

1 **Genotype-specific transcriptional responses overshadow salinity effects in a marine diatom**
2 **sampled along the Baltic Sea salinity cline**

3
4

5 Eveline Pinseel^{1*}, Teofil Nakov¹, Koen Van den Berge^{2,3,4}, Kala M. Downey¹, Kathryn J. Judy¹, Olga
6 Kourtchenko⁵, Anke Kremp⁶, Elizabeth C. Ruck¹, Conny Sjöqvist⁷, Mats Töpel⁵, Anna Godhe⁵ &
7 Andrew J. Alverson^{1*}

8

9 ¹ Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA

10 ² Department of Statistics, University of California, Berkeley, CA, USA

11 ³ Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent,
12 Belgium

13 ⁴ Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium

14 ⁵ Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden

15 ⁶ Leibniz-Institute for Baltic Sea Research, Rostock, Germany

16 ⁷ Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland

17

18 *Corresponding authors: eveline.pinseel@gmail.com, aja@uark.edu

19

20 The authors declare they have no conflict of interest.

21 **ABSTRACT**

22 The salinity gradient separating marine and freshwater environments represents a major ecological
23 divide for microbiota, yet the mechanisms by which marine microbes have adapted to and ultimately
24 diversified in freshwater environments are poorly understood. Here, we take advantage of a natural
25 evolutionary experiment: the colonization of the brackish Baltic Sea by the ancestrally marine diatom
26 *Skeletonema marinoi*. To understand how diatoms respond to low salinity, we characterized
27 transcriptomic responses of *S. marinoi* grown in a common garden. Our experiment included eight
28 genotypes from source populations spanning the Baltic Sea salinity cline. Changes in gene expression
29 revealed a shared response to salinity across genotypes, where low salinities induced profound changes
30 in cellular metabolism, including upregulation of carbon fixation and storage compound biosynthesis,
31 and increased nutrient demand and oxidative stress. Nevertheless, the genotype effect overshadowed
32 the salinity effect, as genotypes differed significantly in their response, both in the magnitude and
33 direction of gene expression. Intraspecific differences included regulation of transcription and
34 translation, nitrogen metabolism, cell signaling, and aerobic respiration. The high degree of
35 intraspecific variation in gene expression observed here highlights an important but often overlooked
36 source of biological variation associated with how diatoms respond and adapt to environmental change.

37 INTRODUCTION

38 The salinity gradient separating marine and freshwater environments represents one of the major
39 ecological divides structuring microbial diversity [1]. Differences in osmotic pressure impede marine–
40 freshwater transitions, and as a consequence, transitions are generally rare, occur on longer evolutionary
41 timescales [2, 3], and have repeatedly led to bursts of diversification in freshwater environments [4].
42 Comprehending the processes behind marine–freshwater habitat transitions is fundamental to both our
43 understanding of lineage diversification and habitat structuring on evolutionary time-scales [5], as well
44 as short term adaptive potential to climate change. The latter is rapidly altering marine environments:
45 melting ice caps, altered precipitation patterns, and changes in oceanic currents have led to freshening
46 of large regions as well as local changes in the seasonal or annual cycling of salinity regimes [6, 7]. Yet,
47 little is known about the cellular processes underlying acclimation and adaptation to low salinity
48 environments. Permanent establishment of ancestrally marine organisms in freshwaters depends on the
49 ability of the individual colonists to survive the initial hypo-osmotic stress, acclimate to low salinity,
50 and ultimately adapt to their new environment [8]. Consequently, such transitions are not likely to occur
51 instantly, but are rather thought to happen gradually [4, 5]. Euryhaline species that are able to tolerate
52 a wide range of salinities, or those inhabiting brackish environments, are most likely to succeed at
53 marine–freshwater transitions. Thus, to understand the cellular processes behind marine–freshwater
54 transitions, studies focusing on taxa that are most likely to colonize freshwater habitats are crucial.

55 Here, we take advantage of a natural evolutionary experiment currently underway: the
56 colonization of one of the world’s largest brackish water bodies, the Baltic Sea, by the ancestrally
57 marine diatom *Skeletonema marinoi* (Fig. 1A). Geologically, the Baltic Sea is young, with sea ice from
58 the last glacial maximum having fully receded only 10 000 years ago and inundation of saline waters
59 from the adjacent North Sea occurring just 8 000 years ago [9]. Today, freshwater input from rivers and
60 precipitation, in combination with continued inflow of saline bottom-waters from the North Sea through
61 the Danish straits, results in a latitudinal and vertical salinity gradient ranging from near fresh to fully
62 marine conditions [9, 10] (Fig. 1A). This salinity gradient strongly structures biodiversity of aquatic
63 biota on both the species and population levels [11–13], including diatoms [14, 15]. This includes *S.*
64 *marinoi*, which is the dominant phytoplankton species and one of the main contributors to primary

65 production in the area [16, 17]. Paleoecological evidence showed that *S. marinoi* has been present in
66 the Baltic Sea since the marine inundation or shortly thereafter [18, 19]. Although *S. marinoi* is
67 ancestrally marine [20, 21], it can tolerate a wide range of salinities and is common along the entire
68 salinity gradient, from the North Sea coast to the upper reaches of the Baltic Sea [22]. Previous work
69 showed reduced gene flow between a high-salinity North Sea population of *S. marinoi* and a low-
70 salinity Baltic Sea population [22]. The Baltic population exhibited lower genetic diversity and optimal
71 growth at lower salinity, consistent with local adaptation [22]. Thus, *S. marinoi* presents an excellent
72 system for understanding the cellular mechanisms that govern adaptation of ancestrally marine diatoms
73 to low salinity environments.

74 We combined a laboratory common garden experiment with RNA-sequencing (RNA-seq) to
75 characterize the response of the euryhaline diatom *S. marinoi* to low salinity (Fig. 1). We collected eight
76 genotypes of *S. marinoi* along the Baltic Sea salinity cline, exposed them to a range of salinities, and
77 compared gene expression between high and low salinity treatments. Natural populations of *S. marinoi*
78 exhibit a broad range of variability in ecophysiological traits [23], so the inclusion of multiple genotypes
79 in our experiment allowed us to characterize potential variation in the salinity response as well, such as
80 which aspects of the response are shared and which ones differ among genotypes.

81

82 MATERIAL & METHODS

83

84 Sample collection, culturing, and experimental design

85 We collected sediment samples from eight locations across the Baltic Sea (Fig. 1A) and stored them in
86 the dark at 5 °C. We germinated *S. marinoi* resting cells into monoclonal cultures that were kept at their
87 native salinity (Table 1) [24]. Cells were grown at 12 °C on a 12:12 light:dark light regime (30 μ mol
88 $\text{m}^{-2} \text{ s}^{-1}$ light intensity) for 12–26 months prior to the experiment. Strain identity was confirmed by
89 sequencing the LSU d1–d2 rDNA gene (see Supplementary Methods for details).

90 In our experiment, we grew eight different *S. marinoi* strains in triplicate for approximately two
91 weeks at three salinities (8, 16 and 24)—a design that included both biological (eight genotypes) and
92 technical replicates (three replicates per strain) (Fig. 1B). Further details about the experimental design,

93 RNA sequencing, and read processing are outlined in the Supplementary Methods. RNA-seq data are
94 available from the Sequence Read Archive (NCBI) under project number PRJNA772794.

95 We mapped RNA-seq reads against the reference genome of *S. marinoi* strain RO5AC v.1.1
96 (available from doi 10.5281/zenodo.5266588) with STAR [25], followed by gene-level read
97 quantification with HTSeq [26]. We performed statistical analyses in the R computing environment,
98 using edgeR [27] and stageR [28]. Gene ontology (GO) enrichment was done with TopGO (Over-
99 representation Analysis, ORA) [29] and CAMERA (Gene Set Enrichment Analysis, GSEA) [30]. We
100 obtained functional annotations for all genes using InterProScan [31], KofamKOALA [32], and
101 BLAST+ [33] searches against the Swissprot and Uniprot databases. We detected orthologs of *S.*
102 *marinoi* genes in other diatom genomes with OrthoFinder [34] and made protein targeting predictions
103 with MitoProt [35], HECTAR [36], SignalP [37], ASAFind [38], and TargetP [39]. Full details on the
104 bioinformatic pipeline, statistical models, and GO enrichment are outlined in the Supplementary
105 Methods, and the gene-level count data and R code used for the statistical analyses are available from
106 Zenodo (doi 10.5281/zenodo.5266588).

107

108 **Hypothesis testing**

109 We separately tested two sets of null hypotheses (Fig. 1C). The first set tested whether gene expression
110 was different across the salinity gradient for each genotype separately (Fig. 1C: individual genotypes)
111 and for all genotypes together (Fig. 1C: average of all genotypes), using a total of 27 contrasts (Fig.
112 1C). Compared to solely testing the average salinity effect, simultaneously accounting for the individual
113 genotypes increases the power to find differentially expressed (DE) genes, as the genotype effect
114 incorporates variability that would otherwise be unaccounted for. The second set of hypotheses tested
115 for an interaction effect between genotype and salinity, i.e., whether there are genotype-specific
116 responses to changes in the salinity (Fig. 1C). Here we defined 84 contrasts, testing each pairwise
117 combination of genotypes within all three salinity combinations (Fig. 1C). We tested the two sets of
118 hypotheses separately using a stage-wise testing procedure in stageR. This allowed us to control the
119 gene-level false discovery rate (FDR) at 5 % when testing multiple hypotheses simultaneously [28].

