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Abstract

Large-scale whole-genome sequencing studies have enabled analysis of
noncoding rare variants’ (RVs) associations with complex human traits. Variant set
analysis is a powerful approach to study RV association, and a key component of
it is constructing RV sets for analysis. However, existing methods have limited
ability to define analysis units in the noncoding genome. Furthermore, there is a
lack of robust pipelines for comprehensive and scalable noncoding RV association
analysis. Here we propose a computationally-efficient noncoding RV association-
detection framework that uses STAAR (variant-set test for association using
annotation information) to group noncoding variants in gene-centric analysis based
on functional categories. We also propose SCANG (scan the genome)-STAAR,
which uses dynamic window sizes and incorporates multiple functional
annotations, in a non-gene-centric analysis. We furthermore develop
STAARpipeline to perform flexible noncoding RV association analysis, including
gene-centric analysis as well as fixed-window-based and dynamic-window-based
non-gene-centric analysis. We apply STAARpipeline to identify noncoding RV sets
associated with four quantitative lipid traits in 21,015 discovery samples from the
Trans-Omics for Precision Medicine (TOPMed) program and replicate several

noncoding RV associations in an additional 9,123 TOPMed samples.
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Introduction

Genome-wide association studies (GWASs) have successfully identified
thousands of common genetic variants for complex diseases and traits; however,
these common variants only explain a small fraction of heritability’. Recent
studies suggest that the missing heritability of complex traits and diseases and
causal variants may be accounted for in part by RVs (minor allele frequency
(MAF) < 1%)?4. Although whole-exome sequencing (WES) studies have
identified exome-wide significant RV associations for complex diseases and
traits®®, more than 98% of the genetic variants are located in the noncoding
genome®. Many common variants identified by GWAS as being associated with
phenotypes are located in noncoding regions”8. Further, the ENCODE project
shows that a significant fraction of noncoding regions are functionally active®°,

indicating that rare noncoding regions may have an effect on diseases or traits.

An increasing number of whole-genome sequencing (WGS) association studies,
such as the Genome Sequencing Program (GSP) of the National Human
Genome Research Institute (NHGRI) and the Trans-Omics for Precision
Medicine (TOPMed) Program of the National Heart, Lung, and Blood Institute
(NHLBI), permit the study of the genetic contributions of noncoding RVs to
complex traits and diseases. It is of substantial interest to use these rich WGS
data to explore the role of noncoding RVs in the genetic underpinning of common

human diseases.
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Single-variant analyses are not appropriate for analysis of rare variants because
in realistic settings they lack power'"-'3. To improve power, variant set tests have
been proposed that assess the effects of sets of multiple RVs jointly. These tests
include burden, SKAT, and most recently STAAR (variant-set test for association
using annotation information), which incorporates multiple functional annotations
for genetic variants'#'6. A key challenge of these approaches is the selection of
RVs to form variant sets. Several methods have been proposed to create coding
and noncoding variant sets for RV association analysis of WGS/WES studies'6-20.
However, these methods have limited utility for defining analysis units in the
noncoding genome?'. For example, for gene-centric analysis, STAAR has been
used with two noncoding genetic categories of regulatory regions (masks): using
promoters and enhancers in GeneHancer?? overlaid with Cap Analysis of Gene
Expression (CAGE) sites?®24; for non-gene-centric analysis, fixed-size sliding
windows can be used to scan the genome. As the signal regions (variant-
phenotype-association regions) are unknown in practice and their sizes vary
across the genome, the fixed-size sliding window approach is likely to lead to
power loss when the prespecified window sizes are too big or too small
compared with the actual sizes of signal regions. Furthermore, it is often
knowledge- and effort-demanding to functionally annotate variants from a
WGS/WES study of interest. Limited tools exist for multi-faceted functional
annotation and analytic integration of WGS/WES data for rare variant association
tests (RVATS). Finally, there is a lack of robust pipelines to perform scalable and

comprehensive noncoding RV association analysis in large-scale WGS data with
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hundreds of millions of noncoding RVs that have been sequenced across the
genome. Much uncertainty remains on the best practices for computationally-

efficient RV analysis at the scale of large WGS studies.

To respond to the aforementioned needs, we propose a computationally-efficient
noncoding rare variant association-detection framework for WGS data by making
three new contributions toward automatically selecting interpretable and powerful
variant sets. First, in gene-centric analysis, we propose additional strategies for
grouping noncoding variants based on functional annotations, including
untranslated regions, upstream regions, downstream regions, promoters,
enhancers of protein-coding genes, and long noncoding RNA genes within
STAAR. For promoters and enhancers, we offer additional options of overlaying
promoters and GeneHancer-based enhancers with not only CAGE sites but also
with DNase Hypersensitivity (DHS) sites®. Second, in non-gene-centric analysis,
instead of using fixed-size sliding windows in STAAR we propose SCANG-STAAR,
a flexible data-adaptive window size RVAT method that extends the SCANG (scan
the genome) method® by incorporating multiple functional annotations through
STAAR!'6, while accounting for both relatedness and population structure through
a generalized linear mixed model framework?® for quantitative and dichotomous
traits?®627. Third, we develop STAARpipeline, a pipeline that (1) functionally
annotates both noncoding and coding variants of a WGS study and builds an
annotated genotype dataset using the multi-faceted functional annotation

database FAVOR'® (Functional Annotations of Variants - Online Resource),
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through FAVORannotator; and (2) performs RVATSs using the proposed methods

for both gene-centric analysis and non-gene-centric analysis.

We applied the proposed framework to detect noncoding RVs associated with four
quantitative lipid traits: low-density lipoprotein cholesterol (LDL-C); high-density
lipoprotein cholesterol (HDL-C); triglycerides (TG) and total cholesterol (TC) using
21,015 discovery samples and 9,123 replication samples from the NHLBI TOPMed
Freeze 5 WGS data. We performed conditional analysis by conditioning on known
lipids-associated variants and identified several novel replicated RVs sets

associated with lipids.

