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Abstract

The German Socio-Economic Panel (SOEP) serves a global research community by
providing representative annual longitudinal data of private households in Germany. The
sample provides a detailed life course perspective based on a rich collection of information
about living conditions, socio-economic status, family relationships, personality, values,
preferences, and health. We collected genetic data from 2,598 individuals in the SOEP
Innovation Sample, yielding the first genotyped sample that is representative of the entire
German population (Gene-SOEP). The Gene-SOEP sample is a longitudinal study that
includes 107 full-sibling pairs, 501 parent-offspring pairs, and 152 parent-offspring trios that
are overlapping with the parent-offspring pairs. We constructed a repository of 66 polygenic
indices in the Gene-SOEP sample based on results from well-powered genome-wide
association studies. The Gene-SOEP data provides a valuable resource to study individual
differences, inequalities, life-course development, health, and interactions between genetic

predispositions and environment.

Why wasthis cohort set up?

Almost all human traits are partly heritable, including health outcomes, personality, and
behavioral tendencies.*? All properties that make us unique as individuals are to some
degree affected by random genetic variation within and between families. Moreover, genetic
and environmental causes of individual differences are interrelated. For example,
environmental conditions can affect how genetic differences between individuals translate
into differences in socio-economic and health outcomes.*™ And, genetic differences among
people manifest in trait differences partly via environmental channels, for example via
genetically influenced persona interests that lead to a self-selection into specific
environments and reinforcement mechanisms consisting, for instance, of behaviors of
parents, teachers, peers, or colleagues.®’ Importantly, the fact that genetic differences are
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linked to differences in behavior and health does not imply simplistic biological determinism
and puts no upper bound on the relevance of the environment or the possibilities for

intervention.®®

The heritabilities of behavioral, psychological, and economic phenotypes (e.g. educational
attainment, personality, risk attitudes) and health outcomes (e.g. cardiovascular disease,
dementia) are typically between 30% and 70%, with an average heritability of 49% across all
traits.®> Thus, a substantiadl amount of variation in outcomes that epidemiologists and
behavioral scientists study can be statistically linked to genetic differences among people.
Ignoring genetics would imply that a substantial source of individual differences would
remain unobserved, potentially leading to biased estimations that could prompt wrong and

possibly counterproductive conclusions.™

Twin studies also suggest that environmental factors are important not only for social
scientific outcomes, but also for a broad variety of diseases.? Thus, detailed information about
living conditions, attitudes, and behavior could inform health-related research questions.
However, most medical research datasets only contain basic information about these factors,

limiting possibilities to fully understand their importance for health outcomes.**

While genetically informed study designs are already common in medical research and have

yielded numerous important insights into disease mechanisms,***

the use of genetic datain
the social sciences is still relatively rare.** Nevertheless, integrating genetic data into social-
scientific research (e.g., economics, psychology, sociology, political science) opens up new
possibilities to (i) control for genetic confounders that are otherwise unobservable and that
may lead to biased empirical results, (ii) increase the statistical power of empirical analyses

by absorbing residual variance in multiple regression analyses, yielding smaller standard

errors of the estimated parameters, (iii) study the interactions of genetic factors and
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environmental exposures, (iv) use random genetic differences among individuals to identify
causal pathways, and (v) better understand how socia (dis)advantages are transmitted across
generations and how parents, peers, teachers, and policy makers can potentially alleviate or
amplify such (dis)advantages.'*"™® Thus, integrating genetic data into the social sciences
offers researchers new tools to study questions they are interested in and to reach more robust

inference on the basis of their empirical analyses.

The genetic underpinnings of behavior, socio-economic outcomes, and health are often
overlapping. For example, educational attainment has substantial genetic correlations with
smoking (-0.3), lung cancer (-0.4), obesity (-0.2), Alzheimer’s disease (-0.3), and longevity
(+0.6),***° illustrating the complex relationships between components of genetic variation,

human behavior, environmental conditions, and health outcomes.

These considerations motivated us to collect genetic data in the Innovation Sample of the
German Socio-Economic Panel Study (SOEP-1S), with the goal of contributing additional
value to an already existing and widely known interdisciplinary and longitudinal data set that
is accessible and frequently used by the global scientific community.’” The addition of
genetic data to this sample opens up many new research opportunities for both the medical

and the soci al-science research community.

SOEP-IS was started in 2011 as an addition to the SOEP-Core sample, which provides
representative annual data of private households in Germany since 1984.'® Similar to the
SOEP-Core sample, SOEP-IS is a valuable data resource for researchers who want to explore
long-time societal changes; relationships between early life events and later life outcomes;
interdependencies between the individual and the family or household; mechanisms of
intergenerational mobility and transmission; accumulation processes of resources; short- and

long-term effects of ingtitutional change and policy reforms; and migration dynamics.'®
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Besides containing a set of basic questions that are identical to the SOEP-Core, the SOEP-IS
longitudinal panel survey incorporates innovative content that is purely user-designed,

including measurements that go beyond the scope of standardized questionnaire formats.

As a household study, the SOEP-IS typically contains data about all household members,
including a large number of mother-father-child trios, parent-offspring duos, childhood
development, parenting practices, and family dynamics. Furthermore, due to the sampling
method and longitudinal nature of the data, the available phenotypes in the SOEP-1S span all
stages of life -- from the (pre-)natal stage, early childhood, adolescence, adulthood, all the
way to retirement and the end of life (see Figure 1). We refer to the genotyped part of the

SOEP-1S as the Gene-SOEP sample.