120

121 **RESULTS & DISCUSSION**

122

123 **General response of Baltic *S. marinoi* to low salinity environments**

124 The inclusion of multiple genotypes in our study design allowed us to characterize both the responses
125 of each individual genotype, and the average response across all genotypes (Fig. 1C). To obtain a
126 general overview of the response of *S. marinoi* to low salinity, we present the results of all three
127 contrasts (8-24, 8-16 and 16-24) together. Unless otherwise indicated, ‘low salinity’ refers to a lower
128 salinity (8 and/or 16) relative to a higher one (16 and/or 24), but does not distinguish between contrasts
129 unless necessary. This was done to gain a general overview of the response to low salinities across the
130 Baltic Sea salinity cline, and because GO enrichment suggested that many of the same processes are
131 enriched in the three salinity contrasts.

132 Growth reaction norms showed no substantial differences among genotypes and salinity
133 treatments, indicating that all genotypes grew well across a wide salinity range (Fig. 2). RNA-seq reads
134 of all genotypes mapped equally well to the reference genome. In the combined average- and genotype-
135 specific response (Fig. 1C), 7,905 of the 22,440 predicted genes in the *S. marinoi* genome were DE
136 using a 5 % FDR. The number of DE genes in the average response was higher than in any contrast of
137 the individual genotypes (Fig. 3A), with a total of 5,343 DE genes in at least one of three contrasts
138 tested in the average response. This is a result of combining all information from the different
139 genotypes, which resulted in 8x3 replicates for each salinity condition. As a consequence, the average
140 response allowed us to detect many more DE genes, including those with small effect-sizes, and shows
141 the benefit of including more than the standard three replicates used in many transcriptome studies.

142 The 8-24 contrasts consistently showed the most DE genes, and the least generally were found
143 in the 16-24 contrast (Fig. 3A). Thus, the largest drop in salinity (24 to 8), and the shift to lower salinity
144 (16 to 8), elicited the greatest transcriptomic responses. When including all DE genes, the number of
145 up- and downregulated genes was comparable within contrasts (Fig. 3A, Suppl. Fig. 1). However, when
146 only taking into account the top 100 genes based on P-value or logFC, substantially more genes were
147 upregulated in low salinities (Fig. 3B), indicating genes with the largest effect sizes or strongest
148 evidence for DE were more likely to be upregulated in low salinities. A similar pattern was seen in the

149 GO enrichment, where a CAMERA analysis found substantially more enriched GO terms that were
150 upregulated in low salinities (Fig. 3C). From these results it is clear that low salinities induce an
151 increased transcriptional response relative to high salinities. In the next paragraphs, we report on several
152 specific pathways that are up- or downregulated in low salinities. Unless otherwise noted, the data in
153 these sections represent the 8-24 contrast of the average response (Fig. 1C).

154

155 ***Low salinities trigger profound changes in diatom metabolism***

156 *Skeletonema marinoi* exhibited profound changes in energy metabolism following exposure to low
157 salinity (Suppl. Figs 3-9). In lower salinities, *S. marinoi* experiences (i) significant upregulation of genes
158 from the photosynthetic electron transport chain, Calvin cycle, and chlorophyll biosynthesis (Fig. 4,
159 Suppl. Figs 2, 3A-B, 4A), and (ii) significant downregulation of genes involved in protein
160 ubiquitination, proteolysis, and aerobic respiration (Fig. 4, Suppl. Figs 2, 5A-B). The latter is evidenced
161 by downregulation of the mitochondrial electron transport chain and the TCA cycle, including
162 transcription factor *bZIP14*, which regulates the TCA cycle in diatoms [40] (Suppl. Fig. 5A-B). Thus,
163 the transcriptome suggests relatively more energy is acquired through light reactions, and there is less
164 intracellular recycling of proteins. This is in contrast to another euryhaline diatom, *Thalassiosira*
165 *weissflogii*, where carbon fixation was not impacted when cells were grown at different salinities [41].

166 Diatoms are known to accumulate storage compounds in unfavorable growth conditions [42,
167 43], and to modify the fatty acid and lipid composition of their membranes, which alters membrane
168 permeability and fluidity under salinity stress [44]. Here, we observed increased biosynthesis of storage
169 compounds, suggesting that low salinities are stressful to *S. marinoi*, despite their natural occurrence in
170 low-salinity regions of the Baltic Sea. Specifically, biosynthesis of two major storage compounds was
171 upregulated: the polysaccharide chrysolaminarin, i.e. β -1,3- and β -1,6-glucan polysaccharides [45], and
172 fatty acids that might be stored as triacylglycerols [46] (Fig. 4, Suppl. Figs 2, 6A). Four genes involved
173 herein were DE in all genotypes, underscoring that storage compound biosynthesis was a common
174 response in all investigated genotypes. In addition, further evidence from changes in cell membranes
175 came from upregulation of sulfolipids and a glycosyltransferase, which are involved in thylakoid
176 membranes and maintenance of membrane stability, respectively.

177 We found that tRNA-aminoacylation, translational elongation factors, and many ribosomal
178 proteins were upregulated, which together point to an increase in protein biosynthesis in low salinities
179 (Fig. 4, Suppl. Figs 2, 7). In parallel, protein refolding activity was upregulated (Fig. 4), suggesting
180 proteins need additional stress protection in low salinities. Several transcription factors were also
181 upregulated, including a putative heat stress transcription factor involved in DNA-binding of heat shock
182 promoter elements. Both nuclear division and microtubule-based movements were downregulated (Fig.
183 4, Suppl. Fig. 2), suggesting less mitosis in low salinities. Although our growth data measured from
184 relative chlorophyll *a* fluorescence do not support a decrease in cell division in low salinities (Fig. 2),
185 upregulation of chlorophyll biosynthesis in these conditions (Suppl. Fig. 4A) suggests that a decrease
186 in mitosis could have been masked by an increase in per-cell chlorophyll-content—an observation that
187 might have important consequences for similar experiments that use chlorophyll *a* as a proxy for
188 growth. In addition, two genes coding for an extracellular subtilisin-like serine protease were
189 upregulated in low salinities, as has also been observed in diatoms in response to other stressors such
190 as copper deficiency [47]. Finally, although activation of transposable elements has been linked to the
191 diatom stress response [48, 49], including *S. marinoi* [50], the majority of genes involved in transposon
192 activity (i.e., transposase, retrovirus-related Pol poly-protein) in the *S. marinoi* genome were not DE,
193 and if DE they tended to be downregulated in low salinities (Fig. 4, Suppl. Fig. 2).

194

195 ***Increased nutrient demand in low salinities***

196 Our data suggest that low salinities induce profound changes in nutrient demand, especially of nitrogen,
197 and potentially also highlight preferred nitrogen sources in *S. marinoi*. In fact, many transmembrane
198 transporters for essential nutrients such as nitrogen, phosphorus, molybdate, and sulphate were
199 upregulated in low salinities (Suppl. Figs 5D, 9). Specifically for nitrogen, *Nrt* nitrite/nitrate transporters
200 were highly upregulated, and to a lesser extent transporters for urea and ammonia (Suppl. Figs 5D, 9).
201 Most of the imported nitrogen is directed to the chloroplast, where nitrogen assimilation through
202 ferredoxin-nitrite reductase (*Fd-Nir*) and GSII-GOGAT_(Fd) [51] was upregulated (Suppl. Fig. 5D). In
203 parallel, the anabolic part of the urea cycle was upregulated, including carbamoyl phosphate synthase
204 (*unCPS*) (Suppl. Figs 5C-D), suggestive of increased recycling of ammonia and biosynthesis of

205 arginino-succinate or arginine. Higher nutrient demands in low salinities likely reflect increased
206 biosynthesis of nitrogen-rich compounds such as amino acids and polyamines, essential for protein
207 biosynthesis and the stress response, respectively [52, 53]. In parallel, we detected a high number of
208 DE transporters for amino acids and polyamines, most of which were upregulated in low salinities
209 (Suppl. Fig. 9). Taken together, it appears that *S. marinoi* requires more nutrients in low-salinity
210 environments to support increased demand for proteins and other compounds. Consequently, *S. marinoi*
211 might struggle to maintain growth in low salinities under nutrient-deplete conditions, suggesting that
212 increasing nutrient loads in low-salinity regions of the Baltic Sea might benefit *S. marinoi* [54, 55]. In
213 contrast, silicic acid transporters were strongly downregulated in low salinities, and this downregulation
214 was most evident in the 16-24 salinity contrast (Suppl. Fig. 9). This could reflect decreased cell division
215 and/or changes in cell wall silicification.

216

217 *A diverse response to oxidative stress in low salinities*

218 Several lines of evidence suggest that *S. marinoi* experiences increased oxidative stress at low salinities,
219 as multiple mechanisms to deal with reactive oxygen species (ROS) were upregulated in low salinities.
220 This included genes involved in glutathione metabolism, ascorbate peroxidases, catalases, and
221 peroxiredoxin (Suppl. Fig. 6B). The xanthophyll cycle, which plays a critical role in protection from
222 oxidative stress due to excess light and ROS generated by other stressors [56], was also distinctly
223 upregulated (Suppl. Fig. 4B). Carotenoids for the xanthophyll cycle were produced primarily through
224 the non-mevalonate pathway, which was also upregulated in low salinities (Suppl. Fig. 4B).

