars indicate a difference in global responses between
967 all three groups (Bonferroni corrected for 100 tests/time points, p-value=0.05). Red stars indicate
968 the early epoch during which UWS patients display a larger response than HC and MCS
969 (Bonferroni corrected for 100 tests/time points, p-value=0.05). Inset: Area-under-the-curve for the
970 three global response curves in the time range $t = 60 – 200$ sec, quantifying the differences across
971 the three groups.

972 **Figure 4. Region-wise broadcasting and receiving capacities due to exogenous perturbations.**
973 (a) Leveraging the asymmetric properties of the response matrices presented in a, the time course
974 of the response can be plotted to represent the broadcasting and receiving properties per brain
975 region (represented by differently colored lines). Healthy volunteers, and to a lesser extend MCS
976 patients, are characterized by regions more dominantly involved in broadcasting or receiving. This
977 functional organization is lost in UWS patients, who present an almost uniform distribution of
978 regional properties with attenuated broadcasting and receiving. Please note that the end of the
979 network response curve is cut at the end of the modelled time (200 s). The y and x axis is the
980 network response for broadcasting and receiving capacities (unit free). Maps of significantly large
981 broadcasting (b) and receiving capacities (c) for the three study groups (healthy controls, HC;
982 unresponsive wakefulness syndrome, UWS; and minimally conscious state, MCS). The color code
983 represents the t-values. Only regions with significantly high values are presented in each case

984 (FDR corrected p-values <0.05 for 214 tests (ROIs)). (d) By subtracting the AUC of the **R(t)** curve
985 for receiving from the AUC of the broadcasting curve in a region-wise fashion, we represent the
986 dominant role of each region per group. From this it becomes clear that, although some regions
987 play a role in broadcasting to and receiving from the network (e.g., the PCC area in MCS patients,
988 or the occipital cortex and PCC in HC) the network most involved in receiving comprises the
989 occipital and posterior cortical areas while broadcasting is the predominant role of the frontal
990 cortices.

991 **Figure 5. Group comparison of regional broadcasting and receiving capacities after**
992 **exogenous perturbations.** Maps of regional contrasts in broadcasting and receiving capacity
993 between study groups. Color bar represents the t-values for regions with significant between-group
994 differences (Bonferroni corrected p-values <0.05 for 214 tests (ROIs)).

995 **Figure 6. Association of the individual whole brain response curves of *In-silico* perturbations**
996 **and clinical variables.** (a) **R(t)** Response curves are grouped by diagnostic entity including
997 healthy controls (HC; top), unresponsive wakefulness syndrome (UWS; middle) and minimally
998 conscious state (MCS; bottom) and colored by etiology in the case of DoC patients (Anoxia in
999 orange and non-Anoxia (e.g., TBI, hemorrhage) in blue). Anoxia and TBI patients whole brain
1000 network response are heterogeneously distributed in both UWS and MCS groups. (b) Correlation
1001 of whole brain response to *In-silico* perturbation (y-axis) with the metabolic index of best
1002 hemisphere (MIBH; x-axis). Individual datapoints are color coded according to the patient's CRS-
1003 R total score. A positive and linear relationship between the network response and glucose
1004 metabolism is present, that is also associated to the presence of more conscious behaviors (CRS-
1005 R total score). (c) Shows an example for the MIBH images for a representative UWS and MCS
1006 patient. As also evident from the boxplot, glucose metabolism is minimal in UWS patients while
1007 partially preserved in MCS patients.

1008 **Supplementary Figure 1. Comparison of different SDs for the event threshold in the BOLD**
1009 **time series to detect intrinsic ignition events.** Mean intrinsic ignition in healthy controls (HC)
1010 unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS) are presented.
1011 As the event threshold may affect integration values, we used 0.5 to 2SD event threshold to
1012 compute the intense ignition. However, we found similar patterns for all the thresholds (i.e., 0.5

1013 to 2 SD), illustrating the reduced capacity to integrate endogenous spontaneous events in patients
1014 with DoC. Please note that intrinsic ignition could not be computed for higher thresholds due to
1015 lack of events. Stars reflect the Bonferroni corrected (for three groups) significance levels (* = p
1016 <0.016; ** = p <0.001; *** = p <0.0001).

1017 **Supplementary Figure 2.** Spatial maps showing the regional distribution of relaxation time
1018 constants (τ) as calculated for empirical BOLD signals for each area. Healthy controls display a
1019 spatial heterogeneous distribution of τ , while UWS patients are characterized by short time
1020 constants overall. The spatial distribution of regional τ is very much recovered in MCS patients.