Figure 1 - Life course perspective of the SOEP-I S sample
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Already existing genotyped cohorts in Germany (e.g. BASE-11," DHS,®® HNRS,* KORA,?
SHIP?) focus on specific health outcomes or are limited in scope to specific regions or age
groups. Thus, as of now, Gene-SOEP is the only genotyped sample that is representative of

the entire German population and that contains family data as well as a rich array of
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longitudinal information about health, personality, family dynamics, living conditions,
attitudes, and socio-economic behaviours and outcomes. This makes the sample particularly
valuable to study long-term developments and the intergenerational transmission of
inequalities in health and well-being. Furthermore, the sample is ideally suited to study the
impact of environmental conditions that are unique to Germany, such as specific public
policies and changes therein or the potential consequences of German reunification. Figure 2
shows the geographic distribution of genotyped households in the Gene-SOEP sample,
illustrating the sample’s coverage of all German states and metropolitan areas (e.g. Berlin,

Hamburg, Munich, Ruhrgebiet).

To enable the collection of genetic datain the SOEP-1S, we established a research consortium
of scientists from Germany (Max-Planck Institute for Human Development, German Institute
of Economic Research), the Netherlands (Vrije Universiteit Amsterdam), Switzerland
(University of Zurich, University of Basel), and the USA (University of Texas at Austin,
Columbia University). The consortium was spearheaded by Philipp Koellinger (Vrije
Universiteit Amsterdam) and Ralph Hertwig (Max-Planck Institute for Human
Development). Koellinger's team in Amsterdam developed and guided the data collection
procedures, processed the collected genetic data, and generated polygenic indices for public

use.
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Figure 2 - Geographic distribution of genotyped households in the Gene-SOEP sample
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Whoisin the cohort?

The sampling and interviewing methods, as well as baseline characteristics of the sample,
were previously described in detail.**® In short, SOEP-IS is based on a random sample of
German households. Annual computer-assisted personal interviews are conducted face-to-
face and information is collected on the household- and individual-levels (e.g. individual and
household incomes). The central survey instruments are a household questionnaire. It is being
answered by the household head. In addition, there is an individual questionnaire that each
household member age 17 and older is supposed to answer. The surveyed information usually
covers the current situation (e.g., family composition or satisfaction with life), but in some
contexts it includes the past (e.g., job changes and employment biographies) and the future

(e.g., expected life satisfaction in 5 years, and chance of re-employment).
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The main caretaker (usually the mother) is asked about their children who are younger than
17 years. If members of an originally sampled household leave the household, (e.g. because
of a divorce or children forming their own household), both the original as well as the split
household are interviewed. The comprehensive tracing rules, which cover al individuals who
(even temporarily) lived in SOEP households, represents a comparative advantage of SOEP
compared to other household panel surveys. They allow users to track various forms of
household dynamics and their implications at the household and individual level. To maintain
areasonable sample size and to address panel attrition, refreshment samples of the residential

population of Germany were integrated in 2012, 2013, 2014, and 2016.

The precondition for participation in the Gene-SOEP - as part of SOEP-1S 2019 - was that the
person or child lives in a participating household. 6,576 people were originally invited to
participate in SOEP-1S 2019, 1,074 of whom were children. Not everyone takes part every
year and there are always people who move away, die, or do not want to take part in the
survey anymore. Therefore, of the original sample, 4,283 persons who were at least 17 years
old (i.e., persons of survey age) as well as 875 children and youths (<17 years of age) lived in
a participating household in 2019. 2,598 individuals provided a valid genetic sample,
including 215 children and teenagers. A requirement for an offspring of at most 17 years of
age to participate in the collection of genetic data was that both guardians agreed. The valid
genetic samples were sent from the survey company Kantar Public to the Human Genomics

Facility (HuGe-F) at the Erasmus Medical Center in Rotterdam for analysis.

Compared with census data (www.destatis.de), the Gene-SOEP sample is very similar to the
German population in terms of age (Meancensus = 52 years vs. Meangenesoep = 55 years), sex
(51% Femaleensus VS. 54% Femalecenesoep), and living region (20% East Germanycensus VS.
19% East Germanycenesoer). However, residents without German citizenship are under-

represented in the Gene-SOEP sample (12% census vs. 4% Gene-SOEP).
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Participants who agreed to donate DNA are very similar to the overall SOEP-1S sample in

terms of socio-demographics, subjective health ratings, and life satisfaction (see Table 1).

Table 1 - Descriptive statistics of the Gene-SOEP adult sample (> 17 years old)

Total Interview Consent Genotyped Polygenic
Indices Created

Mean  SD Mean SD Mean SD Mean SD Mean SD

Age 54 19 55 18 55 19 55 19 55 19
Sex (% female) 53 50 53 50 54 50 54 50 54 50
East Germany (% yes) 20 40 20 40 19 40 19 40 20 40
German (% yes) 95 22 96 20 96 19 9% 19 98 16
Partnered (% yes) 41 49 40 49 40 49 41 49
School degree: low 38 49 40 49 40 49 38 48
(% yes)

School degree: high 31 46 29 45 29 45 30 46
(% yes)

Employment (% yes) 53 50 51 50 51 50 51 50
Mean Net Income 1959 1,304 1922 1300 1915 1258 1924 1,263
(EUR)

Subjective Health (1- 333 0.97 334 0.96 334 0.96 333 0.96
5)

Life Satisfaction (O- 754 1.69 757 1.68 7.59 1.66 7.58 1.66
10)