225 We found upregulation of polyamine biosynthesis from ornithine via ornithine decarboxylase
226 (Suppl. Figs 5C-D). Polyamines play a complex role in abiotic stress responses, including salinity stress
227 in land plants, by increasing the activity of antioxidant enzymes, triggering the stress signal transduction
228 chain and serving an osmolyte function [53]. In diatoms, polyamines increase in response to both heat
229 and salinity stress [57, 58], and our data suggest a similar role in salinity acclimation.

230 Violaxanthin-de-epoxidase (xanthophyll cycle), and two genes involved in polyamine
231 biosynthesis were DE in all genotypes (Fig. 5), underscoring the highly conserved nature of the
232 oxidative stress response in *S. marinoi*. In addition, vitamin B6-binding activity was upregulated in low

233 salinities. Vitamin B6 is a vital cofactor of various enzymes, and plays a role in ROS deactivation in
234 land plants [59]. However, the response of *S. marinoi* to oxidative stress is complex, as several other
235 genes involved in ROS elimination were downregulated in low salinities (Suppl. Fig. 6B), including
236 superoxide dismutase (SOD), which is a first line of defense against ROS in land plants and macroalgae
237 [60, 61].

238

239 ***Osmotic stress response***

240 *Skeletonema marinoi* produces a variety of osmolytes. These are small organic molecules that help
241 mitigate hyperosmotic stress typical of marine environments [62–65]. Consequently, a decrease in
242 salinity should trigger a drop in osmolyte biosynthesis. Indeed, in low salinities, *S. marinoi* adjusted
243 intracellular osmolyte concentrations to hypoosmotic conditions by downregulating biosynthesis of the
244 osmolyte DMSP and upregulating breakdown of the osmolyte taurine via taurine dioxygenase (Suppl.
245 Fig. 6B). Although most genes involved in the diatom DMSP pathway remain unknown, *S. marinoi* has
246 a homolog of *TpMMT*, a methyltransferase that catalyzes a key reaction in DMSP biosynthesis in
247 diatoms [64]. This gene was strongly downregulated in low salinities (Suppl. Fig. 6B). Putative *BADH*
248 and *CDH* genes involved in the biosynthesis of the osmolyte betaine from choline [62] were present but
249 not DE. Betaine can also be synthesized from glycine by *TpGSDMT* [62], and a possible homolog of
250 this gene was downregulated in all genotypes (Suppl. Fig. 6B). Genes involved in proline metabolism
251 were generally slightly upregulated (Suppl. Fig. 5D), suggesting proline is the preferred osmolyte in
252 low salinities.

253 Two genes that were strongly downregulated in low salinities in all genotypes could be involved
254 in the biosynthesis of a fifth osmolyte: ectoine (Fig. 5, Suppl. Fig. 8). These genes encode a bifunctional
255 aspartokinase/homoserine dehydrogenase (*Sm_g00011041*) and an aspartate-semialdehyde
256 dehydrogenase (*Sm_g00011042*) (Fig. 5, Suppl. Fig. 8). Both are involved in the early steps of the
257 glycine/threonine/serine pathway, and convert aspartate into aspartate-semialdehyde and/or
258 homoserine. The genome of *S. marinoi* contains several other homologs of both genes. When DE, these
259 homologs show opposite expression patterns to the aforementioned genes: they are upregulated in low
260 salinities, following the same expression patterns as other genes in this pathway (Suppl. Fig. 8). Peptide

targeting predictions showed that reactions in this pathway are compartmentalized across the chloroplast, cytoplasm, and mitochondria, presumably allowing *S. marinoi* to run opposite reactions simultaneously while avoiding futile cycles (Suppl. Fig. 8). Given their expression patterns and compartmentalization, *Sm_g00011041* and *Sm_g00011042* are likely not involved in conventional amino acid biosynthesis. Instead, one of their products, aspartate-semialdehyde, is a known precursor for the osmolyte ectoine in bacteria (Suppl. Fig. 8) [66], and elevated levels of aspartate-semialdehyde dehydrogenase have been detected in bacteria occupying high salinities [67]. Recently, marine diatoms were found to both biosynthesize and import ectoine of bacterial origin [68]. Several *S. marinoi* genes may be homologous to the bacterial ectoine genes *ectA*, *ectB*, and *ectC* that convert aspartate-semialdehyde to ectoine. However, low sequence similarity (max. 47.8 %), and lack of downregulation in low salinities, raises doubt about whether those genes are responsible for ectoine biosynthesis in *S. marinoi*. Furthermore, all putative homologs received annotations different from ectoine-related genes in Swissprot/Uniprot, suggesting they serve different functions from aforementioned ectoine genes. It is possible that diatoms have other unknown genes involved in ectoine biosynthesis, or alternatively, diatoms might provide ectoine precursors (e.g., aspartate-semialdehyde) to extracellular bacteria that synthesize and return ectoine to the diatom. Such exchange of metabolites has previously been shown to occur in diatom–bacteria interactions [69]. Our expression data are consistent with both scenarios (Suppl. Fig. 8), and suggest ectoine might be an important osmolyte in diatoms.

Responses to osmotic stress also include shifts in cation import and export, such as sodium and potassium [70]. Here, most identified potassium and sodium channels were either slightly upregulated or not DE (Suppl. Fig. 9), and two detected aquaporins were either up- or downregulated in low salinities. Six transporters for potassium, amino acids or unknown cations/solutes were DE in all genotypes, often with large effect-sizes (Fig. 5), highlighting the conserved nature of this response in *S. marinoi*.

285

286 **Genotype-specific data reveal intraspecific variation and a conserved core response to low salinity**

287 The genotype effect in our dataset overshadowed the salinity effect, indicating that genotypes differed substantially in their response to low salinities. This was evidenced by a multidimensional scaling plot

289 and poisson-distance heatmap in which samples clustered primarily by genotype rather than salinity
290 (Fig. 6). Specifically, 1,791 genes were uniquely DE in only one genotype (Suppl. Fig. 10). The number
291 of uniquely DE genes ranged from 103 (genotype I) to 317 genes (genotype A) (Suppl. Fig. 10).

292 We defined a core response to low salinities by selecting genes that are DE in at least one
293 contrast of each genotype, which resulted in a set of 27 shared genes that are DE in each genotype (Figs
294 1C, 5). Obtaining this set of shared genes required subsetting the full set of DE genes (Fig. 1C), so the
295 5 % FDR for these 27 genes could not be guaranteed. However, the core response genes were
296 characterized by a combination of high logFC and low P-values (Suppl. Fig. 1), thus providing strong
297 evidence for DE in each genotype. These genes are also among the top DE genes in the full dataset (Fig.
298 1C: blue section): 13 overlapped with the top 25 DE genes as ranked by stageR's FDR-adjusted P-value
299 of the global null hypothesis (Padjscreen), 22 were part of the top 100 DE genes, and all were detected
300 within the top 225 DE genes. Core response genes upregulated in low salinities were involved in key
301 processes previously identified in the average response, including transport of amino acids and cations,
302 storage compound and polyamine biosynthesis, ROS deactivation, and transcription and translation
303 (Fig. 5). By contrast, core response genes that were downregulated in low salinities were involved in
304 proteolysis or the putative biosynthesis of the osmolyte ectoine (Fig. 5). Increasing the number of
305 technical replicates would likely enlarge the set of core response genes, as higher replicate numbers are
306 bound to improve detection of DE genes, especially those with small effect sizes [71]. Our set of 'core
307 response' genes is thus not exhaustive, but gives a first indication of which genes are likely to be part
308 of a conserved ancestral response to low salinity environments in *S. marinoi*.

309

310 **Interaction-effects reveal differences among genotypes in their response to low salinity**

311 A total of 3,857 genes showed interaction effects (Fig. 1C), i.e., significantly different expression
312 patterns between genotypes with a 5 % FDR. Of these, 2,820 differed between genotypes in the
313 magnitude of their response to low salinities, whereas far fewer (1,037) differed in the direction of their
314 response (Fig. 1C). However, 92 of the top 100 genes with interaction effects (ranked by stageR's FDR-
315 adjusted P-value of the global null hypothesis, Padjscreen) differed in the direction of their response

316 (Suppl. Fig. 11). Thus, although more genes overall showed differences in the magnitude of DE, those
317 with differences in direction of DE dominated the top set of interaction-effect genes.

318 The two classes of interaction-effect genes were enriched for different processes (Fig. 7, Suppl.
319 Fig. 12). Genes that differed significantly across genotypes in the magnitude of their response were
320 enriched for many of the same key processes identified in the average response, including
321 photosynthesis, glycolysis, and the biosynthesis of chlorophyll, carotenoids, and fatty acids (Fig. 7,
322 Suppl. Fig. 12). This suggests that there is considerable variation among *S. marinoi* genotypes in the
323 strength of the salinity response. By contrast, genes that differ significantly between genotypes in the
324 direction of their response were enriched for processes involving transcription regulation, peroxidase
325 activity, aerobic respiration, and nitrogen metabolism, including urea transmembrane transport (Fig. 7),
326 suggesting that genotypes differ, at least partially, in the invoked strategies to cope with low salinity.
327 The top 100 set of interaction-effect genes further suggested genotypes differ in the direction of their
328 response for cell wall and calcium-binding messenger proteins, as well as heat shock
329 proteins/chaperones (Suppl. Fig. 11), highlighting intraspecific differences in how salinity stress affects
330 protein function and cell-signalling pathways. For example, Ca^{2+} -signalling is involved in osmotic
331 sensing in diatoms [72], suggesting *S. marinoi* genotypes differ in how they perceive and respond to
332 osmotic stress.