1021 **Supplementary Figure 3.** Brain regions' hyper-response (higher growth with sudden decay) differ
1022 in (a) UWS patients compared to HC (b) MCS patients compared to HC (c) UWS compared to
1023 MCS patients for receiving and broadcasting capacities. Color bar represents the t-values for
1024 regions with significant between-group differences (Bonferroni corrected for 214 tests).

1025 **Figures**

1026

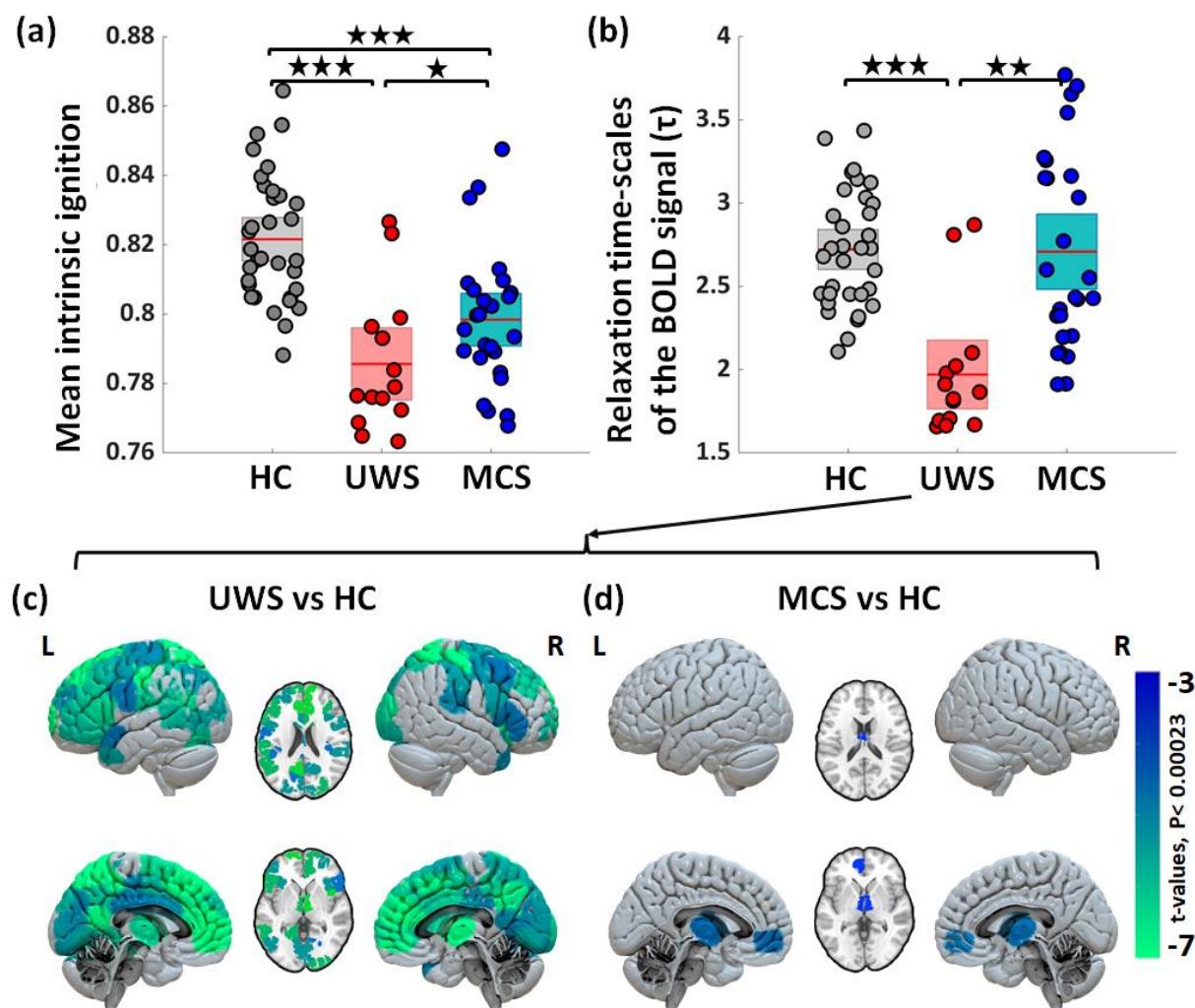
1027

1028

1029

1030

1031


1032

1033

1034

1035

1036 **Figure 1.**

1037

1038

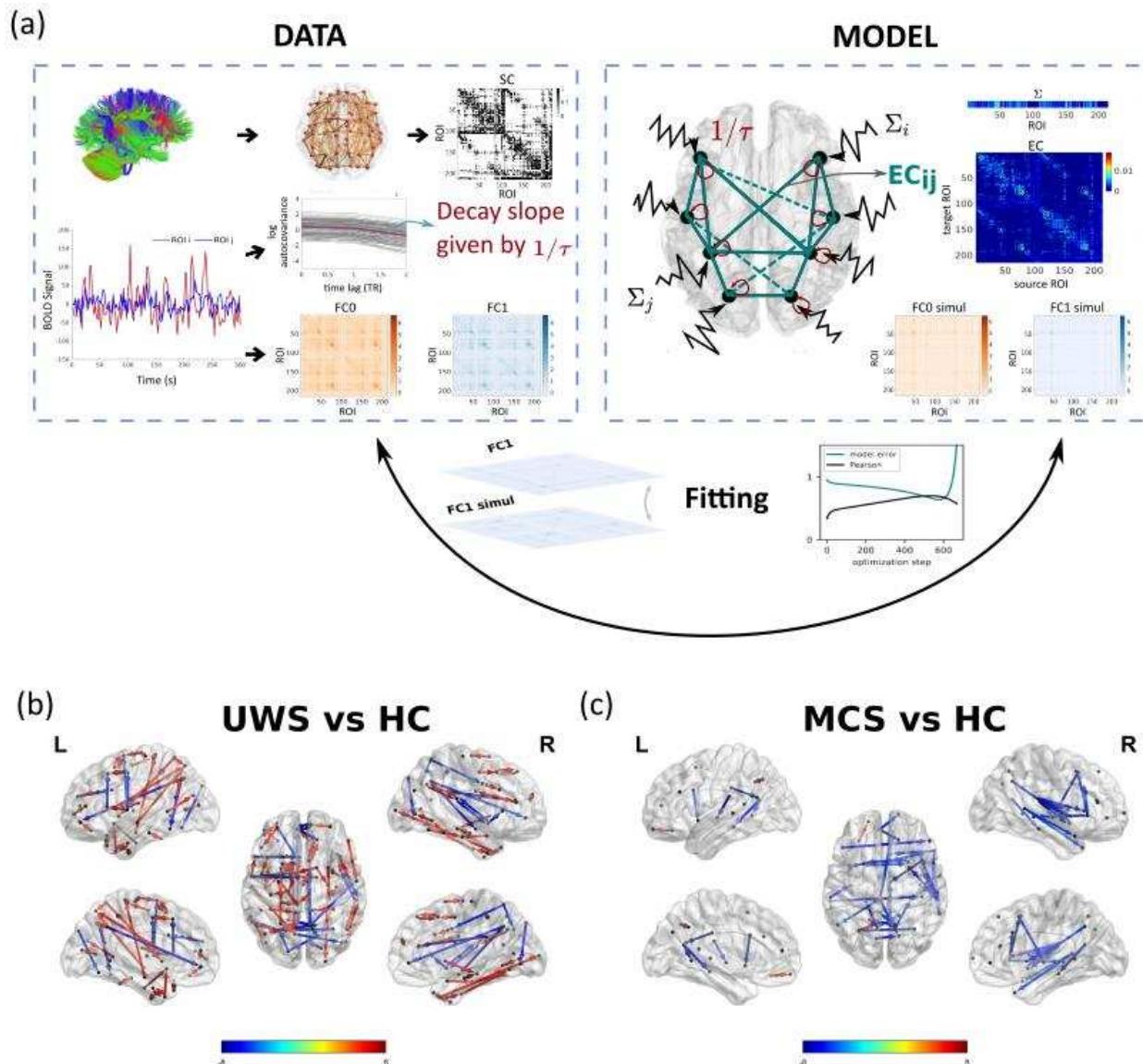
1039