Observations 5,502 4,283 2,496 2,372 2,063

Parents were somewhat hesitant to enroll their offspring (<17 years of age) for the collection
of genetic data. Compared to an overall consent rate of 58% (2,496 out of 4,282 valid
interviews), only 26% of the eligible offspring participated in the collection of genetic data
(228 out of 875). However, offspring for whom genetic data was collected closely resemble
the overall sample of offspring in the sample in terms of age, sex, geographic location, and

citizenship (see Table 2).
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Table 2 - Descriptive statistics of children and adolescents (<17 years old) in the Gene-

SOEP sample
Totd Consent Genotyped Sample  Polygenic Indices
Created

Mean SD Mean SD Mean SD Mean SD
Age 8 5 9 5 9 5 9 5
Sex (% female) 49 50 50 50 50 50 50 50
East Germany (% yes) 18 39 19 40 18 39 20 40
German (% yes) 9% 20 9% 18 9% 19 99 8
Observations 1,074 228 215 173

What has been measured?
Phenotypes

The SOEP-1S"* contains a set of core questions that are identical to about 44% of the
questions asked in the SOEP-Core survey®®, including variables such as age, gender, height,
weight, education, employment status, income, life satisfaction, personality, living
conditions, attitudes, preferences, and occupational classifications following the International
Standard Classification of Occupations (ISCO). In addition, the SOEP-IS contains a broad
range of short-term experiments and longer-term surveys that were not deemed to be suitable
to the SOEP-Core survey (yet) because they pose a higher risk of refusal and panel attrition
or because they deal with very specific research issues. Every year, researchers can propose
new survey modules or experiments for inclusion in the SOEP-IS. The SOEP management
team and the SOEP survey committee then select which modules will be included in the next
survey wave.'” The SOEP-IS innovation modules also act as a test bed for how respondents
react and some particularly important and successful modules (e.g. risk attitudes) can later be
integrated into the much larger SOEP-Core survey, which collects data from ~15,000

households comprising ~26,000 individuals per year, including ~3,000 children and youths.

10
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Health outcomes in the SOEP-IS are primarily measured based on self-reports of doctor
diagnoses for a range of diseases, subjective evaluations of health and well-being, doctor
visits, and the need for care. Furthermore, dried blood samples were tested for SARS-CoV -2
antibodies and oral-nasal swabs for viral RNA in a part of the SOEP-I1S sample between Oct
2020 and Feb 2021, providing opportunities to study factors influencing infections with

SARS-CoV-2 and long-term consequences.®.

Furthermore, the SOEP-IS allows users to add anonymized spatial information (e.g. federa
states, spatial planning regions, counties, municipalities, and postal codes as well as GPS
coordinates) and can be linked to administrative records from the German Pension Insurance

and the Employer-Employee Study.'®%

An overview of the SOEP-IS survey content and examples of modules is provided in Box 1.
The complete questionnaire of the 2019 survey wave, the 2019 SOEP annual report, and a
description of all SOEP-IS modules from 2011-2018 are available online.?* An online

companion for the entire data collection is available (http://compani on-is.soep.de/).

Box 1. Summary of SOEP-1S survey content by topics and examples of modules

1. Demography and Population
Country of origin, birth history

2. Work and Employment
Change of job, contractual working hours, employment status, evening and weekend work, financial
compensation for overtime, industry sector and occupational classification, job search, leaving ajob, maternity /
parental |leave, registered unemployed, self-employment reasons, side jobs, supervisory position, use of
professional skills, vacation entitlement, work from home, work time regulations, workload

3. Income, Taxes, and Social Security
Asset balance, benefits and bonuses from employer, financial support received, individual gross/ net income,
inheritances, pension plans, social security, wage tax classification, alimony, household income and expenses,
investments, repayments of |oans

4. Family and Social Networks
Circle of friends, family changes, family network, marital / partnership status, attitude toward parental role,
breastfeeding, childcare, language use, leisure and activities, parenting goals, parenting style, pregnancy,
relationship to other parent or child

5. Health and Care
Alcohol consumption, health insurance, illness (self-reports of doctor diagnoses for sleep disorder, thyroid
disorder, diabetes, asthma, cardiac disease, cancer, apoplectic stroke, migraine, high blood pressure, depression,

11
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dementia, joint disorder, chronic back problems, burnout, hypercholesterolemia, or other illness), reduced
ability to work, sickness notifications to employer, smoking, state of hedlth, stress and exhaustion, visitsto the
doctor, satisfaction with availability of care, heath of child, physical and mental health of mother, nutrition,
physical activity

6. Home, Amenities, and Contributions of Private Households
Childcare hours, leisure activities and costs, school attendance by child, change in residentia situation,
consumption, costs of housing, home ownership / rental, loans and mortgages, birth of children, number of
books in the household, personsin household in need of care, pets, residential area, size and condition of home

7. Education and Qualification
Completed education and training, vocational training, educational aspirations for children, school enrollment of
children

8. Attitudes, Values, and Personality
Affective well-being, Big Five personality traits, depressivetraits, goalsin life, impulsivity and patience,
income justice, life satisfaction, lottery question, optimism/pessimism, political tendency and orientation,
reciprocity, religious affiliation, risk aversion in different domains, satisfaction with various aspects, social
responsibility, trust and fairness, wage justice, well-being aspects, worries, temperament of child

9. Time Use and Environmental Behavior
Time use for different activities, trip to work, use of transportation for different purposes