Results

Overview of Noncoding RVATs

We propose a computationally-efficient noncoding RVAT framework for
phenotype-genotype association analyses of whole-genome sequencing data,
focusing on rare variant association analysis in the noncoding genome. This
regression-based framework allows adjusting for covariates, population structure,
and relatedness by fitting linear and logistic mixed models for quantitative and
dichotomous traits?62”. A central component of it is the development of strategies
to aggregate noncoding rare variants using both flexible gene-centric and non-
gene-centric approaches to empower RVATSs. For the gene-centric approach, we
group noncoding RVs for each gene using eight genetic categories of regulatory

regions provided by functional annotations and apply STAAR, which incorporates

10
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multiple in-silico variant functional annotation scores that prioritize functional
variants using multi-dimensional variant biological functions'®. For the non-gene-
centric analysis, instead of using sliding windows with fixed sizes, we propose
SCANG-STAAR, a procedure using dynamic windows with data-adaptive sizes
and incorporating multi-dimensional functional annotations. We also perform
analytical follow-up to dissect RV association signals independent of a given set

of known variants via conditional analysis (Figure 1).

Gene-centric analysis of the noncoding genome

In gene-centric analysis of noncoding variants, we provide eight genetic
categories of regulatory regions to aggregate noncoding rare variants: (1)
promoter RVs overlaid with CAGE sites, (2) promoter RVs overlaid with DHS
sites, (3) enhancer RVs overlaid with CAGE sites, (4) enhancer RVs overlaid with
DHS sites, (5) untranslated region (UTR) RVs, (6) upstream region RVs, (7)
downstream region RVs and (8) noncoding RNA (ncRNA) RVs. The promoter
RVs are defined as RVs in the +/- 3-kilobase (kb) window of transcription start
sites with the overlap of CAGE sites or DHS sites. The enhancer RVs are defined
as RVs in GeneHancer predicted regions with the overlap of CAGE sites or DHS
sites®22-24, We define the UTR, upstream, downstream, and ncRNA RVs by
GENCODE VEP categories?®2%. For the UTR mask, we include RVs in both 5'
and 3' UTR regions. For the ncRNA mask, we include the exonic and splicing
ncRNA RVs. We consider the protein-coding gene for the first seven categories

provided by Ensembl®*® and the ncRNA genes provided by GENCODE?2°,

11
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For each noncoding mask, we calculate its P value using the STAAR method that
empowers RVATSs by incorporating multiple variant functional annotation
scores'®. Functional annotations consist of diverse biological information of
genomic elements. Incorporating this external biological information provided by
functional annotations can increase the association analysis power3'. For
example, annotation principal components (aPCs) provide multi-dimensional
summaries of variant annotations and capture the multi-faceted biological impact,
calculated by the first principal component of the set of individual functional
annotation scores interpreting similar biological functionality'®. We incorporate
ten aPCs and three integrative scores (CADD??, LINSIGHT?3, and FATHMM-
XF3*) as weights in constructing STAAR statistics'®. Details of these 13 functional
annotations are given in Supplementary Table 1. Specifically, we calculate the
P value of each variant set using STAAR-O'6, an omnibus test aggregating
multiple annotation-weighted burden test'#, SKAT'®, and ACAT-V3% in the STAAR

framework.

Non-gene-centric analysis using dynamic windows with SCANG-STAAR
We improve the STAAR-based fixed-size sliding window RVAT'®'7 by proposing
a dynamic window based SCANG-STAAR method, which extends the procedure
SCANG"8 by incorporating multi-dimensional functional annotations to flexibly
detect the locations and the sizes of signal windows across the genome.
Specifically, as location of regions associated with a disease or trait are often

unknown in advance and their sizes may vary across the genome, RVAT’s

12
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default use of a pre-specified fixed-size sliding window method can lead to power
loss, if the pre-specified window sizes do not align with the true signal window

sizes.

The dynamic window RVAT method, SCANG'8, overcomes the limitation of the
fixed-size sliding window method using scan statistics that flexibly detect the
sizes and the locations of RV association by scanning the whole genome
continuously while allowing for overlapping windows of different sizes by shifting
forward a given size window by a small number of variants each time and
selecting the windows that maximize the test power, while controlling for the
genome-wise (family-wise) error rate by accounting for the correlations of tests
from overlapping windows. However, SCANG does not incorporate variant
functional annotations and may therefore lose power if annotation information
helps identify true signals. We propose SCANG-STAAR by extending SCANG to
incorporate multi-dimensional variant functional annotations using STAAR to

ameliorate power loss.

In dynamic window analysis, we extend the SCANG-SKAT procedure (SCANG-
S) to SCANG-STAAR-S by using the STAAR-SKAT (STAAR-S) P value, which
in each overlapping window incorporates multiple variant functional annotations,
instead of using just the MAF-based SKAT P value. In SCANG-STAAR-S we first
calculate a threshold that controls the genome-wise type | error at a given «

level, based on the minimum value of the STAAR-S P value from all moving

13
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windows of different sizes in a range of windows (Online Methods). The
procedure then selects the candidate significant windows whose set-based P
value beats that threshold. When this results in multiple overlapping windows, we
localize the detected significant window as the window whose P value is smaller
than both the threshold and any window that overlaps with it. We then calculate
the genome-wide P value of the detected windows by accounting for multiple
comparisons of overlapping windows and controlling for the genome-wise

(family-wise) error rate (Online Methods).

Besides the SCANG-STAAR-S method, we also provide the SCANG-STAAR-B
procedure, based on the STAAR-Burden P value. Compared with SCANG-
STAAR-B, SCANG-STAAR-S has two advantages in detecting noncoding
associations using dynamic windows in practice. First, the effects of causal
variants in the noncoding genome tend to be in different directions, especially in
the intergenic region. Second, due to the different correlation structures of the
two test statistics for overlapping windows, the genome-wide significance
threshold of SCANG-STAAR-B is lower than that of SCANG-STAAR-S. For
example, to control the genome-wise error rate at 0.05 level in our analysis of
LDL-C, the P value threshold of SCANG-STAAR-S and SCANG-STAAR-B are
3.80 x 1072 and 2.31 x 10710, respectively. We additionally provide the SCANG-
STAAR-O procedure, which is based on an omnibus P value of SCANG-STAAR-
S and SCANG-STAAR-B calculated by ACAT method?¢. However, different from

STAAR-O, we do not incorporate the ACAT-V test in the omnibus test, since the

14
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ACAT-V test is designed for sparse alternatives. Hence, it always detects the
region with the smallest size that contains the most significant variant in the

dynamic window procedure.