1040

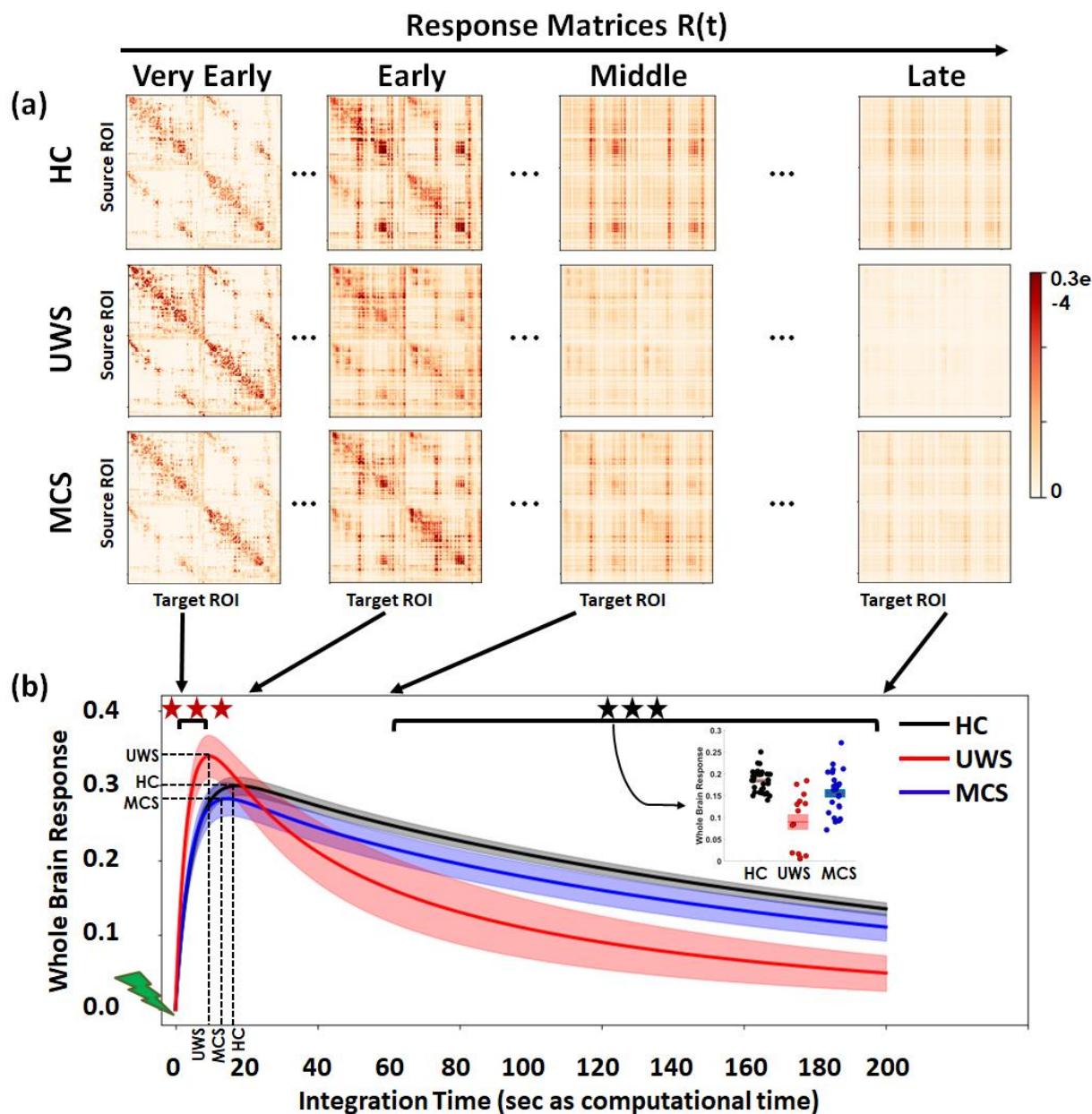
1041

1042

1043


1044

1045

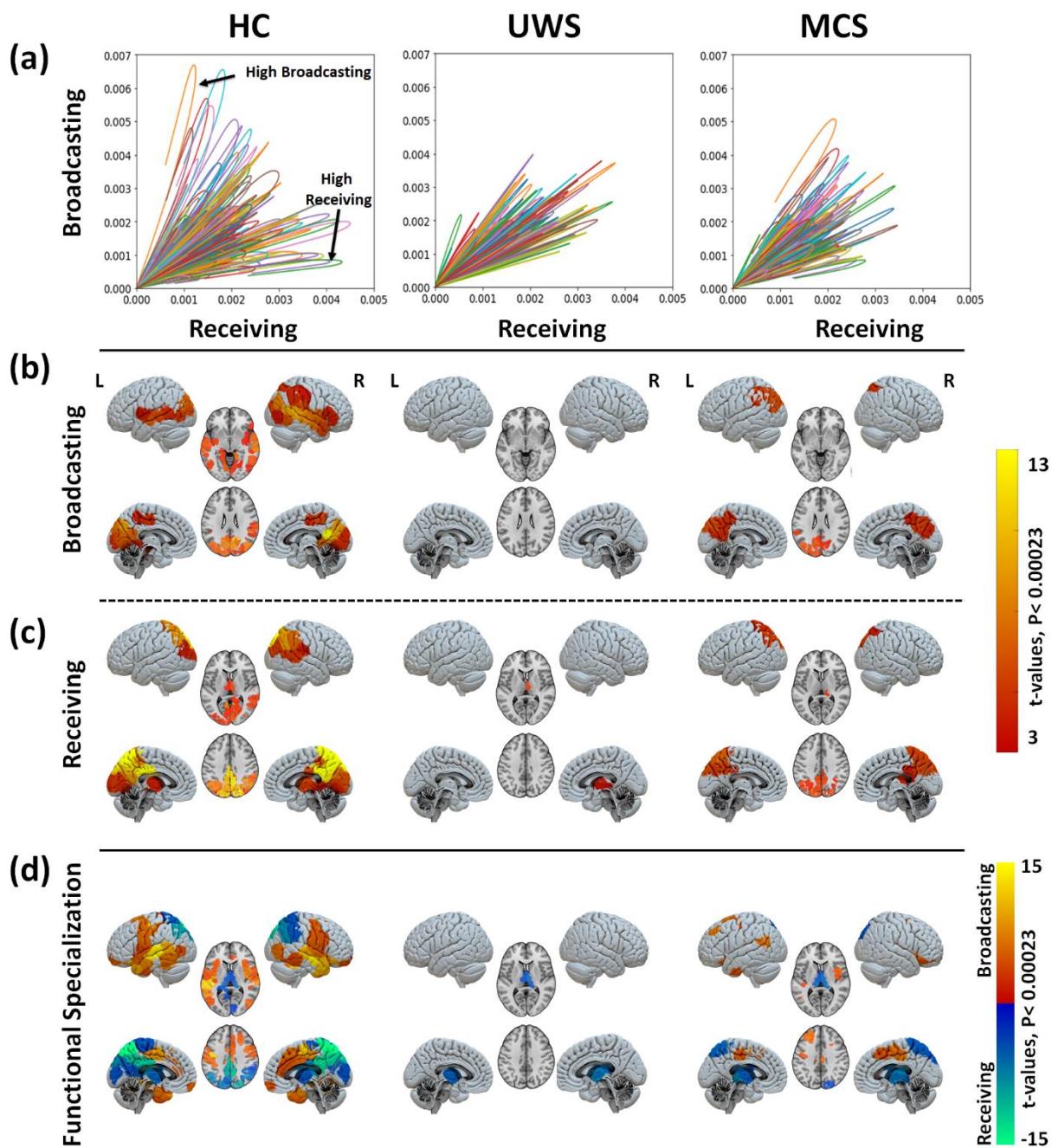

1046

1047 **Figure 2.**

1048

1054 **Figure 3.**

1055