10. Integration, Migration, Transnationalization
Applying for German citizenship, disadvantage / discrimination based on ethnic origins, integration indicators,
language skills, native language, regional attachment, sense of home

11. Innovative Modules
Anxiety and depression, assessment of contextualized emotions, risk attitudes, confusion, control strivings,
dementiaworry, determinants of ambiguity aversion, emotion regulation, expected financial market earnings,
future life events, grit and entrepreneurship, happiness analyzer, impostor phenomenon, inattentional blindness,
inequality attitudes, job preferences, job tasks, justice sensitivity, lottery play, multilingualism, narcissistic
admiration and rivalry, ostracism, pension claims, perceived discrimination, physical attractivenes, self-control,
self-evaluation and overconfidence in different life domains, deep characteristics, smartphone usage, socio-
economic effects of physical activity, status confidence and anxiety, subjective social status, work time
preferences

Genetics

DNA was extracted from saliva samples that were collected using Isohelix IS SK-1S buccal
swabs with Dri-Capsules. Genotyping was carried out using Illumina Infinium Global
Screening Array-24 v3.0 BeadChips, yielding raw data for 2,598 individuals and 725,831

variants, of which 688,618 were autosomal.

Call rates were smaller than 95% in 484 genotyped individuals. Further analyses revealed that
the low call rates for these individuas were largely driven by interviewer effects, possibly
due to not following the sample collection protocol accurately, including an incorrect use of
(or entirely missing) DriCapsules that slow down the decay of DNA, low saliva and DNA

yield, or polluted samples (see Sl sections 2 and 3).
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Since we expect that the vast majority of analyses in the genotyped SOEP-IS data will rely on
polygenic indices (PGIs)® rather than single genetic variant analyses, we implemented two
different quality control (QC) pipelines, mild-QC and strict-QC, that are described in detail in
the Supplementary Information. The mild-QC pipeline yields a higher sample size and both
QC protocols yield approximately equally predictive PGls (see below and Sl section 7).
Depending on the research question investigators will want to address, either the mild-QC or

the strict-QC data can be used to maximize the statistical power of the analyses.

In short, both pipelines filtered out 14 individuals with sex mismatch. The strict-QC pipeline
excluded 260 individuals whose genotype missingness rate was more than 20% within any
chromosome and 59 individuals with excess heterozygosity/homozygosity. The mild-QC
pipeline excluded only 36 individuals based on a per-chromosome missingness of more than
50% and 22 heterozygosity/homozygosity outliers. Using the mild-QC data, we identified 44
individuals of non-European ancestries, 25 of whom were available in the strict-QC sample.
These individuals were also excluded from the mild- and strict-QC samples prior to

imputation.

We used the Haplotype Reference Consortium reference panel (r1.1) for imputation.®
Imputation was completed for 2,497 individuals and 23,185,386 SNPs with imputation
accuracy (RP) greater than 0.1 in the mild-QC data, and 2,299 individuals and 22,201,548
SNPs with R?>0.1 in the strict-QC data. Approximately 66% of the imputed SNPs are rare
with minor alele frequencies (MAF) smaller than 0.01 and ~24% SNPs are common
(MAF>0.05; 5,463,110 in mild-QC, 5,463,110 in strict-QC). The average imputation
accuracy in the mild-QC data is 0.664 and 0.695 in the strict-QC data. However, common
SNPs (MAF>0.05) are much more reliably imputed than rare SNPs, with an average

imputation accuracy of 0.92 and 0.93 in the mild- and strict-QC data, respectively.

13
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Using the imputed SNPs, we identified an additional 37 (2) individuals of non-European
ancestries in the strict (mild) QC data on top of the 44 (25) individuals of non-European
ancestries excluded prior to imputation, respectively. Thus, ~98% of the genotyped SOEP-IS

sampleis of European ancestries (see Supplementary Information section 4).

We constructed the first 20 principal components (PCs) of the genetic data for individuals
with European ancestries based on ~160,000 approximately independent SNPs with
imputation accuracy >70% and MAF>0.01. We recommend using these genetic PCs in

analyses as control variables for population stratification.*
Family relationship among genotyped participants

With the exemption of parent-offspring pairs, family relationships among the participants are
only surveyed viatheir relationship to the household head. For the genotyped participants in
the SOEP-IS across the available waves from 1998 to 2019, there are 877 reported
relationships for the 602 household heads. The mgjority (515) of these relationships are with
their spouse or partner, while 346 relationships are with their child (324 biological, 11
adopted or biological, and 11 stepchild). The remaining relationships of household heads are
with grandchildren (5), parents (4), a parent-in-law (1), a niece/nephew (3), a son/daughter-

in-law (1), and a half sibling (1).

By using the reported relationships to the household head as well as directly reported parent-
child relationships, we inferred or found 609 parent-offspring, 142 full-sibling, and 17
second-degree relative pairs in the Gene-SOEP sample. In Table S1, we compared these
reported relationships to genetically inferred relationships obtained from KING®. We found
that 19% of the pairs have inconsistencies between the reported and geneticaly inferred
relationships. The deviations were mainly due to low genotyping quality of some individuals.

When considering only the individuals whose genotyping call rate was greater than 90%
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using directly genotyped SNPs, 92% of the pairs in the Gene-SOEP have consistent self-
reported and genetic family relationships (see section 3 and 6 of the Supplementary
Information for details). We found that most of the remaining inconsistencies are due to self-
reported full-siblings who are likely to be only half siblings (13 out of 97 pairs). We also
found 28 self-reported parent-child pairs that appear to be non-biological from 437 pairs in

total.