Analytical follow-up via conditional analysis

We also perform conditional analysis as an analytical follow-up to identify RV
association signals independent of known single variant associations. We first
select a list of known variants by including the previously identified trait-
associated variants, for example, variants indexed in the GWAS Catalog?®¢. We
then perform stepwise selection to select the subset of independent variants from
the known variants list to be used in the conditional analysis. We perform
iterative conditional association analysis until the P values of all variants in the
known variant list are larger than a cut-off (1 x 10~*, Online Methods). Instead
of adjusting for all known trait-associated variants in the entire chromosome, we
adjust for variants in an extended region of the specific variant, for example, a +/-
1-megabase (Mb) window beyond the variant of interest. Finally, we perform
conditional analysis of each variant set by fitting the regression model adjusting
for the selected known variants near the variant set (for example, in a +/- 1-Mb

window).

STAARpipeline and computation cost

Our R package STAARpipeline performs scalable phenotype-genotype

association analyses of functionally annotated WGS data using the developed

15
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RVAT methods. A further package, STAARpipelineSummary summarizes the
rare variant findings generated by STAARpipeline, including results of both

unconditional and conditional analysis and visualization of analysis results.

Specifically, to perform RVATs for a given WGS study, we first need to
functionally annotate the variants and create variant sets. To achieve this, we
use FAVORannotator, a workflow that annotates the variants of a given WGS
study using the FAVOR database and generates annotated genotype files for
use in STAARpipeline. Across the genome, STAARpipeline runs gene-centric
noncoding and sliding window tests using STAAR and dynamic window analysis
using SCANG-STAAR. STAARpipeline can also perform RV analysis of coding
variants and single variant analysis of common and low-frequency variants

(Discussion).

All analyses can be computed with modest time and memory resources, even for
large-scale WGS/WES datasets such as TOPMed, GSP and UK Biobank. We
benchmarked STAARpipeline’s WGS association analysis of n=30,138 pooled
related TOPMed lipids samples including both discovery and replication data in:
15 hours using 200 2.10 GHz computing cores with 11 Gb memory of gene-
centric noncoding analysis; or 11 hours using 200 cores with 11 Gb memory of
sliding window analysis; or 20 hours using 800 cores with 15 Gb memory of
dynamic window analysis (including SCANG-STAAR-S, SCANG-STAAR-B and

SCANG-STAAR-O). STAARpipelineSummary summarizes the results from
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STAARpipeline and provides analytical follow-up via conditional analysis.
Summarizing the genome-wide TOPMed results took 24 hours using one core

with 25 Gb memory.

Association analysis of lipid traits in the TOPMed WGS data

We applied STAARpipeline to identify RV-sets associated with four quantitative
lipid traits (LDL-C, HDL-C, TG and TC) using TOPMed WGS data*1629, DNA
samples were sequenced at >30X target coverage*. The discovery phase
consisted of six study cohorts with 21,015 samples sequenced in TOPMed
Freeze 5. The replication phase consisted of eight remaining study cohorts with
9,123 samples in TOPMed Freeze 5 (Supplementary Note, Supplementary
Table 2). Sample-level and variant-level quality control (QC) were performed*2°.
Race/ethnicity was defined using a combination of self-reported race/ethnicity
and study recruitment information®”. The discovery cohorts consisted of 5,849
(27.8%) Black or African American, 12,313 (58.6%) White, 675 (3.2%) Asian
American, 1,075 (5.1%) Hispanic/Latino American, and 1,103 (5.3%) Samoan
participants. Among all samples in the discovery phase, 3,610 (17.2%) had first
degree relatedness, 546 (2.6%) had second degree relatedness, and 472 (2.2%)
had third degree relatedness (Supplementary Figure 1). There were 215 million
single-nucleotide variants (SNVs) observed in the discovery phase, and 205
million (94.9%) were rare variants (MAF < 1%). Among these 205 million rare
variants, 202 million (98.8%) were noncoding variants defined by GENCODE

VEP. Details of the study-specific demographics, summaries of lipid levels, and
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variant number distributions are given in Supplementary Tables 2-3 and

Supplementary Figure 2.

For each phenotype, we applied rank-based inverse normal transformation of
phenotypes. We adjusted for age, age?, sex, race/ethnicity, study, and the first 10
ancestral PCs, and controlled for relatedness through heteroscedastic linear
mixed models with sparse genetic relatedness matrices (GRMs) plus study-
race/ethnicity-specific group-specific residual variance components (Online
Methods). We accounted for the presence of medications of LDL-C and TC as
before??. We tested for an association between lipid traits and RVs (MAF < 1%)
in each variant set. In gene-centric analysis, we defined the eight analysis units
as the previously-described: seven noncoding genetic categories of protein-
coding genes and one category for ncRNA genes. In non-gene-centric analysis,
we performed a 2-kb sliding window analysis with 1-kb skip length and a dynamic
window analysis using SCANG-STAAR-S of all moving windows containing 40 to
300 variants™®. In unconditional analysis we used Bonferroni-corrected genome-
wide significance thresholds of @ = 0.05/(20,000 x 7) = 3.57 X 10~7 accounting
for 7 different noncoding masks across protein-coding genes; a = 0.05/20,000 =
2.50 x 10~° accounting for ncRNA genes, and a = 0.05/(2.66 x 10°) =

1.88 x 1078 accounting for 2.66 million 2-kb sliding windows across the genome.
We controlled the genome-wise (family-wise) error rate for SCANG-STAAR-S
dynamic window analysis at « = 0.05 level'®. We selected individual variants to

be adjusted for in conditional analysis from the list of phenotype-associated
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common and low-frequency variants (MAF > 1%) indexed in GWAS Catalog®®.
Then we obtained the independent known variants using the algorithm described
before in the analytical follow-up via conditional analysis section (Online

Methods, Supplementary Table 4).