333 Both classes of interaction-effect genes contained GO terms related to translational activity,
334 cell cycle progression, mitosis, and meiosis. In fact, two interaction-effect genes that show differences
335 in the direction of their response across genotypes coded for meiotic recombination protein *SPO11-2*
336 (Suppl. Fig. 11), which is thought to be expressed exclusively during meiosis [73, 74]. Sexual
337 reproduction in *S. marinoi* can be induced by shifts from low to higher salinity, e.g., 6 to 16 [73], but
338 our data suggest genotypes differ in the optimal salinity shift to induce meiosis. However, meiosis likely
339 never dominated during our experiment as growth rates were relatively stable over time (Fig. 2), and
340 gametes or auxospores were not observed. Although these observations could reflect intraspecific
341 differences in growth and sexual reproduction related to salinity, we cannot rule out that genotypes were
342 at different stages of their cell cycle when RNA was harvested.

343 The observed intraspecific variation in gene expression likely reflects an important mechanism
344 which allows *S. marinoi* to grow throughout the Baltic Sea. Diatom populations can harbour high levels
345 of both genotypic and phenotypic variation [23, 75–78]. Our finding of high levels of variation in gene
346 expression is a natural extension of this observation. Our study design did not allow testing whether the
347 observed intraspecific variation is related to the natural salinities at which the different genotypes occur,
348 as this would require sampling of multiple genotypes within populations. Nevertheless, visual
349 comparison of gene expression patterns did not show consistent differences across low- (D, F, I, J, K,
350 and P) and high-salinity (A and B) populations (e.g., Suppl. Figs 3-9), nor did those populations cluster
351 separately in the MDS-plot (Fig. 6A). This suggests that if signals of local adaptation along the Baltic
352 salinity cline [22] are due in part to differences in gene expression between high- and low-salinity
353 populations, then those differences are subtle. In any case, substantial intraspecific variation in gene
354 expression patterns in *S. marinoi* exists and is likely to be a crucial factor for survival, acclimation, and
355 adaptation to a dynamic environment such as the Baltic Sea, where in addition to a salinity gradient,
356 marked gradients and seasonal fluctuations in nutrients and temperature also occur [55]. The strong
357 degree of variation in gene expression within this population increases the chance that at least some
358 cells can survive rapidly fluctuating, potentially adverse, conditions in the short term. Assuming some
359 of this variation is heritable, variable gene expression can also enable long-term evolutionary adaptation
360 by providing targets for natural selection [8, 79]. In that sense, it may be that the observed variation in
361 gene expression is maintained by balancing selection.

362

363 CONCLUSION

364 Our study design, in which transcriptome data from eight genotypes were combined into one analysis,
365 allowed for a holistic view of the response of *S. marinoi* to low salinity conditions in the Baltic Sea, the
366 world's largest brackish water body. Transcriptome studies often include technical replicates of a single
367 genotype, but an increasing number of studies [49, 80] show that experiments without biological
368 replicates are unlikely to be generalizable, as different genotypes can exhibit markedly different patterns
369 of gene expression. Here, inclusion of both technical and biological replicates allowed us to pinpoint
370 both conserved and variable responses to low salinity.

371 Despite long-term presence of *S. marinoi* in brackish habitats in the Baltic Sea, our
372 transcriptome data suggest that when Baltic *S. marinoi* is exposed to low salinities that mimic the natural
373 Baltic salinity gradient, the diatom experiences elevated stress and increased energy and nutrient
374 demands to maintain homeostasis. This suggests that *S. marinoi* has not fully adapted to low salinity
375 regions of the Baltic Sea since it first colonized the Baltic some 9 000 years ago. Our analyses further
376 revealed substantial levels of intraspecific variability in the response of *S. marinoi* to low salinities.
377 Although our experimental design did not allow us to link this variability to the natural salinity of the
378 source population, it highlights an important source of biological variation in natural populations of *S.*
379 *marinoi* and presumably other diatoms as well. Variable gene expression could be an important
380 mechanism at which diatoms respond and adapt to environmental change, and ultimately diversified in
381 a wide range of marine, freshwater, and terrestrial habitats worldwide [4, 81].

382

383 **ACKNOWLEDGEMENTS**

384 This work was supported by grants from the Simons Foundation (725407, EP and 403249, AJA) and
385 National Science Foundation (1651087, AJA). EP also benefited from postdoctoral fellowships from
386 Fulbright Belgium and the Belgian American Education Foundation (B.A.E.F.). K.V.d.B. is a FWO
387 junior postdoc fellow (project 1246220N) and previously benefited from a B.A.E.F. grant. We are
388 grateful to Sirje Sildever, Björn Andersson and Andrzej Witkowski for sample collections. We thank
389 Wade Roberts, Quinten Bafort, and Gust Bilcke for providing advice on the data analysis.

390

391 **COMPETING INTERESTS**

392 The authors declare they have no conflict of interest.

393

394

395

396

397

398

399 **REFERENCES**

- 400 1. Lozupone CA, Knight R. Global patterns in bacterial diversity. *Proc Natl Acad Sci U S A* 2007; **104**: 11436–11440.
- 401 2. Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine-freshwater transitions in the microbial world. *Trends Microbiol* 2009; **17**: 414–422.
- 402 3. Cavalier-Smith T. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations. *J Eukaryot Microbiol* 2009; **56**: 26–33.
- 403 4. Nakov T, Beaulieu JM, Alverson AJ. Diatoms diversify and turn over faster in freshwater than marine environments. *Evolution* 2019; **73**: 2497–2511.
- 404 5. Dittami SM, Heesch S, Olsen JL, Collén J. Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. *J Phycol* 2017; **53**: 731–745.
- 405 6. Dickson B, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J. Rapid freshening of the deep North Atlantic Ocean over the past four decades. *Nature* 2002; **416**: 832–837.
- 406 7. Aretxabaleta AL, Smith KW, Kalra TS. Regime Changes in Global Sea Surface Salinity Trend. *J Mar Sci Eng* 2017; **5**: 57.
- 407 8. López-Maury L, Marguerat S, Bähler J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. *Nat Rev Genet* 2008; **9**: 583–593.
- 408 9. Björck S. A review of the history of the Baltic Sea, 13.0–8.0 ka BP. *Quat Int* 1995; **27**: 19–40.
- 409 10. Krauss W. Baltic Sea Circulation. In: Steele JH (ed). *Encyclopedia of Ocean Sciences*. 2001. Academic Press, Oxford, pp 236–244.
- 410 11. Zettler ML, Schiedek D, Bobertz B. Benthic biodiversity indices versus salinity gradient in the southern Baltic Sea. *Mar Pollut Bull* 2007; **55**: 258–270.
- 411 12. Telesh I, Schubert H, Skarlato S. Life in the salinity gradient: Discovering mechanisms behind a new biodiversity pattern. *Estuar Coast Shelf Sci* 2013; **135**: 317–327.
- 412 13. Johannesson K, Le Moan A, Perini S, André C. A Darwinian Laboratory of Multiple Contact Zones. *Trends Ecol Evol* 2020; **35**: 1021–1036.
- 413 14. Busse S, Snoeijs P. Gradient responses of diatom communities in the Bothnian Bay, northern Baltic Sea. *Nova Hedwigia* 2002; **74**: 501–525.
- 414 15. Gasiūnaitė ZR, Cardoso AC, Heiskanen A-S, Henriksen P, Kauppila P, Olenina I, et al. Seasonality of coastal phytoplankton in the Baltic Sea: Influence of salinity and eutrophication. *Estuar Coast Shelf Sci* 2005; **65**:

429 239–252.

430 16. Jochem F. Distribution and importance of autotrophic ultraplankton in a boreal inshore area (Kiel Bight,
431 Western Baltic). *Mar Ecol Prog Ser* 1989; **53**: 153–168.

432 17. Lange CB, Hasle GR, Syvertsen EE. Seasonal cycle of diatoms in the Skagerrak, North Atlantic, with
433 emphasis on the period 1980–1990. *Sarsia* 1992; **77**: 173–187.

434 18. van Wirdum F, Andrén E, Wienholz D, Kotthoff U, Moros M, Fanget A-S, et al. Middle to Late Holocene
435 Variations in Salinity and Primary Productivity in the Central Baltic Sea: A Multiproxy Study From the
436 Landsort Deep. *Frontiers in Marine Science* 2019; **6**: 51.

437 19. Warnock J, Andrén E, Juggins S, Lewis J, Ryves DB, Andrén T, et al. A high-resolution diatom-based Middle
438 and Late Holocene environmental history of the Little Belt region, Baltic Sea. *Boreas* 2020; **49**: 1–16.

439 20. Ellegaard M, Godhe A, Härnström K, McQuoid M. The species concept in a marine diatom: LSU rDNA–
440 based phylogenetic differentiation in *Skeletonema marinoi/dohrnii* (Bacillariophyceae) is not reflected in
441 morphology. *Phycologia* 2008; **47**: 156–167.

442 21. Alverson AJ. Timing marine–freshwater transitions in the diatom order Thalassiosirales. *Paleobiology* 2014;
443 **40**: 91–101.

444 22. Sjöqvist C, Godhe A, Jonsson PR, Sundqvist L, Kremp A. Local adaptation and oceanographic connectivity
445 patterns explain genetic differentiation of a marine diatom across the North Sea–Baltic Sea salinity gradient.
446 *Mol Ecol* 2015; **24**: 2871–2885.