Furthermore, restricting to the individuals with the genotype call rate greater than 90%, we
identified 88 pairs whose family relationship information was not available in the survey
data. These pairs consist of 7 parent-offspring, 19 full-siblings, 33 second-degree relatives,

and 29 third or fourth degree relative pairs.

Overall, out of 2,497 individuals, we genetically identified 703 individuals with at least one
first-degree relatives (parent-child or full sibling) and 728 individuals that have at least one
relative with at least third-degree of relatedness (first cousins or great grandparent-child).
1,769 individuals do not have close relatives on the basis of the genetic data. Note that the
related pairs reported here are not mutually exclusive and some individuals can be related to

multiple people.
Polygenic indices

The effect sizes of individual single nuclectide polymorphisms (SNPs) on behaviora traits
and complex diseases are usually tiny (R? < 0.05%). Polygenic indices (PGI) aggregate the
effects of observed SNPs, weighting them by their estimated effect sizes from an independent
genome-wide association study (GWAS) sample.® The predictive accuracy of a PGl depends
on the GWAS sample size (+), the heritability of the trait (+), the number of causal genetic
variants that influence the trait (-), and the extent to which the genetic architecture of the trait

is similar across various environments and datasets (+).**** Thanks to rapidly growing
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GWAS sample sizes in the past few years, the accuracy of PGIs has increased greatly,
especially for individuals of European ancestries.***® PGIs are now beginning to capture a
substantial part of the heritability of many traits, making them valuable for research in many
scientific disciplines. For example, PGls from the latest generation of GWAS analyses
capture ~12% of the variation in years of schooling,'® ~10% of general cognitive ability,'

and up to 2% of various personality characteristics such as risk tolerance.*’

This makes these PGIs useful for follow-up analyses in samples that are much smaller than
the original GWAS.** For example, a sample of N = 1,000 yields >90% statistical power to
detect an association between a PGl and an outcome of interest if the PGI captures at least
1% of the phenotypic variation (two-sided t-test with 0¢=0.05). An association between an
outcome and a PGl with R = 10% can even be detected in a sample of only N = 110

individuals with 90% power.

We followed the methods used by Becker et al. 2021* to create a repository of single- and
multi-trait polygenic indices for 66 socia-scientific and health traits for individuals of
European ancestries in the Gene-SOEP sample. We used the largest currently available
GWAS samples to create these PGls, including publicly available GWAS summary statistics
as well as non-publicly available GWAS results from 23andMe. We extended the list of 36
single-trait and 35 multi-trait PGlsin Becker at al. 2021 by including single-trait PGls for 19
medical outcomes with well-powered GWAS summary statistics. The single-trait PGls were
based on univariate GWAS summary statistics (Table 3), whereas the multi-trait PGl were
based on multivariate MTAG analyses that exploit genetic correlations between several traits

to improve predictive accuracy (Sl Table 3).%

Some of the PGIs that we created have corresponding phenotypes in the Gene-SOEP sample

(e.g. educational attainment, height, BMI, risk tolerance), while others capture genetic
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predispositions for phenotypes that are not observable or incompletely measured (e.g.
longevity, HDL cholesterol, blood pressure, and a variety of diseases including Alzheimer’s,
schizophrenia, stroke, atrial fibrillation and breast cancer). These PGls are useful proxies for
unobserved traits and outcomes. For example, they can be used as control variables in studies
that focus on environmental processes such as socio-economic factors that influence health™,
to detect gene-environment interactions (e.g. heterogeneous responses to policy

interventions),>**

or as exogenously given proxies that do not change over the lifecourse (e.g.
to study genetic predisposition for health on labor market outcomes). Finally, the availability
of genetic data and PGIs from parents and their children offers exciting, new ways to

disentangle genetic and environmental channels of intergenerational transmission of health,

behavior, and socio-economic outcomes.>*

Table 3 - Polygenicindices in the Gene-SOEP samplefrom single trait GWASTresults

Phenotype # SNPs GWASN
Adventurousness® 1,147,160 557,923
Age First Birth®4 996,620 169,901
Age First Menses (Women)*4 1,142,133 309,043
Alcohol Misuse®* 1,145,324 120,684
Alzheimer'ss® 1,115,709 455,258
Any Ischemic Stroke** 850,822 446,696
Any Stroke*® 844,962 446,696
Atrial Fibrillation** 850,822 1,030,836
Asthma® 1,159,334 418,164
Asthma/Eczema/Rhinitis®** 1,137,288 513,889
Attention Deficit Hyperactivity Disorder (ADHD)®4° 1,083,048 57,386
Body Mass Index (BM1)®4 1,023,282 582,457
Breast Cancer** 809,475 228,951
Cannabis Use®* 1,087,000 156,756
Cardioembolic Stroke** 844,996 446,696
Childhood Reading™ 1,147,169 172,502
Chronic Kidney Disease** 845,145 444971
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Cigarettes per Day***° 1,150,910 250,057
Cogpnitive Performance®* 1,148,362 222,914
Depression* 835,515 500,199
Depressive Symptoms®* 1,138,362 619,272
Diastolic Blood Pressure* 843,500 757,601
Drinks per Week®4 1,150,775 723,487
Educationa Attainment6%° 1,147,926 1,047,538
Ever Smoker®4° 1,143,561 1,129,163
Externalizing** 1,020,283 1,492,085
Extraversion®°2% 1,113,746 73,906
Hay Fever® 1,159,334 403,179
HDL Cholesterol** 847,159 187,167
Height®* 1,022,784 448,198
Highest Math!®% 1,147,159 430,439
Insomnia* 4 824,863 386,533
Large Artery Stroke** 1,159,551 446,696
Left Out of Socid Activity™ 1,147,159 507,803
Life Satisfaction: Family*® 1,159,202 141,864
Life Satisfaction: Friends® 1,159,184 138,807
Longevity** 832,850 640,189
Migraine® 1,146,834 421,013
Morning Person®% 1,123,260 362,840
Narcissism™® 1,147,153 452,535
Nearsightedness®* 1,146,729 301,938
Neuroticism®5257 1,029,577 389,237
Number Ever Born (Women)*# 1,034,474 207,393
Openness™%2% 987,746 72,308
Physical Activity®%® 1,108,549 140,190
Religious Attendance™ 1,159,336 383,466
Risk Tolerance®*" 1,076,002 1,070,480
Schizophreniar* 829,801 105,318
Sdlf-Rated Heath™® 1,144,515 911,102
Self-Rated Math Ability'6* 1,147,159 564,692
Small Vessel Stroker* 1,159,163 446,696
Subjective Well-Being™® 906,574 502,976