In gene-centric noncoding unconditional analysis of the discovery samples,
STAARpipeline identified 43 genome-wide significant associations with at least
one of the four lipid levels (Supplementary Table 5, Supplementary Figures
3a-d, 4a-d, 5a-d, 6a-d). After conditioning on known lipid-associated variants, 14
out of the 43 associations remained significant at the Bonferroni-corrected level
0.05/43 = 1.16 x 1073 (Table 1). In the replication data, and adjusting for known
lipid-associated variants, 4 of these 14 associations achieved significance at
Bonferroni-corrected level 0.05/14 = 3.57 x 10~3. These included enhancer DHS
RVs in APOA1 and HDL-C, promoter CAGE RVs in APOE and TG, and
enhancer CAGE or DHS RVs in APOE and TG. After further adjustment for
known individual rare variants (minor allele count, MAC > 20, Supplementary
Table 6), none of the associations remained significant at the same significance

level of 3.57 x 1073 (Supplementary Table 7).

In unconditional analysis of the discovery data, using the 2-kb sliding window
procedure we identified 140 windows as genome-wide significant
(Supplementary Table 8, Supplementary Figures 3e-f, 4e-f, 5e-f, 6e-f).

Among these 140 significant sliding windows, 14 are located in noncoding
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regions and, after conditioning on known lipid-associated variants, all remained
significant at the Bonferroni-corrected level 0.05/140 = 3.57 x 10~* (Table 2). In
replication data 9 of the 14 associations were significant at the Bonferroni-
corrected level 0.05/14 = 3.57 x 1072 after adjusting for known phenotype-
specific variants. When we further adjusted these 9 associations for known
individual rare variants (MAC > 20), associations for two intronic sliding windows
(PAFAH1B2 and TG) remained significant at the same level of 3.57 x 1073

(Supplementary Table 9).

In unconditional analysis of the discovery data using the dynamic window
procedure SCANG-STAAR-S we identified 90 genome-wide significant
associations (Supplementary Table 10). Among them, 10 are located in
noncoding regions and remained significant at Bonferroni-corrected level
0.05/90 = 5.56 x 10~* after conditioning on known lipid-associated variants
(Table 3). In the replication data, and after adjusting for known phenotype-
specific variants, 7 were significant at the Bonferroni-corrected level 0.05/10 =

5 x 1073, After further adjustment for known individual rare variants (MAC > 20),
3 associations remained significant, including RVs in an intronic region of
PAFAH1B2 and TG, RVs in an intronic region of SIDT2 and TG, and RVs in an

intronic region of CEP164 and TG (Supplementary Table 11).

Discussion
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We developed a comprehensive association analysis framework for detecting
noncoding rare variant set associations in large-scale WGS studies. Crucially,
our framework explicitly solves the problem of defining variant sets, which is a
significant challenge in practical analysis but not often discussed in other set-
based inference methodology work. Our approach allows for continuous and
binary traits and accounts for both population structure and relatedness through
generalized linear mixed models using gene-centric analysis and non-gene-
centric analysis. For gene-centric analysis, we proposed several strategies to
define analysis units of rare variants in the noncoding genome, including seven
genetic categories of regulatory regions for protein-coding genes, ncRNA genes,
and perform RVATSs of each noncoding mask using STAAR. For non-gene-
centric analysis, to overcome the limitations of fixed-size sliding windows, we
proposed SCANG-STAAR, a data-adaptive-size dynamic window scan
procedure that incorporates multi-faceted functional annotations. We proposed
STAARpipeline to perform RVATs using these methods for both noncoding and
coding variants using unconditional analysis, as well as conditional analyses,
which provides an analytical follow-up to distinguish novel RV association signals

independent of known variants.

We developed STAARpipeline, a fast and resource-efficient tool for RV
association analysis of WGS data that scales linearly on hundreds of thousands
of samples, for both quantitative and dichotomous phenotypes. STAARpipeline

allows researchers to conveniently functionally annotate a WGS/WES study
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using the variant functional annotation database FAVOR and the
FAVORannotator workflow. STAARpipeline optimizes computational feasibility of
RV association analysis in two steps. First, STAARpipeline reduces the
computation burden of fitting the null mixed model using the estimated sparse
GRM'8:38_ Second, STAARpipeline performs the RV association tests by taking

advantage of sparse genotype dosages of RVs®.

In a WGS RV analysis of lipid traits in TOPMed, we identified and replicated
using our STAARpipeline several conditional associations with lipid traits in the
noncoding genome, including RVs in an intronic region of PAFAH1B2 and TG,
RVs in an intronic region of SIDT2 and TG, and RVs in an intronic region of
CEP164 and TG, which were not detected by previous analysis of TOPMed
Freeze 3 data'®20, Several coding rare variants in PAFAH1B2 have been
previously detected associated with TG*?, our findings detected additionally
significant RV association in the noncoding region of PAFAH1B2. Two intronic
common variants in SIDT2 have been reported associated with TG*!, additional

intronic rare variant association in SIDT2 was detected using STAARpipeline.

For non-gene-centric analysis, we proposed improvements to the sliding window
analysis using the dynamic window analysis of SCANG-STAAR. Compared with
sliding window analysis using a fixed window size and skip length, SCANG-

STAAR can increase power by considering all possible sub-windows of different

sizes and selecting those windows that maximize power, while incorporating
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multi-faceted functional annotations. On the other hand, since SCANG-STAAR
considers many more overlapping windows than the sliding window procedure,
the genome-wide significance threshold is smaller than that of the sliding window
procedure, potentially reducing power. For example, to control the genome-wise
error rate at 0.05 level in our analysis of LDL-C, the P value threshold of SCANG-
STAAR-S is 3.80 x 102 while the Bonferroni-corrected threshold of the 2-kb
sliding window procedure is 1.88 x 10~8. When the window size of the signal
region is close to the sliding window size, the sliding window procedure may
detect associations missed by the dynamic window procedure because of this
gap of the P value thresholds. In STAARpipeline we pragmatically provide both

procedures.