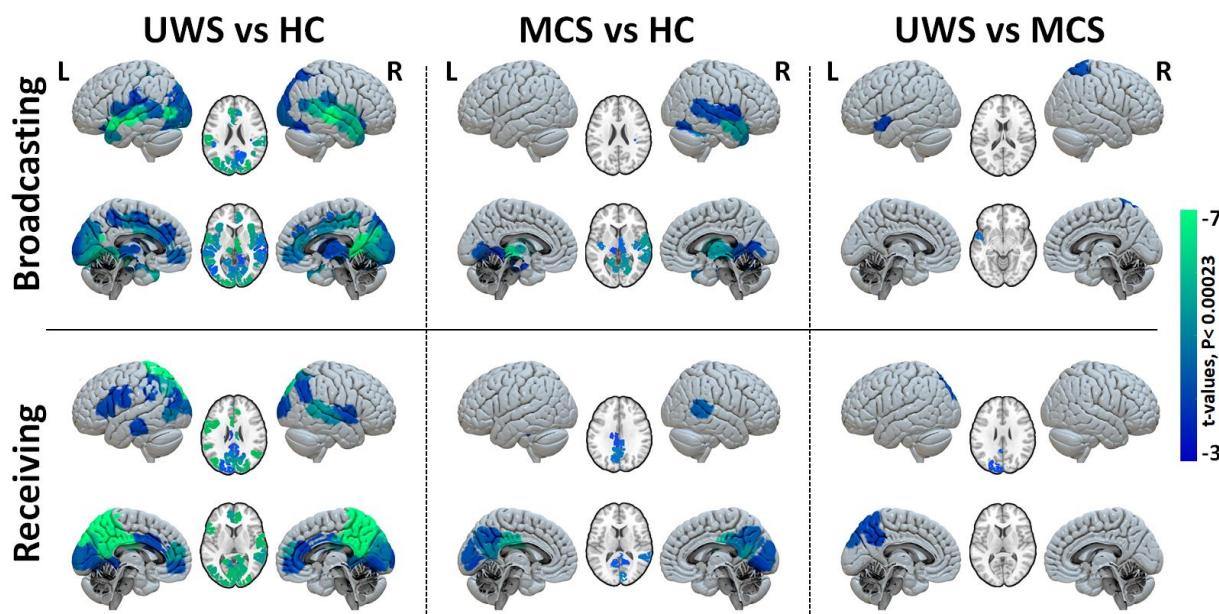

1056

1057

1058

1059

1060 **Figure 4.**


1061

1062

1063

1064

1065 **Figure 5.**

1066

1067

1068

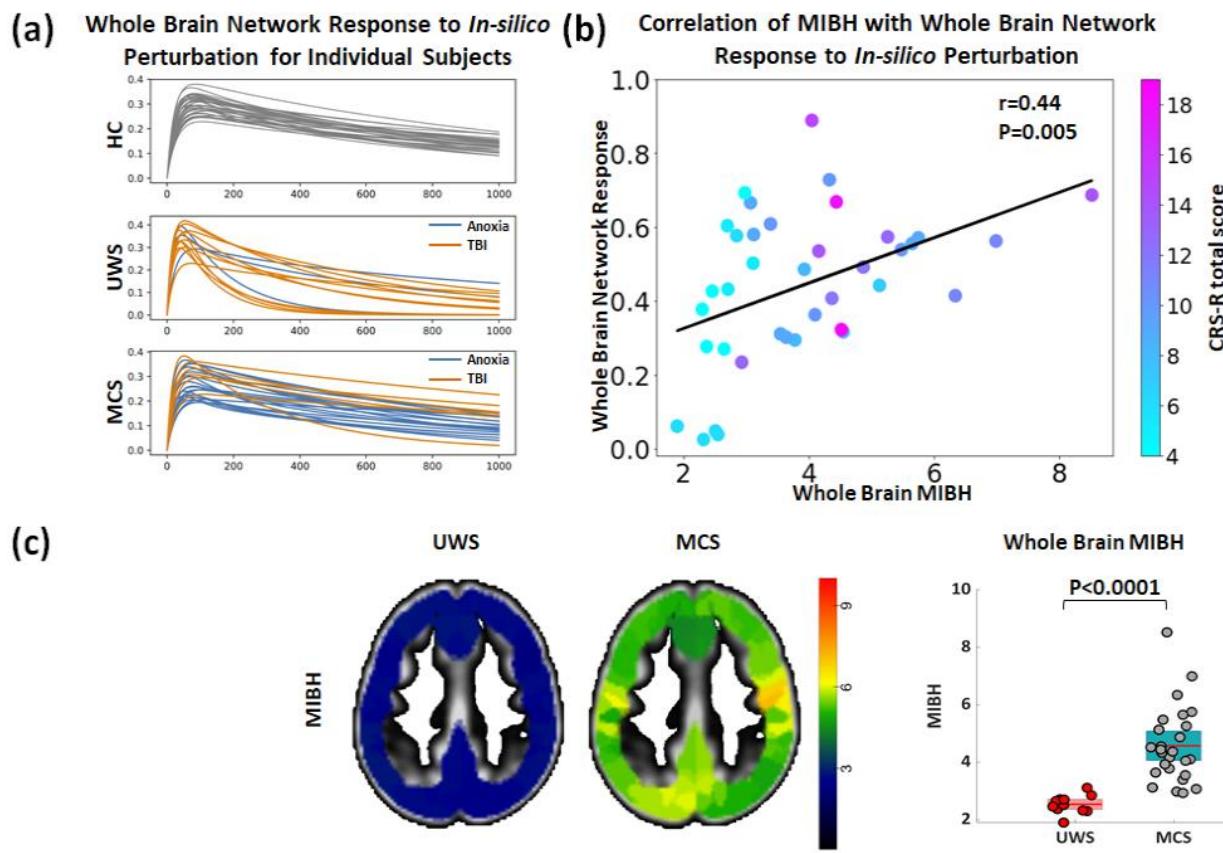
1069

1070

1071

1072