18


https://doi.org/10.1101/2021.11.06.467573
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.06.467573; this version posted November 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Systolic Blood Pressure** 842,552 745,820
Triglycerides** 847,159 177,861
Type 2 Diabetes**® 851,227 231,426

Notes: "# SNPs" is the number of SNPsthat were used to construct the PGI.
“*" indicates PGls for medical outcomes that were not originally included in Becker et a. 2021.
All 55 PGls are constructed only for individuals of European ancestry (N = 2,495).

What has been found?

The SOEP sample is currently used by more than 9,000 registered users from 54 countries.?®
About 300-400 publications annually are based on SOEP data, including OECD reports on
the international development of inequality. Roughly 25% of these publications are in
journals listed in the (social) science citation index and more than 100 publications are based
on SOEP-1S data. The SOEP is also an integral database for official government reports in
Germany. Mgjor research areas that include SOEP-based publications include life course
development, inequality, mobility, psychological outcomes and attitudes, migration,
transition to a unified Germany, and health. Thus, the SOEP data is widely used and provides
an indispensable empirical foundation to describe longitudinal developments and
relationships, and a better understanding of socioeconomic processes and behavior. It is a
highly valuable resource to study relationships between behavior, socioeconomic status, and

health.®

The genetic data that we collected in the SOEP-IS sample (Gene-SOEP) is a new addition to

this valuable resource. We describe first findings using the genetic data below.
Predictive accuracy of polygenic indices for height, BMI, and educational attainment

Figure 3 shows the predictive accuracy of the PGls for height and BMI in unrelated
individuals from the Gene-SOEP sample, both for the mild and the strict version of the QC of
the genetic data that we carried out. We measure the predictive accuracy of the PGIs as the

difference in the explained variance (R?) before and after adding the PGI to a baseline
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regression that controls for a second-degree polynomial in year of birth, sex and their
interactions, genotype batch indicators, and the top 20 genetic PCs. Since height and BMI
were surveyed multiple times across waves, we first residualized height and BMI for age,
agez, sex and their interactions within each wave and took the mean for each individual; then,
as covariates, we used only genotype batch indicators and the top 20 genetic PCs. We

obtained 95% confidence intervals by bootstrapping the sample 2,000 times.

Using this approach, the PGls explain 22~24% of the variance in height, 12~13% of the
variance in BMI, and 9% of the variance in educational attainment. Furthermore, the
predictive accuracy was very similar for different levels of QC, which implies that the low
genotyping quality in a part of the sample does not substantialy reduce the predictive
accuracy of the PGls. Thus, researchers may choose to use the mild-QC version of the data
for analyses using PGIls to take advantage of its ~10% larger sample size and the

corresponding gains in statistical power.

Figure 3 - Polygenic prediction in the SOEP-I Ssample
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Note: The bars report the prediction accuracy of polygenic indices among unrelated individuals of European ancestries
measured asincremental R2. The sample size of the strict (mild) QC sample is 1,904 (2,094), 1,897 (2,086), and 1,857

(2,036) for height, BMI, and educational attainment, respectively. The error bars indicate 95% bootstrapped confidence
intervals with 2,000 replications.

Genetic and environmental correlations with height and BMI

We demonstrate the advantages of combining a representative population sample with
genetic data by analyzing birth year cohort trends in body height and BMI over time.
Specifically, we split the Gene-SOEP sample into PGI values below and above the median
for height and BM|I and plotted the average residualized phenotypic values after adjusting for
sex in both groups for adults >=20 years of age, binned into ten-year birth cohorts (Figures 4
and 5). Phenotypic values are residualized by regressing each observed phenotypic value on
sex dummies using OLS. Each observation is assigned a residualized value which represents

the remaining variation in the phenotye which cannot be predicted by sex. Residualized
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values are then averaged by individual across survey waves. The average residualized values

for each bin are reported by the solid lines corresponding to the left axis.