In addition to noncoding rare variants association analysis, STAARpipeline also
provides single variant analysis for common and low-frequency variants and
gene-centric analysis for coding rare variants. The single variant analysis in
STAARpipeline provides individual P values of variants given a MAF or MAC cut-
off, for example, MAC > 20. The gene-centric coding analysis provides five
genetic categories to aggregate coding rare variants of each protein-coding
gene: (1) putative loss of function (stop gain, stop loss and splice) RVs, (2)
missense RVs, (3) disruptive missense RVs, (4) putative loss of function and
disruptive missense RVs, and (5) synonymous RVs. The putative loss of
function, missense, and synonymous RVs are defined by GENCODE VEP

categories?®3°, The disruptive variants are further defined by MetaSVM*?, which
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measures the deleteriousness of missense mutations. As in the noncoding RV
association analysis, single variant and gene-centric coding analyses also scale
well in computation time and memory for large-scale WGS data. Using 30,138
related TOPMed samples these two analyses respectively took 3 hours and 5
hours for 100 cores with 6 Gb memory. Thus, STAARpipeline provides an
efficient and comprehensive analysis tool for both coding and noncoding variant

association discovery in large-scale sequencing studies.

With the emergence of large-scale WGS data, there is a pressing need to identify
genetic components of complex traits in the noncoding genome. Here we
introduce a powerful and scalable framework, STAARpipeline, for noncoding RV
association detection across the genome. STAARpipeline provides several
strategies to aggregate noncoding rare variants to empower RV association
analysis in the noncoding region. We demonstrate the computational efficiency of
STAARpipeline in application to the WGS association analysis of lipid traits on
30,138 TOPMed samples. The optimization approaches of STAARpipeline make
it scalable for even larger data sets. Thus, our framework provides an essential
solution for noncoding RV association detection in large-scale WGS data
analysis and dissects the genetic contribution of noncoding rare variants to

complex diseases.

URLs

STAARpipeline (version 0.9.6), https://github.com/xihaoli/STAARpipeline
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and https://content.sph.harvard.edu/xlin/software.html.

STAARpipelineSummary (version 0.9.6),

https://github.com/xihaoli/STAARpipelineSummary

and https://content.sph.harvard.edu/xlin/software.html.

FAVOR, http://favor.genohub.org/.

FAVORannotator, https://github.com/zhouhufeng/FAVORannotator.
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Online Methods
Notations and model
Suppose there are n subjects with M total variants sequenced across the whole

genome. For subject i, let Y; denote a continuous or dichotomous trait with mean
wis X; = (Xia ...,Xl-q)T denote q covariates, such as age, gender, ancestral

principal components; and G; = (Gil, ...,Gip)T denote the genotype information of

the p genetic variants in a given variant set.

We consider the Generalized Linear Model for unrelated samples,
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9u) = ao + X{a + G| B, €h)

where g(u) = u for a continuous trait, g(u) = logit(u) for a dichotomous trait, «,

. . T, . -
is an intercept, a = (al, ...,aq) is a vector of regression coefficients for X;, and

B =By - ﬂp)T is a vector of regression coefficients for G;.

We consider the following Generalized Linear Mixed Model?52643 for related
samples,

g(u) = ag+ X+ G B+ b;, (2)
where the random effects b; account for remaining population structure
unaccounted by ancestral principal components and relatedness. Let b =
(by, ...,b,)T ~ N(0,8®) with variance components 8 and a genetic relatedness
matrix @638, Our goal is testing the null hypothesis of whether the variant-set is
associated with the phenotype, adjusting for covariates and relatedness, which

corresponds to Hy: B = 0, thatis, g; =, ==, = 0.

Variant set test using STAAR
The STAARpipeline calculates the variant set P value of each analysis unit using

the STAAR method that incorporates multiple variant functional annotation

M, where A is the

scores'®. Assume there are K annotations and i =
kth annotation for the jth variant (k = 1,---,K;j = 1,---,p). For k = 0, we assume

ﬁ-jo = 1. ASSUme le = Beta(MAFJ, aqy, aZl), Where (all, a21) = (1,25), (alz, azz) =

(1,1) and MAF, is the MAF of the jth variant (j = 1,---,p). The burden test statistic
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using kth variant functional annotation and [th beta density as the weightis given
by
QBurdenik = (Z?:lﬁjkwjlsj)z'
The SKAT test statistic using kth variant functional annotation and lth beta
density as the weight is given by
QskarLk = Z?:l ﬁjkWﬁsz-
(k=0,,K;1l=1,2). The ACAT-V test statistic using kth variant functional

annotation and [th beta density as the weight is given by

Qacar-vx = FxWIMAF(1 — MAF) tan ((0.5 = poc)7)

p'
j=1

where 7.,w4MAF(1 — MAF) is the average of the weights 7, wiMAF;(1 —
MAFj) among the extremely rare variants with MAC < 10, and p’ is the number of

variants with MAC > 10 in the variant set.

Let ppurdenik D€ the P value of Qpyraen ik, Pskar,kx D€ the P value of Qsxar ik,
and pACAT—V,l,k be the P Value Of QACAT—V,l,k (k = O, ,K,l = 1,2) We deﬂne

STAAR-Burden (STAAR-B), STAAR-SKAT (STAAR-S), and STAAR-ACAT-V

(STAAR-A) a8 Tsranr—test = Sie1 2o tan{(05 prests)t] g the corresponding P
2(K+1)

. 1 t T —
value is calculated by psraig-rese ~ ~ — crctanTsrasr-test)}

2 s

, where test €

{Burden, SKAT,ACAT — V}. The STAAR-O test statistic is defined as
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1
Tstaar-0 = 3 [tan{(0.5 — Psraar-Burden)T} + tan{(0.5 — Psraar-sxar)T}

+ tan{(0.5 — psraar-acar-v )7},

and the corresponding P-value is calculated by

1 {arctan(Tsraar-0)}

PstaAar-0 = 5 —
2 T

In gene-centric and sliding window analysis, we use the STAAR-O test for each

analysis unit.