1073


1074

1075

1076

1077

1078 **Figure 6.**

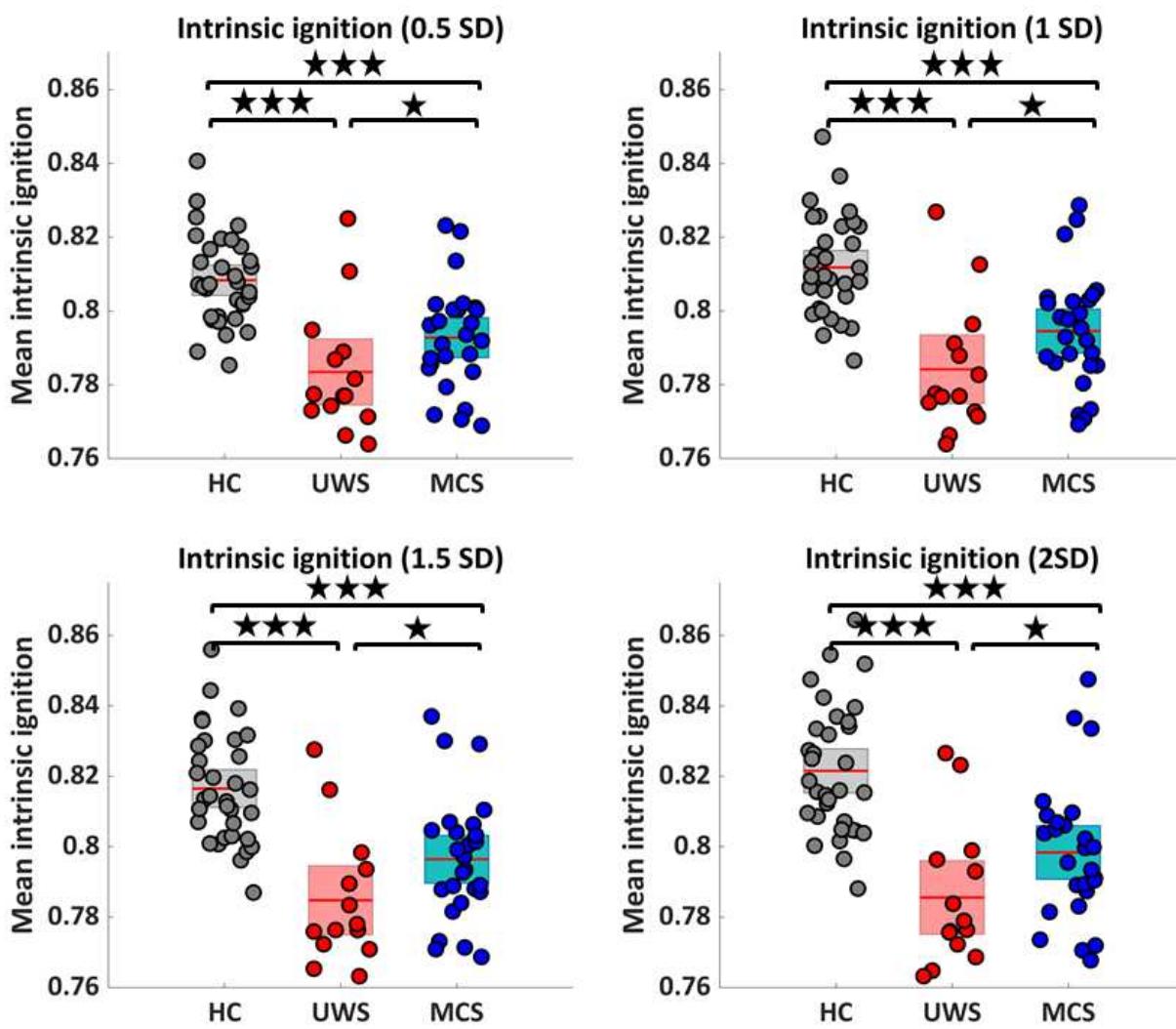
1079

1080

1081

1082

1083


1084

1085

1086

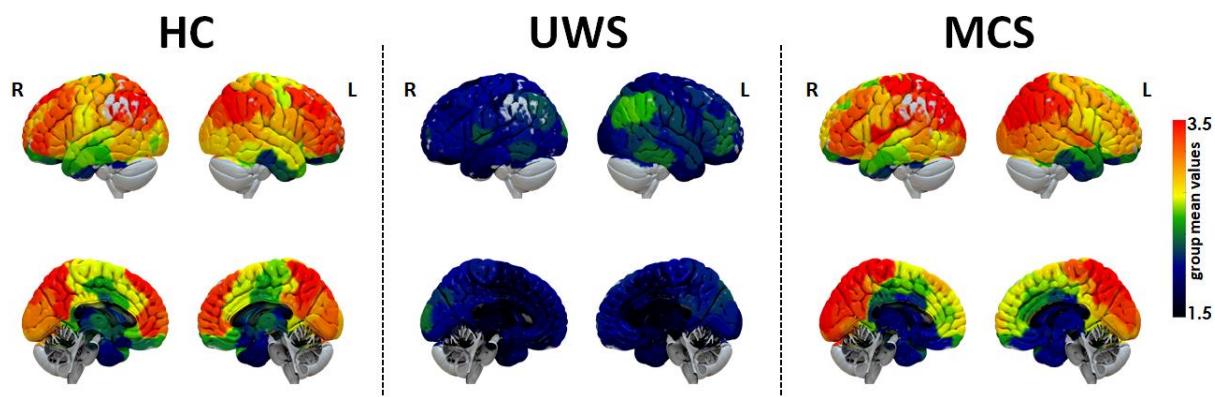
1087

