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ABSTRACT

The salinity gradient separating marine and freshwater environments represents a major ecological
divide for microbiota, yet the mechanisms by which marine microbes have adapted to and ultimately
diversified in freshwater environments are poorly understood. Here, we take advantage of a natural
evolutionary experiment: the colonization of the brackish Baltic Sea by the ancestrally marine diatom
Skeletonema marinoi. To understand how diatoms respond to low salinity, we characterized
transcriptomic responses of S. marinoi grown in a common garden. Our experiment included eight
genotypes from source populations spanning the Baltic Sea salinity cline. Changes in gene expression
revealed a shared response to salinity across genotypes, where low salinities induced profound changes
in cellular metabolism, including upregulation of carbon fixation and storage compound biosynthesis,
and increased nutrient demand and oxidative stress. Nevertheless, the genotype effect overshadowed
the salinity effect, as genotypes differed significantly in their response, both in the magnitude and
direction of gene expression. Intraspecific differences included regulation of transcription and
translation, nitrogen metabolism, cell signaling, and acrobic respiration. The high degree of
intraspecific variation in gene expression observed here highlights an important but often overlooked

source of biological variation associated with how diatoms respond and adapt to environmental change.
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INTRODUCTION
The salinity gradient separating marine and freshwater environments represents one of the major
ecological divides structuring microbial diversity [1]. Differences in osmotic pressure impede marine—
freshwater transitions, and as a consequence, transitions are generally rare, occur on longer evolutionary
timescales [2, 3], and have repeatedly led to bursts of diversification in freshwater environments [4].
Comprehending the processes behind marine—freshwater habitat transitions is fundamental to both our
understanding of lineage diversification and habitat structuring on evolutionary time-scales [5], as well
as short term adaptive potential to climate change. The latter is rapidly altering marine environments:
melting ice caps, altered precipitation patterns, and changes in oceanic currents have led to freshening
of large regions as well as local changes in the seasonal or annual cycling of salinity regimes [6, 7]. Yet,
little is known about the cellular processes underlying acclimation and adaptation to low salinity
environments. Permanent establishment of ancestrally marine organisms in freshwaters depends on the
ability of the individual colonists to survive the initial hypo-osmotic stress, acclimate to low salinity,
and ultimately adapt to their new environment [8]. Consequently, such transitions are not likely to occur
instantly, but are rather thought to happen gradually [4, 5]. Euryhaline species that are able to tolerate
a wide range of salinities, or those inhabiting brackish environments, are most likely to succeed at
marine—freshwater transitions. Thus, to understand the cellular processes behind marine—freshwater
transitions, studies focusing on taxa that are most likely to colonize freshwater habitats are crucial.
Here, we take advantage of a natural evolutionary experiment currently underway: the
colonization of one of the world’s largest brackish water bodies, the Baltic Sea, by the ancestrally
marine diatom Skeletonema marinoi (Fig. 1A). Geologically, the Baltic Sea is young, with sea ice from
the last glacial maximum having fully receded only 10 000 years ago and inundation of saline waters
from the adjacent North Sea occurring just 8 000 years ago [9]. Today, freshwater input from rivers and
precipitation, in combination with continued inflow of saline bottom-waters from the North Sea through
the Danish straits, results in a latitudinal and vertical salinity gradient ranging from near fresh to fully
marine conditions [9, 10] (Fig. 1A). This salinity gradient strongly structures biodiversity of aquatic
biota on both the species and population levels [11-13], including diatoms [14, 15]. This includes S.

marinoi, which is the dominant phytoplankton species and one of the main contributors to primary


https://doi.org/10.1101/2021.11.04.467364
http://creativecommons.org/licenses/by-nc-nd/4.0/

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.04.467364; this version posted November 5, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

production in the area [16, 17]. Paleoecological evidence showed that S. marinoi has been present in
the Baltic Sea since the marine inundation or shortly thereafter [18, 19]. Although S. marinoi is
ancestrally marine [20, 21], it can tolerate a wide range of salinities and is common along the entire
salinity gradient, from the North Sea coast to the upper reaches of the Baltic Sea [22]. Previous work
showed reduced gene flow between a high-salinity North Sea population of S. marinoi and a low-
salinity Baltic Sea population [22]. The Baltic population exhibited lower genetic diversity and optimal
growth at lower salinity, consistent with local adaptation [22]. Thus, S. marinoi presents an excellent
system for understanding the cellular mechanisms that govern adaptation of ancestrally marine diatoms
to low salinity environments.

We combined a laboratory common garden experiment with RNA-sequencing (RNA-seq) to
characterize the response of the euryhaline diatom S. marinoi to low salinity (Fig. 1). We collected eight
genotypes of S. marinoi along the Baltic Sea salinity cline, exposed them to a range of salinities, and
compared gene expression between high and low salinity treatments. Natural populations of S. marinoi
exhibit a broad range of variability in ecophysiological traits [23], so the inclusion of multiple genotypes
in our experiment allowed us to characterize potential variation in the salinity response as well, such as

which aspects of the response are shared and which ones differ among genotypes.