Dynamic window analysis using SCANG-STAAR

The STAARpipeline performs dynamic window analysis using the SCANG-
STAAR procedure, which extends the dynamic window rare variant test
procedure SCANG by incorporating multiple variant functional annotations using
the STAAR method. Under the global null hypothesis, there is no variant
associated with the phenotype across the genome. Under the alternative
hypothesis, there exists at least one region associated with the phenotype.
SCANG-STAAR procedure provides a valid test by using the minimum value of

the P value of all candidate moving windows of different sizes

Pmin = min p(I),

Lminsl|SLmax
where p(I) is the P value of region /, |/| is the number of variants in a window /,
and L,,;, and L,,,, are the smallest and largest number of variants in the
searching windows, respectively. For SCANG-STAAR-S and SCANG-STAAR-B
procedures, p(I) is the STAAR-S and STAAR-B P value of window |,

respectively. For SCANG-STAAR-O, p(I) is the omnibus P value of STAAR-S
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and STAAR-B calculated by ACAT method?. Similar to the SCANG procedure,
SCANG-STAAR controls the genome-wise type | error at a given « level by using
the (1 — a)th quantile of the empirical distribution of p,,,;,, as an empirical
threshold h(a, Dmin, Lmin, Lmax) 18- We reject the null hypothesis if the P value of
any window is smaller than h(a, Pmin, Lmin, Lmax)- If this results in only one
window, the detected window is [ = argming,_. <(1j<,,., P(1)- If this results in
multiple overlapping windows, we localize the signals as the window whose P

value is smaller than both the threshold and the windows that overlap with it.

Conditional analysis
The STAARpipeline performs conditional analysis to identify RV association
independent of known variants. We first select a list of known variants by
including the trait-associated variants identified in literature, for example, variants
indexed in GWAS Catalog?® or significant variants in large-scale GWAS. The
significant variants detected in individual analysis using the same data could also
be added into the known variants list to ensure the RV signals are not captured
by the significant individual variants. We then use the following stepwise
selection strategy to select a subset of independent variants representing the
known variant list as the variants adjusted in the conditional analysis:

1. Calculate the individual P value of all variants in the known variants list

and select the most significant variant.

2. For each step, calculate the P values of all the remaining variants

conditional on the variant(s) that have already been selected. For each
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variant, we only condition on the selected variants within a specified
region of that variant, such as the +/- 1-Mb window.
3. Select the variant with minimum conditional P value that is lower than
the cutoff P value, for example, 1 x 1074,
4. Repeat steps 2-3 until no variants can be selected.
Finally, we calculate the conditional P value of each significant RV analysis unit
by adjusting for the selected variants residing in an extended region (for

example, +/- 1-Mb window) of the analysis unit.

Statistical analysis of lipid traits in the TOPMed data

The TOPMed WGS data consist of ancestrally diverse and multi-ethnic related
samples*“4. Race/ethnicity was defined using a combination of self-reported
race/ethnicity and study recruitment information (Supplementary Note)3’. The
discovery cohorts consist of 5,849 (27.8%) Black or African American, 12,313
(58.6%) White, 675 (3.2%) Asian American, 1,075 (5.1%) Hispanic/Latino
American and 1,103 (5.3%) Samoans. The replication cohorts consist of 2,265
(24.8%) Black or African American, 5,615 (61.5%) White, and 1,243 (13.6%)

Hispanic/Latino American.

We applied STAARpipeline to identify RV sets associated with four quantitative
lipid traits (LDL-C, HDL-C, TG and TC) using the TOPMed WGS data. LDL-C
and TC were adjusted for the presence of medications as before?. Linear

regression model adjusting for age, age?, sex was first fit for each study-
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race/ethnicity-specific group. In addition, for Old Order Amish, we also adjusted
for APOB p.R3527Q in LDL-C and TC analyses and adjusted for APOC3
p.R19Ter in TG and HDL-C analyses?. The residuals were rank-based inverse
normal transformed and rescaled by the standard deviation of the original
phenotype within each group. We then fit a heteroscedastic linear mixed model
(HLMM) for the rank normalized residuals, adjusting for 10 ancestral PCs, study-
ethnicity group indicators, and a variance component for empirically derived
kinship matrix plus separate group-specific residual variance components to
account for population structure and relatedness. The output of HLMM was then
used to perform following variant set analyses for rare variants (MAF < 1%) by
scanning the genome, including gene-centric analysis using seven variant
categories (promoter RVs overlaid with CAGE sites, promoter RVs overlaid with
DHS sites, enhancer RVs overlaid with CAGE sites, enhancer RVs overlaid with
DHS sites, UTR RVs, upstream RVs and downstream RVs) for each protein
coded gene, ncRNA RVs, 2-kb sliding windows with 1-kb skip length, and
dynamic windows with variants number between 40 and 300. The WGS RVAT
analysis was performed using R packages STAAR (version 0.9.6),

STAARpipeline (version 0.9.6) and STAARpipelineSummary (version 0.9.6).

Genome build

All genome coordinates are given in NCBlI GRCh38/UCSC hg38.

Code availability
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STAARpipeline is implemented as an open-source R package available at

https://qgithub.com/xihaoli/STAARpipeline

and https://content.sph.harvard.edu/xlin/software.html. STAARpipelineSummary

is implemented as an open-source R package available at

https://github.com/xihaoli/STAARpipelineSummary

and https://content.sph.harvard.edu/xlin/software.html.

Data availability

This paper used the TOPMed Freeze 5 Whole Genome Sequencing data and
lipids phenotype data. The genotype and phenotype data are both available in
dbGAP. The discovery phase used the data from the following six study cohorts,
where the accession numbers are provided in parenthesis: Framingham Heart
Study (phs000974.v1.p1), Old Order Amish (phs000956.v1.p1), Jackson Heart
Study (phs000964.v1.p1), Multi-Ethnic Study of Atherosclerosis
(phs001416.v1.p1), Genome-wide Association Study of Adiposity in Samoans
(phs000972) and Women'’s Health Initiative (phs001237). The replication phase
used the data from the following eight study cohorts: Atherosclerosis Risk in
Communities Study (phs001211), Cleveland Family Study (phs000954),
Cardiovascular Health Study (phs001368), Diabetes Heart Study (phs001412),
Genetic Study of Atherosclerosis Risk (phs001218), Genetic Epidemiology
Network of Arteriopathy (phs001345), Genetics of Lipid Lowering Drugs and Diet

Network (phs001359) and San Antonio Family Heart Study (phs001215). The
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sample sizes, ethnicity and phenotype summary statistics of these cohorts are

given in Supplementary Table 3.