1088 **Supplementary Figure 1.**

1089

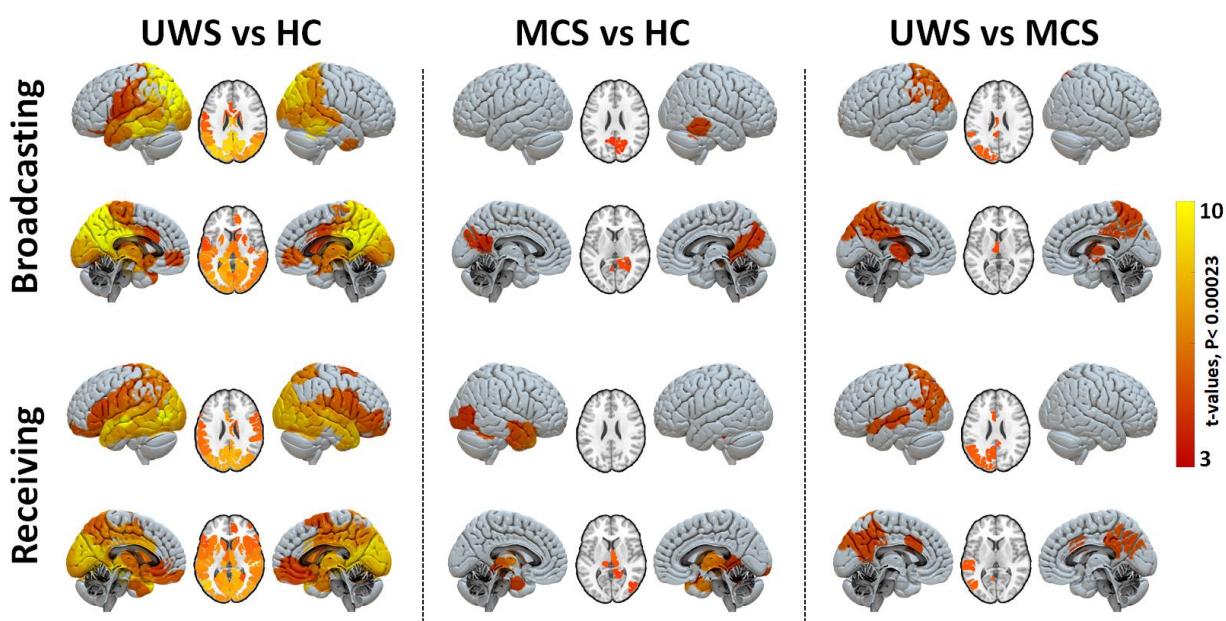
1090

1091


1092

1093

1094


1095

1096 **Supplementary Figure 2.**

1097

1098 **Supplementary Figure 3.**

1099

1100