In the non-residualized data, individuals with high PGI values for height are on average 5.2
cm taller than those with low PGI height values (95% Cl: 3.4 - 7.1cm). Figure 4 shows that
this difference in average height by genetic predisposition is robust across birth year cohorts,
reflecting a stable influence of the height PGI. Interestingly, Figure 4 also demonstrates that
younger birth cohorts are on average substantially taller than older birth cohorts. For
example, individuals born in the 1923-1939 birth year cohort (~84 years old on average in the
2019 survey wave) are on average 6.6 cm shorter than those born in 1980-1999 birth year
cohort (~31 years old on average in the 2019 survey wave). This gain in average height of
younger birth cohorts cannot be explained by observed genetic changes in the population. As
Figure 4 shows through the dashed lines which correspond with the right y-axis, the average
values of the (high and low) height PGI did not increase over time. Instead, the younger birth
cohorts exhibit a slightly smaller PGl value than the older birth cohorts, possibly due to
sample selection and mortality effects among older participants.®® In order to disentangle
potential age effects from birth cohort effects, SI Table 5 presents estimates from height
regressed on the standardized height PGI, birth cohort dummies, including five year age bin
dummies. The results confirm a birth cohort effect on height that is separate from the genetic
influences on height as well as aging effects. This implies that the substantial gains in
average body height in the German population over time are partially due to improved

environmental conditions, such as better nutrition and health care.?>%

Figure 4 - Body height by birth cohortsand PGI values
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Note: Using the single-trait polygenic index (PGI) for body height, we split the sample of adults (older than 20 years) into
two parts at the median PGI value (High PGl N=1,085; Low PGI: N=1,079). Self-reported height is residuaized on sex and
survey year before being averaged across survey waves. Each individud is assigned to a decadal cohort. Individuals born
before between 1923 and 1939 are al in the 1930s cohort, while individuals born after 1980 are al in the 1980 group.
Individuals born between 1940-1949, 1950-1959, 1960-1969, and 1970-1979 are respectively labeled as 1940s, 1950s,
1960s, and 1970s. We plotted the average observed residual height for each decadal cohort by PGI bin, along with 95%
confidence intervals.

A similar analysis for BMI (Figure 5) shows that individuals with an above-median PGI have
on average also higher BMI (1.6 points higher for the High-PGI group in the non-residualized
results, 95% CI 1.04 - 2.17). Both the heritability and the predictive accuracy of the PGI are
lower for BMI than for height.>* Correspondingly, the average differences in BMI between
the low and the high PGI group are not statistically significant for all birth year cohorts. Yet,
similar to the analyses on height, we also observe birth cohort effects on BMI that cannot be
explained by observed genetic variation in the BMI PGI. Individuals born in the youngest
birth cohort (1980-1999, ~31 years old) have an average BMI that is 2.3 points lower than

those in the oldest birth cohort (1923-1939, ~84 years old). The higher BMI in the older birth
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cohorts is not due to observed genetic changes in the population over time. In fact, the
average PGI is dlightly lower in the older birth cohorts than in the younger ones, again
possibly due to sample selection and mortality effects among older participants.®* Sl Table 6
presents regression results from a robustness check that also included 5-year age bins as
control variables, again confirming birth cohort effects that cannot be explained alone by
aging or observed genetic variation. Thus, the higher BMI in the older birth-cohorts is likely
to be caused by a combination of environmental effects such as differences in living

conditions, socio-economic effects,® or nutrition.®

Figure5 - Body massindex (BM1) by birth cohort and PGI values
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Note: Using the single-trait polygenic index (PGI) for BMI, we split the sample of adults (older than 20 years) into two parts
at the median PGI value (High PGI: N=683; Low PGI: N=775). Self-reported BMI is residualized for sex and survey year
before being averaged across survey waves. Each individual is assigned to a decada cohort. Individuas born before
between 1923 and 1939 are al in the 1930s cohort, while individuals born after 1980 are all in the 1980 group. Individuals
born between 1940-1949, 1950-1959, 1960-1969, and 1970-1979 are respectively labeled as 1940s, 1950s, 1960s, and
1970s. We plotted the average observed residual BMI for each decadal cohort by PGI bin, along with 95% confidence
intervals.
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The broad set of PGIs we created are a valuable resource for research on inequalities in socio-
economic and heath outcomes. Previous research has demonstrated that the genetic
architectures of socio-economic, behavioral and heath outcomes are often substantially
overlapping.**®®" This implies that PGls for socio-economic or behavioral traits can also be

proxies for health outcomes.

Thisis demonstrated in Figure 6, which presents the effect size from regressions of self-rated
health on 28 single-trait PGIs (out of 55 tested single-trait PGls overall) whose estimated
standardized coefficients are greater than [+0.1| All regressions controlled for five year age
bins, sex, and their interactions, and the first 20 genetic principal components. 18 PGls are
statistically distinguishable from zero after a Bonferonni correction for 55 tested hypotheses

(marked with *).

Figure 6 - Associations between polygenic indices and sdlf-rated health
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Note: Analyses in the Gene-SOEP sample, N = 2,060. Self-rated health is measured by a 5-point Likert scale where a 1
indicates poor health and a5 indicates very good health. Each self-rated health observation is regressed on five year age-bin
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dummies, sex dummies, and the interaction of sex and age bin dummies. We take the estimated residual from the previous
regression, compute the average residua value for each individual, and regress each PGl along with 20 genetic principa
components on these residuals where each individual has one observation. The estimated standardized betas from each PGI
are reported in the figure. The figure represents 28 single-trait PGIs with an effect size of greater than [£0.1], out of 55
single-trait PGIs overall. PGIs marked with an * are satigtically distinguishable from zero after a Bonferonni correction.
Error bars represent a 95% confidence interval around the estimated beta for each PGI.