The functional annotation data are publicly available and were downloaded from
the following links: GRCh38 CADD v1.4

(https://cadd.gs.washington.edu/download), ANNOVAR dbNSFP v3.3a

(https://annovar.openbioinformatics.org/en/latest/user-guide/download),

LINSIGHT (https://github.com/CshliSiepelLab/LINSIGHT), FATHMM-XF

(http://fathmm.biocompute.org.uk/fathmm-xf), CAGE

(https://fantom.gsc.riken.jp/5/data), GeneHancer (https://www.genecards.org),

and Umap/Bismap (https://bismap.hoffmanlab.org). In addition, recombination

rate and nucleotide diversity were obtained from Gazal et al*®. The tissue-specific
functional annotations were downloaded from ENCODE

(https://www.encodeproject.org/report/?type=Experiment).

Methods-only references

43. Chen, H. et al. Efficient variant set mixed model association tests for
continuous and binary traits in large-scale whole-genome sequencing
studies. The American Journal of Human Genetics 104, 260-274 (2019).

44. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI
TOPMed Program. BioRxiv, 563866 (2019).

45. Gazal, S. et al. Linkage disequilibrium—dependent architecture of human
complex traits shows action of negative selection. Nature genetics 49,
1421 (2017).
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FIGURES

Figure 1. Workflow of STAARpipeline. (a) Prepare the input data of
STAARpipeline, including genotypes, phenotypes and covariates. (b) Annotate
all variants in the genome using FAVORannotator through FAVOR database and
calculate the (sparse) genetic relatedness matrix. (c) Define analysis units in the
noncoding genome: eight genetic categories of regulatory regions, sliding
windows and dynamic windows using SCANG. (d) Obtain genome-wide

significant associations and perform analytical follow-up via conditional analysis.
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TABLES

Table 1. Gene-centric noncoding analysis results of both unconditional analysis and analysis conditional on known common
and low-frequency variants. 21,015 discovery samples and 9,123 replication samples from the NHLBI Trans-Omics for Precision
Medicine (TOPMed) program are considered in the analysis. Results for the conditionally significant genes (unconditional STAAR-O

P < 3.57 x 1077 and conditional STAAR-O P < 1.16 x 1073 for 7 different noncoding masks across protein-coding genes; unconditional
STAAR-O P < 2.50 x 107¢ and conditional STAAR-O P < 1.16 x 10~3 for ncRNA genes) using discovery samples are presented in the
table. Chr (Chromosome); Category (Functional category); #SNV (Number of rare variants (MAF < 1%) of the particular functional
category in the gene); STAAR-O (STAAR-O P value); HDL-C (High-density lipoprotein cholesterol); LDL-C (Low-density lipoprotein
cholesterol); TG (Triglycerides); TC (Total cholesterol); Variants Adjusted (Adjusted variants in conditional analysis); n/a, no variant

adjusted in the conditional analysis.

Discovery Replication
Trait Gene Chr Category SNy STAAR-O STAAR-O SNy STAAR-O STAAR-O Variants Adjusted
(Unconditional)  (Conditional) (Unconditional) (Conditional)
HDL-C APOA1 11 enhancer_DHS 1862 2.19E-07 7.67E-07 1005 1.50E-03 3.17E-03 rs964184, rs12269901
LDLR 19 upstream 68 2.35E-17 4.24E-04 27 5.58E-01 6.31E-01 rs12151108, rs688, rs6511720
LDLR 19 promoter_CAGE 131 1.88E-17 3.37E-04 56 2.51E-02 9.50E-02 rs12151108, rs688, rs6511720
APOE 19 promoter_CAGE 91 1.45E-11 4.88E-12 35 1.86E-01 4.36E-02 rs7412, rs429358, rs35136575
LDLR 19 promoter_DHS 257 4.03E-17 7.21E-04 113 5.74E-02 2.27E-01 rs12151108, rs688, rs6511720
LDL-C
APOE 19 promoter_DHS 162 9.81E-11 3.41E-12 64 7.45E-02 3.42E-02 rs7412, rs429358, rs35136575
LDLR 19 enhancer_CAGE 150 2.82E-17 5.01E-04 71 1.20E-02 4.05E-02 rs12151108, rs688, rs6511720
APOE 19 enhancer_DHS 239 9.84E-11 2.03E-11 112 2.55E-01 1.34E-01 rs7412, rs429358, rs35136575
CTC-527H23.4 16 ncRNA 32 1.15E-06 1.15E-06 17 9.12E-01 9.12E-01 n/a
APOE 19 promoter_CAGE 92 4.45E-12 7.48E-06 36 9.45E-06 3.53E05 rs12721054, rs5112, rs429358
APOA5 11 promoter DHS 175 2.39E-08 3.47E-05 84 1.19E-04 8.78E-03  r964184,rs9804646, rs3135506,
rs2266788
TG APOE 19 promoter_DHS 163 1.80E-11 9.56E-06 65 2.96E-06 1.13E-05 rs12721054, rs5112, rs429358
COL18A1 21 enhancer_CAGE 256 1.92E-07 1.92E-07 147 4.57E-02 4.57E-02 n/a
APOE 19 enhancer_DHS 241 2.02E-11 8.44E-05 116 1.12E-05 4.15E-05 rs12721054, rs5112, rs429358
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Table 2. 2-kb sliding window analysis results of unconditional analysis and analysis conditional on known common and low-

frequency variants. 21,015 discovery samples and 9,123 replication samples from the NHLBI Trans-Omics for Precision Medicine

(TOPMed) program are considered in the analysis. Results for the conditionally significant sliding windows (unconditional STAAR-O

P < 1.88 x 1078; conditional STAAR-O P < 3.57 x 10™*) using discovery samples are presented in the table. Chr (Chromosome); Start

Location (Start location of the 2kb sliding window); End Location (End location of the 2-kb sliding window); #SNV (Number of rare
variants (MAF < 1%) in the 2-kb sliding window; STAAR-O (STAAR-O P value); HDL-C (High-density lipoprotein cholesterol); LDL-C

(Low-density lipoprotein cholesterol); TG (Triglycerides); TC (Total cholesterol); Variants Adjusted (Adjusted variants in conditional

analysis); n/a, no variant adjusted in the conditional analysis. Physical positions of each window are on build hg38.