MATERIAL & METHODS

Sample collection, culturing, and experimental design
We collected sediment samples from eight locations across the Baltic Sea (Fig. 1A) and stored them in
the dark at 5 °C. We germinated S. marinoi resting cells into monoclonal cultures that were kept at their
native salinity (Table 1) [24]. Cells were grown at 12 °C on a 12:12 light:dark light regime (30 umol
m? s light intensity) for 12-26 months prior to the experiment. Strain identity was confirmed by
sequencing the LSU d1-d2 rDNA gene (see Supplementary Methods for details).

In our experiment, we grew eight different S. marinoi strains in triplicate for approximately two
weeks at three salinities (8, 16 and 24)—a design that included both biological (eight genotypes) and

technical replicates (three replicates per strain) (Fig. 1B). Further details about the experimental design,
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93  RNA sequencing, and read processing are outlined in the Supplementary Methods. RNA-seq data are
94  available from the Sequence Read Archive (NCBI) under project number PRINA772794.
95 We mapped RNA-seq reads against the reference genome of S. marinoi strain ROSAC v.1.1
96  (available from doi 10.5281/zenodo.5266588) with STAR [25], followed by gene-level read
97  quantification with HTSeq [26]. We performed statistical analyses in the R computing environment,
98  using edgeR [27] and stageR [28]. Gene ontology (GO) enrichment was done with TopGO (Over-
99  representation Analysis, ORA) [29] and CAMERA (Gene Set Enrichment Analysis, GSEA) [30]. We
100  obtained functional annotations for all genes using InterProScan [31], KofamKOALA [32], and
101 BLAST+ [33] searches against the Swissprot and Uniprot databases. We detected orthologs of S.
102  marinoi genes in other diatom genomes with OrthoFinder [34] and made protein targeting predictions
103  with MitoProt [35], HECTAR [36], SignalP [37], ASAFind [38], and TargetP [39]. Full details on the
104  bioinformatic pipeline, statistical models, and GO enrichment are outlined in the Supplementary
105  Methods, and the gene-level count data and R code used for the statistical analyses are available from
106  Zenodo (doi 10.5281/zenodo.5266588).
107
108  Hypothesis testing
109  We separately tested two sets of null hypotheses (Fig. 1C). The first set tested whether gene expression
110  was different across the salinity gradient for each genotype separately (Fig. 1C: individual genotypes)
111 and for all genotypes together (Fig. 1C: average of all genotypes), using a total of 27 contrasts (Fig.
112  1C). Compared to solely testing the average salinity effect, simultaneously accounting for the individual
113  genotypes increases the power to find differentially expressed (DE) genes, as the genotype effect
114  incorporates variability that would otherwise be unaccounted for. The second set of hypotheses tested
115  for an interaction effect between genotype and salinity, i.e., whether there are genotype-specific
116  responses to changes in the salinity (Fig. 1C). Here we defined 84 contrasts, testing each pairwise
117  combination of genotypes within all three salinity combinations (Fig. 1C). We tested the two sets of
118  hypotheses separately using a stage-wise testing procedure in stageR. This allowed us to control the

119  gene-level false discovery rate (FDR) at 5 % when testing multiple hypotheses simultaneously [28].

120
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121 RESULTS & DISCUSSION

122

123 General response of Baltic S. marinoi to low salinity environments

124  The inclusion of multiple genotypes in our study design allowed us to characterize both the responses
125  of each individual genotype, and the average response across all genotypes (Fig. 1C). To obtain a
126  general overview of the response of S. marinoi to low salinity, we present the results of all three
127  contrasts (8-24, 8-16 and 16-24) together. Unless otherwise indicated, ‘low salinity’ refers to a lower
128  salinity (8 and/or 16) relative to a higher one (16 and/or 24), but does not distinguish between contrasts
129  unless necessary. This was done to gain a general overview of the response to low salinities across the
130  Baltic Sea salinity cline, and because GO enrichment suggested that many of the same processes are
131 enriched in the three salinity contrasts.