We find positive associations between self-rated health and PGls for self-rated health, age at
first birth, educational attainment, subjective well-being, highest math class taken, religious
attendance, longevity, cognitive performance, physical activity, self-rated math ability, and
age at first menses. Furthermore, we find negative health correlations of the PGls for
externalizing, depression, ADHD, number of children ever born, insomnia, neuroticism,
smoking, and being left out of social activities - al of which are PGIs for behavioral, social,
or cognitive phenotypes. Moreover, the PGls for BMI, high blood pressure, type 2 diabetes,
large artery stroke, triglycerides and asthma all have the expected negative correlations with

self-rated health.

What ar e the main strengths and weaknesses?

Major strengths of the Gene-SOEP data include:

(i) the sample selection, which yields the only currently genotyped sample that is

representative of the entire German population;

(ii) the longitudinal nature of the data with annual observations since 2011 (for a subset of

individuals and phenotypes, annual observations even go back to 1998);

(iif) the rich questionnaire content, including self-reported health outcomes and detailed
information on socio-economic status, living conditions, family dynamics, personality,

preferences and attitudes is another major strength of the data;

(iv) the possibility to use detailed geo-coding, standardized occupation codes, and links to
external databases such as the German Pension Insurance and the Employer-Employee Study;
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(v) the broad set of state-of-the-art polygenic indices that we created, which lower the entry

barriers for researchers to use genetically informed study designs;

(vi) the continuing annual collection of data that also allows researchers to integrate new
survey modules, biomarkers, and experiments in the future by following the application

procedures of the SOEP-1S management team;*’

(vii) the household sampling procedure that collects data on all family members. The Gene-
SOEP sample contains 501 parent-offspring pairs, 152 parent-offspring trios, 107 full-
siblings, and 12 second degree relatives (including half-siblings) with matching self-reported
and genetically-inferred relationships. This data structure enables genetically informed
studies on a wide range of research topics, including the intergenerationa transmission of
inequalities in health and well-being as well as studies that identify how environmental

factors such as parenting style influence the developmental trajectory of children and youths;

(viii) the availability of epigenetic data, which will be added for a substantial part of the
Gene-SOEP sample in the near future, further increasing research opportunities on the

relationships between socia environment and physical health;

(ix) the possibility to extend the collection of genetic datato all SOEP surveys, which would

substantially increase the available sample size for genetically informed analyses.

Compared to other datasets that were included in the Polygenic Index (PGI) Repository of the
SSGAC,* the Gene-SOEP is the only German sample and it has the broadest coverage of
social scientific outcomes, many of which have been repeatedly collected over time.
Although the sample size of the Gene-SOEP is larger than several other studies included in
the PGl Repository (e.g. Dunedin, E-Risk, Texas Twins), we still caution that researchers
using the data should pay attention to statistical power in their analyses. In particular, the

sample size may be too limited for analyses of single genetic variants or sub-parts of the
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sample (e.g. specific age groups or geographic areas). A further limitation is that a part of the
sample (19%) did not pass the strict quality control thresholds of genetic data that are usually
employed in genetic epidemiology (call rates > 95%). However, our mild-QC pipeline still
enables the use of well-performing PGIs in 2,495 individuals (96% of the successfully

genotyped sample).

Another possible limitation is that the currently available health outcomes are limited in
detail and based on self-reports rather than detailed digital health records. Future expansions
of the collected health data would further increase the utility of the SOEP samples for

epidemiological research.

How can | accessthe data?

The collected phenotypes from all SOEP samples can be accessed via user agreements with

DIW Berlin (https://www.diw.de/en/diw_01.c.601584.en/data_access.html). The raw genetic

data from Gene-SOEP will be stored on the European Genome-Phenome Archive

(https://ega-archive.org/) from 2023 onwards and data access applications will be handled by

DIW Berlin. Raw genetic data will need to be stored on high-security servers that meet the
technical and organizational security measures required by the General Data Protection
Regulation of the European Union. From 2023 onwards, DIW Berlin will also share the
genetic PCs and all PGls that were constructed in a standard phenotype file (e.g. in Stata,
SPSS, or CSV formats). This version of the data also includes an indicator for individuals
that did not pass the strict-QC pipeline. This allows users to decide whether they prefer to
conduct their analyses using the full sample for which PGIls were constructed or the slightly
smaller set that passed strict QC. DIW Berlin will also share family relationship data for each
related pair, inferred from both the survey and genetic data, which will also contain genetic

kinship estimates.
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Key messages

Genetic data has been successfully collected for 2,598 participants of the German
Socio-Economic Panel Innovation Survey wave 2019-2020. The genotyped part of the
sample (Gene-SOEP) contains 501 parent-offspring pairs, 152 parent-offspring trios,
107 full-siblings, and 12 second degree relatives (including half-siblings) with
matching self-reported and genetically-inferred relationships. These family
relationships are partialy overlapping, e.g. the 152 parent-offspring trios are included
in the 501 parent-offspring pairs.

The Gene-SOEP is currently the only genotyped sample that represents the entire
German population.

Annua surveys are conducted since 2011 for all household members, generating a
rich and detailed portrait of the past and current living conditions of the sample
participants, including socio-economic status, well-being, health, personality,
economic preferences, opinions, family dynamics, and child development.

We created arepository of 66 polygenic indices (PGls) for social-scientific and health
traits in the Gene-SOEP sample based on results from well-powered genome-wide
association studies. This repository provides a valuable resource for interdisciplinary
research in the medical and social sciences.

Using PGls for body height and BM1, we demonstrate both genetic and environmental

influences on the distribution of these phenotypes across different birth cohorts.
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