447 23. Kremp A, Godhe A, Egardt J, Dupont S, Suikkanen S, Casabianca S, et al. Intraspecific variability in the
448 response of bloom-forming marine microalgae to changed climate conditions. *Ecol Evol* 2012; **2**: 1195–1207.

449 24. Godhe A, Härnström K. Linking the planktonic and benthic habitat: genetic structure of the marine diatom
450 *Skeletonema marinoi*. *Mol Ecol* 2010; **19**: 4478–4490.

451 25. Dobin A, Gingeras TR. Mapping RNA-seq Reads with STAR. *Curr Protoc Bioinformatics* 2015; **51**: 11.14.1–
452 11.14.19.

453 26. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data.
454 *Bioinformatics* 2015; **31**: 166–169.

455 27. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis
456 of digital gene expression data. *Bioinformatics* 2010; **26**: 139–140.

457 28. Van den Berge K, Soneson C, Robinson MD, Clement L. stageR: a general stage-wise method for controlling
458 the gene-level false discovery rate in differential expression and differential transcript usage. *Genome Biol*

459 2017; **18**: 151.

460 29. Alexa A, Rahnenführer J. Gene set enrichment analysis with topGO. *Bioconductor Improv* 2009; **27**.

461 30. Wu D, Smyth GK. Camera: a competitive gene set test accounting for inter-gene correlation. *Nucleic Acids*
462 *Res* 2012; **40**: e133.

463 31. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein
464 function classification. *Bioinformatics* 2014; **30**: 1236–1240.

465 32. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG
466 Ortholog assignment based on profile HMM and adaptive score threshold. *Bioinformatics* 2020; **36**: 2251–
467 2252.

468 33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. *J Mol Biol* 1990;
469 **215**: 403–410.

470 34. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. *Genome Biol*
471 2019; **20**: 238.

472 35. Claros MG. MitoProt, a Macintosh application for studying mitochondrial proteins. *Comput Appl Biosci* 1995;
473 **11**: 441–447.

474 36. Gschloessl B, Guermeur Y, Cock JM. HECTAR: a method to predict subcellular targeting in heterokonts.
475 *BMC Bioinformatics* 2008; **9**: 393.

476 37. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. *J Mol*
477 *Biol* 2004; **340**: 783–795.

478 38. Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T. Plastid proteome prediction for diatoms and other
479 algae with secondary plastids of the red lineage. *Plant J* 2015; **81**: 519–528.

480 39. Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, et al. Detecting
481 sequence signals in targeting peptides using deep learning. *Life Sci Alliance* 2019; **2**: e201900429.

482 40. Matthijs M, Fabris M, Obata T, Foubert I, Franco-Zorrilla JM, Solano R, et al. The transcription factor bZIP14
483 regulates the TCA cycle in the diatom *Phaeodactylum tricornutum*. *EMBO J* 2017; **36**: 1559–1576.

484 41. Bussard A, Corre E, Hubas C, Duvernois-Berthet E, Le Corguillé G, Jourdren L, et al. Physiological
485 adjustments and transcriptome reprogramming are involved in the acclimation to salinity gradients in diatoms.
486 *Environ Microbiol* 2017; **19**: 909–925.

487 42. Sayanova O, Mimouni V, Ulmann L, Morant-Manceau A, Pasquet V, Schoefs B, et al. Modulation of lipid
488 biosynthesis by stress in diatoms. *Philos Trans R Soc Lond B Biol Sci* 2017; **372**: 20160407.

489 43. Vårum KM, Myklestad S. Effects of light, salinity and nutrient limitation on the production of β -1,3-d-glucan
490 and exo-d-glucanase activity in *Skeletonema costatum* (Grev.) Cleve. *J Exp Mar Bio Ecol* 1984; **83**: 13–25.

491 44. Chen G-Q, Jiang Y, Chen F. Salt-induced alterations in lipid composition of diatom *Nitzschia laevis*
492 (Bacillariophyceae) under heterotrophic culture condition. *J Phycol* 2008; **44**: 1309–1314.

493 45. Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, et al. A model for carbohydrate
494 metabolism in the diatom *Phaeodactylum tricornutum* deduced from comparative whole genome analysis.
495 *PLoS One* 2008; **3**: e1426.

496 46. Zulu NN, Zienkiewicz K, Vollheyde K, Feussner I. Current trends to comprehend lipid metabolism in diatoms.
497 *Prog Lipid Res* 2018; **70**: 1–16.

498 47. Kong L, Price NM. Transcriptomes of an oceanic diatom reveal the initial and final stages of acclimation to
499 copper deficiency. *Environ Microbiol* 2021.

500 48. Maumus F, Allen AE, Mhiri C, Hu H, Jabbari K, Vardi A, et al. Potential impact of stress activated
501 retrotransposons on genome evolution in a marine diatom. *BMC Genomics* 2009; **10**: 624.

502 49. Pargana A, Musacchia F, Sanges R, Russo MT, Ferrante MI, Bowler C, et al. Intraspecific Diversity in the
503 Cold Stress Response of Transposable Elements in the Diatom *Leptocylindrus aporus*. *Genes* 2019; **11**: 9.

504 50. Amato A, Sabatino V, Nylund GM, Bergkvist J, Basu S, Andersson MX, et al. Grazer-induced transcriptomic
505 and metabolomic response of the chain-forming diatom *Skeletonema marinoi*. *ISME J* 2018; **12**: 1594–1604.

506 51. Smith SR, Dupont CL, McCarthy JK, Brodrick JT, Oborník M, Horák A, et al. Evolution and regulation of
507 nitrogen flux through compartmentalized metabolic networks in a marine diatom. *Nat Commun* 2019; **10**:
508 4552.

509 52. Mansour MMF. Nitrogen containing compounds and adaptation of plants to salinity stress. *Biol Plant* 2000;
510 **43**: 491–500.

511 53. Chen D, Shao Q, Yin L, Younis A, Zheng B. Polyamine Function in Plants: Metabolism, Regulation on
512 Development, and Roles in Abiotic Stress Responses. *Front Plant Sci* 2018; **9**: 1945.

513 54. Voss M, Dippner JW, Humborg C, Hürdler J, Korth F, Neumann T, et al. History and scenarios of future
514 development of Baltic Sea eutrophication. *Estuar Coast Shelf Sci* 2011; **92**: 307–322.

515 55. Savchuk OP. Large-scale nutrient dynamics in the Baltic sea, 1970–2016. *Front Mar Sci* 2018; **5**: 95.

516 56. Latowski D, Kuczyńska P, Strzałka K. Xanthophyll cycle--a mechanism protecting plants against oxidative
517 stress. *Redox Rep* 2011; **16**: 78–90.

518 57. Liu Q, Nishibori N, Imai I, Hollibaugh JT. Response of polyamine pools in marine phytoplankton to nutrient

519 limitation and variation in temperature and salinity. *Mar Ecol Prog Ser* 2016; **544**: 93–105.

520 58. Scoccianti V, Penna A, Penna N, Magnani M. Effect of heat stress on polyamine content and protein pattern
521 in *Skeletonema costatum*. *Mar Biol* 1995; **121**: 549–554.

522 59. Colinas M, Eisenhut M, Tohge T, Pesquera M, Fernie AR, Weber APM, et al. Balancing of B6 Vitamers Is
523 Essential for Plant Development and Metabolism in *Arabidopsis*. *Plant Cell* 2016; **28**: 439–453.

524 60. Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in
525 plants. *J Exp Bot* 2002; **53**: 1331–1341.

526 61. Kumar M, Kumari P, Gupta V, Reddy CRK, Jha B. Biochemical responses of red alga *Gracilaria corticata*
527 (Gracilariales, Rhodophyta) to salinity induced oxidative stress. *J Exp Mar Bio Ecol* 2010; **391**: 27–34.

528 62. Kageyama H, Tanaka Y, Takabe T. Biosynthetic pathways of glycinebetaine in *Thalassiosira pseudonana*;
529 functional characterization of enzyme catalyzing three-step methylation of glycine. *Plant Physiol Biochem*
530 2018; **127**: 248–255.

531 63. Lyon BR, Bennett-Mintz JM, Lee PA, Janech MG, DiTullio GR. Role of dimethylsulfoniopropionate as an
532 osmoprotectant following gradual salinity shifts in the sea-ice diatom *Fragilariopsis cylindrus*. *Environ Chem*
533 2016; **13**: 181–194.

534 64. Kageyama H, Tanaka Y, Shibata A, Waditee-Sirisattha R, Takabe T. Dimethylsulfoniopropionate
535 biosynthesis in a diatom *Thalassiosira pseudonana*: Identification of a gene encoding MTHB-
536 methyltransferase. *Arch Biochem Biophys* 2018; **645**: 100–106.

537 65. Krell A, Funck D, Plettner I, John U, Dieckmann G. Regulation of proline metabolism under salt stress in the
538 psychrophilic diatom *Fragilariopsis cylindrus* (Bacillariophyceae). *J Phycol* 2007; **43**: 753–762.

539 66. Vargas C, Argandoña M, Reina-Bueno M, Rodríguez-Moya J, Fernández-Aunión C, Nieto JJ. Unravelling
540 the adaptation responses to osmotic and temperature stress in *Chromohalobacter salexigens*, a bacterium with
541 broad salinity tolerance. *Saline Systems* 2008; **4**: 14.