132 Growth reaction norms showed no substantial differences among genotypes and salinity
133  treatments, indicating that all genotypes grew well across a wide salinity range (Fig. 2). RNA-seq reads
134  ofall genotypes mapped equally well to the reference genome. In the combined average- and genotype-
135  specific response (Fig. 1C), 7,905 of the 22,440 predicted genes in the S. marinoi genome were DE
136  using a 5 % FDR. The number of DE genes in the average response was higher than in any contrast of
137  the individual genotypes (Fig. 3A), with a total of 5,343 DE genes in at least one of three contrasts
138  tested in the average response. This is a result of combining all information from the different
139  genotypes, which resulted in 8x3 replicates for each salinity condition. As a consequence, the average
140  response allowed us to detect many more DE genes, including those with small effect-sizes, and shows
141 the benefit of including more than the standard three replicates used in many transcriptome studies.
142 The 8-24 contrasts consistently showed the most DE genes, and the least generally were found
143  inthe 16-24 contrast (Fig. 3A). Thus, the largest drop in salinity (24 to 8), and the shift to lower salinity
144 (16 to 8), elicited the greatest transcriptomic responses. When including all DE genes, the number of
145  up- and downregulated genes was comparable within contrasts (Fig. 3A, Suppl. Fig. 1). However, when
146  only taking into account the top 100 genes based on P-value or logFC, substantially more genes were
147  upregulated in low salinities (Fig. 3B), indicating genes with the largest effect sizes or strongest

148  evidence for DE were more likely to be upregulated in low salinities. A similar pattern was seen in the


https://doi.org/10.1101/2021.11.04.467364
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.04.467364; this version posted November 5, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

149 GO enrichment, where a CAMERA analysis found substantially more enriched GO terms that were
150  upregulated in low salinities (Fig. 3C). From these results it is clear that low salinities induce an
151 increased transcriptional response relative to high salinities. In the next paragraphs, we report on several
152  specific pathways that are up- or downregulated in low salinities. Unless otherwise noted, the data in
153  these sections represent the 8-24 contrast of the average response (Fig. 1C).

154

155  Low salinities trigger profound changes in diatom metabolism

156  Skeletonema marinoi exhibited profound changes in energy metabolism following exposure to low
157  salinity (Suppl. Figs 3-9). In lower salinities, S. marinoi experiences (i) significant upregulation of genes
158  from the photosynthetic electron transport chain, Calvin cycle, and chlorophyll biosynthesis (Fig. 4,
159  Suppl. Figs 2, 3A-B, 4A), and (ii) significant downregulation of genes involved in protein
160  ubiquitination, proteolysis, and aerobic respiration (Fig. 4, Suppl. Figs 2, 5A-B). The latter is evidenced
161 by downregulation of the mitochondrial electron transport chain and the TCA cycle, including
162  transcription factor bZIP14, which regulates the TCA cycle in diatoms [40] (Suppl. Fig. 5A-B). Thus,
163 the transcriptome suggests relatively more energy is acquired through light reactions, and there is less
164  intracellular recycling of proteins. This is in contrast to another euryhaline diatom, Thalassiosira
165  weissflogii, where carbon fixation was not impacted when cells were grown at different salinities [41].
166 Diatoms are known to accumulate storage compounds in unfavorable growth conditions [42,
167  43], and to modify the fatty acid and lipid composition of their membranes, which alters membrane
168  permeability and fluidity under salinity stress [44]. Here, we observed increased biosynthesis of storage
169  compounds, suggesting that low salinities are stressful to S. marinoi, despite their natural occurrence in
170  low-salinity regions of the Baltic Sea. Specifically, biosynthesis of two major storage compounds was
171  upregulated: the polysaccharide chrysolaminarin, i.e. B-1,3- and B-1,6-glucan polysaccharides [45], and
172  fatty acids that might be stored as triacylglycerols [46] (Fig. 4, Suppl. Figs 2, 6A). Four genes involved
173  herein were DE in all genotypes, underscoring that storage compound biosynthesis was a common
174  response in all investigated genotypes. In addition, further evidence from changes in cell membranes
175  came from upregulation of sulfolipids and a glycosyltransferase, which are involved in thylakoid

176  membranes and maintenance of membrane stability, respectively.
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177 We found that tRNA-aminoacylation, translational elongation factors, and many ribosomal
178  proteins were upregulated, which together point to an increase in protein biosynthesis in low salinities
179  (Fig. 4, Suppl. Figs 2, 7). In parallel, protein refolding activity was upregulated (Fig. 4), suggesting
180  proteins need additional stress protection in low salinities. Several transcription factors were also
181  upregulated, including a putative heat stress transcription factor involved in DNA-binding of heat shock
182  promoter elements. Both nuclear division and microtubule-based movements were downregulated (Fig.
183 4, Suppl. Fig. 2), suggesting less mitosis in low salinities. Although our growth data measured from
184  relative chlorophyll a fluorescence do not support a decrease in cell division in low salinities (Fig. 2),
185  upregulation of chlorophyll biosynthesis in these conditions (Suppl. Fig. 4A) suggests that a decrease
186  in mitosis could have been masked by an increase in per-cell chlorophyll-content—an observation that
187  might have important consequences for similar experiments that use chlorophyll a as a proxy for
188  growth. In addition, two genes coding for an extracellular subtilisin-like serine protease were
189  upregulated in low salinities, as has also been observed in diatoms in response to other stressors such
190  as copper deficiency [47]. Finally, although activation of transposable elements has been linked to the
191 diatom stress response [48, 49], including S. marinoi [50], the majority of genes involved in transposon
192  activity (i.e., transposase, retrovirus-related Pol poly-protein) in the S. marinoi genome were not DE,
193  and if DE they tended to be downregulated in low salinities (Fig. 4, Suppl. Fig. 2).