Start End Discovery Replication
Trait — Chr ) ocation Location Gene ssny _ STAARO STAARO oy STAARO STAARO Variants Adjusted
(Unconditional) (Conditional) (Unconditional) (Conditional)
8 57,071,644 57,073,643 Intergenic IMPAD1T) 111 1.79E-08 1.79E-08 53 8.38E-01 8.38E-01 n/a
11 116,802,930 116,804,929 Intergenic (ZPR1) 135 1.25E-08 4.31E-08 76 9.49E-05 2.02E-04 rs964184, rs12269901
11 117,146,930 117,148,929  Intron (PAFAH1B2) 165 5.98E-09 8.28E-08 98 6.02E-04 1.12E-03 rs964184, rs12269901
HDL-C
11 117,147,930 117,149,929  Intron (PAFAH1B2) 168 8.85E-09 1.22E-07 % 8.72E-04 1.64E-03 rs964184, rs12269901
16 56,760,020 56,762,028 Intron (NUP93) 132 1.38E-08 9.65E-06 68 2.45E-01 1.15E-01 rs247616, r55883'r2557848909892’ rs17231520,
16 56,761,029 56,763,028 Intron (NUP93) 141 1.50E-08 1.09E-05 73 5.87E-01 2.26E-01 rs247616, r55883'rr:57848909892’ rs17231520,
1 55,333,498 55,335,497  Intergenic (GOT2P1) 171 6.66E-16 5.81E-07 95 1.27E-06 5.81E-07 rs11591147, rs28362263, 505151,
LDLC rs12117661, rs472495
. rs11591147, rs28362263, rs505151,
1 55,334,498 55,336,497  Intergenic (GOT2P1) 148 5.55E-16 5.49E-07 81 1.20E-06 5.49E-07 1512117661, reA73498
11 117,146,930 117,148,929  Intron (PAFAH1B2) 164 7.81E-19 4.13E-18 93 217E17 5.66E-17 rs964184, rs9804646, rs3135506, rs2266788
76 11 117,147,930 117,149,929  Intron (PAFAH1B2) 165 1.15E-18 6.11E-18 94 347E17 9.13E-17 rs964184, rs9804646, rs3135506, rs2266788
19 44,882,528 44,884,527 Intron (NECTIN2) 145 1.06E-08 2.18E-07 88 2.71E-02 8.07E-01 rs12721054, rs5112, rs429358
. rs11591147, 1528362263, 15505151,
1 55,333,498 55,335,497 Intergenic (GOT2P1) 175 1.98E-13 3.83E-14 101 5.84E-07 1.88E-07 1612117661, 162405477
. rs11591147, rs28362263, rs505151,
7C 1 55,334,498 55,336,497  Intergenic (GOT2P1) 149 1.80E-13 3.49E-14 90 5.53E-07 1.78E-07 612117661, 192495477
19 44,894,528 44,896,527 Intron (TOMM40) 180 2.73E-10 8.95E-08 97 2.68E-03 4.22E-01 rs7412, rs429358, rs12721054
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Table 3. Dynamic window analysis results of unconditional analysis and analysis conditional on known common and low-

frequency variants. 21,015 discovery samples and 9,123 replication samples from the NHLBI Trans-Omics for Precision Medicine

(TOPMed) program are considered in the analysis. Results for the conditionally significant sliding windows (unconditional genome-wide

error rate GWER < 0.05; conditional STAAR-S P < 5.56 x 107%) using discovery samples are presented in the table. Chr

(Chromosome); Start Location (Start location of the dynamic window); End Location (End location of the dynamic window); #SNV
(Number of rare variants (MAF < 1%) in the dynamic window; GWER (genome-wide error rate); STAAR-S (STAAR-S P value); HDL-C
(High-density lipoprotein cholesterol); LDL-C (Low-density lipoprotein cholesterol); TG (Triglycerides); TC (Total cholesterol); Variants

Adjusted (Adjusted variants in conditional analysis). Physical positions of each window are on build hg38.

Start End Discovery Replication
Trait Chr Location Location Gene 4NV GWER STAAR-S STAAR-S 4NV STAAR-S STAAR-S Variants Adjusted
(Unconditional) (Conditional) (Unconditional) (Conditional)
HDL-C 11 116,866,780 116,867,288 Intron (SIK3) 40 0.0295 2.24E-09 8.45E-09 19 2.22E-05 5.46E-05 rs964184, rs12269901
11 116,928,564 116,929,045 Intron (SIK3) 40 0.0025 1.50E-10 4.43E-10 18 7.81E-04 1.06E-03 rs964184, rs12269901
. <0.0005 rs11591147, rs28362263, rs505151,
LDLC 1 55,335,150 55,335,701 Intergenic (GOT2P1) 40 8.58E-18 7.49E-19 21 9.29E-07 4.80E-07 rs12117661, rs472495
19 11,319,992 11,320,870 Intron (TSPAN16) 60 0.02 1.44E-09 3.16E-05 41 5.04E-01 5.10E-01 rs12151108, rs688, rs6511720
11 117,147,061 117,148,086 Intron (PAFAH1B2) 80 <0.0005 5.10E-16 8.55E-15 41 9.48E-19 3.44E-18 rs964184, rs9804646, rs3135506, rs2266788
TG 11 117,182,856 117,183,310 Intron (SIDT2) 40 <0.0005 3.96E-12 1.08E-11 15 3.77E-14 6.53E-14 rs964184, rs9804646, rs3135506, rs2266788
11 117,349,560 117,350,171 Intron (CEP164) 50 0.013 1.08E-09 1.26E-09 29 4.12E-11 6.39E-11 rs964184, rs9804646, rs3135506, rs2266788
. 0.0055 rs11591147, rs28362263, rs505151,
1 55,291,905 55,293,502 Intergenic (GOT2P1) 140 3.17E-10 8.77E-05 68 4.76E-01 2.30E-01 1512117661, rs2495477
. <0.0005 rs11591147, rs28362263, rs505151,
TC 1 55,335,119 55,335,584 Intergenic (GOT2P1) 40 1.63E-15 4.44E-16 26 2.23E-07 7.03E-08 1512117661, rs2495477
19 11,319,627 11,320,925 Intron (TSPAN16) 110 <0.0005 2.95E-12 2.32E-05 75 3.40E-01 5.90E-01 rs73015024, rs688, rs2278426, rs6511720
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