542 67. Khmelenina VN, Sakharovskii VG, Reshetnikov AS, Trotsenko YA. Synthesis of osmoprotectants by
543 halophilic and alkaliphilic methanotrophs. *Microbiology* . 2000. , **69**: 381–386

544 68. Fenizia S, Thume K, Wirgenings M, Pohnert G. Ectoine from Bacterial and Algal Origin Is a Compatible
545 Solute in Microalgae. *Mar Drugs* 2020; **18**: 42.

546 69. Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling
547 between a cosmopolitan phytoplankton and associated bacteria. *Nature* 2015; **522**: 98–101.

548 70. Latta LC, Weider LJ, Colbourne JK, Pfrender ME. The evolution of salinity tolerance in *Daphnia*: a functional

549 genomics approach. *Ecol Lett* 2012; **15**: 794–802.

550 71. Van den Berge K, Hembach KM, Soneson C, Tiberi S, Clement L, Love MI, et al. RNA Sequencing Data:
551 Hitchhiker's Guide to Expression Analysis. *Annu Rev Biomed Data Sci* 2019; **2**: 139–173.

552 72. Helliwell KE, Kleiner FH, Hardstaff H, Chrachri A, Gaikwad T, Salmon D, et al. Spatiotemporal patterns of
553 intracellular Ca²⁺ signalling govern hypo-osmotic stress resilience in marine diatoms. *New Phytol* 2021; **230**:
554 155–170.

555 73. Ferrante MI, Entrambasaguas L, Johansson M, Töpel M, Kremp A, Montresor M, et al. Exploring Molecular
556 Signs of Sex in the Marine Diatom *Skeletonema marinoi*. *Genes* 2019; **10**: 494.

557 74. Bilcke G, Van den Berge K, De Decker S, Bonneure E, Poulsen N, Bulankova P, et al. Mating type specific
558 transcriptomic response to sex inducing pheromone in the pennate diatom *Seminavis robusta*. *ISME J* 2021;
559 **15**: 562–576.

560 75. Ajani PA, Petrou K, Larsson ME, Nielsen DA, Burke J, Murray SA. Phenotypic trait variability as an
561 indication of adaptive capacity in a cosmopolitan marine diatom. *Environ Microbiol* 2021; **23**: 207–223.

562 76. Sjöqvist CO, Kremp A. Genetic diversity affects ecological performance and stress response of marine diatom
563 populations. *ISME J* 2016; **10**: 2755–2766.

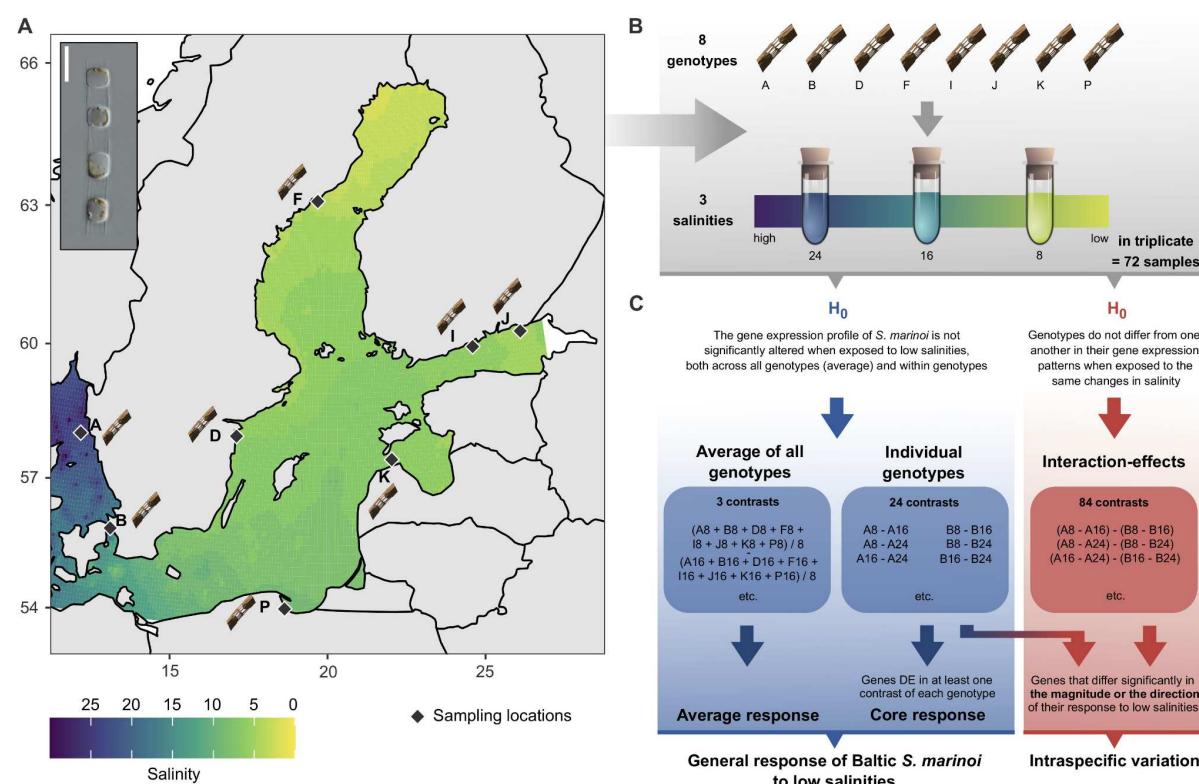
564 77. Godhe A, Rynearson T. The role of intraspecific variation in the ecological and evolutionary success of
565 diatoms in changing environments. *Philos Trans R Soc Lond B Biol Sci* 2017; **372**: 20160399.

566 78. Bulankova P, Sekulić M, Jallet D, Nef C, van Oosterhout C, Delmont TO, et al. Mitotic recombination
567 between homologous chromosomes drives genomic diversity in diatoms. *Curr Biol* 2021; **31**: 3221–3232.e9.

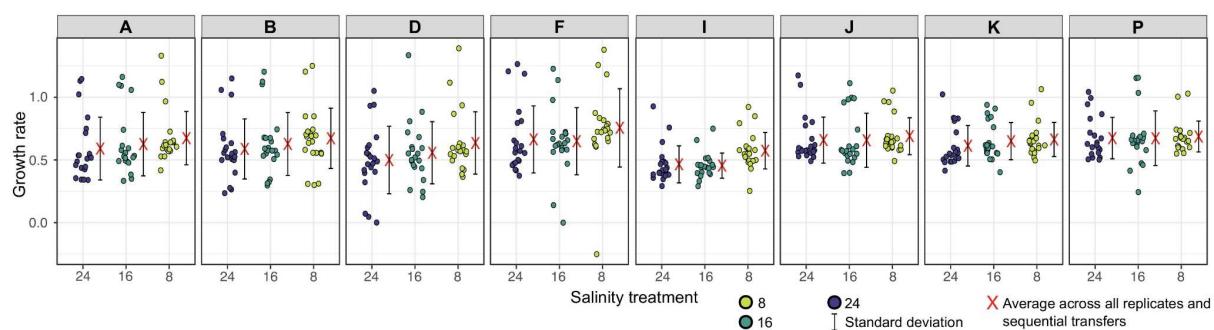
568 79. Gomez-Mestre I, Jovani R. A heuristic model on the role of plasticity in adaptive evolution: plasticity
569 increases adaptation, population viability and genetic variation. *Proc Biol Sci* 2013; **280**: 20131869.

570 80. Nakov T, Judy KJ, Downey KM, Ruck EC, Alverson AJ. Transcriptional Response of Osmolyte Synthetic
571 Pathways and Membrane Transporters in a Euryhaline Diatom During Long-term Acclimation to a Salinity
572 Gradient. *J Phycol* 2020; **56**: 1712–1728.

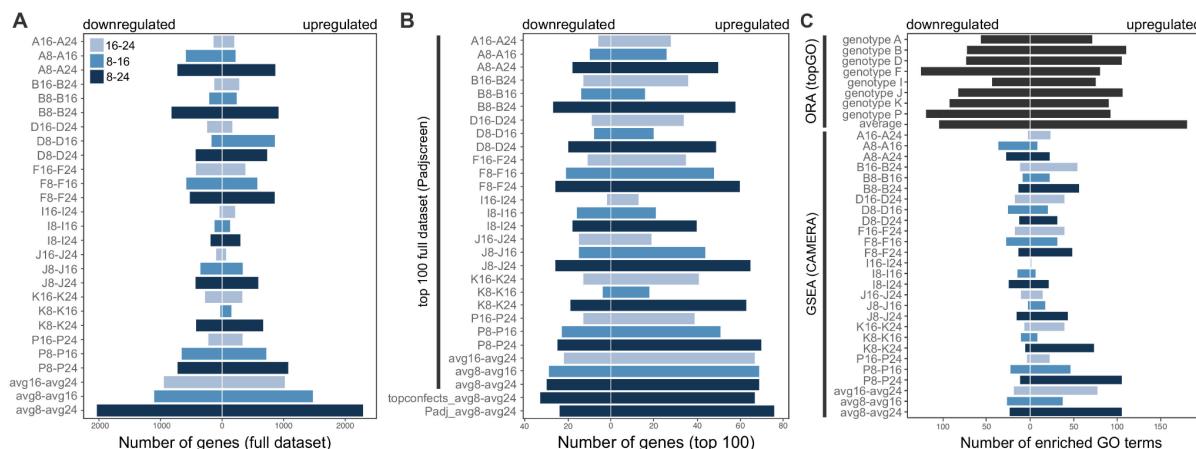
573 81. Pinseel E, Janssens SB, Verleyen E, Vanormelingen P, Kohler TJ, Biersma EM, et al. Global radiation in a
574 rare biosphere soil diatom. *Nat Commun* 2020; **11**: 2382.