194

195  Increased nutrient demand in low salinities

196  Our data suggest that low salinities induce profound changes in nutrient demand, especially of nitrogen,
197  and potentially also highlight preferred nitrogen sources in S. marinoi. In fact, many transmembrane
198  transporters for essential nutrients such as nitrogen, phosphorus, molybdate, and sulphate were
199  upregulated in low salinities (Suppl. Figs 5D, 9). Specifically for nitrogen, Nrt nitrite/nitrate transporters
200  were highly upregulated, and to a lesser extent transporters for urea and ammonia (Suppl. Figs 5D, 9).
201 Most of the imported nitrogen is directed to the chloroplast, where nitrogen assimilation through
202  ferredoxin-nitrite reductase (Fd-Nir) and GSII-GOGAT ¢q) [51] was upregulated (Suppl. Fig. 5D). In
203  parallel, the anabolic part of the urea cycle was upregulated, including carbamoyl phosphate synthase

204  (unCPS) (Suppl. Figs 5C-D), suggestive of increased recycling of ammonia and biosynthesis of
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205  arginino-succinate or arginine. Higher nutrient demands in low salinities likely reflect increased
206  biosynthesis of nitrogen-rich compounds such as amino acids and polyamines, essential for protein
207  biosynthesis and the stress response, respectively [52, 53]. In parallel, we detected a high number of
208  DE transporters for amino acids and polyamines, most of which were upregulated in low salinities
209  (Suppl. Fig. 9). Taken together, it appears that S. marinoi requires more nutrients in low-salinity
210  environments to support increased demand for proteins and other compounds. Consequently, S. marinoi
211 might struggle to maintain growth in low salinities under nutrient-deplete conditions, suggesting that
212  increasing nutrient loads in low-salinity regions of the Baltic Sea might benefit S. marinoi [54, 55]. In
213  contrast, silicic acid transporters were strongly downregulated in low salinities, and this downregulation
214  was most evident in the 16-24 salinity contrast (Suppl. Fig. 9). This could reflect decreased cell division
215  and/or changes in cell wall silicification.

216

217 A diverse response to oxidative stress in low salinities

218  Several lines of evidence suggest that S. marinoi experiences increased oxidative stress at low salinities,
219  as multiple mechanisms to deal with reactive oxygen species (ROS) were upregulated in low salinities.
220  This included genes involved in glutathione metabolism, ascorbate peroxidases, catalases, and
221  peroxiredoxin (Suppl. Fig. 6B). The xanthophyll cycle, which plays a critical role in protection from
222  oxidative stress due to excess light and ROS generated by other stressors [56], was also distinctly
223  upregulated (Suppl. Fig. 4B). Carotenoids for the xanthophyll cycle were produced primarily through
224  the non-mevalonate pathway, which was also upregulated in low salinities (Suppl. Fig. 4B).

225 We found upregulation of polyamine biosynthesis from ornithine via ornithine decarboxylase
226  (Suppl. Figs 5C-D). Polyamines play a complex role in abiotic stress responses, including salinity stress
227  inland plants, by increasing the activity of antioxidant enzymes, triggering the stress signal transduction
228  chain and serving an osmolyte function [53]. In diatoms, polyamines increase in response to both heat
229  and salinity stress [57, 58], and our data suggest a similar role in salinity acclimation.

230 Violaxanthin-de-epoxidase (xanthophyll cycle), and two genes involved in polyamine
231  biosynthesis were DE in all genotypes (Fig. 5), underscoring the highly conserved nature of the

232  oxidative stress response in S. marinoi. In addition, vitamin B6-binding activity was upregulated in low
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233  salinities. Vitamin B6 is a vital cofactor of various enzymes, and plays a role in ROS deactivation in
234  land plants [59]. However, the response of S. marinoi to oxidative stress is complex, as several other
235  genes involved in ROS elimination were downregulated in low salinities (Suppl. Fig. 6B), including
236  superoxide dismutase (SOD), which is a first line of defense against ROS in land plants and macroalgae
237  [60,61].