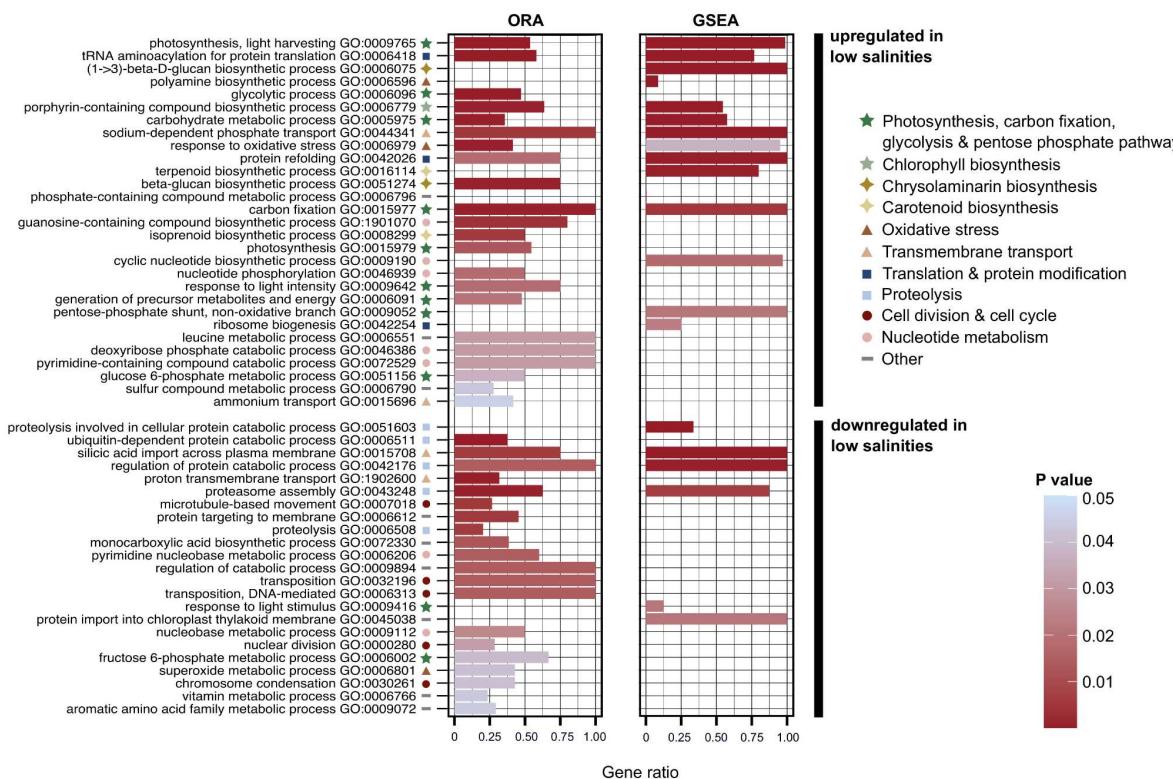

575 82. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology
576 terms. *PLoS One* 2011; **6**: e21800.

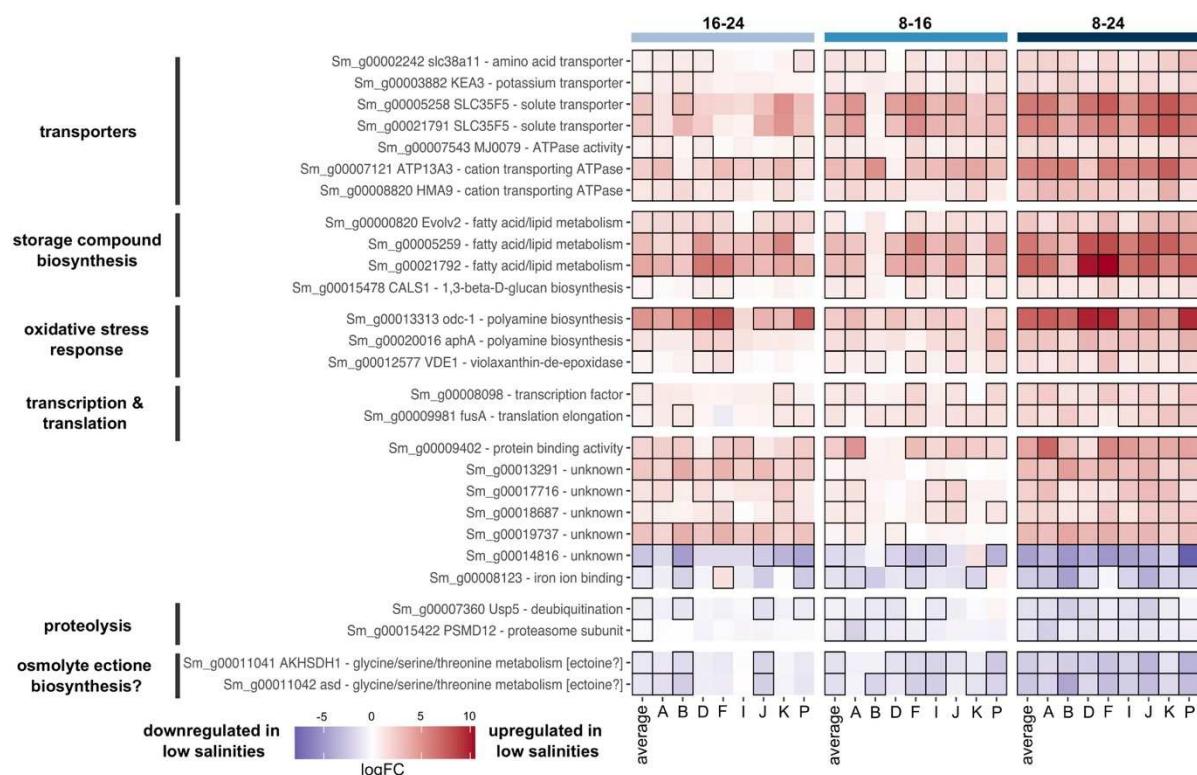
TABLES

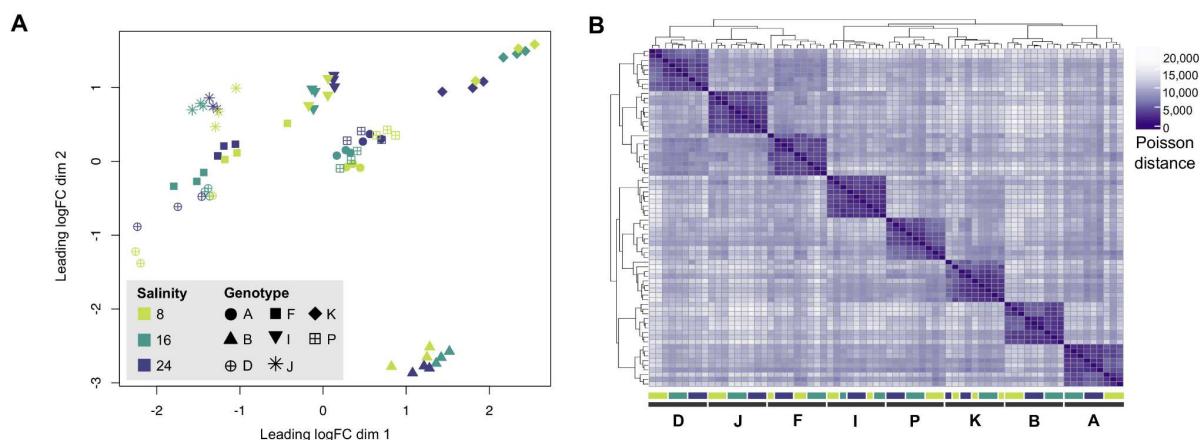

Table 1. Details of the *S. marinoi* strains used in this study. The salinity values indicate the salinity of the natural sample from which the respective strains were isolated ('original salinity') and in which they were maintained prior to the experiment ('culture salinity'). GPS coordinates indicated with an asterisk (*) represent approximate sampling locations.

Collection ID	Strain ID	Field ID	Country	GPS (N/E)	Collector	Isolation date	Culture medium	Original salinity	Culture salinity
AJA304	A.2.21b	A	Sweden	58.02868/11.13738 (*)	A.Godhe	2017-03-28	L1	15-33	24
AJA305	B.2.19b	B	Sweden	55.97744/12.69058	A.Godhe	2017-04-07	ASW	12-15	16
AJA332	D.1.27a	D	Sweden	58.33200/16.70583	A.Godhe, B.Andersson	2018-05-14	WC + salt	8-9	8
AJA328	F.1.2a	F	Sweden	63.65317/18.95200 (*)	A.Godhe	2018-03-15	WC + salt	~8	8
AJA311	I.3.11a	I	Finland	60.18000/25.50700	A.Kremp	2017-03-09	WC + salt	5-6	5
AJA313	J.3.42b	J	Finland	60.38964/27.37518 (*)	A.Kremp	2018-04-22	WC + salt	4-5	8
AJA318	K.3.3a	K	Estonia	57.81670/22.28330	S.Sildever	2018-05-23	WC + salt	~8	8
AJA333	P.2.6a	P	Poland	54.44778/18.57611	A.Witkowski	2018-05-16	WC + salt	5-7	5


FIGURES


Fig. 1. Experimental design. a Field sampling. Natural salinity gradient in the Baltic Sea based on salinity measurements from surface samples (0-10 m depth) and interpolated across the Baltic Sea for the period 1990-2020. Salinity measurements were downloaded from ICES (ICES Dataset on Ocean Hydrography, 2020. ICES, Copenhagen) and Sharkweb (<https://sharkweb.smhi.se/hamta-data/>). Diamonds identify sampling locations for *S. marinoi*. The inset figure shows a light micrograph of a *S. marinoi* culture (scale bar = 10 μ m). **b Laboratory experiment.** Experimental design of the laboratory experiment carried out in this study. Eight strains of *S. marinoi* were exposed to three salinity treatments (8, 16 and 24) in triplicate, resulting in 72 RNA-seq libraries. **c Statistical analyses.** Overview of the null hypotheses and contrasts tested in this study. Our experimental design allowed characterization of the general response of *S. marinoi* to low salinities as well as intraspecific variation. The lower blue arrows indicate which data were incorporated in the average and core responses, which together were used to define the general response of *S. marinoi*. Genes with significant interaction effects were subdivided in two categories using logFC values of the genotype-specific effects (blue-red gradient arrow), distinguishing genes that differed significantly in either the magnitude or direction of their response to low salinities. The first category includes genes that were DE in one genotype but not the others, or that were DE in multiple genotypes but with significant differences in logFC values in the same direction. Genes of the second category were significantly upregulated in some genotypes, whereas they were significantly downregulated in other genotypes.


Fig. 2. Growth response of Baltic *S. marinoi* in low salinities. Growth rates of the eight *S. marinoi* genotypes examined in this study at three different salinities. The letters in the individual panels correspond with the sampling locations in Table 1 ('Field ID') and Fig. 1A. Each point represents a single estimate of the slope of the logarithm of in vivo relative fluorescence against time for each sequential transfer, using a horizontal jitter of points to avoid overplotting.


Fig. 3. Transcriptome response of Baltic *S. marinoi* to low salinities. a Number of DE genes at a 5 % FDR-level in the average and genotype-specific effects. The number of DE genes is indicated separately for each contrast, distinguishing between genes that are up- or downregulated. **b** Direction of DE in the top 100 genes of the average and genotype-specific effects as selected by P-value or logFC. For each contrast in the average and genotype-specific effects (vertical black bar), the direction of DE is indicated for the top 100 genes selected by stageR's FDR-adjusted P-value of the global null hypothesis (Padjscreen). Thus, although a gene can have a high P-value on a dataset-wide level, it is not necessarily DE in each individual contrast. In addition, we show the top 100 genes selected by logFC (topconfects) and the contrast-specific 5 % FDR-controlled P-value (Padj) for the 8-24 contrast of the average effects, as this contrast showed the greatest number of DE genes in **a**. **c** Number of enriched GO terms. Two types of GO enrichment are shown: Over-representation Analysis, ORA (in topGO) and Gene Set Enrichment Analysis, GSEA (in CAMERA). For ORA, we defined two sets of genes in each genotype/average response for which GO enrichment was performed separately: genes upregulated in low salinities, and genes downregulated in low salinities. Further details on how this selection was performed can be found in the Supplementary Methods. For GSEA, we performed GO enrichment on each contrast of the genotype-specific and average effects separately. Here, the number of up- and downregulated GO terms represents the output classification by CAMERA. The number of enriched GO terms includes Biological Process, Molecular Function and Cellular Component GO terms, prior to removal of redundant GO terms by REVIGO [82] (see Supplementary Methods).

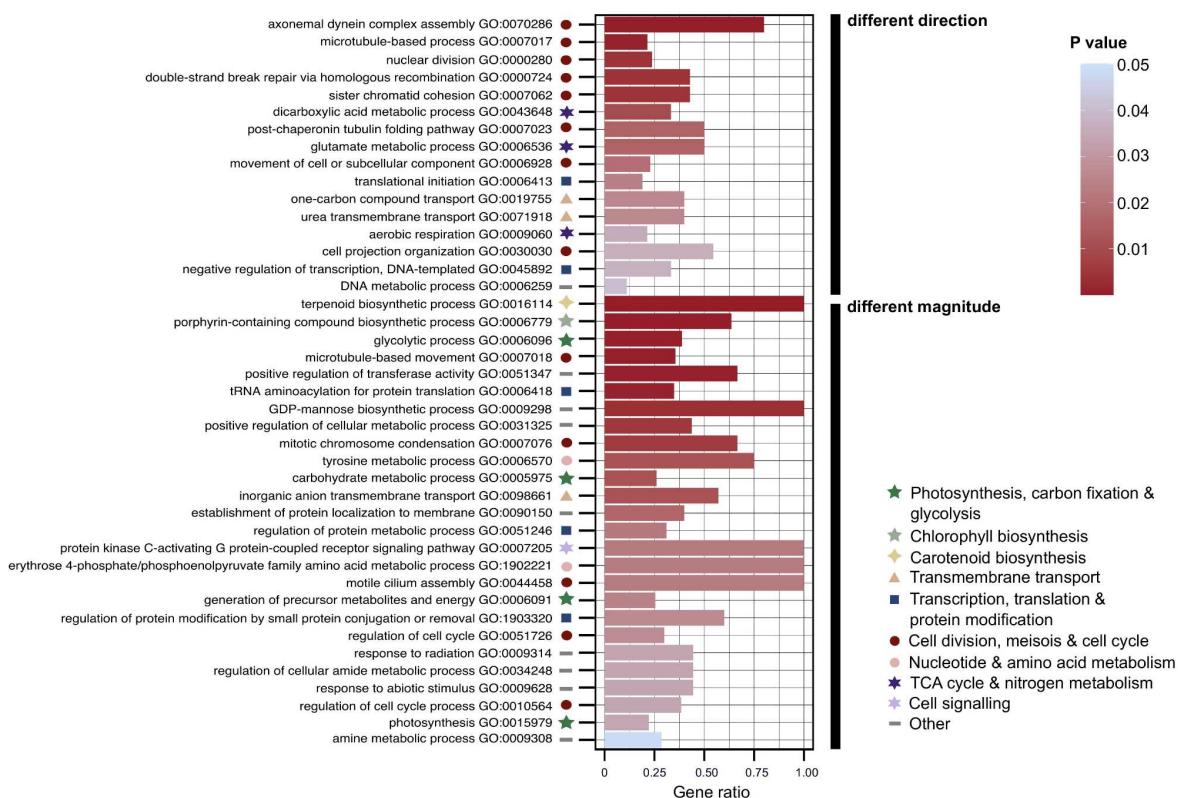

Fig 4. GO enrichment on the average response of *S. marinoi* to low salinities: Biological Process. The results of two types of GO enrichment analyses are shown: ORA (in topGO, Fisher's exact test, *elim* algorithm) and GSEA (in CAMERA), after removal of redundant terms by REVIGO. For ORA, we classified the total set of DE genes in the average response into two categories, distinguishing between genes that are up- or downregulated in low salinities, regardless of salinity contrast (see Supplementary Methods for more details). For CAMERA, we performed GSEA analyses on each individual contrast separately, showing only the 8-24 contrast in this figure. Barplot height indicates the proportion of genes that are DE with a given GO-term to the total number of genes with this GO-term in the genome of *S. marinoi*. The barplots are colored according to P-value. Within the set of up- and downregulated genes, the GO-terms are ranked from lowest to highest P-value, using the lowest of two P-values from ORA or GSEA. Symbols indicate major categories of cellular processes to which a GO-term belongs. Only Biological Process GO-terms are shown.

Fig. 5. Set of genes that are DE in at least one contrast of each genotype: the core response. The heatmap shows logFC values for the individual genotypes and average response of the 27 core response genes. The three salinity combinations are indicated on top of the figure. Contrasts that were significant are outlined in black. Rownames specify gene names and functional annotation. When DE, all genes are consistently up- or downregulated in low salinities in each genotype, with the exception of gene *Sm_g00008123*.

Fig. 6. Intraspecific variation in the response of Baltic *S. marinoi* to low salinities. **a** Multidimensional scaling (MDS) plot for the full dataset, showing that samples cluster primarily by genotype rather than salinity. Distances between the samples are based on logFC changes in the top 500 genes. **b** Poisson-distance heatmap of the full dataset. Colored bars below the heatmap indicate the position of samples belonging to different genotypes and salinities (Fig. 1 a), showing that samples of different genotypes cluster together.

Fig. 7. GO enrichment of the interaction-effects: Biological Process. The barplot visualizes the significant GO terms retrieved by ORA (topGO, Fisher's exact test, *elim* algorithm) after removal of redundant GO terms by REVIGO. Two sets of GO enrichment were carried out which distinguished between genes that differ significantly between genotypes in the direction or magnitude of their response to low salinities. Barplot height indicates the proportion of genes that are DE with a given GO-term to the total number of genes with this GO-term in the genome of *S. marinoi*. The barplots are colored, and the GO terms ranked, according to P-value. Symbols indicate major categories of cellular processes to which a GO-term belongs. Only Biological Process GO-terms are shown.