238

239  Osmotic stress response

240  Skeletonema marinoi produces a variety of osmolytes. These are small organic molecules that help
241  mitigate hyperosmotic stress typical of marine environments [62—65]. Consequently, a decrease in
242  salinity should trigger a drop in osmolyte biosynthesis. Indeed, in low salinities, S. marinoi adjusted
243  intracellular osmolyte concentrations to hypoosmotic conditions by downregulating biosynthesis of the
244  osmolyte DMSP and upregulating breakdown of the osmolyte taurine via taurine dioxygenase (Suppl.
245  Fig. 6B). Although most genes involved in the diatom DMSP pathway remain unknown, S. marinoi has
246  a homolog of TpMMT, a methyltransferase that catalyzes a key reaction in DMSP biosynthesis in
247  diatoms [64]. This gene was strongly downregulated in low salinities (Suppl. Fig. 6B). Putative BADH
248  and CDH genes involved in the biosynthesis of the osmolyte betaine from choline [62] were present but
249  not DE. Betaine can also be synthesized from glycine by TpGSDMT [62], and a possible homolog of
250  this gene was downregulated in all genotypes (Suppl. Fig. 6B). Genes involved in proline metabolism
251  were generally slightly upregulated (Suppl. Fig. 5D), suggesting proline is the preferred osmolyte in
252  low salinities.

253 Two genes that were strongly downregulated in low salinities in all genotypes could be involved
254  in the biosynthesis of a fifth osmolyte: ectoine (Fig. 5, Suppl. Fig. 8). These genes encode a bifunctional
255  aspartokinase/homoserine  dehydrogenase (Sm_g00011041) and an aspartate-semialdehyde
256  dehydrogenase (Sm_g00011042) (Fig. 5, Suppl. Fig. 8). Both are involved in the early steps of the
257  glycine/threonine/serine pathway, and convert aspartate into aspartate-semialdehyde and/or
258  homoserine. The genome of S. marinoi contains several other homologs of both genes. When DE, these
259  homologs show opposite expression patterns to the aforementioned genes: they are upregulated in low

260  salinities, following the same expression patterns as other genes in this pathway (Suppl. Fig. 8). Peptide

10
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261  targeting predictions showed that reactions in this pathway are compartmentalized across the
262  chloroplast, cytoplasm, and mitochondria, presumably allowing S. marinoi to run opposite reactions
263  simultaneously while avoiding futile cycles (Suppl. Fig. 8). Given their expression patterns and
264  compartmentalization, Sm_g00011041 and Sm_g00011042 are likely not involved in conventional
265  amino acid biosynthesis. Instead, one of their products, aspartate-semialdehyde, is a known precursor
266  for the osmolyte ectoine in bacteria (Suppl. Fig. 8) [66], and elevated levels of aspartate-semialdehyde
267  dehydrogenase have been detected in bacteria occupying high salinities [67]. Recently, marine diatoms
268  were found to both biosynthesize and import ectoine of bacterial origin [68]. Several S. marinoi genes
269  may be homologous to the bacterial ectoine genes ectd, ectB, and ectC that convert aspartate-
270  semialdehyde to ectoine. However, low sequence similarity (max. 47.8 %), and lack of downregulation
271 in low salinities, raises doubt about whether those genes are responsible for ectoine biosynthesis in .S.
272  marinoi. Furthermore, all putative homologs received annotations different from ectoine-related genes
273  in Swissprot/Uniprot, suggesting they serve different functions from aforementioned ectoine genes. It
274 s possible that diatoms have other unknown genes involved in ectoine biosynthesis, or alternatively,
275  diatoms might provide ectoine precursors (e.g., aspartate-semialdehyde) to extracellular bacteria that
276  synthesize and return ectoine to the diatom. Such exchange of metabolites has previously been shown
277  to occur in diatom-bacteria interactions [69]. Our expression data are consistent with both scenarios
278  (Suppl. Fig. 8), and suggest ectoine might be an important osmolyte in diatoms.

279 Responses to osmotic stress also include shifts in cation import and export, such as sodium and
280  potassium [70]. Here, most identified potassium and sodium channels were either slightly upregulated
281 or not DE (Suppl. Fig. 9), and two detected aquaporins were either up- or downregulated in low
282  salinities. Six transporters for potassium, amino acids or unknown cations/solutes were DE in all
283  genotypes, often with large effect-sizes (Fig. 5), highlighting the conserved nature of this response in
284 S marinoi.

285

286  Genotype-specific data reveal intraspecific variation and a conserved core response to low salinity
287  The genotype effect in our dataset overshadowed the salinity effect, indicating that genotypes differed

288  substantially in their response to low salinities. This was evidenced by a multidimensional scaling plot
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289  and poisson-distance heatmap in which samples clustered primarily by genotype rather than salinity
290  (Fig. 6). Specifically, 1,791 genes were uniquely DE in only one genotype (Suppl. Fig. 10). The number
291 of uniquely DE genes ranged from 103 (genotype I) to 317 genes (genotype A) (Suppl. Fig. 10).

292 We defined a core response to low salinities by selecting genes that are DE in at least one
293  contrast of each genotype, which resulted in a set of 27 shared genes that are DE in each genotype (Figs
294  1C, 5). Obtaining this set of shared genes required subsetting the full set of DE genes (Fig. 1C), so the
295 5 % FDR for these 27 genes could not be guaranteed. However, the core response genes were
296  characterized by a combination of high logFC and low P-values (Suppl. Fig. 1), thus providing strong
297  evidence for DE in each genotype. These genes are also among the top DE genes in the full dataset (Fig.
298  1C: blue section): 13 overlapped with the top 25 DE genes as ranked by stageR’s FDR-adjusted P-value
299  of the global null hypothesis (Padjscreen), 22 were part of the top 100 DE genes, and all were detected
300  within the top 225 DE genes. Core response genes upregulated in low salinities were involved in key
301  processes previously identified in the average response, including transport of amino acids and cations,
302  storage compound and polyamine biosynthesis, ROS deactivation, and transcription and translation
303  (Fig. 5). By contrast, core response genes that were downregulated in low salinities were involved in
304  proteolysis or the putative biosynthesis of the osmolyte ectoine (Fig. 5). Increasing the number of
305 technical replicates would likely enlarge the set of core response genes, as higher replicate numbers are
306  bound to improve detection of DE genes, especially those with small effect sizes [71]. Our set of ‘core
307  response’ genes is thus not exhaustive, but gives a first indication of which genes are likely to be part
308  ofaconserved ancestral response to low salinity environments in S. marinoi.

309

310 Interaction-effects reveal differences among genotypes in their response to low salinity

311 A total of 3,857 genes showed interaction effects (Fig. 1C), i.e., significantly different expression
312  patterns between genotypes with a 5 % FDR. Of these, 2,820 differed between genotypes in the
313  magnitude of their response to low salinities, whereas far fewer (1,037) differed in the direction of their
314 response (Fig. 1C). However, 92 of the top 100 genes with interaction effects (ranked by stageR’s FDR-

315  adjusted P-value of the global null hypothesis, Padjscreen) differed in the direction of their response
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316 (Suppl. Fig. 11). Thus, although more genes overall showed differences in the magnitude of DE, those
317  with differences in direction of DE dominated the top set of interaction-effect genes.

318 The two classes of interaction-effect genes were enriched for different processes (Fig. 7, Suppl.
319  Fig. 12). Genes that differed significantly across genotypes in the magnitude of their response were
320  enriched for many of the same key processes identified in the average response, including
321  photosynthesis, glycolysis, and the biosynthesis of chlorophyll, carotenoids, and fatty acids (Fig. 7,
322  Suppl. Fig. 12). This suggests that there is considerable variation among S. marinoi genotypes in the
323  strength of the salinity response. By contrast, genes that differ significantly between genotypes in the
324  direction of their response were enriched for processes involving transcription regulation, peroxidase
325  activity, aerobic respiration, and nitrogen metabolism, including urea transmembrane transport (Fig. 7),
326  suggesting that genotypes differ, at least partially, in the invoked strategies to cope with low salinity.
327  The top 100 set of interaction-effect genes further suggested genotypes differ in the direction of their
328  response for cell wall and -calcium-binding messenger proteins, as well as heat shock
329  proteins/chaperones (Suppl. Fig. 11), highlighting intraspecific differences in how salinity stress affects
330 protein function and cell-signalling pathways. For example, Ca*"-signalling is involved in osmotic
331 sensing in diatoms [72], suggesting S. marinoi genotypes differ in how they perceive and respond to
332  osmotic stress.

333 Both classes of interaction-effect genes contained GO terms related to translational activity,
334  cell cycle progression, mitosis, and meiosis. In fact, two interaction-effect genes that show differences
335  in the direction of their response across genotypes coded for meiotic recombination protein SPO/11-2
336  (Suppl. Fig. 11), which is thought to be expressed exclusively during meiosis [73, 74]. Sexual
337  reproduction in S. marinoi can be induced by shifts from low to higher salinity, e.g., 6 to 16 [73], but
338  our data suggest genotypes differ in the optimal salinity shift to induce meiosis. However, meiosis likely
339  never dominated during our experiment as growth rates were relatively stable over time (Fig. 2), and
340  gametes or auxospores were not observed. Although these observations could reflect intraspecific
341 differences in growth and sexual reproduction related to salinity, we cannot rule out that genotypes were

342  at different stages of their cell cycle when RNA was harvested.
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343 The observed intraspecific variation in gene expression likely reflects an important mechanism
344  which allows S. marinoi to grow throughout the Baltic Sea. Diatom populations can harbour high levels
345  of both genotypic and phenotypic variation [23, 75-78]. Our finding of high levels of variation in gene
346  expression is a natural extension of this observation. Our study design did not allow testing whether the
347  observed intraspecific variation is related to the natural salinities at which the different genotypes occur,
348  as this would require sampling of multiple genotypes within populations. Nevertheless, visual
349  comparison of gene expression patterns did not show consistent differences across low- (D, F, I, J, K,
350  and P) and high-salinity (A and B) populations (e.g., Suppl. Figs 3-9), nor did those populations cluster
351 separately in the MDS-plot (Fig. 6A). This suggests that if signals of local adaptation along the Baltic
352  salinity cline [22] are due in part to differences in gene expression between high- and low-salinity
353  populations, then those differences are subtle. In any case, substantial intraspecific variation in gene
354  expression patterns in S. marinoi exists and is likely to be a crucial factor for survival, acclimation, and
355  adaptation to a dynamic environment such as the Baltic Sea, where in addition to a salinity gradient,
356  marked gradients and seasonal fluctuations in nutrients and temperature also occur [55]. The strong
357  degree of variation in gene expression within this population increases the chance that at least some
358  cells can survive rapidly fluctuating, potentially adverse, conditions in the short term. Assuming some
359  of'this variation is heritable, variable gene expression can also enable long-term evolutionary adaptation
360 by providing targets for natural selection [8, 79]. In that sense, it may be that the observed variation in
361  gene expression is maintained by balancing selection.

362

363 CONCLUSION

364  Our study design, in which transcriptome data from eight genotypes were combined into one analysis,
365  allowed for a holistic view of the response of S. marinoi to low salinity conditions in the Baltic Sea, the
366  world’s largest brackish water body. Transcriptome studies often include technical replicates of a single
367  genotype, but an increasing number of studies [49, 80] show that experiments without biological
368  replicates are unlikely to be generalizable, as different genotypes can exhibit markedly different patterns
369  of gene expression. Here, inclusion of both technical and biological replicates allowed us to pinpoint

370  both conserved and variable responses to low salinity.
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371 Despite long-term presence of S. marinoi in brackish habitats in the Baltic Sea, our
372  transcriptome data suggest that when Baltic S. marinoi is exposed to low salinities that mimic the natural
373  Baltic salinity gradient, the diatom experiences elevated stress and increased energy and nutrient
374  demands to maintain homeostasis. This suggests that S. marinoi has not fully adapted to low salinity
375  regions of the Baltic Sea since it first colonized the Baltic some 9 000 years ago. Our analyses further
376  revealed substantial levels of intraspecific variability in the response of S. marinoi to low salinities.
377  Although our experimental design did not allow us to link this variability to the natural salinity of the
378  source population, it highlights an important source of biological variation in natural populations of S.
379  marinoi and presumably other diatoms as well. Variable gene expression could be an important
380  mechanism at which diatoms respond and adapt to environmental change, and ultimately diversified in
381  awide range of marine, freshwater, and terrestrial habitats worldwide [4, 81].
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Table 1. Details of the S. marinoi strains used in this study. The salinity values indicate the salinity of
the natural sample from which the respective strains were isolated (‘original salinity’) and in which they
were maintained prior to the experiment (‘culture salinity’). GPS coordinates indicated with an asterisk

(*) represent approximate sampling locations.

Collection  Strain Field Country  GPS (N/E) Collector Isolation Culture Original Culture
ID ID ID date medium salinity salinity
AJA304 A221b A Sweden 58.02868/11.13738 (*) A.Godhe 2017-03-28 L1 15-33 24
AJA305 B.2.19b B Sweden  55.97744/12.69058 A.Godhe 2017-04-07 ASW 12-15 16
AJA332 D.1.27a D Sweden 58.33200/16.70583 A.Godhe, B.Andersson  2018-05-14 WC + salt 89 8
AJA328 F.1.2a F Sweden 63.65317/18.95200 (*) A.Godhe 2018-03-15 WC + salt ~8 8
AJA311 1.3.11a | Finland 60.18000/25.50700 A.Kremp 2017-03-09 WC + salt 5-6 5
AJA313 13.42b ) Finland 60.38964/27.37518 (*) A.Kremp 2018-04-22 WC +salt 4-5 8
AJA318 K.3.3a K Estonia 57.81670/22.28330 S.Sildever 2018-05-23 WC + salt ~8 8
AJA333 P.2.6a P Poland 54.44778/18.57611 A.Witkowski 2018-05-16 WC + salt 5-7 5
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Fig. 1. Experimental design. a Field sampling. Natural salinity gradient in the Baltic Sea based on
salinity measurements from surface samples (0-10 m depth) and interpolated across the Baltic Sea for
the period 1990-2020. Salinity measurements were downloaded from ICES (ICES Dataset on Ocean
Hydrography, 2020. ICES, Copenhagen) and Sharkweb (https://sharkweb.smhi.se/hamta-data/).
Diamonds identify sampling locations for S. marinoi. The inset figure shows a light micrograph of a S.
marinoi culture (scale bar = 10 um). b Laboratory experiment. Experimental design of the laboratory
experiment carried out in this study. Eight strains of S. marinoi were exposed to three salinity treatments
(8, 16 and 24) in triplicate, resulting in 72 RNA-seq libraries. ¢ Statistical analyses. Overview of the
null hypotheses and contrasts tested in this study. Our experimental design allowed characterization of
the general response of S. marinoi to low salinities as well as intraspecific variation. The lower blue
arrows indicate which data were incorporated in the average and core responses, which together were
used to define the general response of S. marinoi. Genes with significant interaction effects were
subdivided in two categories using logFC values of the genotype-specific effects (blue-red gradient
arrow), distinguishing genes that differed significantly in either the magnitude or direction of their
response to low salinities. The first category includes genes that were DE in one genotype but not the
others, or that were DE in multiple genotypes but with significant differences in logFC values in the
same direction. Genes of the second category were significantly upregulated in some genotypes,
whereas they were significantly downregulated in other genotypes.
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Fig. 2. Growth response of Baltic S. marinoi in low salinities. Growth rates of the eight S. marinoi
genotypes examined in this study at three different salinities. The letters in the individual panels
correspond with the sampling locations in Table 1 (‘Field ID’) and Fig. 1A. Each point represents a
single estimate of the slope of the logarithm of in vivo relative fluorescence against time for each
sequential transfer, using a horizontal jitter of points to avoid overplotting.
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Fig. 3. Transcriptome response of Baltic S. marinoi to low salinities. a Number of DE genes at a 5
% FDR-level in the average and genotype-specific effects. The number of DE genes is indicated
separately for each contrast, distinguishing between genes that are up- or downregulated. b Direction
of DE in the top 100 genes of the average and genotype-specific effects as selected by P-value or logFC.
For each contrast in the average and genotype-specific effects (vertical black bar), the direction of DE
is indicated for the top 100 genes selected by stageR’s FDR-adjusted P-value of the global null
hypothesis (Padjscreen). Thus, although a gene can have a high P-value on a dataset-wide level, it is
not necessarily DE in each individual contrast. In addition, we show the top 100 genes selected by
logFC (topconfects) and the contrast-specific 5 % FDR-controlled P-value (Padj) for the 8-24 contrast
of the average effects, as this contrast showed the greatest number of DE genes in a. ¢ Number of
enriched GO terms. Two types of GO enrichment are shown: Over-representation Analysis, ORA (in
topGO) and Gene Set Enrichment Analysis, GSEA (in CAMERA). For ORA, we defined two sets of
genes in each genotype/average response for which GO enrichment was performed separately: genes
upregulated in low salinities, and genes downregulated in low salinities. Further details on how this
selection was performed can be found in the Supplementary Methods. For GSEA, we performed GO
enrichment on each contrast of the genotype-specific and average effects separately. Here, the number
of up- and downregulated GO terms represents the output classification by CAMERA. The number of
enriched GO terms includes Biological Process, Molecular Function and Cellular Component GO
terms, prior to removal of redundant GO terms by REVIGO [82] (see Supplementary Methods).
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Fig 4. GO enrichment on the average response of S. marinoi to low salinities: Biological Process.
The results of two types of GO enrichment analyses are shown: ORA (in topGO, Fisher’s exact test,
elim algorithm) and GSEA (in CAMERA), after removal of redundant terms by REVIGO. For ORA,
we classified the total set of DE genes in the average response into two categories, distinguishing
between genes that are up- or downregulated in low salinities, regardless of salinity contrast (see
Supplementary Methods for more details). For CAMERA, we performed GSEA analyses on each
individual contrast separately, showing only the 8-24 contrast in this figure. Barplot height indicates the
proportion of genes that are DE with a given GO-term to the total number of genes with this GO-term
in the genome of S. marinoi. The barplots are colored according to P-value. Within the set of up- and
downregulated genes, the GO-terms are ranked from lowest to highest P-value, using the lowest of two
P-values from ORA or GSEA. Symbols indicate major categories of cellular processes to which a GO-
term belongs. Only Biological Process GO-terms are shown.
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Fig. 6. Intraspecific variation in the response of Baltic S. marinoi to low salinities. a
Multidimensional scaling (MDS) plot for the full dataset, showing that samples cluster primarily by
genotype rather than salinity. Distances between the samples are based on logFC changes in the top 500
genes. b Poisson-distance heatmap of the full dataset. Colored bars below the heatmap indicate the

position of samples belonging to different genotypes and salinities (Fig. 1 a), showing that samples of
different genotypes cluster together.
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Fig. 7. GO enrichment of the interaction-effects: Biological Process. The barplot visualizes the
significant GO terms retrieved by ORA (topGO, Fisher’s exact test, elim algorithm) after removal of
redundant GO terms by REVIGO. Two sets of GO enrichment were carried out which distinguished
between genes that differ significantly between genotypes in the direction or magnitude of their
response to low salinities. Barplot height indicates the proportion of genes that are DE with a given GO-
term to the total number of genes with this GO-term in the genome of S. marinoi. The barplots are
colored, and the GO terms ranked, according to P-value. Symbols indicate major categories of cellular
processes to which a GO-term belongs. Only Biological Process GO-terms are shown.
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